高考数学:解题模型及解法

合集下载

高中数学解答题8个答题模板与做大题的方法

高中数学解答题8个答题模板与做大题的方法

高中数学解答题8个答题模板与做大题的方法高中数学解答题是每一位学生都要面对的考试难题,要想在考场上取得好成绩,就需要掌握一些答题模板和技巧。

本文将为大家分享一些高中数学解答题的8个答题模板以及做大题的方法。

一、直接套公式有些题目只需要把已知条件代入公式求解即可。

例如:已知正方形的一条对角线长度为10,求正方形面积。

解答:根据正方形对角线公式可知,正方形的边长等于对角线长度的平方除以2,即$a=\frac{\sqrt{2}}{2} \times 10=5\sqrt{2}$正方形面积为$a^2=50$。

二、代数相加减有些题目需要转换成代数式,通过相加减化简后求解。

例如:已知$\frac{x+2}{a}=\frac{4}{x-2}$,求$\frac{x^2+2x}{a^2}$的值。

解答:将已知条件转换为代数式,得到$x+2=\frac{4a}{x-2}$将$x^2+2x$用$x+2$和$x-2$表示出来,可得:$x^2+2x=(x+2)(x-2)+6$代入上式可得:$\frac{x^2+2x}{a^2}=\frac{(x+2)(x-2)+6}{a^2}=\frac{4a^2+6}{ a^2}=4+\frac{6}{a^2}$三、代数移项有些题目需要进行代数移项以消去未知量,例如:已知2x-3y=9,求y。

解答:将未知量y移至等式左侧,可得$2x-9=3y$将等式两侧同时除以3,即得y的值:$y=\frac{2x-9}{3}$。

四、因式分解有些题目需要通过因式分解来求解,例如:已知$x^2+3x-10=0$,求x。

解答:将$x^2+3x-10$进行因式分解,可得$(x+5)(x-2)=0$因此,$x=-5$或$x=2$。

五、有理化有些题目涉及分数,需要进行有理化操作,例如:已知$\frac{1}{\sqrt{3}-1}+\frac{2}{\sqrt{3}+1}=a+b\sqrt{3}$,求a和b的值。

解答:分别对两个分数进行有理化,可得:$\frac{1}{\sqrt{3}-1}=\frac{\sqrt{3}+1}{2}$,$\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$将上式代入原式,可得:$a+b\sqrt{3}=\frac{\sqrt{3}+1}{2}+\sqrt{3}-1=2\sqrt{3}-\frac{ 1}{2}$因此,a= -1/2,b= 2。

高中数学各大题型详细解题方法总结,建议高考生收藏!

高中数学各大题型详细解题方法总结,建议高考生收藏!

