钢筋混凝土受弯构件正截面试验

合集下载

钢筋混凝土结构试验

钢筋混凝土结构试验

钢筋混凝土结构试验钢筋混凝土受弯构件正截面破坏试验一、试验目的1.了解受弯构件正截面的承载力大小、挠度变化及裂缝出现和发展过程;2.观察了解受弯构件受力和变形过程的三个工作阶段及适筋梁的破坏特征;3.测定受弯构件正截面的开裂荷载和极限承载力,验证正截面承载力计算方法。

二、试件、试验仪器设备1.试件特征(1) 根据试验要求,试验梁的混凝土强度等级为C20,纵向受力钢筋强度等级I级。

(2) 试件尺寸及配筋如图1-1所示,纵向受力钢筋的混凝土净保护层厚度为15mm。

(3) 梁的中间500mm区段内无腹筋,其余区域配有直径6mm,间距60mm的箍筋,以保证不发生斜截面破坏。

(4) 梁的受压区配有两根架立筋,通过箍筋与受力筋绑扎在一起,形成骨架,保证受力钢筋处在正确的位置。

2.试验仪器设备(1) 静力试验台座、反力架、支座及支墩(2) 20T液压千斤顶及手动油泵(3) 20T荷重传感器(4) YD-21型动态电阻应变仪(5) X-Y函数记录仪(6) DH3818型静态电阻应变仪(7) 读数显微镜及放大镜(8) 位移计(百分表)及磁性表座(9) 电阻应变片、导线等三、试验装置及测点布置1.试验装置(1) 在加荷架中,用千斤顶通过传力梁进行两点对称加载,使简支梁跨中形成长500mm的纯弯曲段(忽略梁的自重)。

(2) 构件两端支座构造应保证试件端部转动及其中一端水平位移不受约束,基本符合铰支承的要求。

2.测点布置(1) 在纵向受力钢筋中部予埋电阻应变片,用导线引出,并做好防水处理,设εs1、εs2为跨中受拉主筋应变测点。

(2) 纯弯区段内选一控制截面,在该截面处梁的受压区边缘布一应变测点εc1,侧面沿截面高度布置四个应变测点εc2~εc5,用来测量控制截面的应变分布。

(3) 梁的跨中及两个对称加载点各布置一位移计f3~f5,量测量梁的整体变形,考虑在加载的过程中,两个支座受力下沉,支座上部分别布置位移测点f1和f2,以消除由于支座下沉对挠度测试结果的影响。

钢筋混凝土梁受弯构件 正截面承载力实验

钢筋混凝土梁受弯构件 正截面承载力实验

有技术、技术秘密、软件、算法及各种新的产品、工程、技术、系统的应用示范等。

第三条本办法所称科技成果转化,是指为提高生产力水平而对科学研究与技术开发所产生的具有实用价值的科技成果所进行的后续试验、开发、应用、推广直至形成新技术、新工艺、新材料、新产品,发展新产业等活动。

第四条科技成果转化应遵守国家法律法规,尊重市场规律,遵循自愿、互利、公平、诚实信用的厚则,依照合同的约定,享受利益,承担风险,不得侵害学校合法权益。

第二章组织与实施第五条学校对科技成果转化实行统一管理。

合同的签订必须是学校或具有独立法人资格的校内研究机构,否则科技成果转化合同的签订均是侵权行为,由行为人承担相应的法律责任。

第六条各学院应高度重视和积极推动科技成果转化工作,并在领导班子中明确分管本单位科技成果转化工作的负责人。

第七条学校科学技术处是学校科技成果转化的归口管理部门,是科技成果的申报登记和认定的管理机构,负责确认成果的权属并报批科技成果转化合同。

第八条学校科技成果可以采用下列方式进行转化:(一)自行投资实施转化;(二)向他人转让;(三)有偿许可他人使用;(四)以该科技成果作为合作条件,与他人共同实施转化;(五)以该科技成果作价投资,折算股份或者出资比例;(六)其它协商确定的方式。

第九条不论以何种方式实施科技成果转化,都应依法签订合同,明确各方享有的权益和各自承担的责任,并在合同中约定在科技成果转化过程中产生的后续改进技术成果的权属。

第十条对重大科研项目所形成的成果,或拟转让的、作价入股企业的、金额达到100万元的科技成果,应先到科学技术处申请、登记备案,并报请学校校长办公会审核、批准、公示后才能进行。

第十一条科技成果转让的定价主要采取协议定价方式,实行协议定价的,学校对科技成果名称、简介、拟交易价格等内容进行公示,公示期15天。

第十二条对于公示期间实名提出的异议,学校科学技术处组织不少于3人的行业专家进行论证,并将论证结果反馈至科技成果完成人和异议提出者,如任何一方仍有异议,则应提交第三方评估机构进行评估,并以评估结论为准。

第3章钢筋混凝土受弯构件正截面承载力

第3章钢筋混凝土受弯构件正截面承载力

b b
钢筋级别
不超筋 超筋
b
≤C50 C80
HPB300
HRB335 HRB400 RRB400
0.576
0.550
0.518
0.493
0.518
0.429
2.适筋与少筋的界限——截面最小配筋率
min
min 不少筋 min 少筋
附表9
min
ft max(0.45 ,0.2%) fy
第3章 钢筋混凝土受弯构件正截面承载力
3.1 3.2 3.3 3.4 3.5 3.6
概述 受弯构件正截面受力性能试验 受弯构件正截面承载力计算的基本原则 单筋矩形截面受弯构件正截面承载力计算 双筋矩形截面受弯构件正截面承载力计算 T形截面受弯构件正截面承载力计算
3.1 概述
截面上有弯矩和剪力共同作用,轴力可以忽略不计的构件称为 受弯构件。梁和板是典型的受弯构件 。 一是由M引起,破坏截面与构件的纵轴线垂直,为沿正截面破 坏; 二是由M和V共同引起,破坏截面是倾斜的,为沿斜截面破坏。
特征:受压区混凝土被压碎 破坏时,钢筋尚未屈服。 属于:“脆性破坏”
③ 少筋破坏
配筋率小于最小配筋率 的梁为少筋梁。 ρ<ρmin
特征:一裂就坏 属于:“脆性破坏”
3.3 受弯构件正截面承载力计算的基本原则
3.3.1 正截面受弯承载力计算的几个基本假定
①平截面假定 构件正截面弯曲变形后仍保持一平面,即截面 上的应变沿梁高度为线性分布,基本上符合平截面假定。 ②不考虑截面受拉区混凝土的抗拉强度 认为拉力完全由钢筋 承担。因为混凝土开裂后所承受的拉力很小,且作用点又靠近中 和轴,对截面所产生的抗弯力矩很小,所以忽略其抗拉强度。

