大学高数试卷及答案
大学高等数学期末考试题及答案详解(计算题)
大学数学期末高等数学试卷(计算题)一、解答下列各题(本大题共16小题,总计80分)1、(本小题5分).d )1(22x x x ⎰+求2、(本小题5分) 求极限 lim x x x x x x →-+-+-23321216291243、(本小题5分)求极限limarctan arcsin x x x →∞⋅1 4、(本小题5分)⎰-.d 1x x x 求5、(本小题5分) .求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分) .求⎰ππ2121cos 1dx x x8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==⎧⎨⎪⎩⎪=cos sin (),22 9、(本小题5分).求dx x x ⎰+301 10、(本小题5分)求函数 的单调区间y x x =+-42211、(本小题5分) .求⎰π+202sin 8sin dx x x 12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分)求函数的极值y e e x x =+-215、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--12131101101111222216、(本小题5分) .d cos sin 12cos x x x x ⎰+求 二、解答下列各题(本大题共2小题,总计14分)1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分) .8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分)1、(本小题3分)⎰+x x x d )1(22 ⎰++=222)1()1d(21x x =-++12112x c .2、(本小题3分) 解原式:lim =--+→x x x x 22231261812 =-→lim x x x 261218 =23、(本小题3分)因为arctan x <π2而limarcsin x x →∞=10故limarctan arcsin x x x →∞⋅=10 4、(本小题3分) ⎰-x x x d 1 x x x d 111⎰----= ⎰⎰-+-=x x x 1d d =---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分) ⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x =--+171979cot cot .x x c 7、(本小题4分)原式=-⎰cos ()1112x d x ππ=-sin 112x ππ=-1 8、(本小题4分) 解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )2222 9、(本小题4分)令 1+=x u 原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分) ),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当 (][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302ln cos cos x x π=162ln12、(本小题6分) dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分) 2265yy y y x '+'='=+y yx y 315214、(本小题6分) 定义域,且连续(),-∞+∞'=--y e e x x 2122() 驻点:x =1212ln 由于''=+>-y e e x x 20 22)21ln 21(,,=y 故函数有极小值15、(本小题8分) 原式=++++++++--→∞lim ()()()()()()x x x x x x x 1121311011011112222 =⨯⨯⨯⨯=101121610117216、(本小题10分) dx x x dx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=x x d 2sin 211)12sin 21(=++ln sin 1122x c 二、解答下列各题(本大题共2小题,总计13分)1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点 故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,= 2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dx x =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44 三、解答下列各题( 本 大 题10分 )证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()参考答案一。
完整)高等数学考试题库(附答案)
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
大学高等数学上考试题库(附答案)——2022年整理
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()()20ln 10x f x x a x -≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctanln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinx B 、 2sin x - C 、 C x +2sin D 、2sin 2x- 7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
大学高等数学上下考试题库(及答案)
高数试题1(上)及答案一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.xce y = B.xe y = C.xcxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.xce y = C.xe y = D.xcxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
高等数学期末试卷及答案
高数试卷(一)(上册)一、单项选择题(每题4分,共20分,把选择题答案填在括号里)1.当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则( ).A.11, 6a b ==B.11, 6a b =-= C.11, 6a b ==- D.11, 6a b =-=-2.函数2()sin πx x f x x-=的可去间断点的个数为( ).A.1B.2C.3D.无穷多个3.曲线321x y x =-的渐近线有( ).A.1条B.2条C.3条D.4条 4.下面等式正确的是( ).A. d ()()f x f x '⎡⎤'=⎣⎦⎰B.()d()d ()f x x f x =⎰C.d ()d ()d f x x f x C x =+⎰ D.d ()d ()d ba f x x f x x=⎰ 5.已知广义积分2d 1xkx+∞+⎰收敛1(0k >),则k =( ).A.π22π2 D.2π4二、填空题(每题4分,共20分)6.222111lim π2ππn n n n n n →∞⎛⎫+++= ⎪+++⎝⎭. 7.设函数)(x y y =由方程y x xy+=2所确定,则d x y== .8.设⎩⎨⎧-=-=),1e (,π)(3tf y t f x 其中f 可导且(0)0f '≠,则0d d t y x == . 9.不定积分6d (1)xx x =+⎰. 10.定积分π322π2(sin cos )d x x x -+=⎰ . 三、计算题(每题7分,共28分)11.求极限0x →.12.曲线y =的切线与x 轴和y 轴围成一个图形,记切点的横坐标为a ,试求切线方程和这个图形的面积S .当切点沿曲线趋于无穷远时,该面积的变化趋势如何?13.求不定积分⎰.14.已知21()e d xt f x t -=⎰,求10()d f x x ⎰.四、证明题(本题6分)15.设)(x f 在[0,1]上连续,在(0,1)内可导,且1233()d (0)f x x f =⎰,求证:在(0,1)内存在一点ξ使()0f ξ'=.五、讨论题(每小题8分,共16分)16.已知⎪⎩⎪⎨⎧≤+>+=.0),ln(,0,1sin )(2x x a x bx x x x f 试讨论 (1)a 、b 取何值时,)(x f 在0=x 点连续;(2)a 、b 取何值时,)(x f 在0=x 点可导,并求)0(f '.17.讨论函数0()(4)d xF x t t t =-⎰在[1,5]-上的增减性、极值和凹凸区间及拐点.六、应用题(本题10分)18.设2y x =定义在[0,1]上,t 为[0,1]上任意一点,试问t 为何值时,参考答案一、1.C ;2.B ;3.C ;4.A ;5.D .二、6.1;7. x d )12(ln -;8.3;9.61ln ln(1)6x x C -++;10.2π. 三、11.解 因为当0→x 时,x x x x 232sin 31~1sin 1-+, x x 2~1e 2-, 22~tan x x ,所以,2222001sin 13lim lim (e 1)tan 2x x x x xxx x →→=-⋅ 2221sin 1sin 1666x x x x ⎛⎫=⋅=⋅= ⎪⎝⎭. 12.解 由题设可知切点的横坐标为0>a,代入曲线方程y =可求的切点坐标为a ⎛⎝,因为312212y x x --''⎛⎫'===-= ⎪⎝⎭,所以,曲线在该点的切线斜率x ak y ='==,切线方程为)y x a =-,即230x a +-=.分别令0y =和0,x =得切线在x 轴和y 轴上的截距分别为3, X a Y ==,切线与x 轴和y 轴围成一个图形为直角三角形AOB ∆,(如图所示)其面积为a a a XY S 492332121=⋅⋅==.因为+∞==+∞→+∞→a S a a 49limlim ,049lim lim 00==++→→a S a a , 故当切点沿曲线趋于x 轴正方向无穷远时,面积S 趋于无穷大;当切点沿曲线趋于y 轴正方向无穷远时,面积S 趋于零.13.解 设sin x t =,ππ,22t ⎡⎤∈-⎢⎥⎣⎦,则 原式1cos d sin cos tI t t t==+⎰,若设2sin d sin cos tI t t t=+⎰,则121cos sin d cos sin t tI I t t C t t++==++⎰,122cos sin d ln sin cos cos sin t tI I t t t C t t--==+++⎰,故()11ln cos sint 2I t t C =+++(1arcsin ln 2x x C =+++. 14.解 由题设可得2()e x f x -'=,(1)0f =,则111201()d ()()d 0e d 0x f x x xf x xf x x x x -'=-=-⎰⎰⎰ 122101111e d()(e 1)1222e x x --⎛⎫=-=-=- ⎪⎝⎭⎰. 四、15.证明 由积分中值定理知12323()d (), ,13f x x f ⎡⎤=∈⎢⎥⎣⎦⎰ηη, 即()(0)f f η=.于是)(x f 在[0,]η上满足罗尔定理的条件,知存在(0,)(0,1)ξη∈⊂,使()0f ξ'=.五、16.解(1)因00lim ()lim ln()ln ,x x f x a x a --→→=+= 2001lim ()lim sin 0,x x f x x bx x +-→→⎛⎫=+= ⎪⎝⎭(0)ln ,f a =要使函数)(x f 在0=x 点连续必须使函数在该点左、右极限相等且等于该点的函数值即ln 0, 1a a ==.故当1, a b =为任意实数时,函数)(x f 在0=x 点连续.(2)由于连续是可导的必要条件,所以要使)(x f 在0=x 点可导,必须首先令1a =,此时函数变为⎪⎩⎪⎨⎧≤+>+=.0),ln(,0,1sin )(2x x a x bx xx x f 又因为0()(0)ln(1)0(0)lim lim0---→→-+-'==-x x f x f x f x x1lim ln(1)ln e 1,-→=+==xx x 2001sin 01(0)lim lim sin ,0x x x bx x f x b b x x +++→→+-⎛⎫'==+= ⎪-⎝⎭要使)0(f '存在必须使其在该点左、右导数存在并相等即(0)(0)(0)11f f f b -+'''===⇒=.所以当1a =且1b =时,)(x f 在0=x 点可导,此时(0)1f '=.17.解(1)0()(4)d (4)xF x t t t x x '⎡⎤'=-=-⎢⎥⎣⎦⎰, 令()0F x '=,得驻点120, 4x x ==. (2)()24F x x ''=-,令()0F x ''=,得 32x =. (3)列表:(4(1,0)-(0,2)单减且上凸;在区间上(2,4)单减且上凹;在区间(4,5)上单增且上凹. 在0x =处取得极大值0,在4x =处取得极小值332-;)316,2(-. 五、18.解 如图所示,阴影1S 部分的面积为222331012()d 033t t S t x x t x x t =-=-=⎰, 阴影2S 部分的面积为122323221121()d 333t S x t x x t x t t t =-=-=-+⎰,故)10(3134)(2321≤≤+-=+=t t t S S t S ,从而2d 42d S t t t =-,令d 0d S t =,得驻点1210, 2t t ==. 分别求出1112(0), , (1),3243S S S ⎛⎫=== ⎪⎝⎭比较可知,当12t =时,1S 与2S 之和最小.