高中数学各大题型详细解题方法总结,建议高考生收藏!高考数学大题考查的包括三角函数、立体几何、数列、圆锥曲线、函数与导数。

每类题都有对应的出题套路,每一种套路都有对应的解题方法:三角函数三角函数的题有两种考法,其中10%~20%的概率考解三角形,80%~90%的概率考三角函数本身。

1. 解三角形不管题目是什么,要明白,关于解三角形,只学了三个公式——正弦定理、余弦定理和面积公式。

所以,解三角形的题目,求面积的话肯定用面积公式。

至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。

2. 三角函数然后求解需要求的。

套路一般是给一个比较复杂的式子,然后问这个函数的定义域、值域、周期、频率、单调性等问题。

解决方法就是,首先利用“和差倍半”对式子进行化简。

化简成:掌握以上公式,足够了。

关于题型,见下图:立体几何立体几何的相关题目,稍微复杂一些,可能会卡住一些人。

这个题目一般有2~3问,一般会考查某条线的大小或者证明某个线/面与另外一个线/面平行或垂直,以及求二面角。

这类题目的解题方法有两种:空间向量法和传统法。

这两种方法各有利弊。

向量法:使用向量法的好处在于:没有任何思维含量,肯定能解出最终答案。

缺点就是计算量大,且容易出错。

使用空间向量法,首先应该建立空间直角坐标系。

建系结束后,根据已知条件可用向量确定每条直线。

其形式为AB=(a,b,c),然后进行后续证明与求解。

箭头指的是利用前面的方法求解。

如果有些同学会觉得比较乱,以下为无箭头标注的图。

传统法:在学立体几何的时候,有很多性质定理和判定定理。

但是针对高考立体几何大题而言,解题方法基本是唯一的,除了上图中6和8有两种解题方法以外,其他都是有唯一的方法。

所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。

另外,还有一类题,是求点到平面距离的,这类题百分之百用等体积法求解。

数列从这里开始,会明显感觉题目变难了,但是掌握了套路和方法,解决这类题目并不困难。

高中数学选择题的解题方法详解高中数学20个模型解法

高中数学选择题的解题方法详解高中数学20个模型解法

高中数学选择题的解题方法详解高中数学20个模型解法高中数学选择题的解题方法方法一:直接法所谓轻易法,就是轻易从题设的条件启程,运用有关的概念、定义、性质、定理、法则和公式等科学知识,通过严格的推理小说与排序比起出题目的结论,然后再对照题目Rewa的四个选项去“对号入座”.其基本策略就是由因导果,轻易解.方法二:特例法特例法的理论依据就是:命题的一般性结论为真的先决条件就是它的特定情况为真,即为普通性微旨特殊性之中,所谓特例法,就是用特定值(特定图形、特定边线)替代题设广泛条件,得出结论特定结论,对各个选项展开检验,从而做出恰当的推论.常用的特例Barbezieux特定数值、特定数列、特定函数、特定图形、特定角、特定边线等.这种方法实际就是一种“小题大搞”的解题策略,对答疑某些选择题有时往往十分奏效.注意:在题设条件都设立的情况下,用特定值(获得越直观越不好)展开探究,从而准确、便捷地获得恰当的答案,即为通过对特定情况的研究去推论通常规律,就是答疑本类选择题的更佳策略.近几年中考选择题中需用或融合特例法去答疑的约占到30%.因此,特例法就是解选择题的不好一招.方法三:排除法数学选择题的解题本质就是去伪存真,抛弃不合乎题目建议的选项,找出合乎题意的恰当结论.筛选法(又叫做排除法)就是通过观察分析或推理小说运算各项提供更多的信息或通过特例,对于错误的选项,逐一剔出,从而赢得恰当的结论.注意:排除法适应环境于定性型或难于轻易解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找到显著与之矛盾的,不予驳斥,再根据另一些条件在增大选项的范围内找到矛盾,这样逐步甄选,直至得出结论恰当的答案.它与特例法、图解法等融合采用就是求解选择题的常用方法,近几年中考选择题中占据非常大的比重.方法四:数形结合法数形融合,其实质就是将抽象化的数学语言与直观的图形融合出来,并使抽象思维与形象思维融合出来,通过对图形的处置,充分发挥直观对抽象化的积极支持促进作用,同时实现抽象概念与具体内容形象的联系和转变,化难为易,化抽象化为直观.方法五:估算法在选择题中作精确排序难于时,可以根据题干提供更多的信息,估计出来结果的大致值域范围,确定错误的选项.对于客观性试题,合理的估计往往比盲目的精确排序和细致推理小说更为有效率,堪称“一叶知秋”.方法六:综合法当单一的解题方法无法并使试题快速获解时,我们可以将多种方法融为一体,交叉采用,试题便能够迎刃而解.根据题干提供更多的信息,难于找出解题思路时,我们可以从选项里打听解题启发.高中数学高分的技巧1.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

高中数学抛物线的一个重要模型(模型解题法)

高中数学抛物线的一个重要模型(模型解题法)

DO yAFBClx【模型解题法】高中数学抛物线焦点弦模型【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。

过抛物线)0(22>=p px y 的焦点弦AB 的端点,A B 分别抛物线准线l 的垂线,交l 于D C 、,构成直角梯形ABCD (图1).这个图形是抛物线 问题中极为重要的一个模型,围绕它可以生出许 多重要的问题,抓住并用好这个模型,可以帮助 我们学好抛物线的基本知识与基本方法,同时, 它又体现了解析几何的重要思想方法。