3-钢筋混凝土受弯构件正截面承载力计算

3-钢筋混凝土受弯构件正截面承载力计算
桥梁工程系-杨 剑
3.3.1 线弹性梁截面正应力计算原理
一.基本假定
1. 平截面假定成立-变形前的平截面在变形后保持平截面 不变,即截面上的正应变沿截面高度呈线形分布-给出 了截面变形的几何条件或变形协调条件。
2. 材料的应力-应变关系符合Hook定律,即应力应变之间 呈线性关系-给出了材料的物理关系。
有三种基本形式
延性破坏:配筋合适的构件,具有较高的承载力,同时破 坏时具有一定的延性,钢筋的抗拉强度和混凝土的抗压强度 都得到发挥,如适筋梁。 受拉脆性破坏:承载力很小,取决于混凝土的抗拉强度,混 凝土的抗压强度未能发挥,破坏特征与素混凝土构件类似。 虽然由于配筋使构件在破坏阶段表现出很长的破坏过程,但 这种破坏是在混凝土一开裂就产生,没有预兆,如少筋梁。 受压脆性破坏:具有较高的承载力,取决于混凝土抗压强度, 其延性能力取决于混凝土的受压塑性,因而较差,钢筋的受 拉强度没有发挥,如超筋梁 。
正常使用阶段的裂缝宽度和挠度变形验算;
绘制施工图。
桥梁工程系-杨 剑
3.2 试验研究
桥梁工程系-杨 剑
3.2.1 配筋率对正截面破坏形态的影响
一.两个名词
As’
as'
as'
h0 h
AS b
as
桥梁工程系-杨 剑
1.截面的有效高度h0及有效面积 bh0
截面的有效高度h0-截面内纵向受拉钢筋重心至 截面受压边缘的距离;
M/Mu
1.0 Mu 0.8 My
0.6
0.4
Mcr
0
fcr
fy
fu f
桥梁工程系-杨 剑
(a) (b) (c)
(d)
(e) (f) ε cu

钢筋混凝土受弯构件正截面实验报告

钢筋混凝土受弯构件正截面实验报告

钢筋混凝土受弯构件正截面实验报告
一、实验目的
1.掌握钢筋混凝土受弯构件正截面的试验方法及其原理。

2.了解和分析钢筋混凝土受弯构件的抗弯性能。

二、实验原理
钢筋混凝土受弯构件正截面试验是通过对钢筋混凝土梁进行施加弯矩和观察其变形情况,来探讨受弯梁的抗弯性能。

钢筋混凝土梁的抗弯性能取决于混凝土的强度和钢筋的数量和位置,弯曲时内力的分布,以及钢筋与混凝土之间的黏结情况等因素。

梁的抗弯性能可以通过计算梁的截面惯性矩和抗弯强度进行预测,也可以通过对梁进行试验来直接测量。

三、实验设备和材料
设备:
1.标准试验机。

2.测量仪器和设备。

材料:
1.钢筋混凝土梁。

2.配重器。

四、实验步骤
1.将钢筋混凝土梁垂直放置在试验机上,并安装好测量仪器和设备。

2.通过试验机施加一个单调增加的弯矩,每次增加的力矩值不超过梁的承载能力的70%。

并记录每个阶段的弯矩和梁的变形。

3.进行试验后,获取试验数据,包括弯矩和位移等记录数据,然后计算梁的截面惯性矩和抗弯强度,并将结果进行分析。

五、注意事项
1.试验过程中要注意安全,避免梁破裂或其他安全事故。

2.试验结果的精度取决于试验的准确性,因此操作人员必须非常小心和专业。

3.在试验后,应对设备进行彻底清洁和维护。

钢筋混凝土梁正截面试验

钢筋混凝土梁正截面试验

钢筋混凝土梁正截面实验一、实验目的1.通过对钢筋混凝土梁的承载力、应变、挠度及裂缝等参数的测定,熟悉钢筋混凝土受弯构件正截面破坏的一般过程及其特征,加深对书本理论知识的理解。

2.进一步学习常规的结构实验仪器的选择和使用操作方法,培养实验基本技能。

3.掌握实验数据的整理、分析和表达方法,提高学生分析与解决问题的能力。

二、实验设备和仪器1.试件—钢筋混凝土简支梁 1 根、尺寸及配筋如图所示。

混凝土设计强度等级: C25钢筋:纵筋 2φ 8,Ⅰ级(实际测得钢筋屈服强度为390Mpa,极限抗拉强度为450 Mpa)箍筋:φ 6@ 100,Ⅰ级试件尺寸:b =100mm; h =150mm;L=1100mm;制作和养护特点:常温制作与养护2.实验所需仪器:手动油压千斤顶 1 个,测力仪及压力传感器各 1 个;静态电阻应变仪一台;百分表及磁性表座各 3 个;刻度放大镜、钢卷尺;支座、支墩、分配梁。

