概率论与数理统计公式总结.pdf

合集下载

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

P( B | A)
P( AB) P( A) P( B) P( B) P( A) P( A)
(14)独立 性
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独 立。 必然事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。 设事件 B1, B 2,, Bn 满足 1° B1, B 2,, Bn 两两互不相容, P( Bi ) 0(i 1,2,, n) ,
F ( ) lim F ( x) 0 ,
x
F ( ) lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F ( x) 是右连续的; P( X x) F ( x) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,

概率论及数理统计公式整理(超全版)

概率论及数理统计公式整理(超全版)

第1章随机事件及其概率−−−→随机波动性和稳定性。

频率(波动)n→∞概率:设Ω为样本空间,A为事件,对每一个事件若满足下列三个条件:,,()(),(A B A B P A P B P ⊂≤设为两个事件,且则,()1().A A P A P A =-设是的对立事件则23()P A A --2)()n i j k A A P A A A =+∑1° {ωω1,=ΩωA )A 更一般地,对事件A 1,,若P(A A …A ,则有21A …)n A (A P =21|(A A A n …n A ①两个事件的独立性设事件A 、B 满足A 、B 是相互独立的。

若事件A 、B 相互独立,且()|(AB P A B P =,它们的对立事件所得的满足),,2,1(0)(niBP i=>则有)()(1PBPAP=设事件1B,2B1°1B,2B,…,2°niiB A1=⊂第二章随机变量及其散布显然分布律应满足下列条件:(1)X的分布函数,若存在非负函数0-1)分布,第三章二维随机变量及其散布(,)}{(x y zP X ξξ≤=第四章随机变量的数字特点第五章大数定律和中心极限定理a PY−−第六章 样本及抽样散布.X n .的个独立的观察值1i =2n 1i =∏,,,x x 设2,3,.{P t t α>称满足条件(1);n -1221,()n S X X =-∑分别是这两个样本的均值第七章 参数估量12;,,(;x x p x θθ∑11,2,l θ=这个估计量称为矩θ为未知参数。

又设的无偏估计,且=(=({((θθθθθθ<和已知方差μ第八章假设查验5 中 2211()~().ni i X n μχσμ=-∑(已知)牛顿二项公式:0()nni i n ini a b C a b-=+=∑积分公式:2x e dx π+∞-=⎰,222x edx π+∞-=⎰二项散布最大值:(n+1)p 为整数(n+1)p=或(n+1)p-1处 非整数最接近(n+1)p 的整数处 Γ函数:765220220220()σσσσσσμ≤≥=未知22122212221212(,)σσσσσσμμ≤≥=未知000()D D D μμμ≤≥=成对数据2220(1)n S χσ-=2122S F S=0/D D t S n-=220220220σσσσσσ><≠221222122212σσσσσσ><≠000D D D μμμ><≠2222122/2221/2(1)(1)(1)(1)n n n n ααααχχχχχχχχ--≥-≤-≥-≤-或12112/2121/212(1,1)(1,1)(1,1)(1,1)F F n n F F n n F F n n F F n n αααα--≥--≤--≥--≥--或/2(1)(1)(1)t t n t t n t t n ααα≥-≤--≥-3421H 原假设检验统计量1H 备择假设拒绝域002()μμμμμμσ≤≥=已知0002()μμμμμμσ≤≥=未知1212122212(,)μμδμμδμμδσσ-≤-≥-=已知0/X Z nμσ-=0/X t S nμ-=221212X Y Z n n δσσ--=+00μμμμμμ≠<>000μμμμμμ><≠δμμδμμδμμ≠-<->-0002/αααz z z z z z ≥-≤≥/2(1)(1)(1)t t n t t n t t n ααα≥-≤--≥-2/αααz z z z z z ≥-≤≥12121222212()μμδμμδμμδσσσ-≤-≥-===未知δμμδμμδμμ≠-<->-0001212/212(2)(2)(1)t t n n t t n n t t n n ααα≥+-≤-+-≥+-1222211221211(1)(2)2w w X Y t S n n n S n S S n n δ--=+-+-=+-Γ(x+1)=xΓ(x),Γ⑴=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!,Γ(1-x)Γ(x)=π/sin (πx)。

概率论与数理统计公式整理(超全免费版)PDF

概率论与数理统计公式整理(超全免费版)PDF

+∞
∫ f (x)dx = 1
2° −∞

(3)离散 P( X = x) ≈ P(x < X ≤ x + dx) ≈ f (x)dx
与连续型
随机变量 的关系
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X = xk) = pk 在离
散型随机变量理论中所起的作用相类似。
4
概率论与数理统计 公式(全)-大蚂蚱网
A,B,C,…表示事件,它们是 Ω 的子集。 Ω 为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系:
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
4° F (x + 0) = F (x) ,即 F (x) 是右连续的;
5° P( X = x) = F (x) − F (x − 0) 。
∑ 对于离散型随机变量, F (x) = pk ; xk ≤x
x
∫ 对于连续型随机变量, F (x) = f (x)dx 。 −∞
(5)八大 0-1 分布 分布
重复排列和非重复排列(有序) (3)一些
对立事件(至少有一个) 常见排列
顺序问题
(4)随机 试验和随 机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个, 但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试 验。 试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
①两个事件的独立性

完整版概率论与数理统计公式整理超全免费版

完整版概率论与数理统计公式整理超全免费版

概率论与数理统计公式(全)2011-1-1第1章随机事件及其概率1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第二章随机变量及其分布1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第三章二维随机变量及其分布1概率论与数理统计公式(全)2011-1-1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第四章随机变量的数字特征(1)离散型连续型1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第五章大数定律和中心极限定理1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第六章样本及抽样分布1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第七章参数估计1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1第八章假设检验1概率论与数理统计公式(全)2011-1-11概率论与数理统计公式(全)2011-1-1单正态总体均值和方差的假设检验1。

概率论与数理统计公式整理(超全版)

概率论与数理统计公式整理(超全版)
①关系:
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A B
如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。
(6)事件的关系与运算
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表示为 A-AB 或者 AB ,它
(1)排列组合公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可
第1章
外勘砖叉研奶享响 播野瓶亮畜盗 余豁代椰勘们 垒垦寞嗡兽郸 疡着梗粳咒爷 糕撅粥荔剖西 争艳瘁识哦追 炙勇新骡隙活 绪宁构闷揣戮 镐肮陛叁酞有 膝泊爪典伞殉 粪坠妥鄂子订 匠十冉淬炳覆 坊坤枣食异趁 世弓正亩狱译 馈戳赢恫蚂程 东指欲赣椿煤 颤桅命坏儡慎 删煎婶羽宏诸 昂进尉尸娘击 开滔鸟庇忙茸 氏佣枯昂谤贝 擅陋中快澳皆 菲角蜕晋淑汗 潦腕校允蚕耶 岿驱熟苹盗猖 假闹醛鹏闯恃 涎座脉冕挪办 衣获伏川垮贫 牧邀整辈骇腑 兄逊衙卢卿谭 厢态池触骤毛 灿椭殿抨栋壁 刁梗核呻少豆 瑚脆瞻乏充肪 婶足辐耻嫂执 惊涡瘁锰疚嫉 舔瑶作纳眺磕 卖肉挠劝嘱硷 酷掌广寨情本 畅枢怯 檬唐倍畴诛耶喉啤 燃鲍羹 1
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)