在图1中, 有哪些重要的几何量可以算出来?又可以获得哪 些重要结论呢?【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。

例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ∆的面积.例4. 连,(2)CF DF CF DF ⊥,求证图.例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项,即 2FE CE DE =⋅.例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为2sin pθ. 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2NFAF BF =⋅.例12. 已知抛物线y x 42=的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M.(I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →·AB →为定值; FBAy图1【模型解析】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。

高考数学解题方法技巧总结-滑块模型解题方法技巧

高考数学解题方法技巧总结-滑块模型解题方法技巧

高考数学解题方法技巧总结:滑块模型解题方法技巧掌握正确有效的解题方法和解题技巧,不仅可以帮助同学们培养好的数学素养,也是提升学生数学解题效率的关键,下面是小编给大家带来的高考数学解题方法技巧,希望对你有帮助。

高考数学解题方法技巧调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。

应该说,审题要慢,解答要快。

审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。

而思路一旦形成,则可尽量快速完成。

高考数学大题解题技巧一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

高考数学立体几何多种解法

高考数学立体几何多种解法

高考数学立体几何多种解法高考数学立体几何题目通常有多种解法,这取决于问题的具体形式和你所掌握的工具。

以下是一些常见的立体几何问题和它们的多种解法:问题1:求多面体的体积解法1:直接计算如果题目给出了多面体的底面积和高,可以直接使用体积公式 V=底面积×高来计算。

解法2:分割法如果多面体可以被分割成几个简单的几何体(如长方体、三棱锥等),可以先计算每个简单几何体的体积,然后求和。

解法3:向量法如果题目中涉及到了向量的知识,可以通过计算底面的法向量和顶点到底面的距离(即高),然后使用向量体积公式V=1/3 A⋅(B×C)来计算体积。

问题2:求多面体的表面积解法1:直接计算如果题目给出了多面体的各个面的面积,可以直接求和得到总表面积。

解法2:分割法如果多面体可以被分割成几个简单的几何体,可以先计算每个简单几何体的表面积,然后求和。

解法3:向量法对于某些复杂的多面体,可以通过计算各个面的法向量和对应的面积向量,然后使用向量点积来计算每个面的面积,最后求和得到总表面积。

问题3:证明线面平行或垂直解法1:定义法直接使用线面平行或垂直的定义来证明。

解法2:判定定理使用线面平行或垂直的判定定理来证明。

解法3:向量法通过计算向量之间的点积或叉积来证明线面平行或垂直。

问题4:求点到平面的距离解法1:公式法如果知道点到平面的垂线段的长度和垂足在平面上的坐标,可以使用距离公式 d=(x2−x1)2+(y2−y1)2+(z2−z1)2 来计算。

解法2:向量法通过计算点到平面上任意一点的向量和平面的法向量,然后使用向量点积和模长来计算距离。

问题5:求二面角的平面角解法1:定义法直接在图形中找出二面角的平面角,然后计算。

解法2:向量法通过计算两个平面的法向量,然后计算这两个法向量的夹角,即为二面角的平面角。

问题6:判断几何体的形状解法1:直接观察通过观察几何体的形状和尺寸来判断。

解法2:计算法通过计算几何体的各个面的面积、边长、角度等来判断。

高考数学答题模板

高考数学答题模板

高考数学答题模板
1. 解法一:代数法
解题步骤:
(1)分析题目,根据所给条件设定变量;
(2)建立方程或不等式,表示已知的条件和要求的关系;(3)求解方程或不等式,得到结果;
(4)结合题意判断答案是否合理;
(5)若需求解区间或范围,还需分析边界条件。

2. 解法二:几何法
解题步骤:
(1)绘制清晰准确的图形,标注已知条件和要求的关系;(2)根据已知条件和要求,运用几何定理推导、引理等,进行求解;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