三、实验方案为研究钢筋混凝土梁的受力性能,主要测定其承载力、各级荷载下的挠度和裂缝开展情况,另外就是测量控制区段的应变大小和变化,找出刚度随荷载变化的规律。

1.加载装置梁的实验荷载一般较大,多点加载常采用同步液压加载方法。

构件实验荷载的布置应符合设计的规定,当不能相符时,应采用等效荷载的原则进行代换,使构件实验的内力图与设计的内力图相近似,并使两者的最大受力部位的内力值相等。

作用在试件上的实验设备重量及试件自重等应作为第一级荷载的一部分。

确定试件的实际开裂荷载和破坏荷载时,应包括试件自重和作用在试件上的垫板,分配梁等加荷设备重量(本实验梁的跨度小,这些影响可忽略不计)。

2.测试内容及测点布置测试内容钢筋及混凝土应变、挠度和裂缝宽度等。

本次实验测试具体项目:正截面应变;纵向受力钢筋应变;梁挠度;裂缝发展情况;开裂荷载;屈服荷载;破坏荷载。

纯弯区段混凝土表面布置 5 个电阻应变片(自行设计测点位置),实验前完成应变片粘贴工作。

2011混凝土实验指导书

2011混凝土实验指导书

混凝土结构设计原理试验指导书及报告土木教研室编制建筑工程系实验一钢筋混凝土受弯构件正截面实验指导一、实验目的通过对适筋梁、超筋梁和少筋梁的实验,加强对钢筋混凝土梁正截面受弯破坏过程的认识,比较适筋梁与超筋梁的破坏形态及破坏荷载和挠度情况,了解正截面科学研究的基本方法,验证平截面假定和受弯构件正截面承载力计算公式。

二、实验内容和要求1、观测适筋梁、超筋梁和少筋梁的裂缝出现和开展过程、挠度变化以及破坏特征,并记下开裂荷载实测值(P0cr)和破坏荷载实测值(P0u) (M0cr 和M0u)。

2、量测超筋梁在各级荷载下的跨中挠度值,绘制梁跨中的荷载(内力)-挠度曲线(M-f曲线)。

3、量测适筋梁在纯弯区段沿截面高度的平均应变,绘出沿梁高度的应变分布图形,验证平截面假定。

4、通过在主筋上测定的应变,验证钢筋屈服与梁破坏之间的关系。

5、观察和描述破坏情况和特征,比较适筋梁与超筋梁的破坏形态及破坏荷载。

6、根据规范方法计算理论值,并与实验值比较。

三、试件设计与制作1、为确保梁正截面强度破坏,在剪弯区段所配箍筋已加强,纵筋端部锚固足够可靠。

图1-1和表1-1、1-2给出了L-1(适筋梁)、L-2(超筋梁)、L-3(少筋梁)的配筋详图及截面参数。

设计时,混凝土采用C20,纵向受力筋为HRB335级,不带弯钩;HPB235级钢筋带弯钩。

2、试件制作试件采用干硬性混凝土、振捣器振捣、蒸汽养护或自然养护28天、制作试件同时预留混凝土立方体试块(150×150×150mm3)和纵向受力钢筋。

试件承载力以测得混凝土和钢筋的实际强度计算,所用钢筋不得冷拉。

表1-1 实测混凝土和钢筋的强度6 12 20表1-2 弯曲梁数据表12 6@100AAAAAA20 6@100 26@1002-21-16-65-5L-2超筋梁L-3少筋梁图1 试件尺寸和配筋图555图1-1 试件配筋图注:混凝土采用C20,保护层厚度取为20mm,制作时预留混凝土立方体试块(150×150×150mm3)。

受弯构件实验报告

受弯构件实验报告

吉林建筑工程学院受弯构件实验指导书及实验报告班级姓名学号土木工程系结构实验室二OO四年实验一短期荷载下单筋矩形截面梁正截面强度试验一、实验目的通过适筋梁的试验,加深对受弯构件正截面三个工作阶段的认识,并验证正截面强度计算公式。

二、试验内容和要求1、试件在纯弯曲段的裂缝出现和展开过程,并记下抗裂荷载P s cr(M s cr)量测试件在各级荷载下的跨中挠度值。

绘制梁跨中挠度的M-f P s cr(M s cr)图。

2、测试件在纯弯曲段沿截面高度的平均应变,绘制沿梁高度的应变分布图形。

3、观察和描述试件破坏情况和特征,记下破坏荷载P s p(M s u)。

验证理论公式,并对试验值和理论值进行比较。

三、试件和试验方法1、试件试验梁混凝土强度等级为C20,试件尺寸和配筋如图1-1所示。

2、试验设备及仪器①千斤顶及加荷架②百分表③手持式应变仪 ④电阻应变仪 ⑤电阻应变片 ⑥读数显微镜3、 试验方法①用千斤顶和反力架进行二点加载。

②用百分表测读挠度。

③用手持应变仪沿截面高度的平均应变。

④电阻应变计计录受拉钢筋应变值。

仪表布置如图1-2所示图24、试验步骤①在未加荷前用百分表及手持应变仪读初读数,检查有无初始干缩裂缝。

②加第一级荷载后读手持式应变仪,以量测梁未开裂时,沿截面高度的平均应变值。

③电阻应变计记录受拉区应变,判断有无开裂。

④估计试验梁的抗裂荷载,在梁开裂前分三级加荷,如仍未开裂,再少加些,直到裂缝出现,记下荷载值P scr (M scr ),每次加荷后,持荷五分钟后读百分表,以量测试件支座和跨中位移值。

