材料力学 能量法分析

合集下载

材料力学能量法讲解

材料力学能量法讲解
第二组力q作用时,它在梁跨中引起的挠度为wC 。
由功的互等定理 FwC l[qdx w(x)] qAw
Aw

FwC q
5Fl4 384EI
材料力学
中南大学土木建筑学院
27
装有尾顶针的工件可简化为静不定梁。试利用互等定理
求C处的约束力。
F
解:解除C处约束的工件可 简化为悬臂梁,F、FC作为 第一组力。悬臂梁在C处加 单位力1作为第二组力。
三、功能原理
条 件:(1)弹性体(线弹性、非线弹性) (2)静载荷 —— 可忽略弹性体变形过程中的 能量损失。
原 理:外力功全部转化成弹性体的应变能。 Ve = W
材料力学
中南大学土木建筑学院
9
已知:EI = 常数,用功能原理
F
计算A点的挠度。
A
B
解:①建立坐标系
wA
x
l
②列弯矩方程 M =-Fx ( 0 ≤ x < l )

1 2
Fi Di

1 2
FjD
j
Clapeyron原理
外力功和变形能不符合叠加原理
材料力学
中南大学土木建筑学院
25
F D F D i ij
j ji
功的互等定理
注:力系、位移均为广义的。
线弹性体上甲力在乙力引起的位移上作的功,等于 乙力在甲力引起的位移上作的功。一般地,第一组 力在第二组力引起的相应位移上所作的功,等于第 二组力在第一组力引起的相应位移上所作的功。

n i 1
1 2
Fi Di
材料力学
中南大学土木建筑学院
17
设各外载荷按相同的比例,从零开始缓慢增加到最 终值。即任一时刻各载荷的大小为: F1*=lF1, F2*=lF2 ,… Fi*=lFi ,…Fn*=lFn

材料力学能量法

材料力学能量法

限制条件:不适 用于求解动力学 问题如振动、冲 击等
适用范围:适用 于求解线性问题 如弹性、塑性等
限制条件:不适 用于求解非线性 问题如塑性、蠕 变等
材料力学能量法的发展趋势和未来 展望
材料力学能量法的发展趋势
计算方法:发展高效、准确 的数值计算方法
应用领域:拓展应用领域如 航空航天、生物医学等
柱的压缩问题
问题描述:柱在轴向 压力作用下的压缩问 题
应用实例:桥梁、建 筑等结构中的柱在受 压时的变形和破坏
能量法分析:利用能 量法分析柱的受压变 形和破坏过程
结论:能量法在柱的 压缩问题中的应用可 以有效地预测柱的变 形和破坏情况为工程 设计提供依据。
弹性体的振动问题
添加 标题
弹性体振动问题的背景:在工程中弹性体的振动问题非常常见如桥梁、建筑物、机械设备等。
定义和原理
材料力学能量法: 一种研究材料力学 问题的方法通过分 析能量变化来求解 问题。
基本概念:能量、 应力、应变、位移 等。
原理:根据能量守 恒定律材料的变形 和破坏过程中能量 会发生变化通过分 析这些变化可以求 解问题。
应用:广泛应用于 结构分析、优化设 计等领域。
能量法的应用范围
结构力学:分析结构受力、变形和稳定性 材料力学:分析材料应力、应变和断裂 流体力学:分析流体流动、压力和速度 热力学:分析热传导、对流和辐射 电磁学:分析电磁场、电磁波和电磁感应 声学:分析声波传播、反射和吸收
能量法的基本假设
材料是连续、均匀、各向同性的
材料是线弹性的应力与应变成正 比
添加标题
添加标题
材料是弹性的满足胡克定律
添加标题
添加标题
材料是各向同性的应力与应变的 关系与方向无关