检测题(二)(上册)一、单项选择题(每题4分,共20分,把选择题答案填在括号里)1.函数y =ln u x =能构成复合关系的区间是( ).A.1,e e⎡⎤⎢⎥⎣⎦B.(0,)∞C.1,e⎡⎫+∞⎪⎢⎣⎭D.(0,e) 2.设1010()ln , (), ()e xf x xg x xh x ===则当x 充分大时有( )A.()()()g x f x h x <<B.()()()h x g x f x <<C.()()()f x g x h x <<D.()()()g x h x f x <<3.设函数(),()f x g x 具有二阶导数,且()0g x ''<.若0()g x a =是()g x 的极值,则[()]f g x 在0x 取得极大值的一个充分条件是( ).A.()0f a '<B.()0f a '>C.()0f a ''<D.()0f a ''> 4.下面等式正确的是( ). A.21arctan d C 1x x x=++⎰; B.arcsin C x =+; C.1ln d x x C x=+⎰; D.d()d ()d baf x x f x x =⎰.5.已知广义积分11d kx x ⎰收敛2(0k >),则k =( ). A.32; B.1; C.2; D.12.二、填空题(每题4分,共20分)6.若011lim e 1x x a x x →⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦,则a = . 7.设2()()lim1()x af x f a x a →-=--,则()f x 在x a =取得极 值.8.若曲线321y x ax bx =+++有拐点(1,0)-则b = . 9.定积分π32π2(sin cos )d x x x -+=⎰ . 10.不定积分22d (1)(4)x xx x =++⎰.三、计算题(每题8分,共32分)11.求极限20ln(1)lim sin x x x x x→+-. 12.已知 ⎩⎨⎧+==),1ln(,arctan 2t y t x 求22d 1d y t x =.13.设可导函数()y y x =由方程2200e d sin d x yxt t x t t --=⎰⎰确定,求d 0d yx x =.14.分别用第一换元法(凑微分法)和第二换元法求不定积分.四、讨论题(12分)15.设函数⎪⎩⎪⎨⎧>+=<+=,0,1e ,0,,0,1)(2x x x x x x f x αα试讨论α的值在什么范围内,函数满足(1)在0x =点有极限;(2)在0x =点连续;(3)在0x =点可导.五、应用题(本题10分)16.设位于曲线)y x t =≤≤下方,x 轴上方的区域为G ,求(1)G 绕x 轴旋转一周所得空间区域的体积()V t ;(2)当t 为何值时,该旋转体的体积()V t 最大?最大体积是多少?六、证明题(6分)17.设)(x f 在[0,)+∞上连续,在(0,)+∞内可导,如果存在两个正数12k k 、满足1212(0)()d 0k k k k f f x x +-=⎰,证明:存在ξ0>使()0f ξ'=.检测题(二)参考答案一、1.A ;2.C ;3.B ;4.B ;5.D .二、6.2;7.大;8.3;9.34;10.2211ln 64x C x +++.三、11.解 因为当0→x 时,22~)1ln(x x x x ⋅+,所以,222000ln(1)3lim lim lim sin sin 1cos x x x x x x x x x x x x x→→→+⋅==--- 061limsin 6x x x →==. 12.解 因为2d 2, d 1y t t t =+2d 1d 1x t t=+,所以 22d d d 212 d d d 11y y t t t t x x t t +===+, 2222d d d 2d d 2(1)d d d 11y y t x t x x t t⎛⎫⎪⎝⎭===++, 22211d 2(1)4d t t y t x ===+=. 13.解 由题设可知2200e d sin d x yxt t x t t --=⎰⎰,方程两边同时求导得2()220e(1)sin d sin xx y y t t x x --'-=+⎰,把0x =代入上述等式得1y '=,故d 10d yx x ==.14.解法1 凑微分法2C===.解法2 第二类换元积分法==设11sin22x t-=π2t⎛⎫<<⎪⎝⎭,则原式1cos d d2t t t==⎰arcsin(21)t C x C=+=-+.解法3 第二类换元积分法x=⎰,令2πsin02x t t⎛⎫=<<⎪⎝⎭,则d2sin cos dx t t t=,所以原式112sin cos d2dsin cost t t tt t=⋅⋅=⎰⎰2t C C=+=.四、解(1)因为00lim()lim(1)1,x xf x x--→→=+=00lim()lim(e1)1,xx xf x x++→→=+=α可见α是任意实数时,函数在0x=点左、右极限都相等.(2)又因为2(0)f=α,要使函数)(xf在0=x点连续必须使函数在该点极限值等于该点的函数值,即21,1a==±α.故当1±=α时,函数)(xf在0=x点连续.(3)由于连续是可导的必要条件,所以要使)(xf在0=x点可导,必须首先令21=α,此时函数变为⎪⎩⎪⎨⎧>+=<+=,0,1e ,0,1,0,1)(x x x x x x f x α0()(0)(1)1(0)lim lim 10x x f x f x f x x---→→-+-'===-, 00(e 1)1(0)lim lim e ,x x x x x f x+++→→+-'===ααα 要使)0(f '存在必须使其在该点左、右导数存在并相等,即(0)(0)(0) 1 1f f f -+'''====⇒=αα.所以当1=α时,)(x f 在0=x 点可导,此时(0)1f '=. 五、16.解 (1)222e ee 11()πd πd πd ln (1ln )1ln ttt x V t y x x x x x x ===++⎰⎰⎰ []e ππarctan(ln )πarctan(ln )4t x t ⎛⎫==- ⎪⎝⎭.(2)因为2π()0 (e)(1ln )V t t t t '=>>+,这说明()V t 在[e,)+∞上单调递增,所以当t →+∞时,()V t 取得最大值,其最大值为[]2max e πππ()πlim arctan(ln )π244tt V t x →+∞⎛⎫==-= ⎪⎝⎭. 六、17.证明 由积分中值定理知[]1212112()d (), ,k k k f x x k f k k k +=∈+⎰ηη,代入题设等式得()(0)f f η=.于是)(x f 在[0,]η上满足罗尔定理的条件,知存在112(0,)[,](0,)k k k ∈⊂+⊂+∞ξη,使()0f ξ'=.。
高等数学考试题库(附答案解析).docx
《高数》试卷 1 (上)一.选择题(将答案代号填入括号内,每题 3 分,共 30 分) .1 .下列各组函数中,是相同的函数的是().(A )f x ln x2和 g x2ln x( B )(C )f x x 和g x2x( D )f x| x | 和g x x2f x| x |g x1和xsin x 4 2x02 .函数f x ln 1x0 处连续,则a() .在 xa x0(A ) 0( B )1( D )2(C ) 143 .曲线y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A )y x 1( B )y( x 1)( C)y ln x 1x 1(D)y x 4 .设函数f x| x |,则函数在点x0 处() .(A )连续且可导( B )连续且可微( C)连续不可导( D )不连续不可微5 .点x0 是函数y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线 y1的渐近线情况是() . | x |(A )只有水平渐近线(B )只有垂直渐近线( C)既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f112 dx 的结果是().x x(A )f 1C (B)f1C (C) f1C1C x x x( D )fx8.dx的结果是().e x e x(A )arctan e x C(B )arctan e x C( C)e x e x C( D )ln( e x e x )C 9.下列定积分为零的是() .(A )4arctanx4 x arcsinx dx(C) 1e x e x1x2x sin x dx 1x2dx (B)12dx (D)44110 .设f x12x dx 等于(为连续函数,则f).(A )f 2 f 0( B )1f 11 f 0 (C)1f 2 f 0 (D) f 1 f 0 22二.填空题(每题4分,共 20 分)1.设函数 f x e 2x 1x0在 x0 处连续,则 a.xa x02.已知曲线y f x 在 x5,则 f2.2 处的切线的倾斜角为x 63. y的垂直渐近线有条 .x214.dx. x 1ln 2 x5.2x4 sin x cosx dx.2三.计算(每小题 5 分,共 30 分) 1 .求极限1 x2 xx sin x①limx②limx e x 2xx 012 .求曲线y ln x y 所确定的隐函数的导数y x .3 .求不定积分①dx②dx a 0③ xe x dxx 1 x 3x 2 a 2四.应用题(每题 10 分,共 20 分)1 . 作出函数 yx 3 3x 2 的图像 .2 .求曲线 y 22x 和直线 y x 4所围图形的面积 .《高数》试卷 1 参考答案一.选择题1 . B2 . B3 . A4 . C5 . D6 . C7 . D8 . A9 . A 10 .C 二.填空题1 . 22 .3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16 xy 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷 2 (上)一. 选择题 (将答案代号填入括号内 ,每题 3 分 , 共 30 分 )1. 下列各组函数中 , 是相同函数的是 ().(A)f xx 和 g xx 2(B)f xx 2 1 和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2 x)(D)f xln x 2 和 g x 2ln xsin 2x 1 x 1x 12. 设函数 fx2x 1,则 lim fx() .x 2x11x 1(A) 0(B)1(C)2(D) 不存在3. 设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)(B) 2(C)锐角(D)钝角4. 曲线 yln x 上某点的切线平行于直线 y2 x3 , 则该点坐标是 ().(A) 2,ln1(B)2, ln1(C)1(D)1ln 222,ln 2,225. 函数y x2e x及图象在1,2内是 ().(A) 单调减少且是凸的(B) 单调增加且是凸的(C)单调减少且是凹的(D) 单调增加且是凹的6. 以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x导数不存在的点 ,一定不是函数y f x的极值点 .(C)若函数 y f x在 x0处取得极值,且f x0存在,则必有 f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .17.设函数 y f x的一个原函数为x2e x,则f x=().1111(A)2x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若f x dx F x c ,则 sin xf cosx dx().(A) F sin x c(B)F sin x c(C)F cosx c(D)F cosx c设 F x 1x dx =(9.为连续函数 ,则f).02(A) f1f0(B) 2f1f0(C)2f2f0(D) 2 f 1f210. 定积分bdx a b 在几何上的表示(). a(A) 线段长b a(B)线段长 a b (C)矩形面积a b1(D)矩形面积 b a1二. 填空题 (每题 4 分, 共 20 分 )ln1x2x 0, 在x 0连续 ,则a =________.1.设 f x1cos xa x02.设 y sin2x ,则 dy_________________ d sin x .x3.函数 y1 的水平和垂直渐近线共有_______条.x2 14. 不定积分x ln xdx______________________.1x2 sin x1___________.5. 定积分1x 2dx1三. 计算题 (每小题 5 分 , 共 30分 )1.求下列极限 :①lim 1 2xx0 1arctanx x② lim2x1x2. 求由方程y 1 xe y所确定的隐函数的导数y x.3.求下列不定积分 :①tan x sec3xdx②dxa 0③x2e x dx x2a2四.应用题 (每题 10 分 ,共 20 分 )1. 作出函数y1x3x 的图象.(要求列出表格)32. 计算由两条抛物线:y2x, y x2所围成的图形的面积.《高数》试卷 2 参考答案一. 选择题: CDCDB CADDD二填空题: 1. - 22. 2sin x3.34.1 x2 ln x 1 x 2 c 5.2 42三. 计算题: 1.① e 2 ② 12.y xe yy 23. ① sec 3x c② lnx 2a 2 xc ③ x 22 x 2 e xc3四. 应用题: 1. 略2. S13《高数》试卷 3 (上)一、填空题 (每小题 3 分, 共 24 分)1.函数 y1的定义域为 ________________________.9x 22. 设函数 fxsin 4x , x 0, 则当 a=_________时, f x 在 x0 处连续 .xa, x 03. 函数 f (x)x 2 1的无穷型间断点为 ________________.x 23x 24.