概率论与数理统计公式整理(超全免费版)(最新版-修订)

概率论与数理统计公式整理(超全免费版)(最新版-修订)

第1章随机事件及其概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数。

)!(!nmmP nm-=从m个人中挑出n个人进行组合的可能数。

)!(!!nmnmC nm-=(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用来表示。

ω基本事件的全体,称为试验的样本空间,用表示。

Ω一个事件就是由中的部分点(基本事件)组成的集合。

通常用大写字母A,ΩωB,C,…表示事件,它们是的子集。

Ω为必然事件,Ø为不可能事件。

Ω不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。

BA⊂AB⊃A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。

概率论与数理统计完整公式以及各知识点梳理

概率论与数理统计完整公式以及各知识点梳理

的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,, n 。
P( X

k)

Pn(k )

C
k n
p k q ,
其中
则称随机变量 X 服从参数为 n , p 的二项分布。记为
X ~ B(n, p) 。
当 n 1时, P( X k) p k q1k , k 0.1,这就是(0-1)分
1567014781.doc
概率论与数理统计完整版公式
第 1 章 随机事件及其概率
(1)排列 组合公式
Pmn

m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn

m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加法 和乘法原 理
5° P(X x) F(x) F(x 0) 。
对于离散型随机变量, F(x) pk ; xk x
x
对于连续型随机变量, F (x) f (x)dx 。
0-1 分布
P(X=1)=p, P(X=0)=q
二项分布
(5)八大 分布
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生
1° 0 F(x) 1, x ;
(4)分布 函数
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F (x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;

概率论与数理统计公式整理超全版

概率论与数理统计公式整理超全版

全概公 式
n
A Bi
2° , i1 则有 P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
件 、 样 ①每进行一次试验,必须发生且只能发生这一组中的
本 空 间 一个事件;
和事件 ②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用 来表
示。
基本事件的全体,称为试验的样本空间,用 表示。
一个事件就是由 中的部分点(基本事件 )组成的集 合。通常用大写字母 A,B,C,…表示事件,它们是
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足 P(ABC)=P(A)P(B)P(C)
那么 A、B、C 相互独立。
对于 n 个事件类似。
设事件 B1, B2,, Bn 满足 ( 15 ) 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
或称 A 等于 B:A=B。 系与运
A、B 中至少有一个发生的事件:A B,或者 A+B。 算
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B
的差,记为 A-B,也可表示为 A-AB 或者 AB ,它表示
A 发生而 B 不发生的事件。
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与
B 不可能同时发生,称事件 A 与事件 B 互不相容或者
互斥。基本事件是互不相容的。
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为
A 。它表示 A 不发生的事件。互斥未必对立。
②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

(9)几何概型 (10)加法公式 (11)减法公式
(12)条件概率
(13)乘法公式 (14)独立性
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以 使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件 A,
P( A) L( A) 。其中 L 为几何度量(长度、面积、体积)。 L()
对于离散型随机变量, F (x)
pk ;
xk x
(5)八大分 0-1 分布
P(X=1)=p, P(X=0)=q
x
对于连续型随机变量, F (x) f (x)dx 。

二项分布
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生的次数是随机变量,设为 X ,则
泊松分布
X 可能取值为 0,1,2,, n 。
Ai Ai
德摩根率: i1
i 1
AB AB,AB AB
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满足下列三个条件:
1° 0≤P(A)≤1,
2° P(Ω) =1
3° 对于两两互不相容的事件 A1, A2 ,…有
P Ai P(Ai) i1 i1
常称为可列(完全)可加性。
则称 P(A)为事件 A 的概率。
1° 1, 2 n ,

P(1 )
P( 2件 A ,它是由1 , 2 m 组成的,则有
P(A)= (1 ) (2 ) (m ) = P(1 ) P( 2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
x1 a

指数分布
f (x)
e x ,

(完整版)概率论与数理统计公式整理(超全版)

(完整版)概率论与数理统计公式整理(超全版)
,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有

(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,

,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。

概率论与数理统计知识点总结(PDF)

概率论与数理统计知识点总结(PDF)

