几种特殊类型函数不定积分共23页文档

合集下载

不定积分公式大全

不定积分公式大全

不定积分公式大全1.幂函数的不定积分公式- ∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1)- ∫x^(-1) dx = ln,x, + C- ∫e^x dx = e^x + C- ∫a^x dx = (a^x)/(ln(a)) + C2.三角函数的不定积分公式- ∫sinx dx = -cosx + C- ∫cosx dx = sinx + C- ∫sec^2x dx = tanx + C- ∫csc^2x dx = -cotx + C- ∫secx tanx dx = secx + C- ∫cscx cotx dx = -cscx + C3.反三角函数的不定积分公式- ∫1/(√(1-x^2)) dx = arcsin(x) + C- ∫1/(1+x^2) dx = arctan(x) + C- ∫1/,x,(√(x^2-1)) dx = arccosh(x) + C - ∫1/,x,(√(1-x^2)) dx = arcsech(x) + C 4.指数函数和对数函数的不定积分公式- ∫e^x dx = e^x + C- ∫ln(x) d x = xln(x) - x + C- ∫1/x dx = ln,x, + C5.双曲函数的不定积分公式- ∫sinh(x) dx = cosh(x) + C- ∫cosh(x) dx = sinh(x) + C- ∫sech^2(x) dx = tanh(x) + C- ∫csch^2(x) dx = -coth(x) + C- ∫sech(x) tanh(x) dx = sech(x) + C- ∫csch(x) coth(x) dx = -csch(x) + C6.分部积分法的不定积分公式- ∫u dv = uv - ∫v du7.代换法的不定积分公式- ∫f(u) du = ∫f(g(x))g'(x) dx8.积分换元法的不定积分公式- ∫f(x) dx = ∫f(g(t)) g'(t) dt9.坐标系中的不定积分公式- ∫f(x) dx = ∫f(y(x)) y'(x) dx (极坐标系)- ∫f(x, y) dx = ∫f(r cosθ, r sinθ) r dr dθ (极坐标系)10.特殊函数的不定积分公式- ∫e^(-x^2) dx = √π * erf(x) + C (误差函数)这些不定积分公式是数学中常用的公式,通过熟练掌握和灵活运用,可以帮助我们解决各类数学问题。

2019精品第四节几类特殊类型函数的积分物理

2019精品第四节几类特殊类型函数的积分物理


3x 1 x2 3x
dx 2

3x 1 是真分式
x2 3x 2
x2 3x 2 ( x 1)(x 2)

3x 1
x2 3x 2
A
x 1
B x2
即 3x 1 A( x 2) B( x 1)
(*)
3x 1 ( A B)x 2A B
比较系数,得
AB 3
2A
B
1
解得
1
arctan
x
)
C
1 ln | x2 1 |
2
x x2 1
C
注: 本题用到递推公式。
(
x
x3 1)10
dx
令t
x 1
(t t110)3dt
(t 7 3t 8 3t 9 t 10)dt
x11
x8
3
x4
dx 2
x8
x8x3 3x4
dx 2
1 4
( x4)2
( x4)2 3x4 2
x3
x
4 2x
3
dx
x
1
dx 1
x x2
1 x
3
dx
x
1
1
d(
x
1)
1 2
(2x 1)
1 2
x2 x 3
dx
ln | x 1 |
1 2
d( x2 x 3) x2 x 3
1 2
(
x
1 1 )2
11d( x
1) 2
24
ln | x 1 | 1 ln | x2 x 3 |
(2) 若 R(sinx, cos x) R(sinx, cos x)

几种特殊类型的函数的积分

几种特殊类型的函数的积分

dt dt 6 原式 6 3 2 (1 t t t ) t (t 1)(t 2 1) t
dt 3 2 ln( t 1) 3 arctan t C 6 ln t 3 ln t 1 2

