基于matlab谱减法音频降噪处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目基于matlab谱减法音频降噪处理
班级
学号
姓名
指导
时间
景德镇陶瓷学院
数字信号处理课程设计任务书
目录
1、设计要求. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
2、设计原理. . . . . . . ……………………………………………….. . . . . . . . . . . .2
3、源程序清单. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
4、设计结果和仿真波形. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
5、参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.
6、设计心得体会. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1、设计要求
语言是人类最重要、直接、有效和便捷的交换信息的方式。随着近些年科学技术的飞速发展,人们也不满足于和计算机的信息交换方式,希望能够甩掉键盘和鼠标而实现用语言来对计算机进行控制。因此,语音信号处理技术便应运而生。语音信号处理是一门新兴的学科,同时也是综合多种学科和涉及面非常广泛的交叉学科。现在在一些职能系统中嵌入有语音处理系统,但它们只能在安静的环境中才能使用。然而,在语音信息的采集过程中难免会有各种噪声的干扰。噪声不仅降低了语音的可懂度和语音质量,还严重的影响语音处理的准确性,甚至使系统不能正常工作。本文将就对语音增强技术的原理和方法进行讨论,重点介绍语音增强的一种方法——谱减法及其改进算法。该方法能够有效消除平稳的加性噪声,其改进算法能够有效消除普通方法产生的“音乐噪声”,在很大程度上提高语音信号的信噪比。
目前,语言识别技术已经取得了重大进展,并开始进入实用阶段。但语音识别系统必须在相对比较安静的环境下运行,然而,在语言信息的采集中难免会有各种噪声的干扰,在较强的噪声背景下,语音识别系统的准确性会受到较大影响,甚至没法正常工作。所以在语音识别系统对语音信息处理前,应该对语音信息进行预处理,即背景噪声消除。语音背景噪声消除技术的出现使得语音识别技术更加稳定和精确,也使得语音信息的可懂度大大提高,使人们能够从较复杂的语音信息中提取到更多的有用信息。
2、设计原理
噪声的生成原理及分类
噪声的来源取决于实际应用,不同情形下产生的噪声其特性也是千变万化,所以没有一种通用的语音增强算法能对每一种噪声起到有效的消除。下面我们来简单分析噪声的生成原理及分类情况。
噪声可以分为两大类:加性噪声和非加性噪声,加性噪声一般是指热噪声、散弹噪声等,其特点是噪声信号与语音信号是加性的,噪声不随信号而改变,即使信号不存在噪声也会存在。非加性噪声如乘性噪声,他们与信号成乘性关系,信号存在噪声就存在,信号改变噪声也随之改变。一般通信中我们把加性随机性看成背景噪声,而乘性随机性则是由系统时变性和非线性造成的。
这里我们仅介绍加性噪声,加性噪声一般分为一下几类:人为噪声,自然噪声和内部噪声。人为噪声是指信号之外人为的噪声,如外台信号、开关接触噪声、工业的点火辐射等;自然噪声则是由于自然界的各种电磁波源如闪电、大气中电暴和宇宙辐射等造成的噪声;内部噪声是信号采集时系统设备自身产生的各种噪声,如热噪声和散弹噪声等[8]。
以上噪声中确定类型的噪声因为知道其产生机制,所以理论上是能够消除或者基本消除。但是有一类随机噪声因为不能预测其波形而比较难以消除,这种不能预测的噪声系统成为随机噪声。随机噪声可分为三类:(1)周期性噪声是由于发动机等机械、电气干扰特别是交流电等造成的周期性的干扰噪声。(2)脉冲噪声是突发的幅度高且持续时间短的离散脉冲。它的来源是由于爆炸、点击和撞击等,其特点就是脉冲幅度大,持续时间短,两个脉冲之间时间长等。这类噪声通常在时域情况下消除,根据信号的幅度平均值来确定信号幅度的闭值。当信号超过这一闭值时,系统则认为是脉冲噪声,再对脉冲噪声进行衰减。(3)宽带噪声的来源很多,热噪声、气流(如风、呼吸)噪声及各种随机噪声源,量化噪声也可视为宽带噪声。由于宽带噪声与语音信号在时域和频域上完全重叠,因而消除它最为困难。这种噪声只有在语音间歇期才单独存在。对于平稳的宽带噪声通常可以认为是白色高斯噪声。不具有白色频谱的噪声,可以先进行白化处理。对于非平稳的宽带噪声,情况就更为复杂一些。
噪声破坏了语音信号原有的声学特征和模型参数,使语音质量下降,也使人产生听觉疲劳。不仅如此,强噪声环境还会对说话的人产生影响,使人改变在安静环境或者低噪声环境中的发音,从而改变了说话人的语音特征参数,它对语音识别系统有很大影响。
基本谱减法消除噪声的原理
在诸多语音增强方法中,谱减法因其计算量小,容易实现和增强效果好等特点而备受关注,是诸多方法中比较有效的语音增强算法。谱相减方法是居于人的感觉特性,即语音信号的短时幅度比短时相位更容易对人的听觉系统产生影响,从而估计语音的短时幅度谱,比较适用于消除带加性噪声的语音。
谱减法在20世纪八十年代后用来与其它方法相结合来获得更为有效的语音增强算法。并且成为其它语音增强算法的比较标准。下面我们来详细了解谱减法的原理。
在基本谱减法中,假定语音为平稳信号,且噪声为加性噪声,与语音信号彼此不相关。此时带噪语音信号可表示为:
()()()y t s t n t =+ (1) 式(1)中,y(t)为含噪语音信号,s(t)为纯净语音信号,n(t)为噪声信号。用Y(w),S(w)和N(w)来分别表示y(t),s(t)和n(t)的傅里叶变换,则有下列关系:
()()()Y w S w N w =+ (2) 由公式(2)可得:
()()()()()222
*2Re Y w S w N w S w N w ⎡⎤=++⎣⎦ (3) 根据(3)可得:
()()()()(){}
222*2Re E Y w E S w E N w E S w N w ⎡⎤=++⎣⎦ (4) 由于基本假定是噪声信号与语音信号是加性的,s(t) 和n(t)独立,所以
S(w)和N(w)也独立。故()(){}
*Re E S w N w ⎡⎤⎣⎦=0。所以对一个分析帧内得短时平稳过程,有:
()()()222
Y w S w N w =+ (5)
因为噪声是局部平稳的,故可以认为没有语音信息是的噪声与有语音信息时的噪声功率谱是相同的,因而可以利用发语音前的“寂静帧”来估计噪声。
由式(5)可以得到原始语音的估计值:
()()()222w w w Y w N w s ∧=- (6)
式(6)中,下标表示加窗信号,∧表示估值,()
2w N w 则表示无语音信号时