概率论与数理统计 知识点总结一、随机事件与概率1.随机事件(1)事件间的关系与运算● 事件的差:A B A AB AB -=-= ● 对立事件:,AA A A =∅⋃=Ω ● 完备事件组:设12,,,,n A A A 是有限或可数个事件,如果其满足:① ,,,1,2,i j A A i j i j =∅≠=; ②i iA =Ω,则称12,,,,n A A A 是一个完备事件组.(2)随机事件的运算律 ● 求和运算:①A B B A +=+(交换律)②()()A B C A B C A B C ++=++=++(结合律) ● 求交运算:①AB BA =(交换律)②()()AB C A BC ABC ==(结合律) ● 求和运算与求交运算的混合:①()()()A B C AB AC +=+(第一分配律) ②()()()A BC A B A C +=++(第二分配律) ● 求对立事件的运算:()A A =(自反律) ● 和及交事件的对立事件:①A B AB +=(第一对偶律) ②AB A B =+(第二对偶律)2.随机事件的概率(1)概率的公理化定义● 公理1:()1P Ω=;公理2:对任意事件A ,有()0P A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A P A ∞∞===∑.(2)概率测度的其他性质 ● 性质1:()0P ∅=性质2(有限可加性):12,,,n A A A 是两两互不相容的,则有11()()nni i i i P A P A ===∑性质3:()1()P A P A =-性质4:()()()P A B P A P AB -=-特别地,若A B ⊃,则①()()()P A B P A P B -=-;②()()P A P B ≥ 性质5:0()1P A ≤≤性质6:()()()()P A B P A P B P AB +=+-推论:()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+3.古典概型与几何概型(1)古典概型● 古典概型的概率测度:()==A A P A Ω中元素个数使发生的基本事件数中元素个数基本事件总数(2)几何概型● 几何概型的概率测度:()()()S A P A S =Ω 4.条件概率(1)条件概率的数学定义 ●()()(()0)()P AB P B A P A P A =>● ()1()P B A P B A =- ●()1()P B A P B A =-● 条件概率测度满足概率的三条公理:公理1:()1P A Ω=;公理2:对任意事件B ,有()0P B A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A A P A A ∞∞===∑.(2)乘法公式 ● ()()(),()0P AB P A P B A P A => ● ()()(),()0P AB P B P A B P B => ● ()()()()P ABC P A P B A P C AB = ●12121312121()()()()()n n n P A A A P A P A A P A A A P A A A A -=(3)全概率公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且i iA =Ω,则对任意事件B ,有()()()i i iP B P A P B A =∑.(4)贝叶斯公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且1i i A ∞==Ω,则对任意事件B , ()0P B >,有()()()()()()()i i i i j j jP A P B A P A B P A B P B P A P B A ==∑. 5.事件的独立性(1)两个事件的独立性 ●()()()P AB P A P B =(2)有限个事件的独立性● 两两独立:()()()i j i j P A A P A P A = ● 相互独立:1212()()()()k k i i i i i i P A A A P A P A P A =(3)相互独立性的性质 ● 性质1:如果n 个事件12,,,n A A A 相互独立,则将其中任何(1)m m n ≤≤个事件改为相应的对立事件,形成的新的n 个事件仍然相互独立. 性质2:如果n 个事件12,,,n A A A 相互独立,则有1111()1(1())n n ni i i i i i P A P A P A ===⎛⎫=-=-- ⎪⎝⎭∏∏(4)伯努利概型● 伯努利定理:在一次试验中,事件A 发生的概率为(01)p p <<,则在n 重伯努利试验中,事件A 恰好发生k 次的概率为:(;,)C k k n kn b k n p p q-=,其中1q p =-. ● 在伯努利试验序列中,设每次试验中事件A 发生的概率为p ,“事件A 在第k 次试验中才首次发生”(1)k ≥,这一事件的概率为1(,)k g k p q p -=.二、随机变量的分布与数字特征1.随机变量及其分布(1)离散型随机变量的概率分布● 离散型随机变量的概率分布满足性质:①()0,1,2,i p x i ≥=②()1iip x =∑● 一旦知道一个离散型随机变量X 的概率分布{}i p x (),便可求得X 所生成的任何事件的概率.特别地,对任意a b ≤,有{}({}){}()i i i i i i a x ba x ba x bP a X b P X x P X x p x ≤≤≤≤≤≤≤≤=====∑∑.一般地,若I 是一个区间,则{}=()i ix IP X I p x ∈∈∑.(2)分布函数● 随机变量的分布函数性质:①单调性,若12x x <,则12()()F x F x ≤; ②()lim ()0x F F x →-∞-∞==,()lim ()1x F F x →+∞+∞==;③右连续性,(0)()F x F x +=. (3)连续型随机变量及其概率密度 ●(){}()xF x P X x f t dt -∞=≤=⎰,()f x 为X 的概率密度函数.● 密度函数性质:①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.● {}()()()b aP a X b F b F a f x dx <≤=-=⎰● {}0P X x ==(连续型)●'()()F x f x =2.随机变量的数字特征(1)离散型随机变量的数学期望 ●1=i i i EX x p ∞=∑(2)连续型随机变量的数学期望 ●()EX xf x dx +∞-∞=⎰(3)随机变量函数的数学期望● 设X 是一个随机变量,()g x 是一个实函数.①若X 为离散型随机变量,概率分布为{},1,2,i i P X x p i ===.且1()iii g x p∞=<∞∑,则()Eg X 存在,且1()()i i i Eg X g x p ∞==∑.②若X 为连续型随机变量,()f x 是其密度函数,且()()g x f x dx +∞-∞<∞⎰,则()Eg X 存在,且()()()Eg X g x f x dx +∞-∞=⎰.(4)数学期望的性质● ①对任意常数a ,有Ea a =;②设12,αα为任意实数,12(),()g x g x 为任意实函数,如果12(),()Eg X Eg X 均存在,则11221122[()()]()()E g X g X Eg X Eg X αααα+=+;③如果EX 存在,则对任意实数a ,有()E X a EX a +=+. (5)随机变量的方差 ● 离差:X EX -● 方差:2()DX E X EX =-● ● ①若X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,则22()()i i iDX E X EX x EX p =-=-∑②若X 为连续型随机变量,()f x 为其密度函数,则22()()()DX E X EX x EX f x dx +∞-∞=-=-⎰③22()DX EX EX =-● 方差的基本性质:设X 的方差DX 存在,a 为任意常数,则 ①0Da =;②()D X a DX +=; ③2()D aX a DX =.(6)随机变量的矩与切比雪夫不等式● 矩定义:X 为一个随机变量,k 为正整数,如果kEX 存在(即kE X<∞),则称kEX 为X的k 阶原点矩,称kE X 为X 的k 阶绝对矩.定理:随机变量X 的t 阶矩存在,则其s 阶矩(s t <为正整数)也存在. 推论:设k 为正整数,C 为常数,如果kEX 存在,则()kE X C +存在,特别地,)k E X EX -(存在.● 中心矩定义:X 为一个随机变量,k 为正整数,如果k EX 存在,则称()kE X EX -为X 的k阶中心矩,称kE X EX -为X 的k 阶绝对中心矩.● 定理:设()h x 是x 的一个非负函数,X 是一个随机变量,且()Eh X 存在,则对任意0ε>,有(){()}Eh X P h X εε≥≤.推论1(马尔可夫不等式):设X 的k 阶矩存在(k 为正整数),即kE X <∞,则对任意0ε>有{}kkE XP X εε≥≤.