山东农业大学
高等数学
主讲人: 苏本堂
解 原式
1 [ln x 10 ln( x 10 2)] C 20 1 1 ln x ln( x 10 2) C . 2 20
山东农业大学
高等数学
主讲人: 苏本堂
例16 求
3
3
dx . 2 4 ( x 1) ( x 1)
2 4 3
x 1 4 ) ( x 1) 2 . 解 ( x 1) ( x 1) ( x1 2 x 1 则有 dt dx , 令t , 2 ( x 1) x1 4 1 dx 原式 t 3 dt x 1 4 2 2 3 ( ) ( x 1) x1 33 x 1 3 1 3 C. t C 2 x 1 2
ln 2 ln 3
C
山东农业大学
高等数学
主讲人: 苏本堂
例2
计算
x2 dx 6 6 a x
3 3 1 1 3 1 x a 解:原式 3 2 dx ln 3 C 3 2 3 3 3 ( x ) (a ) 6a x a 例3 计算 1 cos x dx x sin x d ( x sin x ) ln | x sin x | C 解:原式 x sin x
x1 例10 求 2 dx. 2 x x 1 1 解 令x , (倒代换)
1 1 1 1 t t 原式 ( 2 )dt dt 2 1 12 t 1 t ( ) 1 t2 t 1 d (1 t 2 ) 2 arcsin t 1 t C dt 2 2 1 t 2 1 t

基本不定积分公式

基本不定积分公式
∫csc²x dx = -cotx + C
5.反三角函数的不定积分
∫(1/√(1-x²)) dx = arcsinx + C
∫(1/√(1+x²)) dx = arctanx + C
6.双曲函数的不定积分
∫sinhxdx=coshx+C
∫coshxdx=sinhx+C
7.分式函数的不定积分
∫(1/x+a) dx = ln,x+a, + C
其中C为常数。
2.指数函数的不定积分
∫aˣ dx = (aˣ)/(logₑa) + C
其中a>0且a≠1,C为常数。
3.对数函数的不定积分
∫(1/x) dx = ln,x, + C
4.三角函数的不定积分
∫sinx dx = -cosx + C
∫cosx dx = sinx + C
∫sec²x dx = tanx + C
其中a≠0,C为常数。
8.代换法则
通过代换可以将一个复杂的不定积分转化为一个简单的不定积分,然后利用基本公式进行求解。常见的代换方法有以下几种:
(1)以变量替代法:
当不定积分中的部分表达式与一些变量的导数形式相似时,可以进行变量替代。
(2)以三角函数替代法:
当不定积分中包含三角函数且可三角函数替代。
基本不定积分公式
不定积分是微积分的重要内容,它是定积分的逆运算。通过求导可以得到原函数,而不定积分则是给定一个函数,求出它的原函数。在求解不定积分时,我们需要掌握一些基本的不定积分公式。下面我们将介绍一些常见的基本不定积分公式。
1.幂函数的不定积分
如果n不等于-1,则有:

几种特殊函数的积分

几种特殊函数的积分
1 arctan u ln(1 u2 ) ln | 1 u | C 2
x x x ln sec ln 1 tan C 2 2 2
数学分析(上)
注意 万能代换不一定是最佳方法, 故三角有理式 的计算先考虑其它方法, 不得已才用万能代换.
1 cos x 例如 d sin x dx 1 sin x 1 sin x
dx d cot x 又如 2 2 3 si n x 3 csc x 1
dx 1 C . (a sinx b cos x)2 a(a tan x b)
数学分析(上)Leabharlann 例5dx (1) 1 s i nx
dx ( 2) 2 cos x
dx ( 3) 2 si n x
A B 1 A 5 (3 A 2B ) 3 B 6 x3 5 6 2 (待定系数法) x 5x 6 x 2 x 3 x3 x 2 5 x 6 dx 5 ln x 2 6 ln x 3 C
数学分析(上)
dx 例3 求 I 1 x3 1 1 3 2 1 x (1 x )(1 x x )
1 A Bx C 2 2 (1 x )(1 x x ) 1 x 1 x x
1 1 2 , B ,C 可求得 A 3 3 3 1 1 1 1 2 I ln1 x ln(x x 1) arctan (2 x 1) C 3 6 3 3
Ak A1 A2 2 k x a ( x a) ( x a)
数学分析(上)
2)分母中若有因式 ( x
2
2
px q) ,其中

几种特殊类型函数的积分

几种特殊类型函数的积分

解:令 则
例10(补充题) 求
解: 一直做下去,一定可以积出来,只是太麻烦。 由此可以看出,万能代换法不是最简方法, 能不用尽量不用。
例11(1987.III) 求
解: 说明: 通常求含 的积分时, 往往更方便 . 的有理式 用代换
2.简单无理函数的积分

例如:


化为有理函数的积分. 被积函数为简单根式的有理式 , 可通过根式代换
例2
通分以后比较分子得:
我们也可以用赋值法来得到最简分式,比如前面的例2,两端去分母后得到
例3
整理得
例4 求积分
例3
例6 求
思考: 如何求
解: 原式 提示: 变形方法同例6, 并利用 第三节 例9 .
注意:
有理函数的积分就是对下列三类函数的积分: 多项式; 主要讨论(3)积分
万能代换
简单无理函数
三角代换
根式代换
2. 特殊类型的积分按上述方法虽然可以积出,
但不一定
要注意综合使用基本积分法 ,
简便计算 .
简便 ,
习题4-4 奇数题
课后练习
思考与练习
1. 如何求下列积分更简便 ?
解: (1)
(2) 原式
解法 1
令 原式 求
2. 求
解法 2 令 原式
解: 因被积函数关于 cos x 为奇函数, 可令 原式 求
化为多项式与真分式之和
2)在实数范围内真分式总可以分解成几个最简式之和 最简分式是下面两种形式的分式
(1)分母中若有因式 ,则分解后为
3)有理函数化为部分分式之和的一般规律:
(2)分母中若有因式 ,其中
则分解后为

有理函数、三角函数及一些无理函数的不定积分

有理函数、三角函数及一些无理函数的不定积分

1 x 1 1 2 J n 1 2 [ dx] 2 2 n 1 2 2 n 1 n 1 (x a ) a 2a n 1 ( x a ) Jn 1
2 2
x
2 n 1
2( n 1)a ( x a )

2n 3 2( n 1)a
2
J n 1 .
分解后的部分分式必须是最简分式.
1 dx . 例4 求积分 2 x( x 1) 1 1 1 1 dx 解 dx 2 2 x ( x 1) x ( x 1) x 1 1 1 1 dx dx dx 2 x ( x 1) x 1
2u 1 u 2 1 u 2 du 2 (1 u)(1 u )
(1 u)2 (1 u2 ) 1 u 1 du du du 2 2 (1 u)(1 u ) 1 u 1 u
1 = arctanu ln(1 u2 ) ln | 1 u | C 2
§有理函数、三角函数及一些无理函 数的不定积分
1、 有理函数的积分 2、 三角函数有理式的积分 3、 无理函数的积分
一、有理函数的积分
有理函数的定义: 两个多项式的商表示的函数.
P ( x ) a0 x n a1 x n1 an1 x an Q( x ) b0 x m b1 x m 1 bm 1 x bm
A B 1, A 5 , ( 3 A 2 B ) 3, B 6 x3 5 6 . 2 x 5x 6 x 2 x 3
A B C 1 , 例2 2 2 x ( x 1 ) x ( x 1) x 1
= -d (cotx )

不定积分

不定积分

dln x
dsin x
(6) f (cos x)sin xdx
dcos x
(7) f (tan x)sec2 xdx
dtan x
(8) f (e x )e x dx
de x
(9) f (arcsin x)
1 1
x2
dx

f
(arcsin
x)d(arcsin
x)
f (arccos x)
x

1 1
t t
2 2
原式
1

2t 1t 2
2t 1t 2
(1

1t 1t
2 2
)
dx

1
2 t
2
dt

2 1t
2
dt
1 2

t

2

1 t

dt

1 2

1t2 2
2t

ln
t
C
1 tan2 x tan x 1 ln tan x C
x) c
09数二三 计算不定积分
ln(1
1 x )dx x
(x 0)