⑤试验梁出裂后至荷载之间分二次加荷,每次加荷五分钟后读百分表,至使用荷载时读应变仪,用读数放大镜读取最大裂缝宽度。

⑥使用荷载理论值M u之间分三次加荷。

百分表每次都读,至第二次加荷后读应变仪,读后拆除百分表。

如第三次加荷后仍不破坏,再酌量加荷直至破坏。

破坏时,仔细观察梁的破坏特征,并记下破坏荷载P s p(M s u)。

3.钢筋混凝土受弯构件正截面承载能力

3.钢筋混凝土受弯构件正截面承载能力
一、正截面承载力基本公式建立的方法
在前述试验研究的基础上
明确破坏机理
基本公式 正截面承载力
适用条件 基本公式
正截面承载力 计算图式
3.3 受弯构件正截面承载力计算公式
二、基本假定
1、平截面假定。 构件正截面弯曲变形后 仍保持一平面,即在3个阶段中,截面上 的应变沿截面高度为线性分布,这一假 定称为平截面假定。
补充混凝土受压能力的不足。
2.由于荷载有多种组合情况,在某一组合情况下截面 承受正弯矩,另一种组合情况下承受负弯矩,这时也
受拉钢筋AS
出现双筋截面。
双筋截面
3.由于受压钢筋可以提高截面的延性,因此,在抗震
结构中要求框架梁必须必须配置一定比例的受压钢筋。
3.4 受弯构件按正截面受弯承载力的设计计算
1、基本计算公式和公式的适用条件
3.1 梁板的一般构造
三、材料选择与一般构造
混凝土强度等级 现 浇 钢 筋 混 凝 土 梁 、 板 常 用 的 混 凝 土 强 度 等 级 是 C25 、
C30,一般不超过C40。 钢筋强度等级及常用直径 (1)梁的钢筋强度等级和常用直径
梁中纵向受力钢筋宜采用HRB400级和HRB500级,常用直 径为12mm、14mm、16mm、18mm、20mm、22mm和25mm。 纵向受力钢筋的直径,当梁高大于等于300mm时,不应小于 10mm;当梁高小于300mm时,不应小于8mm。
梁、板、柱的混凝土保护层厚度与环境类别和混凝土 强度等级有关,设计使用年限为50年的混凝土结构,其混 凝土保护层最小厚度,见附表4-3。
此外,纵向受力钢筋的混凝土保护层最小厚度尚不应 小于钢筋的公称直径。
3.2 受弯构件正截面性能试验研究

钢筋混凝土简支梁的正截面受弯承载力试验报告

钢筋混凝土简支梁的正截面受弯承载力试验报告
挠度测点布置:在跨中一点,支座各一点及分配梁加载点处各一点安装百分表。 按要求贴好应变片,做好防潮防水处理,引出导线。 根据实测截面尺寸和材料力学性能算出梁的开裂荷载和破坏荷载,以及标准荷载下的应变和挠度值
5.随着试验的进行注意仪表及加荷装置的 粘贴好手持式应变仪的脚标,装好百分表
在标准荷载作用下持续时间不宜小于30min
在达到标准荷载以前,每级加载值不宜 大于标准荷载值的20%;超过标准荷载 值后,每级加载值不宜大于标准荷载值 的10%。
加载到达开裂荷载计算值的90%以后, 每级加载值不宜大于标准荷载值的5%。
加载到达破坏荷载计算值的90%以后, 每级加载值不宜大于标准荷载值的5%。
每级荷载的持续时间不应小于10min 在标准荷载作用下持续时间不宜小于
混凝土表面应变测点:纯弯段混凝土表面电阻 应变片测点为每侧四点(压区顶面一点,受拉 主筋处一点,中间两点),并在应变片测点处 对应地布置手持应变仪测点。
挠度测点布置:在跨中一点,支座各一点及分 配梁加载点各一点安装百分表。
进行1~3级预载,测读数据,观察试件、 装置和仪表工作是否正常并及时排除故 障。预加载值不宜超过试件开裂荷载计 算值的70%
将标准荷载下应变及挠度的计算值与实 测值进行比较
对梁的破坏形态和特征做出评定
六、虚拟演示
1、变形图(正视图) 2、变形图(轴测图) 3、位移图(正视图) 4、位移图(轴测图) 5、SZ应力图(正视图) 6、SZ应力图(轴测图) 7、MISE应力图(正视图) 8、 MISE应力图(轴测图)
试件材料的力学性能:钢筋和混凝土的 实测强度,钢筋和混凝土的弹性模量
根据实测截面尺寸和材料力学性能算出 梁的开裂荷载和破坏荷载,以及标准荷 载下的应变和挠度值

混凝土受弯构件正截面试验

混凝土受弯构件正截面试验

混凝土受弯构件正截面试验
混凝土受弯构件正截面试验是指对混凝土受弯构件的最大弯曲承载力试验。

根据混凝土受弯构件试验步骤分为特性曲线试验和试验梁试验。

特性曲线试验就是使用该构件截面的抗弯性能作图,以测定混凝土受弯构件承荷力、抗拉强度和抗弯刚度等参数。

主要测试步骤包括:加载装置的组装、安装构件、反复调整起点和加载程序的设置、仪器的校准、加载测试过程的进行和参数的记录、加载测试后的观察。

试验梁试验是指在试验台上,不同负荷作用下,把混凝土梁架正截面负荷,边墙、搁置等混凝土受弯构件经受弯曲变形状况,试验台上支承点运动和变形状况,以及混凝土受弯构件内应力、外应变等现象进行观察,以测定该构件的最大弯曲承荷力,以及各荷载点的变形和应荷情况。

通过上述测试,可以准确地测量混凝土受弯构件的抗拉强度、变形和应力参数,从而计算出受弯构件的极限承载力,为混凝土受弯构件的使用和设计提供依据。

试验一 钢筋混凝土简支梁正截面破坏试验

试验一 钢筋混凝土简支梁正截面破坏试验

混凝土结构原理试验指导书及试验报告班级:学号:组别:姓名:山东建筑大学土木工程学院二零零六年六月目录试验一钢筋混凝土受弯构件正截面破坏试验实验二钢筋混凝土受弯构件斜截面破坏试验试验三矩形截面对称配筋偏心受压柱正截面破坏试验试验一 钢筋混凝土受弯构件正截面破坏试验一、试验目的:1.通过钢筋混凝土受弯构件正截面破坏试验,熟悉钢筋混凝土受弯钩件正截面破坏全过程。

2.进一步学习静载试验中常用的仪器设备的使用方法。

二、实验内容和要求:1.量测试件在各级荷载下的跨中挠度值,绘制梁的f M --图。

2.量测试件在纯弯区段沿截面高度的平均应变和受拉钢筋的应变,绘制沿梁高的应变分布图和M ——s σ。

3.观测试件的裂缝出现和开裂过程,记录开裂荷载tcr P (tcr M ),并与理论值比较。

4.观察和描绘梁的破坏情况和特征,记录破坏荷载tu P (tu M ),并与理论值比较。

三、试件、实验设备及仪表:1.试件试件为钢筋混凝土适筋梁,试件尺寸和配筋如图1所示。

图2 加载示意图图1 配筋图2.仪器设备(1)加载设备一套;(2)百分表及磁性表座若干; (3)压力传感器; (4)静态应变仪两台; (5)电阻应变片及导线若干; (6)刻度放大镜; (7)千斤顶一台。