设 f ( x) 可导 , yf (e x ) , 则 y____________.5. limx 2 1_________________.2x 2x 5x6.1 x 3 sin2 x dx =______________.1x4x 217. d x 2e tdt _______________________.dx 0 8. yyy 30 是_______阶微分方程 .二、 求下列极限 (每小题 5分, 共 15 分)ex1x 31x1. lim ;2. lim;3. lim1 .sin xx 29 2xx 0x 3x三、求下列导数或微分 (每小题 5 分, 共 15 分)1. yx x , 求 y (0) . 2.ye cos x , 求 dy .2 求 dy . 3. 设 xy e x y ,dx四、求下列积分(每小题 5 分,共 15分)1.12sin x dx . 2. x ln(1x)dx . x3.1e2x dx五、 (8 分 )求曲线xtcost在 t2处的切线与法线方程 . y1六、 (8 分 )求由曲线 yx 2 1, 直线 y 0, x 0 和 x 1 所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y 13 y0 的通解 .八、 (7 分 )求微分方程 yye x 满足初始条件 y 10 的特解 .x《高数》试卷3 参考答案一. 1 . x 32. a 43. x 24. e x f '(e x )5.16.07. 2xe x28. 二阶2二 .1. 原式 = lim x1x 0x2. lim1 1 x 3x 363. 原式 = lim[(11 11)2 x ] 2 e 2x2x三 .1.2.y '212)2, y '(0)( x2dysin xe cos x dx3. 两边对 x 求写: yxy ' e x y (1 y ')y 'e x y yxy yx exyx xy四.1. 原式 = lim x2cos x C2212. 原式 = lim(1 x)d (xxlim(1x)2x)]) x 2 x d [lim(12=x22lim(1x) 1 1 x dx x lim(1 x)1 ( x11 )dx22 x 2 21 x=x22lim(1x) 1 [ xx lim(1 x)] C22 2 3. 原式 =11 2xd (2 x)2x 121)e1 e 01(e222五.dysin tdy t21且t, y 1dxdx2 切线: y1 x,即 y x 1 22法线: y1( x ),即 y x 122六. S1 ( x21)dx ( 1x2x) 10 3 022V 11)2 dx 12x21)dx(x 2( x 4( x 5 2 x 2 x) 10 285 315七.特征方程 : r 2 6r 13 0r3 2iye 3x (C 1 cos2 x C 2 sin 2 x)11dxdx八. y e x( e x e x dx C )1 [( x 1)e x C ] x由 y x10,C0y x 1 e xx《高数》试卷 4 (上)一、选择题(每小题 3 分)1 、函数 y ln(1x) x 2 的定义域是() . A2,1B2,1C 2,1D2,12 、极限 lim ex的值是() .xA 、B 、C 、D 、 不存在3 、 lim sin(x1) () .x 11x 21 1A 、 1B 、 0C 、2D 、24 、曲线 y x 3 x 2 在点 (1,0) 处的切线方程是()A 、 y2( x1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5 、下列各微分式正确的是( ) .A 、 xdx d (x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d (5 x)D 、 d (x 2 ) ( dx) 26 、设f (x)dx2 cosxC ,则f (x) () .2A 、 sinxB 、22 ln x) .7 、 dx (xxxxsinC 、 sinC D 、 2 sin222A 、2 1ln 2 x CB 、 1(2 ln x)2Cx222C 、 ln 2ln xC1 ln xCD 、x28 、曲线 yx 2 , x 1 , y0 所围成的图形绕y 轴旋转所得旋转体体积 V() .11A 、x 4dxB 、ydyC 、1 y)dy1 (1 x 4)dx(1 D 、1e x 9 、e x dx () .11 e2 e1 e1 2eA 、 ln2B 、 ln 2C 、 lnD 、 ln3210 、微分方程 y y y2e 2 x 的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2 x D 、 y2 e 2 x7777二、填空题(每小题4 分)1 、设函数 y xe x ,则 y;2 、如果 lim3sin mx2 , 则 m.x 02x 313、 x3 cos xdx;14、微分方程y 4 y 4 y0 的通解是.5、函数 f (x)x2x在区间0,4 上的最大值是,最小值是;三、计算题(每小题 5 分)1 、求极限lim 1 x 1 x ;2 、求y 1cot 2 x ln sin x 的导数;x 0x2x314 、求不定积分dx;3 、求函数y的微分;xx3111eln x dx ;dy x5 、求定积分6 、解方程1;e dx y 1 x2四、应用题(每小题10 分)1 、求抛物线y x 2与y2 x 2所围成的平面图形的面积.2 、利用导数作出函数y 3x2x3的图象.参考答案一、 1 、 C; 2 、 D ; 3 、 C; 4 、B ; 5 、 C; 6 、 B ;7 、B ;8 、 A ;9 、 A;10 、 D;二、 1 、(x2)e x; 2 、4; 3 、0; 4 、y(C1 C2 x)e 2 x;5、8,0 9三、1 、 1 ; 2 、cot 3 x ; 3 、6x 2dx ; 4 、2 x 1 2 ln(1x 1) C ; 5 、2(21) ;6、y2 2 1 x2 C ;( x31)2e四、 1 、8;32、图略《高数》试卷 5 (上)一、选择题(每小题 3 分)1、函数 y2x1的定义域是(). lg( x 1)A、2,10, B 、1,0(0,)C、(1,0)(0,) D 、(1,)2、下列各式中,极限存在的是() .A、lim cosx B 、lim arctanx C、lim sin x D 、lim 2xx0x x x3、 lim (x) x() .x 1 xA 、eB 、e2C、1 D 、1e4 、曲线y x ln x 的平行于直线x y 1 0 的切线方程是() .A、y x B 、y(ln x 1)( x 1)C、y x 1 D 、y( x 1)5 、已知y x sin 3x ,则 dy().A、(cos3x 3sin 3x)dx B 、C、(cos 3x sin 3x)dx D 、(sin 3x3x cos3x) dx (sin 3x x cos3x)dx6 、下列等式成立的是().A 、x dx1 x 1 CB 、 a x dx a x ln x C11C 、 cosxdx sin x CD 、 tan xdxCx 217 、计算e sin xsin xcos xdx 的结果中正确的是() .A 、 e sin x CB 、 e sin x cos x CC 、 e sin x sin x CD 、 e sin x (sin x 1)C8 、曲线 yx 2 , x1 , y0 所围成的图形绕 x 轴旋转所得旋转体体积 V().1x 4dx1A 、B 、ydy 01 (1 y)dy1 (1 x4)dxC 、D 、a a 2x 2dx () .9 、设 a ﹥ 0 ,则A 、 a2B 、 a2C 、 1a2D 、 1a 224410 、方程()是一阶线性微分方程 .A 、 x 2ylnyB 、 y e x y 0xC 、 (1x 2 ) y y sin yD 、 xy dx ( y 26x)dy 0二、填空题(每小题 4 分)1 、设 f ( x)e x 1, x, lim f ( x);,则有 lim f ( x)ax b, xx 0 x 02 、设 y xex,则 y;3 、函数 f (x)ln(1x 2 ) 在区间1,2 的最大值是,最小值是;14 、 x 3cos xdx;15 、微分方程y 3 y 2 y 0 的通解是.三、计算题(每小题 5 分)1 、求极限 lim (11 x23 ) ; x 1x x 22 、求y1 x2 arccosx 的导数;3 、求函数 yx 的微分;1 x 24 、求不定积分1dx ;x 2ln x5 、求定积分eln x dx ;1e6 、求方程x2y xy y 满足初始条件y( 1 ) 4 的特解.2四、应用题(每小题10 分)1 、求由曲线y2 x2和直线x y 0 所围成的平面图形的面积.2 、利用导数作出函数y x 36x29x 4的图象.一、 1 、 B ; 2 、A ; 3 、 D; 4 、 C ; 5 、 B ;参考答案( B卷)6 、 C;7 、 D ;8 、 A ;9 、 D ;10 、 B.二、 1 、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2 x.三、 1、1; 2 、x arccos 1 ; 3 、1dx ;3 1 x 2x(1 x 2 ) 1 x 24 、2 2ln x C ;1; 6 、y221 5 、2(2)xe x ;e四、 19; 2 、图略、2。
高等数学试卷及参考答案
高等数学试卷及参考答案一、选择题:本大题共10小题,每小题4分,共40分。
1.当0→x 下列变量中为无穷大量的是A .xe 1B .xe1-C .()21ln 2x x+-D. 21cosx 2.设()xxkx x x x 3sin lim1lim 02→→=-,则常数k 的值为A .2ln 31B .-2ln 31C .3ln 21D .-3ln 213.设函数)(x f 在区间),0[+∞上存在二阶导数,且)()(x f x f ''<',则xx f e )('在区间),0[+∞ 上A .单调减少B .单调增加C .是常数D .既不单调增加也不单调减少4.设曲线)(x f y =过原点,且该曲线在点()()x f x ,处的切线斜率为x 2-,则()=-→22limx x f x A .-4 B .-2 C .0D .45.设函数()x f 在区间],[b a 上可导,且方程()x f =0在区间()b a ,内有两个不同的实根,则方程()x f '=0在()b a ,内 A .没有根B .只有一个根C .有两个根D .根的个数不能确定6.已知xx e 为()x f 的一个原函数,则()⎰='10d x x f xA .e 1-B .e 2C .eD .-e7.直线10221-=-=+zy x 与平面0524=++-z y x 的位置关系为 A .平行B .直线在平面内C .垂直D .相交但不垂直8.广义积分=+⎰∞+-1xx ee dxA .e arctan π-B .e arctan π21- C .0D .∞+9.在空间直角坐标系中,方程z y x =+2222表示的图形为A .椭球面B .抛物面C .锥面D .柱面10.设函数()x f y = 是方程042=+'-''y y y 的一个解,若()00>x f ,且()00='x f ,则函数()x f 在点0xA .取得极大值B .取得极小值C .某个邻域内单调增加D .某个邻域内单调减少二、填空题:本大题共5小题,每小题4分,共20分,把答案填在题中横线上.11.设常数0>a ,()⎪⎪⎩⎪⎪⎨⎧<--≥+=0,0,2cos x x x a a x x x x f 在0=x 连续,则=a12.已知()21='f ,则()()=--+→hh f h f h 22131lim 0 13.由曲线4=xy 与直线0,4,1===y x x 所围平面图形绕x 轴旋转一周而成的旋转体体积为14.设函数()y x z z ,=由方程02=++ze x yz 确定,则全微分=dz15.设向量→→+b a 3 垂直于向量→→-b a 57,且向量→→-b a 4 垂直于向量→→-b a 27,则向量→a 与→b 的夹角为16 .交换积分次序:()⎰⎰4020d ,d x y y x f x =三、解答题:本大题共8小题,共86分.解答应写出文字说明,证明过程或演算步骤。
高等数学考试题库(含答案解析)