1 x t
x
原式 ln(1 t) 2t dt ln(1 t) 1 d (t2 1)
(t 2 1)2
(t2 1)2


ln(1
t)d
( t
1) 2 1
ln(1 t) 1 1 dt
例4. 求
cos3 x 1 sin2
x
2
cos x sin4 x
dx

几种特殊类型的函数积分

几种特殊类型的函数积分

反三角函数积分公式
∫sin⁡xdx=−cos⁡x+Cint sin x , dx = -cos x + C∫sin⁡xdx=−cos⁡x+C
∫cos⁡xdx=sinx⁡+Cint cos x , dx = sin x + C∫cos⁡xdx=sinx⁡+C
∫tan⁡xdx=ln⁡|sec⁡x|+Cint tan x , dx = ln |sec x| + C∫tan⁡xdx=ln∣secx∣+C
底数小于1的对数函数积分公式
∫logₐ(x) dx = xlogₐ(x) - ∫x/lna dx = xlogₐ(x) x/lna + C,其中C为积分常数。
对数函数积分应用
解决对数方程
计算对数值
通过积分的方法,可以将对数方程转 化为代数方程,从而更容易求解。
利用对数函数的积分公式,可以计算 对数值,例如计算ln(e)、lg(10)等。
积分性质
对于三角函数的积分,有基本的 积分公式,如∫sin(x)dx = -cos(x) + C,∫cos(x)dx = sin(x) + C等。
三角函数的积分具有一些重要的 性质,如∫[sin(x)]^2dx = ∫[1 cos(2x)]/2dx = x/2 - sin(2x)/4 + C。
积分变换
底数小于1的对数函 数
如以0.5为底的对数函数,记作 logₐ(x),其定义域为(0, +∞), 其中a为正实数且a≠1。
对数函数积分公式
自然对数函数积分公式
∫ln(x) dx = xln(x) - x + C,其中C为积分常数。
常用对数函数积分公式

高等数学(第二版)上册课件:某些特殊类型的不定积分

高等数学(第二版)上册课件:某些特殊类型的不定积分

A1
x a
A2
x a2
x
Ak 1
a k 1
x
Ak
ak
通过待定系数法即可确定 A1, A2 Ak (3)如果 Q x分解后含有质因式 x2 px q,则部分分式
必然含有一项
Ax B x2 px q
,待定系数法求出
A, B
即可;
*(4)如果 Q x 分解后含有质因式 x2 px q s,部分分
x3 x2 1 x2 1
x 1
x 1

R
x
Px Qx
是真分式,即
n
m
,则在实数范围内,可以
将分母
Q x因式分解成为若干
x
ak
因式与
x2
px
s
q
p2 4q 0 因式的乘积.
(1)如果分母Q x 含有单因式 A ,通过待定系数法即
xa
可确定 A
(2)如果分母Q x含有重因式x ak ,则部分分式相应含 有 k 项之和:
分析 同上题类似,只不过被积函数既有正弦函数又
有余弦函数,需要将它们都化作只含有 u 的有理函数.
解 设 u tan x ,则 2
sin
x
1
2u u
2
cos
x
1 1
u u
2 2
代入原式可得:
dx
2 1 u2
du
1
1
2
dx
1 sin x cosx
1
1
2u u
2
1 1
u u
2 2
1 u2
du
等式右边通分,两端分子相等
A Bx 5A 2B 2x 3
两端比较系数,得: 5 AA

4.4 几种特殊函数的不定积分

4.4 几种特殊函数的不定积分

当 P( x) 的次数小于 Q( x) 时,
称这有理函数为真分式,否则为假分式。 总可以将一个假分式化成一个多项式与一个真分 式之和的形式
例1 将下列真分式分解为部分分式
4.4几种特殊函数的不 定积分

(1) 用拼凑法
x ( x 1) 1 1 1 2 2 2 ( x 1) x( x 1) x( x 1) x( x 1) 1 x ( x 1) 2 ( x 1) x( x 1) 1 1 1 2 x 1 x ( x 1)
4.4几种特殊函数的不 定积分
(2) 用赋值法,设
x3 x3 A B 2 x 5 x 6 ( x 2)( x 3) x 2 x 3
解得
A 5, B 6
6 5 原式 x2 x 3
4.4几种特殊函数的不 定积分
(3) 设
1 Bx C A 2 (1 2 x)(1 x ) 1 2 x 1 x 2
.
2 2t 1 t2 dt sin x , cos x , dx 2 2 2 1 t 1 t 1 t
于是
1 1 du 2 dt 2 2 2 2 1 t 1 t 1 t 1 t 4t
sin x 1 sin x dx
x 设 tan t 2
4.4几种特殊函数的不 定积分
1 t2 cos x 1 t2
2t sin x , 2 1 t
x 2arctan t ,
从而
2 dx dt 2 1 t
称为万能代换
例5 求
x 解 设 tan 2 t ,则
1 sin x dx
4.4几种特殊函数的不 定积分 sin x