四、试验方法和试验步骤:1.试验方法:(1)用千斤顶和反力架进行两点加载。

(2)用百分表量测试件的挠度,用应变仪量测钢筋和混凝土的应变。

(3)仪表及加载点布置如图2所示。

2.试验步骤:(1)安装试件,安装仪器仪表并连线调试。

(2)预载,在正式施加荷载试验前,应进行预载,将已就位好的试件,施加少量的荷载(相当于一级荷载),以检查各仪表的工作情况及试验测读人员的操作和读数能力,并消除试件的构造变形。

发现不正常情况,应立即报告指导老师进行解决。

如全部正常,即可开始正式试验。

(3)正式加载前读取百分表和应变仪的初始读数,用放大镜检查有无初始裂缝并记录。

(4)在估计的开裂荷载前分三级加载,每级荷载下认真读取应变仪读数,以确定沿截面高度的应变分布。

混凝土结构实验指导书及实验报告(学生用)

混凝土结构实验指导书及实验报告(学生用)

土木工程学院《混凝土结构设计基本原理》实验指导书及实验报告适用专业:土木工程周淼编班级:姓名:学号:河南理工大学2018 年9 月实验一钢筋混凝土梁受弯性能试验一、实验目的1.了解适筋梁的受力过程和破坏特征;2.验证钢筋混凝土受弯构件正截面强度理论和计算公式;3.掌握钢筋混凝土受弯构件的实验方法及荷载、应变、挠度、裂缝宽度等数据的测试技术和有关仪器的使用方法;4.培养学生对钢筋混凝土基本构件的初步实验分析能力。

二、基本原理当梁中纵向受力钢筋的配筋率适中时,梁正截面受弯破坏过程表现为典型的三个阶段:第一阶段——弹性阶段(I阶段):当荷载较小时,混凝土梁如同两种弹性材料组成的组合梁,梁截面的应力呈线性分布,卸载后几乎无残余变形。

当梁受拉区混凝土的最大拉应力达到混凝土的抗拉强度,且最大的混凝土拉应变超过混凝土的极限受拉应变时,在纯弯段某一薄弱截面出现首条垂直裂缝。

梁开裂标志着第一阶段的结束。

此时,梁纯弯段截面承担的弯矩M cr称为开裂弯矩。

第二阶段——带裂缝工作阶段(II阶段):梁开裂后,裂缝处混凝土退出工作,钢筋应力急增,且通过粘结力向未开裂的混凝土传递拉应力,使得梁中继续出现拉裂缝。

压区混凝土中压应力也由线性分布转化为非线性分布。

当受拉钢筋屈服时标志着第二阶段的结束。

此时梁纯弯段截面承担的弯矩M y称为屈服弯矩。

第三阶段——破坏阶段(III阶段):钢筋屈服后,在很小的荷载增量下,梁会产生很大的变形。

裂缝的高度和宽度进一步发展,中和轴不断上移,压区混凝土应力分布曲线渐趋丰满。

当受压区混凝土的最大压应变达到混凝土的极限压应变时,压区混凝土压碎,梁正截面受弯破坏。

此时,梁承担的弯矩M u 称为极限弯矩。

适筋梁的破坏始于纵筋屈服,终于混凝土压碎。

整个过程要经历相当大的变形,破坏前有明显的预兆。

这种破坏称为适筋破坏,属于延性破坏。

三、试验装置6—分配梁固定铰支座;7—集中力下的垫板;8—分配梁;9—反力横梁;10—千斤顶; 图1 钢筋混凝土梁受弯试验装置图0.25P(b )弯矩图(kN·m)P /2 P /2100 1005 005 00 5 0017 00( a )加载简图( kN , mm )( c )剪力图( kN )P /2图 2 梁受弯试验加载和内力简图图 1 为本课程进行梁受弯性能试验采用的加载装置,加载设备为千斤顶。

钢筋混凝土正截面受弯实验报告讲解

钢筋混凝土正截面受弯实验报告讲解

钢筋混凝土正截面受弯实验报告讲解
一般来说,钢筋混凝土正截面受弯实验的目的是研究钢筋混凝土受弯构件的抗弯性能,以确定相应的结构要求。

实验包括拉力设备,试件,传感器等组成。

实验步骤如下:
1)首先,按照规定的混凝土比例,制备试件混凝土,均匀混合,细化,压实,养护;
2)然后,根据试验要求,安装相应的力学测试仪器,检查,校准力学测试仪器的误差;
3)接着,测量试件的长度、离心重。

安装试件,测量试件受力后的变形和曲率;
4)然后,安装拉力设备,按照设计要求的应力和速度,施加应变和力;
5)最后,测量施加和去除力后的变形,绘制力应变曲线,分析失效模式,获得施加
力时变形以及载荷容量。

钢筋混凝土正截面受弯实验结果,首先根据实验结果绘制支持应力与受力曲线,然后
根据曲线计算出软化荷载、完全变形和最大荷载,最后计算各规格试样的弯矩强度和变形
特性等。

这些数据可以有效地确定混凝土正截面受弯的抗弯性能,并估算钢筋混凝土受弯
构件的正式设计要求。

本钢筋混凝土正截面受弯实验主要由混凝土配合比的筛分、试样的制备、测量受力前
变形及离心重、施加和去除力后的变形和曲率、施加力后的变形以及力应变曲线等组成,
以有效获得变形和载荷容量,确定混凝土受弯构件的抗弯性能,从而实现结构规范的标准
化要求。