范文范例参考《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共 30 分).1.下列各组函数中,是相同的函数的是().(A )f x ln x2和 g x2ln x( B)(C )f x x 和g x2x(D )f x| x | 和g x x2f x| x |g x1和xsin x 4 2x02.函数f x ln 1x在 x 0 处连续,则a() .a x0(A )0( B)1(D)2(C)143.曲线y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A )y x 1( B)y( x 1)(C )y ln x 1x 1(D)y x 4.设函数f x| x |,则函数在点x0 处() .(A )连续且可导( B)连续且可微( C )连续不可导( D)不连续不可微5.点x0 是函数y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1) .的渐近线情况是(| x |(A )只有水平渐近线( B)只有垂直渐近线( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f11). x x2dx 的结果是((A )1C1C1C (D) f1f( B)f( C )f C x x x x8.dxxe e x的结果是().(A )arctane xC()arctan exC(C)xexC(D)xex)CB e ln( e9.下列定积分为零的是() .(A )4arctanx dx(B)4x arcsin x dx (C) 1e x e x1x2x sin x dx 1x212dx (D)44110 .设f x为连续函数,则1f 2x dx 等于() . 0(A )f 2f0(B)1f 11 f 0 (C)1f 2 f 0 (D) f 1 f 0 22二.填空题(每题 4 分,共 20 分)f x e 2x1x0在 x 0处连续,则 a1.设函数x.a x02.已知曲线 y f x在 x 2 处的切线的倾斜角为5,则 f2. 6x3. y的垂直渐近线有条.x 2 14.dx. x 1ln2 x5.2x4 sin x cosx dx.2WORD 格式整理范文范例参考三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x① lim x② limx x e x2x x 012.求曲线y ln x y 所确定的隐函数的导数y x.3.求不定积分①dx②dx a0③ xe x dxx1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积.WORD 格式整理范文范例参考《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7. D 8.A 9.A 10. C二.填空题1. 22 .3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16 xy 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷2(上)一. 选择题 ( 将答案代号填入括号内 ,每题 3 分,共 30 分 )1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx 2(B)f xx 2 1 和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2 x)(D)f xln x 2 和 g x2ln xsin 2 x 1x1 x12.设函数 fx2x 1,则 limf x().x 2x11x1(A) 0(B)1(C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y 2x 3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数y x2e x及图象在1,2 内是().(A) 单调减少且是凸的(B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x 导数不存在的点,一定不是函数 y f x的极值点 .(C)若函数 y f x在 x0处取得极值,且f x0存在,则必有 f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .WORD 格式整理范文范例参考17.设函数 y f x的一个原函数为x2e x,则f x=().1111(A) 2 x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若 f x dx F x c ,则 sin xf cosx dx().(A) F sin x c(B)F sin x c(C)F cos x c(D)F cos x c9.设 F x1f xdx =().为连续函数 , 则2(A) f1f0(B) 2f1f0(C)2 f 2f0 (D) 2 f1f0210. 定积分ba b 在几何上的表示(). dxa(A) 线段长b a(B)线段长 a b (C)矩形面积a b 1 (D)矩形面积b a1二.填空题 (每题 4 分,共 20 分)ln1x2x 0, 在x01.设 f x1cos x连续 ,则a =________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 yx1的水平和垂直渐近线共有_______条 . x214.不定积分x ln xdx______________________.5.定积分1x2 sin x1___________. 11x2dx三.计算题 (每小题 5 分,共 30分 )1.求下列极限 :① lim12x 1② lim2arctanxx1x 0xx2.求由方程 y1xe y所确定的隐函数的导数y x.3.求下列不定积分 :① tan x sec3xdx②dx a0③x2e x dxx2a2四.应用题 (每题 10 分,共 20 分)1.作出函数 y1x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积.WORD 格式整理范文范例参考《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x1x2c 5.242三. 计算题: 1.2②1 2.y e y① ex y23.① sec3 x c② ln x2a2x c③ x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共 24分)1.函数 y1的定义域为 ________________________.9x22.设函数 f x sin 4x , x0则当 a =_________时, f x 在 x0处连续 .x,a,x03.函数 f (x)x2x21的无穷型间断点为 ________________. 3x24.设 f ( x) 可导,y f (e x ) ,则 y____________.5.limx21_________________. 2x2x5x6.1x3 sin 2 x dx =______________.1 x4x217.d x2e t dt_______________________.dx 08.y y y30 是_______阶微分方程.二、求下列极限 ( 每小题 5 分,共15分)xx 1x311.lim e;2.lim;3.lim12.x 0sin x x 3x9x2x 三、求下列导数或微分 (每小题 5分, 共15分)1.yx x,求 y (0) . 2.y e cos x ,求 dy . 2求dy.3.设 xy e x y ,dx四、求下列积分(每小题 5分, 共15分)1.12sin x dx . 2.x ln(1x)dx . x3.1e2x dx五、 (8 分 )求曲线xtcost在 t处的切线与法线方程 . y12WORD 格式整理范文范例参考六、 (8 分 )求由曲线 yx 21, 直线 y 0, x 0 和 x 1所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y 0 的通解 .八、 (7 分 )求微分方程 yy e x 满足初始条件 y 10的特解.x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xe x 28. 二阶2二 .1.原式 = lim x1x 0x2. lim11 x 3 x3 63.原式 = lim[(11 11)2 x ] 2 e 2x2x三 .1.2.y'212)2, y '(0)(x2dysin xe cos x dx3.两边对 x 求写: yxy ' e x y (1 y ')e x yyxy yy 'e x yx xyx四.1.原式 = lim x2cos x Cx2212.原式 = lim(1)xx)2x)]x)d (lim(1 2x d [lim(12x= x22lim(1 x)1 1 x dx x lim(1 x) 1 ( x 11 ) dx22 x 2 21 x=x22lim(1 x) 1 [ xx lim(1 x)]C22 23.原式 =11 2 x2 x 1 1 20 e d (2 x) 1 e 0( e 1)222五.dysin tdy t1 且 t2 , y 1dxdx2切线: y1 x,即 y x 122法线: y1( x),即 y x 122六. S11 21320 ( x1)dx ( xx) 022V11)2dx12x21)dx(x2( x4( x 52 x 2 x) 10 285 315七.特征方程 : r 2 6r 13 0r 3 2iye 3 x (C 1 cos2 x C 2 sin 2 x)11dxxdx八. y e xdx C )( e e x1 xC ][ (x 1e)x由 y x 1 0,C0y x 1 e xx《高数》试卷4(上)WORD 格式整理范文范例参考一、选择题(每小题 3 分)1、函数 y ln(1 x) x 2 的定义域是() . A2,1B2,1C 2,1D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、 不存在3、 limsin(x 1) ( ) .x 1 1 x 2 1 1A 、 1B 、 0C 、2D 、24、曲线 y x 3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、 xdx d (x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d (5 x)D 、 d (x 2 ) (dx) 26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sin xB 、22 ln x ) .7、dx (xxxxsinC 、 sinC D 、 2 sin222A 、2 1ln 2x CB 、 1( 2 ln x) 2Cx 2 22C 、 ln 2 ln xC1 ln xCD 、x 28、曲线 y x 2 , x 1 , y0 所围成的图形绕y 轴旋转所得旋转体体积 V() .1 x 4dx1ydyA 、B 、1(1y) dy1(1 x 4)dxC 、D 、1e xdx9、e x() .11 e2 e1 e1 2eA 、 ln2B 、 lnC 、 lnD 、 ln23210 、微分方程 yy y2e 2 x 的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2 x D 、 y2 e 2 x7777二、填空题(每小题4 分)1、设函数 y xe x ,则 y;2 、如果 lim3sin mx2 , 则 m .x 0 2x313cos xdx3、 x;14、微分方程 y 4 y 4 y0 的通解是.5、函数 f ( x) x 2 x在区间0,4上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限lim 1 x 1 x ; 2 、求y 1cot 2 x ln sin x 的导数;x 0x2 WORD 格式整理范文范例参考x314 、求不定积分dx;3、求函数y的微分;xx3111eln x dx ;dy x5、求定积分6、解方程1;e dx y 1 x2四、应用题(每小题10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案一、 1、C;2、D;3、C ;4、B;5、C ;6、B;7、B;8、A ;9、A ;10、D;二、 1、(x2)e x; 2 、4;3、0; 4 、y(C1 C 2 x)e 2 x;5、8,0 9三、1、 1 ; 2 、cot 3 x ; 3 、 6 x2dx ; 4 、2 x 1 2 ln(1x 1) C ;5、2(21) ;6、y2 2 1 x2 C ;( x31) 2e四、1、8;32、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数 y2x1的定义域是() . lg( x 1)A 、2,10,B、1,0( 0,)C 、(1,0)(0,)D、( 1,)2、下列各式中,极限存在的是() .A 、x B、lim arctan x C 、lim sin x D 、lim 2x l i mc o sx0x x x3、 lim (x) x() .x 1 xA 、e B、e2 C 、1 D 、1e4、曲线 y x ln x 的平行于直线x y 1 0 的切线方程是() .A 、y x B、y(ln x1)( x1)C 、y x1D、y(x1)5、已知 y xsin 3x,则 dy() .A 、( cos3x3sin 3x)dx B、(sin 3x3x cos3x)dxC 、(cos 3x sin 3x)dxD 、(sin 3x x cos3x)dx6、下列等式成立的是() .WORD 格式整理范文范例参考A 、x dx1x 1 CB 、 a x dx a x ln x C11C 、cosxdxsin x CD 、 tan xdxCx 217、计算e sin x sin xcos xdx 的结果中正确的是() .A 、 e sin x CB 、 e sin x cos x CC 、 e sin x sin x CD 、 e sin x (sin x 1) C8、曲线 yx 2 , x1 , y0 所围成的图形绕 x 轴旋转所得旋转体体积 V().1x 4dx1A 、B 、ydy1 (1 y) dy1 (1 x 4)dxC 、D 、a a 2x 2dx () . 9、设 a ﹥ 0 ,则A 、 a2B 、 a2C 、 1a2D 、 1a 224410 、方程()是一阶线性微分方程 .A 、 x 2ylnyB 、 y e x y 0xC 、 (1x 2 ) yy sin yD 、 xy dx ( y 2 6x)dy 0二、填空题(每小题 4 分)1、设 f ( x)e x 1, x, lim f ( x);,则有 lim f (x)ax b, xx 0 x 02、设 y xe x ,则 y;3、函数 f ( x)ln(1x 2 ) 在区间1,2 的最大值是,最小值是;14、 x 3cos xdx;15、微分方程y 3 y 2 y 0 的通解是.三、计算题(每小题 5 分)1、求极限 lim (11 x23 ) ; x 1x x 22、求y1 x2 arccosx 的导数;3、求函数 yx 的微分;1 x 24、求不定积分1dx ;x 2ln x5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y( 1 ) 4 的特解.2WORD 格式整理范文范例参考四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C ;5、B;6、C ;7、 D;8、 A;9、D;10、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、arccos1; 3 、1dx;x x3 1 x2(1 x2 ) 1 x 24、2 2 ln x C ;1);2215、2(2 6 、y e x;e x四、 1、92、图略;2WORD 格式整理。