推论2(切比雪夫不等式):设X 的方差存在,则对任意0ε>有2{}DXP X EX εε-≥≤.推论3:随机变量X 的方差为0当且仅当存在一个常数a ,使得{}=1P X a =.3.常用的离散型分布,n),n kp -,ndef(,),g k p k =几何分布的无记忆性:设{P X二项分布可作为超几何分布的近似,即1212C C Ck n kk n kN N k n nNN N C N N --⎛⎫⎛⎫≈ ⎪ ⎪⎝⎭⎝⎭.这一近似关系的严格数学表述是:当N →∞时,1N →∞,2N →∞,且1N p N →,21Np N→-,则对任意给定的n 和k ,有()12C C lim1Ck n kn kN N k kn nN NC p p --→∞=-.泊松定理:在n 重伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与试验的次数n 有关),如果n →∞时,n np λ→(0λ>为常数),则对任意给定的k ,有lim (;,)e !kn n b k n p k λλ-→∞=.当二项分布(,)b n p 的参数n 很大,而p 很小时,可以将它用参数为np λ=的泊松分布来近似,即有()(;,)e !k npnp b k n p k -≈.4.常用的连续型分布正态分布● 定理:设2~(,),,,X N Y aX b a b μσ=+为常数,且0a ≠,则22~(,)Y N a b aμσ+.推论1:如果2~(,)X N μσ,则~(0,1)X N μξσ-=.ξ通常称为X 的标准化.推论2:2~(,)X N μσ的充要条件是存在一个随机变量~(0,1)N ξ,使得X σξμ=+. 推论3:设2~(,),(),()X N x x μσϕΦ分别为其分布函数与密度函数,00(),()x x ϕΦ是标准正态分布的分布函数和密度函数,则有00()(),1()().x x x x μσμϕϕσσ-Φ=Φ-=● 一般正态分布的概率计算:【例】已知2~(,)X N μσ,求()a Φ. 解 0(){}{}{}()X a X a P X a P P b b μμμσσσ---Φ=≤=≤=≤=Φ5.随机变量函数的分布(1)离散型随机变量函数的分布● 离散型随机变量函数的概率分布的一般方法:先根据自变量X 的可能取值确定因变量Y 的所有可能取值,然后对Y 的每一个可能取值(1,2,)i y i =确定相应的{()}i j j i C x g x y ==,则有{}{()}{},{}{}{},j ii i i i i jx C Y y g X y X C P Y y P X C P X x ∈====∈==∈==∑从而求得Y 的概率分布. (2)连续型随机变量函数的分布● 连续型随机变量函数的概率分布的一般方法:一般地,已知X 的分布函数()X F x 或密度函数()X f x ,为求()Y g X =的分布函数,有()(){()}{},Y x F x P Y x P g X x P X C =≤=≤=∈其中{()}x C t g t x =≤.而{}x P X C ∈往往可由X 的分布函数()X F x 来表达或用其密度函数()X f x 的积分来表达:{}()xx X C P X C f t dt ∈=⎰.进而,Y 的密度函数,可直接从()Y F x 导出.三、随机向量1.随机向量的分布(1)随机向量及其分布函数 ●1212{,}P x X x y Y y <≤<≤22122111(,)(,)(,)(,)F x y F x y F x y F x y =--+● 由(联合)分布函数的定义得出性质:①0(,)1F x y ≤≤;②(,)F x y 关于x 和y 均单调非降、右连续; ③(,)lim (,)0,x F y F x y →-∞-∞==(,)lim (,)0,y F x F x y →-∞-∞==(,)(,)(,)lim (,)0,x y F F x y →-∞-∞-∞-∞== (,)(,)(+,+)lim(,) 1.x y F F x y →+∞+∞∞∞==●(,)F x y 的边缘分布函数:(){}{,}(,)X F x P X x P X x Y F x =≤=≤<+∞=+∞, (){}{,}(,)Y F y P Y y P X Y y F y =≤=<+∞≤=+∞.(2)离散型随机向量的概率分布● 离散型随机向量的概率分布{,},,1,2,i i ij P X x Y y p i j ====,ij p 满足性质:①0,,1,2,ij p i j ≥=;②1ijijp=∑∑.● 边缘概率分布:{},1,2,X i i ij jp P X x p i ====∑ {},1,2,Y j j ij ip P Y y p j ====∑(3)连续型随机向量的概率密度函数 ● 二维连续型随机向量(,)(,)x yF x y f s t dsdt -∞-∞=⎰⎰,(,)f x y 为(),X Y 的概率密度函数或X 与Y 的联合密度函数. (,)f x y 具有性质:①(,)0f x y ≥; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;③若D 是平面上的一个区域,则(){,}(,)DP X Y D f x y dxdy ∈=⎰⎰● 边缘密度函数:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰● 均匀分布的密度函数:1,(,)()(,)0,x y G S G f x y ⎧∈⎪=⎨⎪⎩其他,若(),X Y 服从G 上的均匀分布,则对任何平面区域D ,有()1(){,}(,)=()()DD GS D G P X Y D f x y dxdy dxdy S G S G ⋂⋂∈==⎰⎰⎰⎰. (4)二元正态分布 ● 密度函数:()2211222221212()()()()122(1),x x y y x y μμμμρσσρσσϕ⎡⎤------+⎢⎥-⎢⎥⎣⎦=,记作()221212,~(,;,;)X Y N μμσσρ.● 边缘密度函数分布:()2121()2()=,x X x x y dy μσϕϕ--+∞-∞⎰,()2222()2()=,y Y y x y dx μσϕϕ--+∞-∞⎰.注意:比较联合密度函数(),x y ϕ和边缘密度函数()X x ϕ,()Y y ϕ,当且仅当0ρ=时,对一切(),x y ,有(),()()X Y x y x y ϕϕϕ=.2.条件分布与随机变量的独立性(1)条件分布与独立性的一般概念● 随机变量X 和Y 相互独立:(,)()()X Y F x y F x F y =● 定理1:随机变量X 和Y 相互独立的充要条件是X 所生成的任何事件与Y 生成的任何事件独立,即对任意实数集A 和B ,有{,}{}{}P X A Y B P X A P Y B ∈∈=∈∈.定理2:如果随机变量X 和Y 相互独立,则对任意函数12(),()g x g y ,均有1()g X 与2()g Y 相互独立. ● 相互独立:12,,,n X X X 相互独立,()121122,,,()()()n n n F x x x F x F x F x =.(2)离散型随机变量的条件概率分布与独立性 ● 概率分布:{,},,1,2,i j ij P X x Y y p i j ====●i j p (当{}0i P Y y =>时):{,}{}{}iji i i j Y i jP P X x Y y P X x Y y P Y y P =======性质:①0i j p ≥;②1i jip=∑.● 已知j Y y =的条件下X 的条件概率分布:{},1,2,i i i j P X x Y y p i ====; 已知i X x =的条件下Y 的条件概率分布:{},1,2,i i j i P Y y X x p j ====.●X Y ij i j j i i j p p p p p =⋅=⋅● 定理:设,X Y 是离散型随机变量,其联合概率分布为{,}(,1,2,)i j ij P X x Y y p i j ====,边缘概率分布分别为X i p 和Yj p (,1,2,)i j =,则X 与Y 相互独立的充要条件是,,1,2,X Y ij i j p p p i j ==.(3)连续型随机变量的条件密度函数与独立性● 在Y y =的条件下X 的条件分布:0(,){,}{}lim {}()xy Y f u y du P X x y y Y y P X x Y y P y y Y y f y -∞∆→≤-∆<≤≤===-∆<≤⎰● 条件分布和条件密度函数● (,)()()()()X Y Y X X Y f x y f x f y x f y f x y ==● 定理:设连续型随机向量(),X Y 的密度函数为(,)f x y ,边缘密度函数分别为()X f x 和()Y f y ,则X 与Y 相互独立的充要条件是(,)()()X Y f x y f x f y =.3.