钢筋混凝土梁受弯构件正截面承载力实验

钢筋混凝土梁受弯构件正截面承载力实验

四、课程内容
第一章 计算机基础知识
一、教学目的与要求 本单元主要介绍计算机的基础知识,包括计算机的发展历史、计算机中的信息表示
和计算机组成等内容,使学生在具体任务的实践中了解计算机的基础知识。 二、讲授内容 1.计算机的基本软硬件、主要部件的性能参数; 2.进位制及数制间的转换方法; 3.计算机中的编码方式。 三、重点、难点 1.计算机的基本软硬件、主要部件的性能参数; 2.进位制及数制间的转换方法; 四、教学建议 在机房授课,理论结合实践操作,加强印象。
三、各教学环节学时分配:
章次
内容
第一章 计算机基础知识
第二章 WINDOWS XP 操作系统
第三章 文字处理软件 WORD 2003
第四章 电子表格处理软件 EXCEL 2003
第五章 演示文稿制作软件 POWERPOINT 2003
第六章 计算机网络基础
第七章 常用工具软件
合计
课内学时分配 4 6 10 10 10 4 4 48
第一阶段——弹性工作阶段 (从开始加荷到受拉边缘,混凝土达到极限拉应变) 第二阶段——带裂缝工作阶段(从开裂的临界状态到受拉钢筋达到屈服强度) 结论: 通过本次模拟实验掌握了正截面受弯的三个受力阶段,充分体验了钢筋混凝土受弯的 整个过程;同时还掌握了挠度和裂缝的计算。通过这次实验,我熟悉掌握其构件受力和 变形的三个阶段以及破坏特征、掌握了不同荷载强度下挠度和裂缝宽度的计算并且通过 计算三种情况下梁的屈服荷载和破坏荷载跟实验所得到的数值进行比较较,让我进一步 明白,在实际施工时应注意:一定要根据构件的安全等级计算好承载力和强度,以保证 施工安全和周边环境、构造物和人民财产的安全。到最后虽然梁被破环,但是梁仍然在 带裂缝工作。 适用专业: 全院

钢筋混凝土受弯构件正截面破坏试验

钢筋混凝土受弯构件正截面破坏试验

钢筋混凝土受弯构件正截面破坏试验一、试验目的1.了解受弯构件正截面的承载力大小、挠度变化及裂缝出现和发展过程;2.观察了解受弯构件受力和变形过程的三个工作阶段及适筋梁的破坏特征;3.测定受弯构件正截面的开裂荷载和极限承载力,验证正截面承载力计算方法。

二、试件、试验仪器设备1.试件特征(1) 根据试验要求,试验梁的混凝土强度等级为C30,纵向受力钢筋强度等级I级或Ⅱ级。

(2)试件尺寸及配筋如图1所示,纵向受力钢筋的混凝土净保护层厚度为20mm。

图1 试件尺寸及配筋图(3) 梁配有Φ6.5@200的箍筋。

(4) 梁的受压区配有两根架立筋,通过箍筋与受力筋绑扎在一起,形成骨架,保证受力钢筋处在正确的位置。

2.试验仪器设备(1) 静力试验台座、反力架、支座及支墩(2) 20T手动式液压千斤顶(3) 20T荷重传感器(4) YD-21型动态电阻应变仪(5) X-Y函数记录仪(6) YJ-26型静态电阻应变仪及平衡箱(7) 读数显微镜及放大镜(8) 位移计(百分表)及磁性表座(9) 电阻应变片、导线等三、试验装置及测点布置1.试验装置见图2图2 正截面试验装置图(1) 在加荷架中,用千斤顶通过传力梁进行两点对称加载,使简支梁跨中形成长600mm 的纯弯曲段(忽略梁的自重)。

(2) 构件两端支座构造应保证试件端部转动及其中一端水平位移不受约束,基本符合铰支承的要求。

2.测点布置(1) 在纵向受力钢筋中部予埋电阻应变片,用导线引出,并做好防水处理,设εg1为跨中受拉主筋应变测点。

(2) 梁的跨中布置一位移计f3,量测量梁的整体变形,考虑在加载的过程中,两个支座受力下沉,支座上部分别布置位移测点f1和f2,以消除由于支座下沉对挠度测试结果的影响。

四.试验步骤1.加载方法(1) 采用分级加载,开裂前每级加载量取5%~10%的破坏荷载,开裂后每级加载量增为15%的破坏荷载。

(2) 试验准备就绪后,首先预加一级荷载,观察所有仪器是否工作正常。

钢筋混凝土梁试验报告

钢筋混凝土梁试验报告
《钢筋混凝土实验》课程实验报告
受弯构件试验报告
年级 班级 姓名 学号 指导老师
河海大学土木与交通学院 结构工程实验室 2010 年 12 月
目录
1 受弯构件正截面性能试验报告 2 受弯构件斜截面性能试验报告 3 受弯构件正截面性能试验指导 4 受弯构件斜截面性能试验指导
1
1 受弯构件正截面性能试验报告
钢筋直径d=
mm ;
钢筋面积 As = 截面配筋率 ρ =
mm2 ; ;
8、电阻应变仪读数与荷载传感器转换关系
mm; mm; a=
钢筋强度
f
T y

mm; N / mm 2 ;
2
1KN~
με 。
二、试验结果记录与整理
1、记录并整理试验过程上各级荷载作用下电阻应变仪读数、千分表读数和百分
表读数及裂缝宽度等,填写在表 1 中。
15
试验装置如图 3.1 所示。
图 3.1 试验装置示意图
试验设备包括试验台座、反力架、千斤顶、分配梁、荷载传感器、电阻应 变仪、千分表、百分表、放大镜、读数放大镜及电筒、直尺等。
试验梁支承于台座上,通过千斤顶和分配梁施加荷载,用荷载传感器和电 阻应变仪量测荷载,用千分表量测试验梁纯弯段的截面应变,用百分表量测试 验梁跨中挠度,用放大镜观察裂缝的出现,用读数放大镜量测裂缝宽度,用直 尺量测裂缝间距。 3.4 试验步骤
6
上绘制试验梁
(M T
/
M
T u
)
~
f
T
曲线。
图6
试验梁
(M
T
/
M
T u
)
~
f
T
曲线
5、将试验梁裂缝分布情况绘制在图 7 上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《混凝土结构设计原理》实验报告实验一钢筋混凝土受弯构件正截面试验二零一零年十二月仲恺农业工程学院城市建设学院目录1.实验目的: (2)实验室实验目的: (2)模拟实验目的: (2)2.实验设备: (2)试件特征 (2)实验室仪器设备: (2)模拟实验仪器设备: (3)3、实验简图 (3)少筋破坏-配筋截面: (3)适筋破坏-配筋截面 (4)超筋破坏-配筋截面 (4)4.1 少筋破坏: (5)(1)计算的极限弯矩、破坏弯矩与模拟实验的数值对比,分析原因。