几种特殊类型函数的积分

几种特殊类型函数的积分

2

解 设 3 x 2 u .于是xu22,dx3u2d u ,从而
1
dx 3x
2
1
1 u
·3u2d u
3
u2 1
1du u
3 (u
1 1 )du 1 u
3(
u2 2
uln|1u|)C
3 3 (x 2)2 33 x 2 ln |1 3 x 2 | +C. 2
练习
求积分:
(1)
2
dx cos
an bm
其中m和n都 是非负整数;a0 ,a1 ,a2 ,… ,an 及b0 ,b1 ,b2
,… ,bm都是实数,并且a00,b00.当n<m时,称这有理函数
是真分式;而当nm时,称这有理函数是假分式.假分式总可以
化成一个多项式与一个真分式之和的形式.例如
x3 x 1 x2 1
x
1 x2 1

例2 求
x
2
x
2 2x
3
dx


x2
x
2
2 x
3
dx
(1 2
x
2x 2 2 2x
3
3
x
2
1 2
x
)dx 3
1 2
x
2x 2 2 2x
dx 3
3
x
2
1 2
x
dx 3
1 2
d (x2 2x 3) x2 2x 3
3
d (x 1) (x 1)2 ( 2)2
1 ln(x2 2x 3) 3 arctan x 1 C .
2
dx.

x2
3x 1 3x

不定积分表

不定积分表

Y z .L i u .2013.09 卷终 公式表注解四基本不定积分表序言:微积分创立之初,牛顿与莱布尼茨分享荣誉。

虽其间发生很多在优先权上的争论,但最终依然走向了发展之正轨。

在微积分公式体系上,莱布尼茨对之要求甚严,并总结其基本微分表和基本积分表。

如今随微积分之发展,公式表逐渐全面,分类亦几乎覆盖各种不定积分。

积分表的编订对于积分运算可以说是必要,亦是数学发展之必要结果。

本表给出常用不定积分的计算公式和运算方法,以及每个积分的简要推演方法,其中引入了除一般之换元法,凑微分法,分部积分法之外,亦引入虚数单位,并使用虚数单位推演某些复杂的不定积分运算。

而对于简单的不定积分运算和基本的微分公式之反用,或均不在此给出推演方法,或仅以推演步骤简要之说明。

本表收录公式16组,151式。

公式一 基本初等函数的不定积分18式:反三角函数上述公式均为基本初等函数之不定积分,其中部分公式均可以由分部积分公式给出,特别的,对于正切函数,余切函数,正割函数与余割函数的不定积分,使用了诸多三角变换完成。

公式二 含ax b +的积分(要指出a 非零)10式:对于其中的第二式,是利用换元积分完成的。

对于第一者,可以利用凑的方式,我们考虑分式11x b ax b a ax b ⎛⎫=- ⎪++⎝⎭,则得其积分是显的:111()ln ||x b b dx x d ax x ax b aC ax b a a ax b a a ⎛⎫⎛⎫=-=-++ ⎪ ⎪++⎝⎭⎝⎭⎰⎰。

而第二式依然采取类似的方式,可借由带余多项式除法算得:22211()2x x ax b ab b ax b a ax b ax b ⎡⎤=+-+⎢⎥+++⎣⎦,然后利用第一个积分式即可得到结论。

对于分母是二次多项式或者更高者,常常分成多个低次多项式之和,这两个积分便是沿用了此结论所得到的。

我们注意第一式中有111111()(/)/b x ax b a x x b a a x x b a a⎛⎫==- ⎪+++⎝⎭,积分即得。

几种特殊类型函数的不定积分

几种特殊类型函数的不定积分

cos x

1
tan2
2 x
u

tan
x 2
1 1

u2 u2
2
tan x
2 tan x 2
1 tan2 x 2
x 2u u tan 2 1 u2
令u tan x x 2arctan u 2
dx

1
2 u
2
du
R(sin x,cos x)dx
R
1
2u u2
M1x N1 ( x2 px q)k

(
x
M2 2
x N2 px q)k1


Mk x Nk x2 px q
其中 Mi , Ni都是待定的常数(i 1,2, , k).
为了便于求积分,必须把真分式化为部分分式之和,
同时要把上面的待定的常数确定,这种方法叫待定系
补充例题5 求
解:
I
x
2x3 5x 4 5x2
4
dx
1 2
d(x4 5x2 5) x4 5x2 4
(x2 1) (x2 4)
1 ln x4 5x2 4 1 arctan x arctan x C
2
2
2
自主学习课本P151例4.3.4

x(
1 x
1)2dx
补充例题1


1 x

(x
1 1)2

1 x
1
dx


1dx x


(
x
1 1)2
dx


x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档