高数(大一上)期末试题及答案
高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。
0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。
2.已知 f(x) = { e^x。
x < 1.ln x。
x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。
3.曲线 y = xe^(-x^2) 的拐点是 (1/e。
1/(2e)),答案为 C。
4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。
+∞) 内发散。
5.若 f(x) 与 g(x) 在 (-∞。
+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。
三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。
大学高数期末考试题与答案
第一学期高等数学期末考试试卷答案一.计算题(本题满分 35 分,共有 5 道小题,每道小题 7 分),1.求极限lim1 cos x x2 x.3 x 0 si n x解:1 cosx x x x2 1 1 c o xs 1cosx x 2x21 2lim lim lim si n 3 x x 3 x 3 x 0 x 0 x 0x ln 1 cosx x ln 1 c oxs 1 cosx ln 1 cosxe 2 1 e 2 1 xln 2 2 lim lim limlimx 3 1 cosx x 3 x 2x 0 x 0 x 0 x 0xln 2l i m s inx 1 .x 0 1 c o sx 2x 4与 x 2 3x2.设 x 0 时,fx 是等价无穷小, f t dt 与 Ax k等价无穷小,求常数 k 与 A .2 0 解:3 x3 x f t dt由于当 x 0 时, f t dt 与 Ax k等价无穷小,所以 lim 0 k 1 .而0 x 0 Ax3 x21 x 31f t dt f 3 x 2 23 3 x 2f 3 x 2 3 3 x 2x 3 x 31lim 0 lim li m li mlimAx kxx 0 Akx k 1 x 0 2Akx k 1 x 0 6Akx k 1 x 0 6Akx k 1x 32所以, lim11.因此, k 1, A 1. x 0 6 Akx k 163 x 2ax b dx 中不含有对数函数,求常数 a 与b应满足的条件.2 .如果不定积分x 1 1x 2解:x 2ax b 化为部分分式,有将2 1 x 2x 1x 2ax bA B CxD ,x 1 2 1 x 2x 1 x 1 21 x 2因此不定积分x 2ax bdx 中不含有对数函数的充分必要条件是上式中的待定系数x 1 2 x 21A C 0 .即x 2ax bB D B 1 x 2D x 1 22 22 2 .1 x 2x 1 1 x 2x 1 x 1 1 x所以,有x 2ax b B 1 x 2 D x 1 2 B D x 2 2DxB D .比较上式两端的系数,有 1 B D , a 2D , b B D .所以,得 b 1.525.计算定积分 min 1, x 2 dx . 0解:m i n1, x 2 x 2x 2 11 x2 1 1 x 12 x 1 x 2x 2 2 x .31x35521 2 2 13 所以, min 1, x 2 dx 1dx 2 x dx x 2 dx .0 0 1 2 85.设曲线 C 的极坐标方程为 r a sin 3,求曲线 C 的全长. 3解:曲线 r a sin 3一周的定义域为 0 3 ,即 03 .因此曲线 C 的全长为 3 3 2 2 3 3 3 s r r d 2 6 a 24 2 2aa s i n s i n c o s d a s i n d .0 0 3 3 3 0 3 2二.(本题满分 45 分,共有 5 道小题,每道小题 9 分),6.求出函数f x sin x lim 2n 的所有间断点,并指出这些间断点的类型. n 1 2 x解:sin x x1 21sin x x 1 2 2f x lim 2n.1 1 n12 x x 2 20 x 1 2因此 x 1 1 1 是函数 f x与 x 2 2 的间断点. 2l i m f x l i m 0 0 , lim f x lim si nx 1 ,因此 x 1x 的第一类可 是函数 f 1 x 1 x 1 1 2x 2 2 x2 2去型间断点.li mf x lim s i n x1 ,limf x lim 0 0 1 是函数 f x 的第一类可去型 ,因此 x 1 x 1x 1 x 1 2 x2 2 2 2 间断点.7.设 是函数 f x arcsin x 在区间 0, b 上使用 Lagrange (拉格朗日) 中值定理中的 “中值 ”, 求极限 lim .b 0 b 解:f x ar c s ixn 在区间0, b 上应用 Lagrange 中值定理,知存在 0, b ,使得arcsinb arcsin0 1 b 0 .1 2b 2所以, 21.因此,arcsinbb 22 12 2arcsinblim lim a r c s bin bb 2 2 lim2b 0 b 0 bb 0 b 2a r c sbin令t arcsinb,则有2lim t 2 2limt2 2lim sin t s i n tb 0b 2t 0t2 sin 2tt0 t 4lim 2t sin 2t lim 22cos2t 1 lim 1 cos2t1 lim2 s in2t 1 t 0 4t 3t 0 12t 26 t 0 t 2 6 t 0 2t 3所以, lim 1 .b 0 b31 x 18.设 fx e y 2 y dy ,求f x dx .0 0解:111f x dx xf xf x dxx 00 01 x在方程f x e y 2ydy 中,令x 1 ,得1 1 0f 1 e y 2 y dy e y 2 y dy 0 .0 0再在方程1 因此,1 xf xe1 x2f x e y 2y dy 两端对 x 求导,得,011 1f x dx xfx xf x dx xf x dx 00 0 01 11 11 x 2x 2e x2xe dx e xe dx e0 0 2 0 1e 1 .29.研究方程 e x a x2 a 0 在区间, 内实根的个数.解:设函数f x ax2 e x1, f x 2axe x ax2e x ax 2 x e x.令f x 0 ,得函数 f x 的驻点 x10, x2 2 .由于 a 0 ,所以lim fx lim ax2e x 1 ,x xlim f x lim 2ex1 a limx21 a lim2x1 a lim21 1.axe xexexx x x x x因此,得函数 f x 的性态x , 0 0 0, 2 2 2,f x 0 0f x 1 4ae 21 1⑴若 4ae 2 1 0,即 a e2时,函数f x ax2 e x1在, 0、0, 2、2, 内4各有一个零点,即方程e x a x2在, 内有 3 个实根.⑵若 4ae 2 1 0 ,即 a e2时,函数f x ax2 e x1在, 0、0, 内各有一个零4点,即方程 e x a x2在, 内有 2 个实根.⑶若 4ae 2 1 0 ,即 a e2时,函数f x ax 2e x 1 在, 0 有一个零点,即方程4e xa x 2在, 内有 1 个实根.10.设函数 f x 可导,且满足f x x f x 1 , f 0 0 .试求函数 f x 的极值.解:在方程 f x xf x 1 中令 tx ,得f t t f t 1 ,即f x x f x 1 .f x xf x x 中消去f x ,得在方程组xf x f x xf x x x2.1 x2x t 2积分,注意 f 0 0 ,得 f x f 0 t 0 1t 2 dt .即x t t 2 1 ln 1 x 2f x 2 dt x arctan x .0 1t 2由 f x x x 2f x 的驻点 x10, x21 .而f 1 2 x x 21 x 2得函数 x 1 x 22 .所以,f 0 1 0 , f1 1 0 .21ln 2所以, f0 0 是函数f x 极小值; f 1 1 是函数 f x 极大值.2 4三.应用题与证明题(本题满分20 分,共有 2 道小题,每道小题 10 分),11.求曲线 y x 的一条切线,使得该曲线与切线 l 及直线 x 0 和 x 2 所围成的图形绕 x 轴旋转的旋转体的体积为最小.解:设切点坐标为 t, t 1 ,可知曲线 y x 在 t , t 处的切线方程为,由 y 2 t yt11x t .x t ,或 y2 t2 t因此所求旋转体的体积为 2V1 2 82x tx dx 4 2t2 t4 3t所以, dV8 2 0 .得驻点 t2 ,舍去 t2 .由于 dt 4 3t 233d 2V16 0 ,因而函数 V 在 t 2 dt 24 3t 2 处达到极小值,而且也是最小值.因此所求切 t 2 t 3233 线方程为 y 3 x 1 .4 212.设函数 f x 在闭区间0, 1 上连续,在开区间0, 1 内可导,且2e f xarctan xdx 1, f 1 0 .2 证明:至少存在一点 0, 1 ,使得 f1.1 2arctan 解:因为 f x 在闭区间 0, 1 上连续,所以由积分中值定理,知存在20,,使得2e fx arctanxdx 2 e f arctan .0 2由于 e fx arctan xdx 1,所以, 2 e farctan 1 .再由 f 1 0 ,得 022e farctan e f1 arctan 1.4作函数 g xe f x arctan x ,则函数在区间 , 1 0, 1 上连续,在区间 , 1 内可导.所以由 Rolle 中值定理,存在, 1 0, 1 ,使得 g 0 .而 g x e fx f e fx 2 .x a r c t axnx1所以存在, 10, 1 ,使得e ff a r c t a ne f20 .1由于 e f0 ,所以 farctan 1 2 0,即 f11.12 arctan一个处处像别人表明自己优秀的,恰恰证明了他(她)并不优秀,或者说缺什么,便炫耀什么。
大一高数下考试题及答案
大一高数下考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)的极限为L,是指对于任意给定的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。
这个定义描述的是()。
A. 函数在某点的连续性B. 函数在某点的可导性C. 函数在某点的极限D. 函数在某点的间断性答案:C2. 以下哪个函数是偶函数?()A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 以下哪个积分是收敛的?()A. ∫(1/x)dx 从1到∞B. ∫(1/x^2)dx 从1到∞C. ∫(1/x^3)dx 从1到∞D. ∫(1/x)dx 从0到1答案:B4. 以下哪个级数是发散的?()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...答案:D5. 以下哪个是二阶导数?()A. f''(x) = 2xB. f'(x) = 2xC. f(x) = x^2D. f'(x) = 2答案:A二、填空题(每题4分,共20分)1. 函数f(x) = x^3 - 3x在x=0处的导数是________。
答案:02. 函数f(x) = e^x的不定积分是________。
答案:e^x + C3. 函数f(x) = sin(x)的不定积分是________。
答案:-cos(x) + C4. 函数f(x) = x^2在区间[0,1]上的定积分是________。
答案:1/35. 函数f(x) = x^2 + 2x + 1的极值点是________。
答案:x = -1三、计算题(每题10分,共30分)1. 计算极限:lim(x→0) [(x^2 + 1) / (x^2 - 1)]。
高数(大一上)期末试题及答案
第一学期期末考试试卷(1)课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟班级: 学号: 姓名: 得分: . 一、填空(每小题3分,满分15分)1、xx x x 2sin 3553lim 2++∞→ 2、设A f =-'')1(,则=--'--'→hh f f h )12()1(lim 0 3、曲线⎩⎨⎧==-t tey e x 2在0=t 处切线方程的斜率为4、已知)(x f 连续可导,且2)2(,)1(,1)0(,0)(e f e f f x f ===>,='⎰10)2()2(dx x f x f5、已知21)(xe xf x+=,则='')0(f 二、单项选择(每小题3分,满分15分)1、函数x x x f sin )(=,则 ( )A 、当∞→x 时为无穷大B 、当∞→x 时有极限C 、在),(+∞-∞内无界D 、在),(+∞-∞内有界2、已知⎩⎨⎧≥<=1,ln 1,)(x x x e x f x ,则)(x f 在1=x 处的导数( )A 、等于0B 、等于1C 、等于eD 、不存在3、曲线xxe y -=的拐点是( )A 、1=xB 、2=xC 、),1(1-eD 、)2,2(2-e 4、下列广义积分中发散的是( )A 、⎰10sin x dxB 、⎰-101xdx C 、⎰+∞+02/31x dx D 、⎰+∞22ln xx dx5、若)(x f 与)(x g 在),(+∞-∞内可导,)()(x g x f <,则必有( ) A 、)()(x g x f -<- B 、)()(x g x f '<'C 、)(lim )(lim 0x g x f xx xx →→< D 、⎰⎰<0000)()(x x dx x g dx x f三、计算题(每小题7分,共56分)答题要求:写出详细计算过程1、求xx e e x x x x sin )cos 1()(lim 220---→2、求)arcsin(lim 2x x x x -++∞→3、设)(x y y =由03=-+xyy x 确定,求0|=x dy 。