材料力学-能量法

材料力学-能量法

U
l
N 2( x)dx 2EA
l
M
2 n
(
x
)dx
2GI P
l
M 2( x)dx 2EI
(9-8)
注意:叠加法不能用于计算外力功和变形能。
例1 试分别计算图示各梁的变形能 例1图
解:求各梁的变形能 a b
c
Ua
0l
M 2( x)dx 2EI
0l
(
Px)2 2EI
dx
P 2l3 6EI
Ub
0l
M 2( x)dx 2EI
W 1 P
2
(9-2)
式中: P —— 广义力(力、力偶)
——广义位移(线位移、角位移)
广义力与广义位移相对应。如广义力是力,相应的广义
位移就是线位移(沿力方向的线位移);如广义力是力偶, 相应的广义位移就是角位移(在力偶作用处的角位移)。
(二)变形能和比能
1. 轴向拉伸与压缩时的变形能
a. 轴力为常量: ( N P,l Nl )
材料力学
能量法
一、外力功与变形能
本章考虑杆件在线弹性范围内的能量法计算问题。
能量法——利用功和能的概念来解决变形体的位移、变 形和内力等计算的方法。
在线弹性范围内,外力功 W 全部转变为变形能 U,不 考虑能量的损耗。因此有
W=U
(一)外力功
1. 常力作功(P 为恒力)
W P
(9-1)
2. 变力作功(P 从0逐渐增加到最终值)
EA
U W 1 Pl N 2l
2
2EA
(9-3)
u
U V
N2 2EA2
2
2E
1
2
u 为比能,即单位体积的变形能。

材料力学第十三章 能 量 法

材料力学第十三章 能 量 法

Vε Vε (D1 , D 2 ,, D i ,, D n )
假设位移 Di 有一微小增量 dDi 其它位移均保持不变 梁的应变能也有一增量 dVe
外力功的增量
d W Fi d D i
Ve d Ve d Di D i
d Ve d W
Ve Fi D i
卡氏第一定理
卡氏第一定理

l
0
F ( x) T ( x) dx dx 0 2GI 2 EA p
l
2 N
2
F ( x) M ( x) d x s dx 0 2 EI 0 2GA
l l
2
2 S
应变能恒为正 ,是内力或外力的二次函数。
非线性函数
一般情况:非线性弹性体
s s1 s e
外力作功:
de e 1
DAB 方向水平向外
§3-4 用能量法解超静定系统
解超静定问题要综合考虑三方面 几何方面 —— 建立变形几何相容条件 物理方面 —— 建立补充方程 静力学方面 —— 建立平衡方程
等直杆,发生基本变形,材料为线性弹性体 非等直杆或杆系结构,受较复杂荷载作用, 材料为非线性弹性体 易 难
能量法
例1:求图示超静定梁支座处的约束力。
③ 先加M,后加F
A
M AM
F
B
AF DCF
AM
Ml 3EI
D CF
Fl 48 EI
3
AF
Fl 16 EI
2
1 1 应变能: V M ε AM ( FD CF M AF ) 2 2 2 3 2 2 1 F l M l MFl ( ) EI 96 6 16
Ve Fi D i

材料力学第8章-能量法

材料力学第8章-能量法

能量原理的应用
能量原理可以应用于弯曲、拉伸、压缩等各种不同的力学问题。通过计算系统的势能和应变能,可以分 析材料的应力分布、变形情况和稳定性。
弹性势能和弹性材料的能量原 理
弹性势能是指弹性材料在外力作用下产生的能量。通过应变能和弹性势能之 间的关系,可以推导出弹性材料的力学性质和变形方程。
弹塑性材料的能量原理
材料力学第8章-能量法
材料力学的能量法是研究材料变形和力学行为的重要方法,它具有广泛的应 用。本章将介绍能量法的基本概念和应用,以及弹性和弹塑性材料的能量原 理。
能量法的基本概念
能量法是一种力学分析方法,通过考虑系统的能量变化,推导出材料的力学 性质和变形行为。能量法的基本概念包括势能和应变能的概念,以及能量守 恒定律。
通过能量法,我们可以分析臂梁在外力作用下的弯曲行为。通过计算和优化梁的几何参数和材料性质, 可以设计出更加稳定和高效的悬臂梁结构。
总结和要点
能量法是一种重要的材料力学分析方法,它通过考虑材料的能量变化,分析 材料的力学性质和变形行为。
对于弹塑性材料,除了考虑弹性势能外,还需要考虑应变能和塑性势能的贡献。能量原理可以用来分析 弹塑性材料的强度和变形行为。
能量法在材料力学中的重要性
能量法是材料力学中的一种基本方法,它可以用来分析各种不同类型的力学问题,包括材料的变形、破 坏和失稳行为。掌握能量法对于研究和设计材料结构至关重要。
应用实例:悬臂梁弯曲问题的分析