(5)(2)绘出试验梁p-f变形曲线。

(计算挠度) (5)(3)绘制裂缝分布形态图。

(计算裂缝) (6)(4)简述裂缝的出现、分布和展开的过程与机理。

(7)4.2 适筋破坏: (8)(1)计算的开裂弯矩、极限弯矩与模拟实验的数值对比,分析原因。

(8)(2)绘出试验梁p-f变形曲线。

(计算挠度) (9)(3)绘制裂缝分布形态图。

(计算裂缝) (11)(4)简述裂缝的出现、分布和展开的过程与机理。

(12)(5)简述配筋率对受弯构件正截面承载力、挠度和裂缝宽度的影响。

(13)4.3 超筋破坏: (14)(1)计算的开裂弯矩、极限弯矩与模拟实验的数值对比,分析原因。

(14)(2)绘出试验梁p-f变形曲线。

(计算挠度) (14)(3)绘制裂缝分布形态图。

(计算裂缝) (16)(4)简述裂缝的出现、分布和展开的过程与机理。

(17)(5)简述配筋率对受弯构件正截面承载力、挠度和裂缝宽度的影响。

(18)5、实验结果讨论与实验小结。

(18)仲恺农业工程学院实验报告纸实验一 钢筋混凝土受弯构件正截面试验1.实验目的:A 、实验室实验目的:1、了解受弯构建正截面的承载力大小,挠度变化及裂纹出现和发展的过程。

2、观察了解受弯构件受力和变形的过程的三个工作阶段及适筋梁的破坏特征3、测定或计算受弯构件正截面的开裂荷载和极限承载力,验证正截面承载计算方法 B 、模拟实验目的:1、通过用动画演示钢筋 混凝土简支梁两点对称加载实验的全过程,形象生动地向学生展示了钢筋 混凝土简支受弯构件在荷载作用下的工作性能。

同时,软件实时地绘制挠度-荷载曲线、受压区高度-荷载曲线及最大裂缝宽度-荷载曲线以放映简支梁工作性能的变化规律,力图让学生清楚受弯构件的变形,受压区高度等在荷载作用下不同阶段的发展情况。

2、分别进行少钢筋、适筋梁、超筋梁的实验,实验录像与模拟实验(实用SSBCAI 《钢筋 混凝土简支梁加载试验模拟辅助教学软件》)相结合,观察相同截面、相同实验条件,不同配筋的梁构件在荷载作用下的工作性能、变化规律、破坏形态等。

3、学生还可以实用软件对即将进行的实验进行预测,认识试件在荷载作用下不同阶段的反应,从而设计出良好的实验观测方案。

4、实验结果有学生计算与模拟实验结合进行,实现参与式实验教学的效果。

2.实验设备: A 、试件特征(1)根据实验要求,试验梁的混凝土等级为C25,截面尺寸为150mm*400mm , (Fc=16.7N/mm 2,21.78/tk f N mm =,216.7/ck f N mm =,ft=1.27 N/mm 2)纵向向受力钢筋等级为HRB400级225(400/,540/, 2.010yk stk c f N mm f N mm E ===⨯) 箍筋与架立钢筋强度等级为HPB300级25(300/ 2.110)yk c f N mm E ==⨯(2)试件尺寸及配筋图如图所示,纵向受力钢筋的混凝土净保护层厚度为20mm(计算按规定取20+5=25mm)。

(3)梁的中间配置直径为6mm ,间距为80的箍筋,保证不发生斜截面破坏。

(4)梁的受压区配有两根架立钢筋,直径为10mm ,通过箍筋和受力钢筋绑扎在一起,形成骨架,保证受力钢筋处在正确的位置。

B 、真实实验仪器设备:1、静力试验台座,反力架,支座及支墩2、20T手动式液压千斤顶3、20T荷重传感器4、YD-21型动态电阻应变仪5、X-Y函数记录仪器6、YJ-26型静态电阻应变仪及平衡箱7、读书显微镜及放大镜8、位移计(百分表)及磁性表座9、电阻应变片,导线等C、模拟实验仪器设备:1、笔、计算纸2、电脑3、SSBCAI软件3、实验简图本次试验我分配的梁的跨度l为3300mm,构造要求的截面尺寸为220*110但是为了计算需要该梁的截面高度h为取400mm,截面宽度b取150mm。