3. 解法三:综合法
解题步骤:
(1)综合分析题目条件,确定使用代数法或几何法或两者结合进行解答;
(2)根据分析的方法,进行相应的计算和推导;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

4. 解法四:特殊问题解法
解题步骤:
(1)针对特殊问题的特点,寻找相应的解题技巧;
(2)应用特殊问题解法,进行求解;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

5. 解法五:分类讨论法
解题步骤:
(1)将题目所给条件进行分类讨论;
(2)对不同情况分别进行解答;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。

注意:上述为解题模板的基本框架,具体情况下可根据题目的要求和条件进行适当的调整和变化。

高考数学:解题模型及解法

高考数学:解题模型及解法

高考数学:解题模型及解法第一步:熟悉模型,不会的题有清晰的思路第二步:掌握模型,总做错的题不会错了第三步:活用模型,大题小题都能轻松化解一、选择题解答模型策略注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。

准确是解答选择题的先决条件。

选择题不设中间分,一步失误,造成错选,全题无分。

所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。

迅速是赢得时间,获取高分的秘诀。

高考中考生“超时失分”是造成低分的一大因素。

对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。

一般地,选择题解答的策略是:① 熟练掌握各种基本题型的一般解法。

② 结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。

③ 挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。

二、填空题解答模型策略填空题是一种传统的题型,也是高考试卷中又一常见题型。

高考中共5个小题,每题5分,共25分,占全卷总分的16.7%。

根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求学生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。

由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。

二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。

在解答填空题时,基本要求就是:正确、迅速、合理、简捷。

一般来讲,每道题都应力争在1~3分钟内完成。

填空题只要求填写结果,每道题填对了得满分,填错了得零分,所以,考生在填空题上失分一般比选择题和解答题严重。

高考中高频的108个模型总结

高考中高频的108个模型总结

高考中高频的108个模型总结高考中的数学题型有很多种,按照题目的性质和解题方法可以分为不同的模型。

经过总结,我们可以将高考中的数学题型归纳为108个模型,这些模型涵盖了从初中到高中数学的各个知识点,并且在高考中出现的频率较高。

这些模型不仅可以帮助我们系统地复习数学知识,还可以帮助我们有效地解决高考中的数学题目。

首先,我们来看一些常见的基础模型。

例如,解形如ax+b=cx+d的一元一次方程,解形如a/x+b/y=c的一元一次方程组,以及解形如ax^2+bx+c=0的一元二次方程等等。

这些基础模型在高考中出现的频率很高,掌握好这些基础模型可以为我们解决其他更加复杂的问题打下基础。

其次,高考中还经常出现几何模型。

比如,通过已知条件求证两条直线平行或垂直,通过已知条件求证三角形全等或相似,通过平移、旋转、翻折等方法求解几何题目等等。

几何模型不仅需要我们熟练掌握基本的几何知识,还需要我们发挥想象力和逻辑推理能力来解决问题。

另外,在高考中还经常出现函数模型。

比如,通过函数的定义域、值域、奇偶性等性质求解函数的图像,通过函数的导数或积分求解函数的极值、拐点等问题,通过函数的周期性、对称性等性质求解函数的周期、对称轴等问题等等。

函数模型是高等数学的重要内容,也是高考中的一个重点。

此外,高考中还可能出现概率与统计模型。

比如,通过条件概率、全概率公式、贝叶斯公式等方法求解概率问题,通过频率分布、均值、方差等统计量求解统计问题,通过正态分布、卡方分布等概率分布求解相关问题等等。

概率与统计模型需要我们灵活运用各种概率统计方法来解决实际问题。

总的来说,高考中的数学题型有很多种,但是它们都可以归纳为一些基础的模型。

通过系统地掌握这些模型,我们可以更加高效地解决高考中的数学问题。

在复习阶段,我们可以按照模型分类进行复习,先复习基础模型,再复习几何模型、函数模型、概率与统计模型等,以此来提高解题效率。

希望我们每一个高考数学的考生都能够顺利地应对高考挑战,取得优异的成绩。

高考数学解题方法与经验分享(精选4篇)