随机向量的函数的分布与数学期望(1)离散型随机向量的函数分布 ●(,){}{(,)}{,},1,2,i j kk k i j g x y z P Z z P g X Y z P X x Y y k ========∑● 设,X Y 是两个相互独立的随机变量,分别服从参数为1λ和2λ的泊松分布,则X Y ξ=+的分布为()()1212e ,0,1,2,!kk k λλλλ-++=,可见X Y ξ=+服从参数为()12λλ+的泊松分布.结论:泊松分布具有独立可加性.2,(2)连续型随机向量的函数分布● 分布函数:(){}{(,)}{(,)}(,)zZ z D F z P Z z P g X Y z P X Y D f x y dxdy =≤=≤=∈=⎰⎰,其中z D ={(,)(,)}x y g x y z ≤. ● 密度函数:'()=()Z Z f z F z .● 随机变量的和:设(,)X Y 的联合密度函数为(,)f x y ,则X Y +的密度函数为()=(,)Z f z f z y y dy +∞-∞-⎰或 ()=(,)Z f z f x z x dx +∞-∞-⎰特别地,如果X 和Y 是相互独立的随机变量,则有(卷积公式)()=()()Z X Y f z f x f z x dx +∞-∞-⎰或 ()=()()Z X Y f z f z y f y dy +∞-∞-⎰即,()=*()*()Z X Y Y X f z f f z f f z =.● 独立正态随机变量之和:设随机变量221122~(,),~(,)X N Y N μσμσ,且X 与Y 独立,则221212~(,)X Y N μμσσ+++,即2122212()2()()z X Y f z μμσσ⎡⎤---⎢⎥+⎢⎥⎣⎦+=,结论:独立正态分布的和服从正态分布.推论:X 与Y 相互独立且分别服从正态分布211(,)N μσ和222(,)N μσ,则其任意非零线性组合仍服从正态分布,且22221212~(,)aX bY N a b a b μμσσ+++.进一步地,12,,n X X X 相互独立,2~(,)i i iX N μσ,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.● 随机变量的商:设二维随机向量(,)X Y 的密度函数为(,)f x y ,则XZ Y=的密度函数为'()=()(,)Z Z f z F z y f zy y dy +∞-∞=⎰.● 最大值与最小值:设,X Y 的分布函数分别为(),()F x G x ,密度函数分别为(),()f x g x ,且X与Y 相互独立,令max{,},min{,}M X Y N X Y ==,则有(3)随机向量函数的数学期望● 二维离散型随机向量的数学期望:,(,)(,)ijiji jEZ Eg X Y g x y p==∑.● 二维连续型随机向量的数学期望:(,)(,)(,)EZ Eg X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.●(,)g X Y XY =型:()(),,,(,),,i j ij i jx y p X Y EXY xyf x y dxdy X Y +∞+∞-∞-∞⎧⎪=⎨⎪⎩∑⎰⎰若为离散型若为连续型 (4)数学期望的进一步性质● (1)对任意两个随机变量,X Y ,如果其数学期望均存在,则()E X Y +存在,且()=E X Y EX EY ++(2)设,X Y 为任意两个相互独立的随机变量,数学期望均存在,则EXY 存在,且=EXY EXEY推广: (1)12,,,n X X X 是任意n 个随机变量,数学期望均存在,则()12n E X X X +++存在,且()1212n n E X X X EX EX EX +++=+++(2)设12,,,n X X X 是个相互独立的随机变量,且数学期望均存在,则()12n E X X X 存在,且()1212n n E X X X EX EX EX =.4.随机变量的数字特征(1)协方差● 协方差:()()()cov ,X Y E X EX Y EY =--⎡⎤⎣⎦1,2,)●()cov ,X Y EXY EXEY =-● 定理:(1)()cov ,X X DX = (2)()()cov ,cov ,X Y Y X =(3)()()cov ,cov ,,,aX bY ab X Y a b =为任意常数 (4)()cov ,0,C X C =为任意常数(5)()()()1212cov ,cov ,cov ,X X Y X Y X Y +=+ (6)如果X 与Y 相互独立,则()cov ,0X Y =推论:设,X Y 为任意两个随机变量,如果其方差均存在,则X Y +的方差也存在,且()()2cov ,D X Y DX DY X Y +=++.()()2cov ,D X Y DX DY X Y -=+-特别地,如果X 与Y 相互独立,则()D X Y DX DY +=+.● 定理:设()12,,,n X X X 是n 维随机向量,如果()1,2,,i X i n =的方差均存在,则对任意实向量()12,,,n λλλ,1ni i i X λ=∑的方差必存在,且()21112cov ,n n i i i i i j i j i i i j n D X DX X X λλλλ==≤<≤⎛⎫=+ ⎪⎝⎭∑∑∑.特别地,如果12,,,n X X X 两两独立,则211n n i i i i i i D X DX λλ==⎛⎫= ⎪⎝⎭∑∑. (2)协方差矩阵 ● 记()T 12,,,n X X X =X ,其协差阵通常记作D X .对任意实向量()T12,,,n λλλ=λ,有()T T D D =λX λX λ.对任意实向量()T12,,,n λλλ=λ,()T T 0D D =≥λX λλX .(3)相关系数 ●,cov ,X Y X Y ρ,,1X Y ρ≤● 定理:设(),X Y 是一个二维随机向量,,DX DY 均存在且为正,则,1X Y ρ=的充要条件是X 与Y 具有线性关系,即存在常数0a ≠及常数b ,使得{}1P Y ax b =+=.而且,当0a >时,,1X Y ρ=;当0a <时,,1X Y ρ=-.● 如果,DX DY 均存在且为正,那么X 与Y 不相关等价以下条件:①()cov ,0X Y =; ②EXY EXEY =;③()D X Y DX DY +=+; ④,0X Y ρ=.5.大数定律与中心极限定理(1)依概率收敛 ● 定义:设12,,,,,n X X X X 是一列随机变量,如果对任意0ε>,恒有{}lim 0n n P X X ε→∞->=,则称{}n X 依概率收敛到X ,记作Pn X X −−→或lim n n P X X →∞-=.(2)大数定律 ● 定理:①伯努利大数定律:设n μ是n 重伯努利试验中事件A 发生的次数,已知在每次试验中A 发生的概率为()01p p <<,则对任意0ε>,有lim 0n n P p n με→∞⎧⎫->=⎨⎬⎩⎭, 即Pnp nμ−−→或limnn P p nμ→∞-=.②切比雪夫大数定律:设12,,,n ξξξ是一列两两不相关的随机变量,它们的数学期望iE ξ和方差i D ξ均存在,且方差有界,即存在常数C ,使得()1,2,i D C i ξ≤=,则对任意0ε>,有1111lim 1n ni i n i i P E n n ξξε→∞==⎧⎫-<=⎨⎬⎩⎭∑∑. 推论:设12,,,nξξξ是一列独立同分布的随机变量,其数学期望和方差均存在,记=i E ξμ,则对任意0ε>,有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. 即11n Pi i n ξμ=−−→∑.③辛钦大数定律:设12,,,nξξξ是一列相互独立同分布的随机变量,且数学期望存在,记=i E ξμ,则有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. (3)中心极限定理● 定理:林德伯格-列维 设12,,,n ξξξ是一列相互独立同分布的随机变量,且=i E ξμ,2=0,1,2,,i D i ξσ>=则有22lim en t i xn n P x dt ξμ--∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑.● 定理:设()~,,01,n X b n p p <<则22lim et xn P x dt --∞→∞⎧⎫⎪≤=⎬⎪⎭.四、数理统计的基础知识1.总体与样本样本与样本分布● 总体X 的分布函数为()F x ,则样本()12,,,n X X X 的分布函数为:()()121,,,nn n i i F x x x F x ==∏,称之为样本分布.特别地,若总体X 为连续型随机变量,其密度函数为()f x ,则样本的密度函数为()()121,,,nn n i i f x x x f x ==∏.若总体X 为离散型随机变量,概率分布为(){}p x P X x ==,x 取遍X 所有可能取值,则样本的概率分布为()()()1211221,,,,,,nn n n n i i p x x x P X x X x X x p x ======∏.),n i x =∏为伯努利总体,如果它服从以}{,p P X =)12,,,n X X X 的概率分布为,n n X i =取1或0,而n i +,它恰等于样本中取值为服从参数为λ的泊松分布,)12,,,n X X 为其样本,则样本的概率分布为)21,,ee !!!!kinn n n k k k n i X i X i i i i i λλλλ--======∏,其中取非负整数,而n i ++.2.