大一高数试卷试题含解答.docx
大一高数试题及解答大一高数试题及答案一、填空题(每小题1分,共10分)________121.函数y=arcsin√1-x+──────的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是 ______________。
f( Xo+2 h)-f( Xo-3 h)3.设f( X)在 Xo 可导且f ' (Xo)=A,则lim───────────────h→o h=_____________ 。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞X7.设f(x,y)=sin(xy),则fx(x,y)= ____________。
_______R22√R-x8.累次积分∫dx∫f(X2+Y2)dy化为极坐标下的累次积分为____________。
00d3y3d2y9.微分方程───+──(─── )2的阶数为 ____________。
dx3xdx2∞∞10.设级数∑an 发散,则级数∑an _______________。
n=1n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111①1-──②1+──③ ────④xxx1-x12.x→ 0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X =Xo连续,则f(X)在X=Xo 可导②若f( X )在 X =Xo不可导,则f( X )在 X=Xo 不连续③若f( X )在 X =Xo不可微,则f( X )在 X=Xo 极限不存在④若f( X )在 X =Xo不连续,则f( X )在 X=Xo 不可导4.若在区间(a,b)内恒有f' (x)〈0,f " (x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F '(x)=G'(x),则()①F(X) +G (X)②F(X) -G (X)③F(X) -G (X)为常数为常数=0d④ ──∫F(x)dxd=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg──,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④──f(x,y)t2an+1∞9.设a n≥0,且lim─────=p,则级数∑an()n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散210.方程y'+3xy=6xy是①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=e③y=xx3②y=x3+1④y=ln│x│12.设f(x)在(a,b)可导,a〈x〈1 x〈2 b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f ' (ζ)(b-a)②f(b)-f(a)=f ' (ζ)(x2-x 1)③f(x 2)-f(x 1)=f'(ζ)(b-a)④f(x 2)-f(x 1)=f'(ζ)(x2-x 1)13.设f( X)在 X =Xo 的左右导数存在且相等是f( X)在 X =Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x 4 4②x 4+c41x16.lim─── ∫ 3tgt2dt=()x→0x301① 0② 1③ ──④ ∞3xy17.limxysin─────=()x→0x 2+y 2y→0③∞① 0②1④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y ' =p,则y"=p'dp②设y ' =p,则y"=───dydp③设y ' =p,则y"=p───dy1dp④设y ' =p,则y" =─────pdy∞∞n19.设幂级数∑ anx在x(oxo≠0)n收敛,则∑ anx在│x│〈│xo│()n=on=o①绝对收敛②条件收敛③发散④收敛性与an 有关sinx20.设D域由y=x,y=x2 所围成,则∫∫ ─────dσ=()Dx11sinx① ∫ dx∫ ───── dy0xx__1√ysinx② ∫ dy∫─────dx0yx__1√xsinx③ ∫ dx∫─────dy0xx__1√xsinx④ ∫ dy∫─────dx0xx三、计算题(每小题5分,共45分)___________y'1.设。
高等数学考试题库(附答案解析)
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2.- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e - (B)12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x td e dt dx -=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
高等数学期末试卷及答案
高等数学测试题一一、单项选择题(每小题4分,满分20分)1.曲面22214x y z ++=在点(1,2,3)处的切平面方程是( )A.123123x y z ---==B.23140x y z ++-=C.123213x y z ---==D.2340x y z ++-= 2.设函数(,)f u v 具有二阶连续偏导数,(,)z f xy y =,则2z x y ∂∂∂=( )A.111f xyf '''+ B.112f yf '''+ C.1211yf xyf ''''+ D.112f xyf yf '''''++ 3.设空间区域2222222212:,0;:,0,0,0x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥,则下列等式( )成立.A.12d 4d x v x v ΩΩ=⎰⎰⎰⎰⎰⎰ B.12d 4d y v y v ΩΩ=⎰⎰⎰⎰⎰⎰C.12d 4d z v z v ΩΩ=⎰⎰⎰⎰⎰⎰ D.12d 4d xyz v xyz v ΩΩ=⎰⎰⎰⎰⎰⎰4.下列级数中,绝对收敛的级数是( )A.11(1)nn n ∞=-∑ B.2311(1)n n n ∞=-∑C.1(1)nn ∞=-∑11(1)ln(1)n n n∞=-+∑5.已知幂级数0(1)n n n a x ∞=-∑在2x =-处收敛,在4x =处发散,则幂级数0(1)n n n a x ∞=+∑的收敛域为( )A.[4,2)-B.[3,3)-C.[2,4)-D.[1,5)- 二、填空题(每小题4分,满分20分)6.通过曲线22222241x y z x y z ⎧++=⎨--=⎩且母线平行于z 轴的柱面方程为 .7.设函数2(,,)e x f x y z yz =,其中(,)z z x y =是由0x y z xyz +++=确定的隐函数,则(0,1,1)x f '-= .8.微分方程230y y y '''+-=的通解为 . 9.交换积分次序1100d (,)d xx f x y y -=⎰⎰ .10.级数1(21)nn x n ∞=+∑的收敛半径R = .三、计算题(每小题6分,满分30分)11.求函数22(,)22425f x y x xy y x y =++++-的极值.12.求曲面22z x y =+介于两平面1z =与4z =之间的部分的面积.13.求微分方程22d d yxy x y x=+满足条件e |2e x y ==的特解.14.求过点1(1,1,1)M 和2(0,1,1)M -且垂直于平面0x y z +-=的平面方程.15.求幂级数211nn n x n ∞=+∑的和函数.四、理论及其应用题(每题满分8分,共24分)16.求二阶线性非齐次微分方程2y y y x '''-+=满足条件(0)2,(0)0y y '==的特解.17.已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕z 轴旋转一周所成的旋转曲面为S .求由S 及两平面0,1z z ==所围成的立体体积.18.将函数1()f x x =展开成(3)x -的幂级数,并求10(1)3n n n ∞+=-∑的和.五、证明题(本题满分6分)19.设z 是,x y 的函数,且()(), ()()0xy xf z yg z xf z yg z ''=++≠,求证:[()][()]z zx g z y f z x y∂∂-=-∂∂.《高等数学(下)》测试题一参考答案一、1.B ;2.D ;3.C ;4.C ;5.A .二、6.22531x y -=;7.1;8.312e e x x y C C -=+;9.1100d (,)d yy f x y x -⎰⎰;10.1/2.三、11.解224, 242f f x y x y x y ∂∂=++=++∂∂,由0, 0f f x y∂∂==∂∂解得驻点(3,1)P -,又因为2, 2, 4xxxy yy f f f ''''''===,则在点(3,1)P -处,2, 2, 4A B C ===,240B AC -=-<,且20A =>,故点(3,1)P -是函数(,)f x y 的极小值点,极小值为(3,1)10f -=-.12.解2214d d D x y A x y x y ≤+≤==⎰⎰232π22111πd d 2π(14)126r r r θ==⨯+=⎰⎰. 13.解 因22(,)(),()P x y x y Q x xy =-+=均为二次齐式,故所给方程为齐次微分方程.令y xu =,则d d d d y u u x x x=+,代入方程2221d d y y x y x y x xy x⎛⎫+ ⎪+⎝⎭==,得2d 1d u u u x x u ++=,即d 11d d d u x u u x x u x =⇒=.两边积分,得21ln 2u x C =+,将y u x=代回,得通解222(ln )y x x C =+.由初始条件e |2e x y ==,得1C =.故所求特解为222(ln 1)y x x =+.14.解 由题设知,所求平面的法向量n ,既垂直于已知平面的法向量0n i j k =+-,又垂直于向量122M M i k =--,故可取01211123102ijkn n M M i j k =⨯=-=-++--,由此得所求平面的点法式方程为2(1)3(1)(1)0x y z --+-+-=,即2320x y z --+=.15.解 因为211111n n nn n n n x nx x n n∞∞∞===+=+∑∑∑, 1211()1(1)nn n n x x S x nx x x x x x ∞∞==''⎛⎫⎛⎫==== ⎪ ⎪--⎝⎭⎝⎭∑∑, 记211()n n S x x n∞==∑,则121111()1n n n n S x x x n x ∞∞-=='⎛⎫'=== ⎪-⎝⎭∑∑, 对上式从0到x 的积分,得201()d ln(1)1xS x x x x==---⎰,故 2211ln(1) (11)(1)n n n xx x x n x ∞=+=---<<-∑. 四、16.解 原方程对应的齐次方程为20y y y '''-+=,齐次方程的特征方程是2221(1)0r r r -+=-=,解得其特征根为121r r ==,于是齐次方程的通解为12()e x y C C x =+.由于0λ=不是特征根,故非齐次方程2y y y x '''-+=的特解形式应设为*()Y x Ax B =+,将它代入非齐次微分方程中,得1, 2A B ==.于是,非齐次微分方程的通解为12()e 2x y C C x x =+++.将初始条件(0)2,(0)0y y '==代入,得120, 1C C ==-,故所求的特解为e 2x y x x =-++.17.解 直线AB 的方程为1111x y z-==-,即⎩⎨⎧=-=.,1z y z x 过z 轴上的[0,1]中任一点z 且垂直于z 轴截旋转体所得截面是一个圆,与AB 交于点1(1,,)M z z z -.于是圆的半径为r ==,面积为2π(122)z z -+.因此,1120()2d d d d d d π(122)d π3s z V x y z z x y z z z Ω===-+=⎰⎰⎰⎰⎰⎰⎰. 18.解 因为当|3|3x -<时,有011111333(3)33313nn x x x x ∞=-⎛⎫==⋅=- ⎪-+-⎝⎭+∑ 1001(3)1(1)(1)(3)333n n n n n n n n x x ∞∞+==-=-=--∑∑ 所以,取4x =,得10(1)134n n n ∞+=-=∑.五、19.证明 在方程()()xy xf z yg z =+两边同时对x 求导数得()()()()()()z z z y f z y f z xf z yg z x x x xf z yg z ∂∂∂-''=++⇒=''∂∂∂+, ()()0xf z yg z ''+≠.同理,得()()()z x g z y xf z yg z ∂-=''∂+,将所求偏导数代入等式[()][()]z zx g z y f z x y∂∂-=-∂∂,即得恒等式.故命题得证.《高等数学(下)》测试题二一、单项选择题(每小题4分,满分20分,把答案写在括号内)1.函数(,)f x y =(0,0)处的偏导数存在情况是( ) (A)(0,0)x f '存在,(0,0)y f '存在; (B)(0,0)x f '存在,(0,0)y f '不存在; (C)(0,0)x f '不存在,(0,0)y f '存在; (D)(0,0)x f '不存在,(0,0)y f '不存在. 2.