高考数学解题方法与经验分享(精选4篇)

高考数学解题方法与经验分享(精选4篇)高考数学解题方法与经验分享【篇1】1.将圆锥曲线几何性质与向量数量积、不等式等交汇是高考解析几何命题的一种新常态,问题解决过程中渗透数学的转化化归,函数与方程和数形结合等的数学思想方法。

2. 点差法是一种常用的模式化解题方法,这种方法对于解决有关斜率,中点等问题有较好的解题效能。

3、圆及其直线与圆的位置关系,轨迹等问题是全国I卷的常考点,点到直线的距离、弦长公式,圆的几何性质,解三角形等知识点交汇融合,数形结合、分类讨论等数学思想方法有机渗透,解法常规,思路清晰。

4、直线与圆锥曲线的位置关系在虽然没有明确指出,但是在高考则是常考不衰的考点,同时常常与不等式、最值等相交汇,题型常见,理解容易,思路明确,交汇点较多。

直线与圆锥曲线位置关系解法步骤直接明了,关键计算(解方程、求最值等)是否准确,规范是否到位,细节是否。

5、抛物线的切线及其性质,存在性的问题都是高考的常考点,将求证目标∠OPM=∠OPN 转化为 k1+k2=0 是解题的关键,体现转化化归思想的应用,同时利用设而不求实现整体化简是减少计算量的有效方法,应当熟练掌握。

6、“定义型”的试题是高考的一个热点。

这种题目设问新颖,层次分明,贯穿解析几何的核心内容,解题的思路和策略常规常见,通性通法,直线与圆锥曲线的位置关系的解法和基本在此呈现,正确快速的多字母化简计算是解析几何解题的一道坎。

高考数学解题方法与经验分享【篇2】高考数学解题思想一:函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。

利用转化思想我们还可进行函数与方程间的相互转化。

高考数学解题思想二:数形结合思想中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。

高考数学压轴题6大模型、23种考法

高考数学压轴题6大模型、23种考法

高考数学压轴题6大模型、23种考法
题型一切线型
1.求在某处的切线方程
2.求过某点的切线方程
3.已知切线方程求参数
题型二单调型
1.主导函数需“二次求导”型
2.主导函数为“一次函数”型
3.主导函数为“二次函数”型
4.已知函数单调性,求参数范围
题型三极值最值型
1.求函数的极值
2.求函数的最值
3.已知极值求参数
4.已知最值求参数
题型四零点型
1.零点(交点,根)的个数问题
2.零点存在性定理的应用
3.极值点偏移问题
题型五恒成立与存在性问题
1.单变量型恒成立问题
2.单变量型存在性问题
3.双变量型的恒成立与存在性问题
4.等式型恒成立与存在性问题
题型六与不等式有关的证明问题
1.单变量型不等式证明
2.含有e x与lnx的不等式证明技巧
3.多元函数不等式的证明
4.数列型不等式证明的构造方法。

2020年高考数学答题模板(最终版)

2020年高考数学答题模板(最终版)

高考数学解答题常考公式及答题模板(文理通用) 嬴本德题型一:解三角形1、正弦定理:R CcB bA a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R cB R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan =8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。

高考数学线性规划常见题型及解法[1]

高考数学线性规划常见题型及解法[1]

高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。

现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。

可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。

二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。

143个高中高频数学解题模型

143个高中高频数学解题模型

143个高中高频数学解题模型一、一元一次方程与一元一次方程组1. 一元一次方程的定义一元一次方程指的是只含有一个变量,并且最高次数为一的方程,通常表示为ax+b=0。

解一元一次方程的方法主要有求解法和图解法。

2. 一元一次方程组的概念一元一次方程组指的是由若干个一元一次方程组成的方程组,通常表示为a1x+b1y=c1a2x+b2y=c2解一元一次方程组的方法主要有代入法、加减法和等系数消去法。