外力加载处位于总长的1/3即1100处。

(受力简图)(设计截面图)经计算该梁的最小配筋面积为0.178%A,最大配筋面积为1.7%A。

1、在进行少筋破坏计算时配筋面积采用0.125% A、计算As为75平方毫米,采用一根直径为10的三级钢筋,实际As为78.5平方毫米,经检验满足构造要求。

2、在进行适筋破坏计算时配筋面积采用0.85% A、计算As为510平方毫米,采用两根直径为18的三级钢筋,实际As为509平方毫米,经检验满足构造要求。

3、在进行超筋破坏计算时配筋面积采用2.00% A、计算As为1200平方毫米,采用两根直径为28的三级钢筋,实际As为1232平方毫米,经检验满足构造要求。

少筋破坏-配筋截面:模拟实验加载数据:1、荷载0 kg—0.3kn属于弹性阶段,当荷载达到0.3kn后进入塑形阶段。

2、荷载0.3kg—6.0kn属于塑形阶段,当荷载达到6.0kn后混凝土开始开裂。

3、荷载达到9.7kn时钢筋达到屈服强度,该梁破坏。

适筋破坏-配筋截面模拟实验加载数据:1、荷载0 kg—0.4kn属于弹性阶段,当荷载达到0.4kn后进入塑形阶段。

2、荷载0.4kg—6.9kn属于塑性阶段,当荷载达到6.9kn后混凝土开始开裂。

3、荷载达到52.9kn时钢筋达到受拉屈服强度但混凝土还未定达到抗压峰值。

4、荷载达到55.2kn时混凝土达到抗压峰值该梁破坏。

超筋破坏-配筋截面模拟实验加载数据:1、荷载0 kg—4.2kn属于弹性阶段,当荷载达到4.2kn后进入塑形阶段。

2、荷载4.2kg—11.4kn属于塑形阶段,当荷载达到11.4kn后混凝土开始开裂。

3、荷载达到80.2kn时混凝土达到受压屈服强度但钢筋未达到抗拉屈服强度。

4、荷载达到94.6kn时钢筋达到抗拉屈服强度该梁破坏。

4.1 少筋破坏:(1)计算的极限弯矩、破坏弯矩与模拟实验的数值对比,分析原因。

极限弯矩:040034366h mm =-=135578.511.1241.016.7150yk s ck f A x mm f b ⨯===α⨯⨯ 10(0.5) 1.016.715011.124(36611.124/2)10.044ck Mu a f bX h X kn m =-=⨯⨯⨯-=⋅极限荷载:10.0449.1311.1Mu Fu kn a === 模拟实验破坏荷载与计算破坏荷载比较:(9.7-9.131)/ 9.7=5.86%<50% 误差符合要求。

结论: 本次实验数据对比,误差存在,产生误差的主要原因有三点: 1实验时没有考虑梁的自重,而计算理论值时会把自重考虑进去。

2.计算的阶段值都是现象发生前一刻的荷载,但是实验给出的却是现象发生后一刻的荷载。

3.破坏荷载与屈服荷载的大小相差很小,1.5倍不能准确的计算破坏荷载。

4.整个计算过程都假设中和轴在受弯截面的中间。

(2)绘出试验梁p-f 变形曲线。

(计算挠度)极限状态下的挠度040034366h mm =-=s te te 78.5==0.00261<0.01 0.010.5150400A A ρ=⨯⨯取6y sq 0s 10.04410===401.8250.87h A 0.8736678.5M ⨯σ⨯⨯tk te sq f 1.78=1.1-0.65=1.1-0.65=1.099>1 0.01401.825ψ⋅⨯ρσ⨯取1 5E 4210==7.1422.810S C E E ⨯α=⨯f f-==0b b h f bh γ、、()、078.50.0014150366As b h ρ===⨯⨯52120122e 221078.5366 2.10310 1.50110667.1420.0014 1.4101.15 1.1510.21+3.510fs s s E A h B N mm ==++⨯⨯⨯⨯==⨯⋅αρ⨯⨯ψ0.2⨯++γ+222222343 3.34 1.1 1.0652424 3.3l a S l -⨯-⨯===⨯⨯262220129.13110(34)(3330041100)7.054/200=16.5mm 2424 1.50110Fa f L a L B ⨯=-=⨯-⨯=<⨯⨯ 满足要求与实验结果7.37相差50%以内计算结果符合误差要求,但不符合安全构造要求。

同上方法可以计算出不同荷载作用下的挠度p-f 变形曲线(3)绘制裂缝分布形态图。

(计算裂缝)裂缝分布形态编号 12345678910荷载 0.32 4.24 8.18 9.4 9.51 9.57 9.62 9.64 9.65 9.66 挠度 0.033.216.2311.8320.1930.3241.9654.8259.3466.29挠度-荷载曲线图024*******10203040506070挠度荷载(4)简述裂缝的出现、分布和展开的过程与机理。

①在荷载为0.3kn前,梁处于弹性阶段;在荷载增加到大约6.0kn,梁由弹性到开裂;在荷载增加到大约9.7kn钢筋达到屈服强度,梁破坏。

②在开裂截面,内力重新分布,开裂的混凝土一下子把原来承担的绝大部分拉力交给受拉钢筋,是钢筋应力突然增加很多,故裂缝一出现就有一定的宽度。

此时受压混凝土也开始表现出一定的塑性,应力图形开始呈现平缓的曲线。

实验荷载---挠度曲线图如下、实验荷载—最大裂缝宽度曲线如下:③又因为配筋率少于最小配筋率,故一旦原来由混凝土承担的拉力有钢筋承担后,钢筋迅速达到的屈服。

受压区高度会迅速降低,以增大内力臂来提高抗弯能力。

同时,所提高的抗弯能力等于降低后的荷载引起的弯矩,受压区高度才能稳定下来。

在挠度-荷载曲线上就表现为荷载有一个突然地下降。

然后受压区高度进一步下降,钢筋历尽屈服台阶达到硬化阶段,荷载又有一定上升。

此时受压区混凝土仍未被压碎,即梁尚未丧失承载能力,但这是裂缝开展很大,梁已经严重下垂,也被视为以破坏。

实验荷载—相对受压区高度曲线如右图:4.2 适筋破坏:(1)计算的开裂弯矩、极限弯矩与模拟实验的数值对比,分析原因。

开裂弯矩:040040360h mm =-=1 1.785090.3621.016.7150tk s ck f A x mm f b ⨯===α⨯⨯ 10(0.5) 1.016.71500.362(3660.362/2)0.3269ck Mcr a f bX h X kn m =-=⨯⨯⨯-=⋅开裂荷载:0.32690.2971.1Mcr Fu kn a ===屈服弯矩:040040360h mm =-=140050981.2771.016.7150yk s ck f A x mm f b ⨯===α⨯⨯ 10(0.5) 1.016.715081.277(36081.277/2)65.022ck Myk a f bX h X kn m =-=⨯⨯⨯-=⋅屈服荷载:65.02259.1111.1Myk Fyk kn a ===极限弯矩:040040360h mm =-=1540509109.7251.016.7150stk s ck f A x mm f b ⨯===α⨯⨯ 10(0.5) 1.016.7150109.725(360109.725/2)83.870ck Mu a f bX h X kn m =-=⨯⨯⨯-=⋅极限荷载:83.87076.2461.1Mu Fu kn a === 模拟实验破坏荷载与计算破坏荷载比较: 两个开裂弯矩对比:(6.9-0.297)/6.9=95.6%>50% 两个屈服弯矩对比:(59.11-52.9)/ 59.11=10.5%<50% 两个极限弯矩对比:(76.246-55.2)/ 55.2=38.12%<50% 误差符合要求。

相关文档
最新文档