最新中考数学二次函数应用题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学二次函数应用题分类汇编
列方程(组)解应用题是中考的必考内容,必是中考的热点考题之一,列方程(组)解应用题的关键与难点是如何找到能够表示题目全部含义的相等关系,所谓“能表示全部含义”就是指在相等关系中,题目所给出的全部条件(包括所求的量)都要给予充分利用,不能漏掉,但也不能把同一条件重复使用,应用题中的相等关系通常有两种,一种是通过题目的一些关键词语表现出来的明显的相等关系,如“多”、“少”、“增加”、“减少”、“快”、“慢”等,另一种是题目中没有明显给出而题意中又包含着的隐含相等关系,这也是中考的重点和难点,此时需全面深入的理解题意,结合日常生活常识和自然科学知识才能做到.
解应用题的一般步骤:
解应用题的一般步骤可以归结为:“审、设、列、解、验、答”.
1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.
2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).
3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.
4、“解”就是解方程,求出未知数的值.
5、“验”就是验解,即检验方程的解能否保证实际问题有意义.
6、“答”就是写出答案(包括单位名称).
应用题类型:
近年全国各地的中考题中涉及的应用题类型主要有:行程问题,工程问题,增产率问题,百分比浓度问题,和差倍分问题,与函数综合类问题,市场经济问题等.
几种常见类型和等量关系如下:
1、行程问题:
s .
基本量之间的关系:路程=速度×时间,即:vt
常见等量关系:
(1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程.
(2)追及问题(设甲速度快):
①同时不同地:
甲用的时间=乙用的时间;
甲走的路程-乙走的路程=原来甲、乙相距的路程.
②同地不同时:
甲用的时间=乙用的时间-时间差;
甲走的路程=乙走的路程.
2、工程问题:
基本量之间的关系:工作量=工作效率×工作时间.
常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量.
3、增长率问题:
基本量之间的关系:现产量=原产量×(1+增长率).
4、百分比浓度问题:
基本量之间的关系:溶质=溶液×浓度.
5、水中航行问题:
基本量之间的关系:顺流速度=船在静水中速度+水流速度;
逆流速度=船在静水中速度-水流速度.
6、市场经济问题:
基本量之间的关系:商品利润=售价-进价;
商品利润率=利润÷进价;
利息=本金×利率×期数;
本息和=本金+本金×利率×期数.
中考数学二次函数应用题分类汇总
一,基础类型题
1. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2
+--=)(
,则小球距离地面的最大高度是( )
A .1米
B .5米
C .6米
D .7米 【答案】C 2. (广东株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4x (单位:米)的一部分,则水喷出的最大高度是( )
A .4米
B .3米
C .2米
D .1米 【答案】D
3. (山东聊城)某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )
A .50m
B .100m
C .160m
D .200m 【答案】C
4. (湖南怀化)出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大. 【答案】4
5. (山东滨州)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。点A 、B 在抛物线造型上,且点A 到水平面的距离AC =4O 米,点B 到水平面距离为2米,OC =8米。
(1)
请建立适当的直角坐标系,求抛物线的函数解析式; (2) 为了安全美观,现需在水平线OC 上找一点P ,用质地、规格已确定的圆形钢管制作两根支柱PA 、PB 对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P ?(无需证明)
(3)
为了施工方便,现需计算出点O 、P 之间的距离,那么两根支柱用料最省时点O 、P 之间的距离是多少?
(请写出求解过程)
【答案】
解:(1)以点O 为原点、射线OC 为y 轴的正半轴建立直角坐标系设抛物线的函数解析式为2y ax =,由题意知点A 的坐标为(4,8)。且点A 在抛物线上,所以8=a×24,解得a=12,故所求抛物线的函数解析式为212y x =(2)找法:延长AC,交建筑物造型所在抛物线于点D, 则点A 、D 关于OC 对称。连接BD 交OC 于点P ,则点P 即为所求。
(3)由题意知点B 的横坐标为2,且点B 在抛物线上,所以点B 的坐标为(2,2)又知点A 的坐标为(4,8),所以点D 的坐标为(-4,8)设直线BD 的函数解析式为
y=kx+b ,则有2248k b k b +=⎧⎨-+=⎩解得k=-1,b=4. 故直线BD 的函数解析式为
y=-x+4,把x=0代入 y=-x+4,得点P 的坐标为(0,4)两根支柱用料最省时,点O 、P 之间的距
离是4米。
6、(衢州)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x 棵橘子树,果园橘子总个数为y 个,则果园里增种 10 棵橘子树,橘子总个数最多.
7、(山西)如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9m ,AB=36m ,D ,E 为桥拱底部的两点,且DE ∥AB ,点E 到直线AB 的距离为7m ,则DE 的长为_____m.
【答案】48
【解析】以C 为原点建立平面直角坐标系,如右上图,依题意,得B (18,-9),
设抛物线方程为:2y ax =,将B 点坐标代入,得a =-136,所以,抛物线方程为:2136
y x =-,
解答: 解:假设果园增种x 棵橙子树,那么果园共有(x+100)棵橙子树,∵每多种一棵树,平均每棵树就会少结5
个橙子,∴这时平均每棵树就会少结5x 个橙子,则平均每棵树结(600﹣5x )个橙子.∵果园橙子的总产量
为y ,∴则y=(x+100)(600﹣5x )=﹣5x 2+100x+60000,∴当x=﹣
=﹣=10(棵)时,橘子
总个数最多.故答案为:10.
点评: 此题主要考查了二次函数的应用,准确分析题意,列出y 与x 之间的二次函数关系式是解题关键.