材料力学能量法

材料力学能量法

材料力学能量法材料力学能量法是材料力学中的一种重要分析方法,它通过能量原理来研究材料的力学性能和行为。

能量法在工程应用中具有广泛的意义,可以用于解决各种复杂的材料力学问题。

本文将对材料力学能量法进行详细介绍,包括其基本原理、应用范围和计算方法等内容。

首先,我们来看一下材料力学能量法的基本原理。

能量法是以能量守恒原理为基础的一种力学分析方法,它认为在任何力学系统中,系统的总能量始终保持不变。

在材料力学中,通过能量方法可以方便地求解结构的变形、应力分布和稳定性等问题。

能量法的基本原理为系统的总能量等于外力对系统做功的总和,即系统的内能和外力对系统做功的总和保持恒定。

其次,材料力学能量法的应用范围非常广泛。

它可以用于分析材料的弹性、塑性、断裂等力学性能,也可以用于研究材料的疲劳、蠕变、冷却等行为。

在工程实践中,能量法可以应用于各种材料的设计、优化和性能评估,如金属材料、复合材料、土木工程材料等。

通过能量法分析,可以更好地理解材料的力学行为,为工程设计和材料选型提供科学依据。

最后,我们来介绍一下材料力学能量法的计算方法。

能量法的计算方法主要包括弹性能量法、弹塑性能量法和断裂能量法等。

在应用中,需要根据具体问题选择合适的能量方法,并结合数值计算和实验验证进行分析。

在计算过程中,需要考虑材料的本构关系、加载条件和边界约束等因素,以确保计算结果的准确性和可靠性。

综上所述,材料力学能量法是一种重要的力学分析方法,具有广泛的应用前景和深远的理论意义。

通过能量法分析,可以更好地理解材料的力学性能和行为,为工程实践提供科学依据。

在今后的研究和应用中,我们需要进一步深入理解能量法的基本原理和计算方法,推动其在材料力学领域的发展和应用。

材料力学-能量方法剖析

材料力学-能量方法剖析
W12 P1 P 1 P2 P 2 Pm Pm
先加P后加Q时做功总和为:
V1 W1 W2 W12
将加载次序反过来,先加力Q后加力P,Qj在相应
位移 Qj 上做功为:
1 2
Q1 Q1
1 2
Q2 Q 2
1 2
Qn Qn
W2
再加Pi (i=1,2,…,m)力,Pi在其相应位移 Pi 做功
若F1 F2,则得
位移互等定理:
12 21
例题:装有尾顶针的车削工件可简化成超静定梁, 如图,试用互等定理求解。
A B
a
P
L
A
a
P
L
R
第一组力: P、R
B
第二组力 X=1
δ1
δ2
1
a2 6EI
(3l
a)
2
l3 3EI
X=1
第一组力在第二组力引起的位移上做功
P 1 R 2
Pa 2 ( 3l a ) R l 3
d M x (x) dx
GI p
故线弹性下,式(13.2),(13.3),(13.5)可简化为:
l
M
(
x)M ( EI
x)dx
(13.6)
n FN i FN ili i1 EAi
(13.7)
M x (x)M x (x)dx
l
GI p
(13.8)
l
M
(
x)M ( EI
x)dx
(13.6)
也是当今应用甚广的有限元法求解力学问题的 重要基础。
能量法的用处 用于求位移
能量法的优点
不管中间过程,只算最终状态 能量是标量,容易计算
§13-2 杆件应变能的计算 线弹性条件下,通过外力功求应变能 常力作功(P 为恒力) :

材料力学 能量法

材料力学  能量法

能量法一、变形能(应变能):变形固体在外力作用下由变形而储存的能量“”。

弹性变形能:变形固体在外力作用下产生的弹性变形而储存的能量1、性变形能具有可逆性。

2、塑性变形能不具有可逆性。

二、变形能的计算:利用能量守恒原理能量守恒原理:变形固体在外力作用下产生的变形而储存的能量,在数值上等于外力所作的外力功。

三、能量法:利用功能原理和功、能的概念进行计算的方法。

常见的能量法——功能原理、单位力(莫尔积分)、卡氏定理等。

在卡氏第二定理中应该注意的问题①、Vε——整体结构在外载作用下的线弹性变形能。

②、F i视为变量,结构反力和变形能等都必须表示为F i的函数②、Δi为F i作用点的、沿F i方向的变形③、Δi处要有相应的荷载,当无与Δi对应的F i时,可采用附加力法进行计算。