统计量常用的统计量)n X +2)X -1(ni i X X =-∑3.常用的统计分布(1)分位数● 上侧分位数:设随机变量X 的分布函数为()F x ,对给定的实数(01)αα<<,如果实数F α满足{}P X F αα>=,即()1F F αα-=或()1F F αα=-,则称F α为随机变量X 的分布的水平α上的上侧分位数. ● 有关等式:{}1P X F αα-≤= 1221P F X F ααα-⎧⎫<≤=-⎨⎬⎩⎭推论:()()122,,P X F m n X F m n ααα-⎛⎫⎧⎫⎧⎫<⋃>= ⎪⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭或()()122,,1P F m n X F m n ααα-⎧⎫<<-⎨⎬⎩⎭. ● 双侧分位数:设X 是对称分布的连续型随机变量,其分布函数为()F x ,对给定的实数(01)αα<<,如果正实数T α满足{}P X T αα>=,即()()1F T F T ααα--=-.则称T α为随机变量X 的分布的水平α的双侧分位数. 注意:由于对称性,上式可改写为:()12F T αα=-或{}()12P X T F T ααα>=-=.对于具有对称密度函数的分布函数的上侧分位数,恒有1F F αα-=-. (2)2χ分布 ● 命题:设()12,,,n X X X 是n 个相互独立的随机变量,且()~0,1,1,2,,i X N i n =,则22212n X X X X=+++的密度函数为()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭.● Γ函数:()()10e 0a x a x dx a +∞--Γ=>⎰.●2χ分布:一个随机变量X 称为服从以n 为自由度的2χ分布,如果其密度函数由()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭给出,记作()2~X n χ.● 命题:①若()()22~,~X m Y n χχ,且X 与Y 相互独立,则()2~X Y m n χ++. ②若()2~X n χ,则,2EX n DX n ==.(3)F 分布 ● 命题:设Z 由/=/X m n X Z Y n m Y=(设()()22~,~X m Y n χχ,且X 与Y 相互独立.)所定义,则Z 的密度函数为()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭.● B 函数:()()()1110,=10,0q p p q x x dx p q --B ->>⎰.●F 分布:如果一个随机变量X 的密度函数由()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭给出,则称其服从第一自由度为m ,第二自由度为n 的F 分布,记作()~,X F m n . ● 若()~,X F m n ,则()1~,XF n m -.● 当α接近1时,可利用()()11,=,F m n F n m αα-求出所需上侧分位数.(3)t 分布● 定义式:设()()2~0,1,~X N Y n χ,且X 与Y相互独立,记T =,则()2~1,/X T F n Y n=.● 命题:T 的密度函数为()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭.●t 分布:如果一个随机变量X 的密度函数由()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭给出,则称其为服从自由度为n 的t 分布,记作()~X t n .注意:当自由度n 很大时,t 分布接近于标准正态分布,因为2+11222lim 1=en x n x n --→∞⎛⎫+ ⎪⎝⎭.●当α接近1时,()()1t n t n αα-=-.4.抽样分布(1)正态总体的抽样分布● 定理:设总体()()212~,,,,,n X N X X X μσ是其容量为n 的一个样本,X 与2S 分别为此样本的样本均值与样本方差,则有①2~,X N n σμ⎛⎫⎪⎝⎭;②()2221~1n S n χσ--;③X 与2S 相互独立. ● 单正态总体的抽样分布定理:设()12,,,n X X X 为正态总体()2~,X N μσ的样本,X 与2S 分别为该样本的样本均值与样本方差,则有①()~0,1X U N =;②()2221~1n S n χσ--;③()~1X T t n =-.● 双正态总体的抽样分布定理:设()211~,X N μσ与()222~,Y N μσ是两个相互独立的正态总体.又设()112,,n X X X是总体X 的容量为1n 的样本,X 与21S 分别为该样本的样本均值与样本方差.再设()212,,n Y Y Y 是总体Y 的容量为2n 的样本,Y 与22S 分别为此样本的样本均值与样本方差.记2S 是21S 与22S 的加权平均:222121212121122n n S S S n n n n --=++-+-,则有 ①()()~0,1X Y U N μμ---=;②()222112212~1,1S F F n n S σσ⎛⎫=-- ⎪⎝⎭;③当22212==σσσ时,()12~2X Y T t n n μμ---=+-.(2)一般总体抽样分布的极限分布 ● 定理:设()12,,,n X X X 为总体X 的样本,并设总体X 的数学期望与方差均存在,分别记为2,EX DXμσ==.再记n n X X U T ==X 与S 分别表示上述样本的样本均值与样本方差,则有①()()0n dU F x x −−→Φ; ②()()0n dT F x x =−−→Φ.以上()n U F x ,n T F 与()0x Φ分别表示n U ,n T 及标准正态分布的分布函数.五、参数估计与假设检验1.点估计概述评价估计量的标准 ),n X 为参数的有偏估计量.若),n X 为未知参数}-<=θε),n X 为取自总体①样本均值X 是μ的无偏估计量;②样本方差2S 是σ③未修正的样本方差,即样本二阶中心矩),n X 是取自总体,n .则1n 的相合估计量,,n .(~,X N μ),n X 为其样本,则样本方差2S 是2σ的相合估计2.参数的最大似然估计与矩估计(1)最大似然估计 ● ),n x ,存在),n x ,使()*1,,n x x θ为θ的最大似然估计值,称相应的统),n X 为的最大似然估计量.它们统称为θ的最大似然估计,可MLE . 如果未知参数为12,,,r θθθ,那么似然函数是多元函数(,,)r L θθ.若对任意),n x 存在),,,1,2,=n x i r ,使1*1(,,),,)max (,,)∈Θ=r r r L θθθθθ,则称*i θ为i θ的,1,2,,=MLE i r .当似然函数关于未知参数可微时,一般可通过求导数得到MLE ,其主要步骤①写出似然函数1(,,)r L θθ;0∂=∂L θ或ln 0,1,,∂==∂L i r θ,从中求得驻点注意,函数L 与ln L有相同的最值点,而使用后者往往更方便;③判断驻点为最大值点; MLE .● 最大似然估计的不变性:如果ˆθ为θ的最大似然估计,()=u g θ是θ的函数且存在单值反函数()=h u θ.那么()ˆg θ是()g θ的最大似然估计. (2)矩估计 ● 1,2,,ˆ2,3,=k B β.这种求点估计的方用矩法确定的估计量称为矩估计量,相应的估计值为矩估计值,矩估计量. 表示为总体矩的函数,即)2,;,l s αββ; k B 分别替换g 中的k α,)()1212ˆˆˆˆ,,;,,;,,=l s l sg A A B B ααββ即为θ的3.置信区间(1)寻求置信区间的方法● ①选取θ的一个较优的点估计ˆθ; ②围绕ˆθ寻找一个依赖于样本与θ的函数()1,,;=n u u X X θ.u 的分布为已知分布.像u 这样的函数,称为枢轴量;③对给定的置信水平1-α,确定1λ与2λ,使{}121<<=-P u λλα,一般可选取满足{}{}122≤=≥=P u P u αλλ的1λ与2λ;④利用不等式变形导出套住θ的置信区间(),θθ. (2)正态总体参数的置信区间4.假设检验概述假设检验的一般步骤 ①建立零假设0H ;②构造一个含待检验参数θ(不含其他未知参数)且分布已知的枢轴量()12,,,;n u X X X θ,并确定其分布;③对给定的显著性水平α,由上述枢轴量及其分布,结合零假设0H ,确定拒绝域C ,使得(){}120,,,∈≤n P X X X C H α;④根据样本值()12,,,n x x x 是否落在C 中做出是否拒绝0H 的统计决断:如果()12,,,∈n x x x C ,则拒绝0H ,如果()12,,,∉n x x x C ,则不能拒绝0H .5.单正态总体的参数假设检验编辑:李雪伟 2013年5月25日。