变换积分210d (,)d xx x f x y y ⎰⎰的次序为( )(A)10d (,)d y y f x y x ⎰; (B)110d (,)d y y f x y x ⎰⎰;(C)210d (,)d y y y f x y x ⎰⎰; (D)10d (,)d y y f x y x ⎰. 3.直线12:213x y zL -+==与平面:21x y z ∏--=的关系是( ) (A)互相平行,L 不在∏上; (B) L 在∏上; (C)垂直相交; (D) 相交但不垂直. 4.若级数21n n u ∞=∑与21n n v ∞=∑均收敛,则下列级数绝对收敛的是( )A .1n n u ∞=∑;B .1()n n n u v ∞=+∑;C .21(1)nnn u ∞=-∑;D .21()n n n u v ∞=+∑.5.设平面区域D 是由直线1,12x y x y +=+=及两条坐标轴所围成,记233123()d , ()d , [ln()]d DDDI x y I x y I x y σσσ=+=+=+⎰⎰⎰⎰⎰⎰;则有( )(A)123I I I <<; (B) 321I I I <<; (C)132I I I <<; (D) 312I I I <<. 二、填空题(每小题4分,满分20分,把答案写在横线上)6.过点(1,2,1)-且与直线2341x t y t z t =-+⎧⎪=-⎨⎪=-⎩垂直的平面方程是 .7.微分方程20y y y '''++=的通解为 .8.已知平面24x y z m +-=是曲面222z x y =+在点(1,1,3)处的切平面,则m 的值等于 .9.级数2114nnn x ∞=∑的收敛域为 . 10.D 是由0,0x y ==与221x y +=所围成的图形在第一象限内的部分,则二重积分2d d Dx y x y =⎰⎰ .三、基本计算题(每小题6分,共30分)11.设3,y z x f xy x ⎛⎫= ⎪⎝⎭,其中f 具有二阶偏导数,求,z z x y∂∂∂∂.12.已知||||1a b ==,且a 与b 的夹角π6θ=,求以2a b +和3a b +为边的平行四边形的面积.13.设Ω是由曲线22x y z=⎧⎨=⎩绕z 轴旋转一周而成的曲面与平面4z =围成的空间区域,求22()d x y z v Ω++⎰⎰⎰.14.求微分方程323e x y y y x -'''++=的通解.15.将函数1()(1)f x x x =-展开成2x -的幂级数.四、概念及其应用题(每小题8分,共24分) 16.求11, (0,0)z xy x y x y=++>>的极值.17.求曲面22z x y =+与226()z x y =-+所围立体的体积.18.求幂级数13nn n x n ∞=∑的收敛半径、收敛域及和函数.五、证明题(本题6分)19.证明y x z x y x y ϕψ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭满足方程2222220z z x y x y ∂∂-=∂∂.《高等数学(下)》测试题二参考答案一、1.B ;2.D ;3.A ;4.C ;5.B .二、6.340x y z --+=;7.12()e x y C C x -=+;8.3;9.(2,2)-;10.115. 三、11.解231223,zy y x f xy x f y f xx x ∂-⎛⎫⎡⎤''=+⋅+⋅ ⎪⎢⎥∂⎝⎭⎣⎦, 3121z x f x f y x ∂⎡⎤''=⋅+⋅⎢⎥∂⎣⎦. 12.解 由向量积的几何意义知,以2a b +和3a b +为边的平行四边形面积为(2)(3)(3)(2)(3)(2)π555sin 62S a b a b a a a b b a b ba b a b =+⨯+=⨯+⨯+⨯+⨯=⨯=⋅⋅=13.解 Ω由旋转抛物面221()2z x y =+与平面4z =围成.曲面与平面的交线为228,4.x y z ⎧+=⎨=⎩ 选用柱坐标变换cos,sin ,. x r y r z z θθ=⎧⎪=⎨⎪=⎩由题意得积分区域:02π,04,0z r θΩ≤≤≤≤≤≤,于是42π2220()d d d )d x y z v z r z r r θΩ++=+⎰⎰⎰⎰⎰22442002562πd 2π2d π.423r r z z z z ⎛=+== ⎝⎰⎰ 14.解 由特征方程2()320r r r ϕ=++=得特征根为121,2r r =-=-,所以,齐次方程的通解为212e e x x y c c --=+,又由1λ=-是特征方程的单根,于是*()e xy x ax b -=+,即2()Q x ax bx =+,代入公式2()()0()()3j j j Q x x ϕλ==∑中,得3,32a b ==-,所以*332y x x ⎛⎫=- ⎪⎝⎭,从而,原方程的通解为2121e e 31e 2x x x y c c x x ---⎛⎫=++- ⎪⎝⎭.15.解 因为111()(1)1f x x x x x==---, 011(1)(2), |2|1112n n n x x x x ∞===---<-+-∑;100111112(2)(1)()(1), |2|2222222212n n n n n n n x x x x x x ∞∞+==--===-=--<-+-+∑∑; 故101()(1)(1)(2), |2|12n n n n f x x x ∞+==----<∑. 四、16.解 2211,z z y x x x y y ∂∂=-=-∂∂,令221010y xx y ⎧-=⎪⎪⎨⎪-=⎪⎩得驻点(1,1).因为 222232322,1,z z z x x x y y y∂∂∂===∂∂∂∂, 2222(1,1)(1,1)2, 1, 2, 1430zzA B C xy∂∂=====∆=-=-<∂∂,0A >,故有极小值,极小值为3z =.17.解 222222:36z x y D x y z x y⎧=+⇒+≤⎨=--⎩.方法一:222π62π2000d d d d d (62)d r rV v r z r r θθ-Ω===-⎰⎰⎰⎰⎰⎰240192π32π99π22r r ⎡⎛⎫=-=-= ⎪⎢⎥⎣⎦⎝⎭.方法二:22222[6()()]d d [62]d d DDV x y x y x y r r r θ=-+-+=-⎰⎰⎰⎰2π2240019d (62)d 2π32π99π22r r r r θ⎡⎛⎫=-=-=-= ⎪⎢⎥⎣⎦⎝⎭⎰.18.解 1131limlim ,3(1)33n n n n n na n R a n ++→∞→∞===+. 当3x =时,级数11n n ∞=∑发散;当3x =-时,级数1(1)n n n ∞=-∑收敛,所以,级数的收敛域为[3,3)-.令111131(),()33133n n n n n n x x f x f x n x x -∞∞=='====--∑∑,001()(0)d ln(3)|ln 3ln(3)3xxf x f x x x x-==--=---⎰3 ()lnln(1)33x xf x -∴==-. 五、19.证明 利用一阶微分形式不变性,有d d d y y y x y x x x z x y x x x y x y y y ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''''=-+++-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ϕϕψϕψψ从而2223222311z y y y x x x x x y z y y x x x x y y z y x x x y x y y y z y x x y x x y y ϕϕψϕψϕψψϕψ⎛⎫∂⎛⎫⎛⎫''=-+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎛⎫∂⎛⎫''''=+ ⎪ ⎪∂⎝⎭⎝⎭⎛⎫⎛⎫∂⎛⎫''=+- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎛⎫∂⎛⎫''''=+ ⎪ ⎪∂⎝⎭⎝⎭于是2222220z z x y x y∂∂-=∂∂.。
高等数学考试题库(附答案)
2
3
,则m.
3、
1
x;3cosxdx
3cosxdx
1
4、微分方程y4y4y0的通解是.
5、函数f(x)x2x在区间0,4上的最大值是,最小值是;
三、计算题(每小题5分)
1、求极限
lim
x0
1x1x
x
12
;2、求ycotxlnsinx
2
的导数;
3、求函数
3
x1
y的微分;4、求不定积分
3
x1
dx
1x
1
C、yx1D、y(x1)
5、已知yxsin3x,则dy().
A、(cos3x3sin3x)dxB、(sin3x3xcos3x)dx
C、(cos3xsin3x)dxD、(sin3xxcos3x)dx
6、下列等式成立的是().
1
1
A、xdxxC
1
xln
x
B、adxaxC
1
C、cosxdxsinxCD、tanxdxC
lim1.
x2x
三、求下列导数或微分(每小题5分,共15分)
3.
x
y,求y(0).2.
x2
cosx
ye,求dy.
3.设
xy
xye,求
dy
dx
.
四、求下列积分(每小题5分,共15分)
1.12sinxdx
x
.2.xln(1x)dx.
3.
1
2x
edx
0
五、(8分)求曲线
xt
y1cost
在
t处的切线与法线方程.
;
5、求定积分
e
1lnxdx;6、解方程
高数试题及答案 五套
高学试题及答案一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()02lim1cos t t xx e e dtx-→+-=-⎰( )A .0B .1C .-1D .∞3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞=9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________. 13.设2ln 2,6aa π==⎰则___________.14.设2cos xz y=则dz= _______.15.设{}2(,)01,01y DD x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________. 三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1xy x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x +→18.求不定积分.19.计算定积分I=.⎰20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
大学高等数学下考试题库(附答案)
. 选择题( 3 分 10) 高等数学》试卷 1(下)1. 点 M 1 2,3,1 到点 M 2 2,7,4 的距离 M 1M 2 )..42. 向量 a i 2 j k,b 2i j , 则有( ).A. a ∥ bB. a ⊥ bC. a,b 3D. a,b 3.函数 y 1y 21 的定义域是).A. x, yB. x,y1C. x, y x 2 x,y 1 x 24. 两个向量 a 与 b 垂直的充要条件是( ).A. a b 0B. a b 0C. a 0D. a5. 函数 z x 3 y 3 3xy 的极小值是 ).B. D.6. 设 z xsin y ,则1,4=( ).2 A. 2 B. 2 C.D.7. 若 p 级数 1 n 1p 收敛,则(A. p 1B. p 1C.D.p18. 幂级数n1n x 的收敛域为( n ).A. 1,1B 1,1 C.1,1 D. 1,1. 填空题( 4 分 5)1. 一 平 面 过 点 A 0,0,3 且 垂 直 于 直 线 AB ,2. 函数 z sin xy 的全微分是23. 设 z x 3y 2 3xy 3 xy 1,则zxy14. 1 的麦克劳林级数是2x5. 微分方程 y 4y 4y 0 的通解为三. 计算题( 5分 6)4. 如图,求两个半径相等的直交圆柱面所围成的立体的体9. 幂级数 在收敛域内的和函数是( 1 2 2A. B. C. D 1x 2x 1x n0 10. 微分方程 xy yln y 0 的通解为( 12xA xx.y ce B. y e C. x cxy cxe D. y e其 中 点 B2, 1,1 ,则 此 平 面 方 程为1. 设 z e u sinv ,而 uxy,vzz y ,求 , y2. 已知隐函数 z z x,y由方程x 22y 2z 24x 2z 5 0 确定,求 z , zxy3. 计算 sin x 2 y 2d D2 ,其中 D : 222y4R 为半径)积(4.n01 n n 2n 1 x n5. y C 1 C 2x e2x5. 求微分方程 y 3y e 2x 在 y x 0 0 条件下的特解四. 应用题( 10分 2) 1. 要用铁板做一个体积为 2m 3 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省12.. 曲线 y f x 上任何一点的切线斜率等于自原点到该切点的连线斜率的 2倍,且曲线过点 1,13求此曲线方程试卷 1 参考答案一. 选择题 CBCAD ACCBD 二. 填空题1. 2x y 2z 6 0.2. cos xy ydx xdy3. 6x 2y 9y 2 1 .三. 计算题z 2 x , z 2y x z 1 y z 12 3. 02dsind6216 34.R 3 . 33x2x5.y e e .四. 应用题1. 长、宽、高均为 3 2m 时,用料最省2.1 2.2. y x .3高数》试卷 2(下)一. 选择题( 3分 10)1.点M 1 4,3,1 ,M 27,1,2 的距离 M 1M 2( ) .A. 12B. 13C. 14D.152. 设两平面方程分别为 x 2y 2z 1 0和 x y 5 0 ,则两平面的夹角为( )A. B. C. D.6 4 3 23. 函数 z arcsin 2 x2y的定义域为().A.x, y 02x 2y 21 B.x, y0 x 2 y 2 1 C.x,y 02x2y2D.x, y 0 x 22y24.