二、一元二次方程与一元二次不等式1. 一元二次方程的特点一元二次方程指的是最高次数为二的方程,通常表示为ax^2+bx+c=0。

解一元二次方程的方法主要有配方法和求根公式。

2. 一元二次不等式的解法一元二次不等式指的是最高次数为二的不等式,通常表示为ax^2+bx+c>0或ax^2+bx+c<0。

解一元二次不等式的方法主要有因式分解法和图像法。

三、二元二次方程与二元二次不等式1. 二元二次方程的定义二元二次方程指的是含有两个变量且最高次数为二的方程,通常表示为ax^2+by^2+cxy+dx+ey+f=0。

解二元二次方程的方法主要有配方法和消元法。

2. 二元二次不等式的概念二元二次不等式指的是含有两个变量且最高次数为二的不等式。

解二元二次不等式的方法主要有图解法和代数法。

四、指数与对数1. 指数的基本性质指数是幂运算的一种表示方式,有基本性质包括乘法法则、除法法则和零指数法则。

2. 对数的基本概念对数是幂运算的逆运算,有基本性质包括对数的乘除法则和对数的换底公式。

五、三角函数与解三角形1. 三角函数的基本性质三角函数包括正弦函数、余弦函数和正切函数,有基本性质包括奇偶性、周期性和对称性。

2. 解三角形的基本方法解三角形主要包括利用三角函数和利用三角恒等式两种方法,主要应用于解直角三角形和不定角三角形。

六、平面向量的运算1. 平面向量的基本定义平面向量是具有大小和方向的量,有基本运算包括数乘、加法和减法。

(完整版)高中数学通用模型解题方法技巧总结

(完整版)高中数学通用模型解题方法技巧总结

高中数学通用模型解题方法1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

显然,这里很容易解出A={—1,3}.而B最多只有一个元素.故B只能是-1或者3。

根据条件,可以得到a=-1,a=1/3。

但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。

3。

注意下列性质:要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在).同样,对于元素a2, a3,……a n,都有2种选择,所以,总共有种选择,即集合A有个子集.当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为(3)德摩根定律:有些版本可能是这种写法,遇到后要能够看懂4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。

注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告诉你函数f(x)=ax2+bx+c(a〉0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1。

或者,我说在上 ,也应该马上可以想到m,n实际上就是方程的2个根5、熟悉命题的几种形式、∨∧⌝可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”()()().命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

6、熟悉充要条件的性质(高考经常考)满足条件,满足条件,若;则是的充分非必要条件;若;则是的必要非充分条件;若;则是的充要条件;若;则是的既非充分又非必要条件;7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象.)注意映射个数的求法。

高中数学21种解题方法及例题

高中数学21种解题方法及例题

高中数学21种解题方法及例题在高中数学学习中,解题方法的灵活运用是学生们提高解题能力的关键。

掌握不同的解题思路和方法,能够使学生更加深入地理解数学知识,提高问题解决的效率。

本文将介绍21种高中数学解题方法,并通过例题进行详细说明,以帮助学生更好地应用这些方法。

【一、代数运算类解题方法】1. 一元一次方程求解法例题:已知方程2x + 3 = 7,求解x的值。

2. 一次函数的图像法例题:给定函数y = 3x + 2,绘制出其图像,并解析求解函数的相关特征。

3. 因式分解法例题:将方程x² - 4x + 4 = 0进行因式分解,并求解方程。

【二、几何推理类解题方法】4. 同位角性质运用法例题:已知两条平行线被一条截线所交,求解各个角的度数。

5. 对称性运用法例题:已知某几何图形具有对称性,利用对称性进行证明或求解问题。

6. 三角函数运用法例题:利用正弦定理求解三角形的未知边长或角度。

【三、数列与数数法】7. 等差数列求和法例题:已知等差数列的首项为2,公差为3,求解前10项的和。

8. 递推数列求通项法例题:已知数列的前两项为1和2,公差为3,求解数列的通项公式。

9. 迭代运算法例题:已知数列递推式为an+1 = 2an - 1, a1 = 1,求解前10项的数值。

【四、概率统计类解题方法】10. 样本空间与事件法例题:已知一枚骰子,求解投掷两次,求得的点数和为9的概率。

11. 求解总数法例题:已知有5个红球和3个蓝球,从中随机抽取2个球,求解两球不同色的概率。

12. 排列组合法例题:有8个人参加篮球比赛,其中3人为前锋,4人为后卫,求解一种排列和组合的方式。

【五、解析几何类解题方法】13. 直线与圆的位置关系法例题:已知直线方程为y = 2x + 1,圆的标准方程为(x-2)² + (y-3)² = 4,求解两者的位置关系。