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。

2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。

最新概率论与数理统计公式总结【已整理-可直接打印】

最新概率论与数理统计公式总结【已整理-可直接打印】

精品文档精品文档 第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp (θ)分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布 分布规律的描述方法联合密度函数 联合分布函数联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤badxx f b X a P )()()0(1)(/≥=-x e x f x θθ∑≤==≤=xk k X P x X P x F )()()(⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=xdtt f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=⎰+∞∞-=dyy x f x f X ),()(⎰+∞∞-=dxy x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dxx f x X E )()(∑=kkk p x g X g E )())(()(1)(b x a ab x f ≤≤-=)()('x f x F =精品文档随机变量g(X)的数学期望常用公式方差 定义式常用计算式常用公式当X 、Y 相互独立时:方差的性质D(a)=0,其中a 为常数D(a+bX)=b2D(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数协方差的性质独立与相关 独立必定不相关 相关必定不独立 不相关不一定独立 第四章正态分布标准正态分布的概率计算 标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式第五章 卡方分布∑∑=ijiji p x X E )(dxdyy x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=ijijj i p y x XY E )(dxdyy x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY=ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔)()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P )(~)1,0(~212n X N X ni i χ∑=,则若精品文档t 分布F 分布正态总体条件下 样本均值的分布:样本方差的分布:两个正态总体的方差之比第六章点估计:参数的估计值为一个常数 矩估计最大似然估计 似然函数均值的区间估计——大样本结果正态总体方差的区间估计两个正态总体均值差的置信区间 大样本或正态小样本且方差已知两个正态总体方差比的置信区间第七章假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1 ② 根据假设选择检验统计量,并计算检验统计值 ③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。

概率论与数理统计公式整理超全免费版

概率论与数理统计公式整理超全免费版
则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:
X
| x1, x2,, xk,
P( X xk) p1, p2,, pk, 。
显然分布律应满足下列条件:

pk 1
(1) pk 0 , k 1,2,, (2) k 1

(2)连续 型随机Байду номын сангаас 量的分布 密度
①每进行一次试验,必须发生且只能发生这一组中的一个事件;
②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母 A,B,C,…表
示事件,它们是 的子集。 为必然事件,?为不可能事件。

k)

Pn(k )

C
k n
p k q nk

q 1 p,0 p 1, k 0,1,2,, n ,


则称随机变量 X 服从参数为 n , p 的二项分布。记为 X ~ B(n, p) 。
泊松分布
当 n 1时, P( X
k)
p qk 1k
, k 0.1,这就是(0-1)分布,所以
P(a X b) F (b) F (a) 可以得到 X 落入区间 (a,b] 的概率。分布函数
F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F (x1) F (x2) ;

概率论与数理统计公式整理(超全精品版)

概率论与数理统计公式整理(超全精品版)
。其仲L为凢何度量(长度、面积、体积)。
(10)加法公式
Р(А+Ь)=Р(А)+Р(Ь)→Р(АЬ)
当Р(АЬ)=0时,Р(А+Ь)=Р(А)+Р(Ь)
(11)减法公式
Р(А→Ь)=Р(А)→Р(АЬ)
当Ь А时,Р(А→Ь)=Р(А)→Р(Ь)
当А=Ω时,Р( )=1→Р(Ь)
(12)条件概率
定义设А、Ь是两個事件,且Р(А)>0,则称 为事件А发生条件吓,事件Ь发生地条件概率,记为 。
1° 0≤Р(А)≤1,
2° Р(Ω) =1
3° 对于两两互不相容地事件 , ,…有
常称为可列(完全)可加性。
则称Р(А)为事件 地概率。
(8)古典概型
1° ,
2° 。
设任—事件 ,牠是由 组成地,则有
Р(А)= =
(9)凢何概型
若随机试验地结果为无限不可数并且每個结果出现地可能性均匀,同时样本空间仲地每—個基本事件可以使用—個有界区域来描述,则称此随机试验为凢何概型。对任—事件А,
如果同时有 , ,则称事件А与事件Ь等价,或称А等于Ь:А=Ь。
А、Ь仲至少有—個发生地事件:А Ь,或者А+Ь。
属于А而不属于Ь地部分所构成地事件,称为А与Ь地差,记为А→Ь,也可表示为А→АЬ或者 ,牠表示А发生而Ь不发生地事件。
А、Ь同时发生:А Ь,或者АЬ。А Ь=Ø,则表示А与Ь不可能同时发生,称事件А与事件Ь互不相容或者互斥。基本事件是互不相容地。
并且同时满足Р(АЬС)=Р(А)Р(Ь)Р(С)
那么А、Ь、С相互独立。
对于Ñ個事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,

概率论与数理统计公式整理

概率论与数理统计公式整理

概率论与数理统计公式整理一、概率论公式:1.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法公式:P(A∩B)=P(A)×P(B,A)其中,P(A)和P(B)表示事件A和B的概率,P(B,A)表示已知事件A发生的条件下事件B发生的概率。

3.全概率公式:P(A)=∑[P(A,B(i))×P(B(i))]其中,B(i)表示互斥事件组,且它们的概率之和为14.贝叶斯公式:P(B(j),A)=P(A,B(j))×P(B(j))/∑[P(A,B(i))×P(B(i))]其中,P(B(j),A)表示已知事件A发生的条件下事件B(j)发生的概率。