点P 1, 2,1 到平面 x 2y 2z 50的距离为()..4C1.ze xy ysin x y cos x y xzxy, e xsin x y cos x y y5. 函数 z 2xy 3x 2 2y 2 的极大值为().1 B.1 C. 1 D.26. 设 z x 2 3xy y 2 ,则 z 1,2 ().x.7 C7. 若几何级数 ar n 是收敛的,则() .n0A. r 1B. r 1C. r 1D. r 18. 幂级数 n 1x n 的收敛域为().n0A. 1,1B. 1,1C. 1,1D. 1,1 9. 级数 sin 4na 是() .n 1 n4A. 条件收敛B. 绝对收敛C. 发散D. 不能确定 10.微分方程 xy yln y 0的通解为(. 填空题( 4 分 5)x 3 ty t 平行,则直线 l 的方程为z 1 2t2. 函数 z e xy 的全微分为223. 曲面 z 2x 2 4y 2 在点 2,1,4 处的切平面方程为 ___________________________________________14.1 2 的麦克劳林级数是 _______________________ .1 x 25.微分方程 xdy 3ydx 0在 y x 1 1条件下的特解为 _____________________________________ .三. 计算题( 5分 6)1. 设a i 2j k,b 2j 3k ,求 a b.cx xA.y e B. y ce C. yxxe D. y cxe1. 直线 l 过点 A 2,2, 1 且与直线uv 2,而 u xcos y,v xsin y ,求zd 2x2.如图,以初速度 v 0将质点铅直上抛,不计阻力,求质点的运动规律x x t .(提示: d dt 2x g .当2. 设 z u 2v3. 已知隐函数x,y由 x 3 3 xyz 2确定,求1. 试用二重积分计算由 y x,y 2 x 和 x 4所围图形的面积 .t 0 时,有 x xdx dtv 0)0 的通解四. 应用题( 10分 2)xy2ax ( a 0 )所围的几何体的体积224a 2 与圆柱面 x 22y试卷 2 参考答案. 选择题 CBABA CCDBA. . 填空题x 2 y 2 z 1 1. 1122. e xy ydx xdy .3. 8x 8y z4.5. y x 3 .三. 计算题1. 8i 3 j 2k .z yz z xz 3.xxy z2,y2xy z32 3 2 4.a .3 2 35.yC 1e 2xC 2e x四. 应用题1. 16.3.2. x12 gt 2v 0t x 0.2《高等数学》试卷 3(下)一、选择题(本题共 10小题,每题 3 分,共 30分)1、二阶行列式 2 -3 的值为( )4.n0n 2nx2.z 2 z 3x sin ycos y cos y sin y , xy32x sin ycosy sin y cos y3 3 3x sin y cos y4 52 1A 、10B 、 20C 、24D 、22 2、设 a=i+2j-k,b=2j+3k , 则 a 与 b 的向量积为( ) A 、i-j+2kB 、8i-j+2kC 、 8i-3j+2kD 、8i-3i+k3、点 P (-1 、 -2 、 1)到平面 x+2y-2z-5=0 的距离为( ) A 、2 B 、3 C 、 4 D 、5A 、R 2AB 、2R 2AC 、3R 2AD 、 1 R 2A2n7、级数( 1)n x 的收敛半径为( ) n 1 n1A 、2B 、C 、1D 、 328、 cosx 的麦克劳林级数为()459、微分方程 (y``) 4+(y`) 5+y`+2=0 的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10 、微分方程 y``+3y`+2y=0 的特征根为( ) A 、 -2 , -1 B 、 2,1 C 、-2 ,1 D 、1,-2二、填空题(本题共 5 小题,每题 4分,共 20 分)1、直线 L 1: x=y=z 与直线 L 2: x 1 y 3 z 的夹角为 _______________( 1)nn02nxB 、(2n)!(n12n1)n (x 2n)! C( 1)nn02nx (2n)!(n01)n2n 1(2n 1)!4、函数 z=xsiny 在点( 1,)处的两个偏导数分别为( )42 , 2,2, 22 2 A 、B 、C 、D2 2222222222 2 2z z5 、设 x +y +z =2Rx ,则 , 分别为(xyxR zB 、x R , yC zz6、设圆心在原点,半径为 R ,面密度为 )x R y x R y, D 、 , z z z z2 2 2x 2 y 2的薄板的质量为( )(面积 A= R 2 )直线L3:x 1 y 2 z与平面3x 2y 6z 0之间的夹角为_____________________2 1 22、()的近似值为______ ,sin10 0的近似值为 ___________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各科期末考试复习资料由QQ :554441025整理浙江农林大学 2016 - 2017 学年第 一 学期期中考试课程名称: 高等数学I 课程类别: 必修 考试方式: 闭卷注意事项:1、本试卷满分100分。
2、考试时间 120分钟。
一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。
每小题3分,共21分)1.下列各式正确的是: ( )A. sin lim1x x x →+∞= B. 0sin lim 0x xx→=C. 1lim 1xx e x →+∞⎛⎫+=- ⎪⎝⎭ D. 1lim 1xx e x →+∞⎛⎫+= ⎪⎝⎭2. 当0x +→( )1B. lnC. 1-1-3. 设()f x 在x a =的某邻域有定义,则它在该点处可导的一个充分条件是:( )A.1lim ()()h h f a f a h →+∞⎡⎤+-⎢⎥⎣⎦存在 B. 0(2)()lim h f a h f a h h →+-+存在 C. 0()()lim2h f a h f a h h →+--存在 D. 0()()lim h f a f a h h→--存在学院: 专业班级:姓名: 学号:装 订 线 内 不 要 答 题4. 函数33y x x =-在区间[0,1]上的最小值是: ( ) A. 0B. 没有C. 2D. 29-5. 函数21y x =-在区间[1,1]-上应用罗尔定理时,所得到的中值ξ= ( ) A. 0B. 1C. 1-D. 26.设函数2()(1)0ax e x f x b x x ⎧≤=⎨->⎩处处可导,那么: ( ) A .1a b == B .2,1a b =-=- C .0,1a b == D .1,0a b == 7. 设x a =为函数()y f x =的极值点,则下列论述正确的是 ( ) A .'()0f a = B .()0f a = C .''()0f a = D .以上都不对 二、填空题(每小题3分,共21分)1. 极限232)sin (1cos lim x x x x x +-+∞→= .2.极限22lim n n →∞⎛⎫+++=.3.设函数f (x )=2310222x x x x a x ⎧+-≠⎪-⎨⎪=⎩在点x =2处连续,则a = .4. 函数()sin xf x x=的间断点为 . 5. 函数22ln y x x =-的单调减区间为 . 6. 设函数ln y =dy = .7.椭圆曲线cos sin x a t y b t =⎧⎨=⎩ 在4tπ=相应的点处的切线方程为 .三、求下列极限(每小题6分, 共18分) 1. 求极限 11sin 1lim 2--+→x x e x x2. 求极限123lim 6x x x x +→+∞+⎛⎫⎪+⎝⎭3. 求极限)tan 11(lim 20xx x x -→四、计算下列导数或微分(每小题分6, 共18分)1.设函数2(2)ln(xy x e =-+, 求dydx与dy .2. 设()y f x =是由方程arctan ln x y=22d d y x .3.计算函数()1xx y x=+的一阶导数.五、(本题6分)求函数5()2y x=-的凹凸区间与拐点.六、(本题6分)设函数()f x在(,)-∞+∞上二阶可导,函数20()()0ax bx c xg xf x x⎧++>=⎨≤⎩,试确定常数,,a b c的值,使得函数()g x在0x=点二阶可导.七、(本题5分)证明:当0x>时,1ln(x x+>八、(本题5分)设函数()f x在[0,3]上连续,在(0,3)内可导,且(0)(1)(2)3f f f++=,(3)1f=.试证:必存在一点(0,3)ξ∈,使得'()0fξ=.浙江农林大学 2016 - 2017 学年第 一 学期期中考试参考答案一、 单项选择题D B D D A C D二、填空题(每小题3分,共21分) 1. 1 2.2; 3.7; 4.,0,1,2,k k π=±± ;5.1(0,)2;csc; 7.0ay bx += 三、求下列极限(每小题6分, 共18分) 1. 求极限 11sin 1lim2--+→x x e x x解:原式= 20sin 2lim x x xx → ……… 3分0sin lim2x xx →= ……… 4分 12= ……… 6分 2. 求极限123lim 6x x x x +→+∞+⎛⎫⎪+⎝⎭解:原式=123lim 16x x x +→+∞⎛⎫- ⎪+⎝⎭……… 2分=6313623lim 16x x x x x +-+⋅⋅-+→+∞⎛⎫- ⎪+⎝⎭……… 5分313lim622x x xee →+∞-+-⋅+== ……… 6分3. 求极限)tan 11(lim 20xx x x -→ 解:原式=2300tan tan lim lim tan x x x x x xx x x→→--=……… 2分=222200sec 11cos lim lim 33x x x xx x →→--=……… 4分=02cos sin 1lim63x x x x →=……… 6分四、计算下列导数或微分(每小题分6, 共18分)1.设函数2(2)ln(x y x e =-+, 求dydx与dy .解:2(2)x y x '=--……… 4分[2(2)x dy x dx =--+……… 6分2. 设()y f x =是由方程arctan ln x y=22d d y x .解:方程两边同时对变量x 求导并化简可得:''y xy x yy -=+ 从而得到:'y xy y x-=+ ,……… 2分 上式继续对变量x 求导可得: ''''''''1y y xy y y yy --=++……… 4分 化简上式并带入'y 可得:()22''32()x y y y x -+=+ ……… 6分3.计算函数()1xx y x=+的一阶导数.解:两边同时取对数得:ln ln()[ln ln(1)]1xy x x x x x==-++………(2分)两边同时对x 求导得:'111[ln ln(1)][]ln 111y x x x x y x x x x =-++-=++++………(5分)从而得'11[ln]ln()[ln ]11111x x x y y x x x x x x =+=++++++ ………(6分) 五、(本题6分)求函数5()2y x =-的凹凸区间与拐点.解:函数的定义域为(,)-∞+∞,y '=''y =''1,02x y =-=,''0,x y =不存在。
……… 2分可知5()2y x =-函数(5)y x =-在1(,0)2-和(0,)+∞上是凹的,在1(,)2-∞-内是凸的,拐点为1(,2-. ……… 6分六、(本题6分)设函数()f x 在(,)-∞+∞上二阶可导,函数20()()0ax bx c x g x f x x ⎧++>=⎨≤⎩,试确定常数,,a b c 的值,使得函数()g x 在0x =点二阶可导.解:因为()g x 在0x =点二阶可导,所以,()g x 在0x =点一阶可导、连续。
由()g x 在0x =点连续可得:0lim (0)(0)lim (0)x x g f g c -+→→===,从而(0)c f =……2分 由()g x 在0x =点可导可得:2'''0(0)(0)(0)(0)limx ax bx c f g f g b x +-+→++-====-,从而'(0)b f =……… 4分从而可知:''20()()0ax b x g x f x x +>⎧=⎨≤⎩又由()g x 在0x =点二阶可导可得:'''''''02(0)(0)(0)(0)lim20x ax b f g f g a x +-+→+-====-,从而''2(0)a f =……… 6分七、(本题5分)证明:当0x >时,1ln(x x +>证明:令()1ln(f x x x =+(0)0f = ……1分因为'()ln(0f x x =>,从而()f x 在0x >时单调递增,……… 3分从而()(0)0f x f >=,从而1ln(x x +>……… 5分八、(本题5分)设函数()f x 在[0,3]上连续,在(0,3)内可导,且(0)(1)(2)3f f f ++=,(3)1f =.试证:必存在一点(0,3)ξ∈,使得'()0f ξ=.证明:因为函数()f x 在[0,3]上连续,从而函数()f x 在[0,2]上连续, 故在[0,2]上有最大值和最小值,分别设为,m M , 于是(0)(1)(2)3f f f m M ++≤≤,……… 2分从而由介值定理可得,至少存在一点[0,2]c ∈, 使得(0)(1)(2)()13f f f f c ++==,……… 3分可验证()f x 在[,3]c 上满足罗尔定理的条件, 故存在[,3][0,3]c ξ∈⊂,使得'()0f ξ=.……… 5分全年最大红利!【全民瓜分15亿支付宝红包】 打开支付宝首页搜索“1471909” 立即领红包今天还没扫的都去扫!免费红包不要白不要!【好多都是20--50元】 容易爆大包!一定要自撸 完事记得去推广 每天都可以【大家无论领到多少钱!都记得 及时用掉 不然第二天没办法抽】各科期末考试复习资料由QQ:554441025整理共11页第 11 页。