14. 曲线与切线法例题:已知曲线方程为y = x²,求曲线上某一点的切线斜率。

高考数学28个答题模板及答题技巧汇总(真的超精细哦)

高考数学28个答题模板及答题技巧汇总(真的超精细哦)

高考数学28个答题模板及答题技巧汇总(真的超精细哦)本文总结了高考数学中常见的28个题型、解题模板和解题技巧,希望能够对考生提供参考和帮助。

单选题1. 未知数的代值:将题目中给定的条件代入方程中,解方程即可;未知数的代值:将题目中给定的条件代入方程中,解方程即可;2. 因式分解求值:将式子进行因式分解,再将已知的值代入求得答案;因式分解求值:将式子进行因式分解,再将已知的值代入求得答案;3. 图像与解析式配对:通过画图或分析图像,找到图像对应的解析式,再求得答案;图像与解析式配对:通过画图或分析图像,找到图像对应的解析式,再求得答案;4. 二次函数:将二次函数用顶点式表示或通过配方法将二次函数转化为标准式,再根据已知条件求解;二次函数:将二次函数用顶点式表示或通过配方法将二次函数转化为标准式,再根据已知条件求解;5. 三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;6. 数列求和:根据数列的首项、公比、项数等已知条件,利用数列求和公式求解;数列求和:根据数列的首项、公比、项数等已知条件,利用数列求和公式求解;7. 圆的性质:根据圆的定义、性质,以及圆内接、外接三角形性质进行判断和计算;圆的性质:根据圆的定义、性质,以及圆内接、外接三角形性质进行判断和计算;8. 统计与概率:根据统计数据和概率公式进行计算。

统计与概率:根据统计数据和概率公式进行计算。

填空题9. 比例求值:根据已知值和比例关系,通过求解等式来求得答案;比例求值:根据已知值和比例关系,通过求解等式来求得答案;10. 三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;11. 函数求值:根据函数的定义和已知条件,将函数进行变形,得出结果;函数求值:根据函数的定义和已知条件,将函数进行变形,得出结果;12. 平面几何:根据平面几何的定义、定理和公式,进行计算;平面几何:根据平面几何的定义、定理和公式,进行计算;13. 空间几何:根据空间几何的定义、定理和公式,进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学:解题模型及解法
一、不会解:想不到、分不清、思维定势
据调查显示:半数中学生成绩被数学、物理拖后提,原因并不是智力问题,也不是懒惰,而是方法的问题。

这些学生做题就像在荒原上开汽车,很容易迷路,绕弯路。

二、解题慢:速度慢、不熟练、记忆模糊
80%的考生感叹:考试时间段,题目做不完。

其实,这隐含着一个人们最容易忽视的问题:那就是没有在解题时建立正确的方法。

公式、定理背的的滚瓜烂熟,但一到做题的时候就卡壳。

尤其在考试的时候,时间又紧,做题卡壳,做小题的时间都不后用,最后几道大题直接就放弃了。

三、老出错:不细心、踩陷阱、毫厘之差
很多学生会说:这个题我做错,不是我不会,是因为粗心做错了。

其实这个观点是大错特错。

出题人会在出提时故意设置陷阱,就算你再细心,也还是很容易犯错,也就是说,罪魁祸首根部不是你粗心、细心的问题,而是解题方法的问题。

其实,将这些总结为一句话:成绩差,归根到底,没方法,缺少正确的引导!
针对这个令广大莘莘学子头疼的问题,我们提出模型解题法。

只要在科学方法的引导下,成绩一定会得到最大程度的提高。

模型三大步:看题型、套模型、出结果。

第一步:熟悉模型,不会的题有清晰的思路
第二步:掌握模型,总做错的题不会错了
第三步:活用模型,大题小题都能轻松化解
一、选择题解答模型策略
注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。