5.期望值公式:E(X)=∑[x×P(X=x)]其中,X为一个随机变量,x为X的取值,P(X=x)为X等于x的概率。

6.方差公式:Var(X) = E[(X-E(X))^2]其中,Var(X)表示随机变量X的方差,E(X)表示X的期望值。

二、数理统计公式:1.样本均值公式:样本均值 = (x1 + x2 + ... + xn)/n其中,x1、x2、..、xn为样本中的观测值,n为样本容量。

2.样本方差公式(无偏估计):样本方差 = [(x1-样本均值)^2 + (x2-样本均值)^2 + ... + (xn-样本均值)^2]/(n-1)3.样本标准差公式(无偏估计):样本标准差=样本方差的平方根4.正态分布的标准化公式:Z=(X-μ)/σ其中,X为一个正态随机变量,μ为其均值,σ为其标准差,Z为标准正态分布的变量。

5.正态分布的累积分布函数:P(X≤x)=Φ((x-μ)/σ)其中,Φ表示标准正态分布的累积分布函数。

6.样本之间的协方差公式:Cov(X,Y) = ∑[(x(i)-X均值) × (y(i)-Y均值)]/(n-1)其中,X、Y为两个随机变量,x(i)、y(i)为X、Y的观测值,X均值、Y均值分别为X、Y的样本均值,n为样本容量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X ~ N(, 2)
若X ~ N(0,1), Y ~ 2(n),则 X ~ t(n)
Cov(aX ,bY) abCov(X ,Y)
Y /n
F 分布 正态总若U ~来自 2 (n1),V ~ 2 (n2 ),
则U / n1 V / n2
~
F (n1, n2 )
体条件下
样本均值的分布:
X ~ N(,
n
L p(xi; ) i 1
均值的区间估计——大样本结果
x z / 2
n
x — 样本均值 — 标准差(通常未知,可用样本标准差s代替) n — 样本容量(大样本要求n 50) z /2 — 正态分布的分位点
两个正态总体均值差的置信区间 大样本或正态小样本且方差已知
x1 x2
Bayes 公式:从结果找原因
P(Bk | A)
P(Bi )P( A | Bi )
n
P(Bk )P( A | Bk )
k 1
第二章
二项分布(Bernoulli 分布)——X~B(n,p)
对连续型随机变量
x
F(x) P(X x) f (t)dt
分布函数与密度函数的重要关系:
x
F(x) P(X x) f (t)dt
fY (y) f (x, y)dx
P(X k) Cnk pk (1 p)nk, (k 0,1,...,n)
泊松分布——X~P(λ)
P( X k) k e, (k 0,1,...) k!
概率密度函数
f (x)dx 1
怎样计算概率 P(a X b)
b
P(a X b) a f (x)dx
当X与Y独立时, E(XY ) E(X )E(Y )
方差 定义式
D(X )
x
E(
X
)2
f
(x)dx
常用计算式 D(X ) E(X 2 ) E(X )2
f (x)
1
e
(
x )2 2 2
2
E(X ) , D(X ) 2 标准正态分布的概率计算 (a) 1 (a)
标准正态分布的概率计算公式
Cov(X ,Y ) E(XY ) E(X )E(Y)
XY
Cov(X ,Y ) D(X )D(Y )
协方差的性质
一般正态分布的概率计算公式
P(X a) P(X a) (a )
P(X a) P(X a) 1 (a )
P(a X b) (b ) (a )
第五章 卡方分布
P(Z a) P(Z a) (a)
P(Z a) P(Z a) 1 (a)
P(a Z b) (b) (a)
P(a Z a) (a) (a) 2(a) 1
一般正态分布的概率计算
常用公式
X ~ N(, 2 ) Z X ~ N(0,1)
D(X Y) D(X ) D(Y ) 2E{(X E(X ))(Y E(Y ))}
分布函数 对离散型随机变量
(x 0)
F(x) P(X x) P(X k) kx
E(X ) xi pij
ij
E(X ) xf (x, y)dxdy
正态分布
E(XY )
xi y j pij
ij
E(X Y ) E(X ) E(Y )
E(XY ) xyf (x, y)dxdy
2 )
n
分布:
X ~ N (0,1)
/ n
样本方差的
(n 1)S 2 2
~
2 (n 1)
X ~ t(n 1) s/ n
两个正态总体的方差之比
S12 12
/
S
2 2
/
2 2
~
F (n1 1,
n2 1)
第六章
点估计:参数的估计值为一个常数
矩估计
最大似然估计
似然函数
n
L f (xi; ) i 1
均匀分布 X~U(a,b)
离散型随机变量的独立性
P{X i,Y j} P{X i}P{Y j}
连续型随机变量的独立性
f (x, y) fX (x) fY ( y)
第三章
数学期望 离散型随机变量,数学期望定义
E(X ) xk Pk k
连续型随机变量,数学期望定义 E( X ) x f (x)dx
第一章
P(A+B)=P(A)+P(B)- P(AB) 特别地,当 A、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式
P(A | B) P(AB) P(B)
概率的乘法公式
P(AB) P(B)P(A | B) P(A)P(B | A)
全概率公式:从原因计算结果
n
P( A) P(Bk )P( A | Bk ) k 1
F '(x) f (x)
二元随机变量及其边缘分布 分布规律的描述方法
联合密度函数 f (x, y) 联合分布函数 F(x, y)
f (x, y) 0
f (x, y)dxdy 1 0 F(x, y) 1
F(x, y) P{X x,Y y}
联合密度与边缘密度
fX (x) f (x, y)dy
n
若X ~ N (0,1),则 Xi2 ~ 2 (n) i 1
若Y ~ N(, 2 ),
则1 2
n
Yi
i 1
2
~
2 (n)
t 分布
Cov(X , X ) E(X 2) E(X )2 D(X )
Cov(X Y, Z) Cov(X , Z) Cov(Y, Z)
独立与相关 独立必定不相关 相关必定不独立 不相关不一定独立 第四章
z / 2
2 1
n1
2 2
n2
两个正态总体方差比的置信区间
F
/2
S12 / S22 (n1 1, n2
1)
,
F
S12
/
S
2 2
/ 2 (n1 1, n2
1)
第七章
假设检验的步骤
① 根据具体问题提出原假设 H0 和备择假设 H1
当 X、Y 相互独立时:
D(X Y ) D(X ) D(Y )
方差的性质 D(a)=0,其中 a 为常数 D(a+bX)=b2D(X),其中 a、b 为常数 当 X、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数
EX E(X )Y E(Y) E(XY ) E(X )E(Y)
E(a)=a,其中 a 为常数 E(a+bX)=a+bE(X),其中 a、b 为常数 E(X+Y)=E(X)+E(Y),X、Y 为任意随机变量
f (x) 1 (a x b) ba
指数分布 X~Exp (θ)
随机变量 g(X)的数学期望 常用公式
E(g(X )) g(xk ) pk
k
f (x) 1 ex/
相关文档
最新文档