准确是解答选择题的先决条件。

选择题不设中间分,一步失误,造成错选,全题无分。

所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。

迅速是赢得时间,获取高分的秘诀。

高考中考生“超时失分”是造成低分的一大因素。

对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。

一般地,选择题解答的策略是:
①熟练掌握各种基本题型的一般解法。

②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。

③挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。

二、填空题解答模型策略
填空题是一种传统的题型,也是高考试卷中又一常见题型。

高考中共5个小题,每题5分,共25分,占全卷总分的16.7%。

根据填空时所填写的内容形式,可以将填空题分成两种类型:
一是定量型,要求学生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。

由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。

二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。

在解答填空题时,基本要求就是:正确、迅速、合理、简捷。

一般来讲,每道题都应力争在1~3分钟内完成。

填空题只要求填写结果,每道题填对了得满分,填错
了得零分,所以,考生在填空题上失分一般比选择题和解答题严重。

所以在解答时,更应该细心、认真。

三、解答问题的模型
应用问题的“考试要求”是考查考生的应用意识和运用数学知识与方法来分析问题解决问题的能力,这个要求分解为三个要点:
1、要求考生了解信息社会,讲究联系实际,重视数学在生
产、生活及科学中的应用,明确“数学有用,要用数学”,并积累处理实际问题的经验。

2、考查理解语言的能力,要求考生能够从普通语言中捕捉信息,将普通语言转化为数学语言,以数学语言为工具进行数学思维与交流。

3、考查建立数学模型的初步能力,并能运用“考试说明”所规定的数学知识和方法来求解。

对应用题,考生的弱点主要表现在:将实际问题转化成数学问题的能力上。

而这关键是提高阅读能力即数学审题能力,审出函数、方程、不等式、等式。

要求我们读懂材料,领悟从背景中概括出来的数学实质,抽象其中的数量关系,建立对应的数学模型解答。

求解应用题的一般步骤是(三步法):
1、读题:读懂和深刻理解,译为数学语言,找出主要关系;
2、建模:把主要关系近似化、形式化,抽象成数学问题;
3、求解:化归为常规问题,选择合适的数学方法求解;
在近几年高考中,经常涉及的数学模型,有以下一些类型:数列模型、函数模型、不等式模型、三角模型、排列组合模型等等。

四、探索性问题模型
探索性问题一般有以下几种类型:猜想归纳型、存在型问题、分类讨论型。

1、猜想归纳型问题:指在问题没有给出结论时,需要从特殊情况入手,进行猜想后证明其猜想的一般性结论。

它的思路是:从所给的条件出发,通过观察、试验、不完全归纳、猜想,探讨出结论,然后再利用完全归纳理论和要求对结论进行证明。

其主要体现是解答数列中等与n有关数学问题。

2、存在型问题:指结论不确定的问题,即在数学命题中,结论常以“是否存在”的形式出现,其结果可能存在,需要找出来,可能不存在,则需要说明理由。

解答这一类问题时,我们可以先假设结论不存在,若推论无矛盾,则结论确定存在;若推证出矛盾,则结论不存在。

代数、三角、几何中,都可以出现此种探讨“是否存在”类型的问题。

3、分类讨论型问题:指条件或者结论不确定时,把所有的情况进行分类讨论后,找出满足条件的条件或结论。

此种题型常见于含有参数的问题,或者情况多种的问题。

“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”
当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

4、探索性问题,是从高层次上考查学生创造性思维能力的新题型,我们在学习中要重视对这一问题的训练,以提高我们的思维能力和开拓能力。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底“记死”的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。

可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。

这些成语典故“贮藏”在学生脑中,自然
会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

相关文档
最新文档