既先加一沿Δi方向的F i(在所求位移处沿所求位移的方向加上相对应的附加力),求偏导后,在令其为零,结果即为实际荷载作用的位移⑤、结果为正时,说明Δi与F i的方向相同;结果为负时,说明Δi与的F i方向相反。

单位力载荷法注意问题1、此种方法存在两个力系:一个为实际的力系;另一个为单位力系。

2、单位力必须与所求位移相对应:若求线位移——则单位力必须作用在所求点沿所求位移方向加单位的集中力;若求角位移——则单位力必须作用在所求点沿所求位移方向加单位的集中力偶。

2、内力的坐标系必须一致,每段杆的坐标系可自由建立。

莫尔积分必须遍及整个结构。

4、结果为“+”只说明所加的单位力的方向与实际的位移方向相同;“-”只说明所加的单位力的方向与实际的位移方向相反。

材料力学(能量法)

材料力学(能量法)

弹性变形阶段
01
外力作用下,材料发生弹性变形,此时外力所做的功全部转化
为应变能储存于材料内部。
塑性变形阶段
02
当外力继续增加,材料进入塑性变形阶段,部分应变能转化为
热能散失到环境中。
断裂破坏阶段
03
当材料达到强度极限时发生断裂破坏,此时储存的应变能迅速
释放并转化为断裂表面的新表面能和其他形式的能量。
非圆截面扭转时的能量可以通过实验或数值模拟等方法进 行计算,以获得准确的能量值。
扭转变形过程中能量转化
弹性变形能
在扭转变形过程中,部分能量以弹性变形能的形式储存在材料中。 当外力去除后,这部分能量可以释放并使材料恢复原状。
塑性变形能
当扭转变形超过材料的弹性极限时,部分能量会以塑性变形能的形 式消耗在材料中。这部分能量不可逆转,导致材料产生永久变形。
压缩过程中能量变化
外力做功
在压缩过程中,外力对杆件做 功,使其产生压缩变形和位移 。外力做功的大小与外力的大 小和杆件的位移成正比。
内力耗能
杆件在压缩过程中,材料内部 会产生应力和应变,从而消耗 能量。内力耗能的大小与材料 的应力-应变关系有关。
弹性势能
杆件在压缩过程中,由于材料 的弹性变形,会储存一定的弹 性势能。弹性势能的大小与材 料的弹性模量和变形量有关。
结构稳定性分析方法
能量准则
通过比较结构失稳前后的能量变 化,判断结构的稳定性。若失稳 后能量降低,则结构不稳定。
平衡路径跟踪法
通过逐步增加荷载或位移,跟踪 结构的平衡路径,观察结构从稳 定到不稳定的转变过程。
特征值分析法
基于结构刚度矩阵和质量矩阵, 求解特征值和特征向量,分析结 构的振动特性和稳定性。

材料力学第8章-能量法

材料力学第8章-能量法
能量法/超静定问题 力法
能量法/超静定问题 力法
A
B
F
C
A
B
F
X1
A
B
F
X1
例 如图超静定梁, EI为常数,试求B点的约束反力。
解: (1) 判断超静定次数:
一次超静定!
(2) 解除多余约束,构造静定基:
B. 解除B点的可动铰支座,补充横向集中反力
A. 解除A点固定端的转动约束变为固定铰支座, 补充反力偶作用
单位力偶作用下的弯矩图
力F作用下的弯矩图
能量法/超静定问题 力法
Fa/2-Fa2/[4(a+b)]
Fa2/[4(a+b)]
1
1
1
Fa/2
根据力法正则方程:
M10
MF
根据图形互乘法:
所以有:
则:
弯矩图如图所示
能量法/超静定问题 力法
A,B两点有无相对水平位移?如何计算?
F
X1
X1
F/2
F/2
能量法/超静定问题 力法
qa2/2
qa2/2
a
a
1
a
1
解:为两次超静定问题。解除A点的约束, 并作用水平和铅垂的单位集中力。
在静定基上分别作均布力和两个单位集中 力的弯矩图如下图所示。
令水平力为‘第一’个未知反力,铅垂力为第二个。
能量法/超静定问题 力法
根据图形互乘法有:
1
代入力法正则方程:
2
有:
3
能量法/超静定问题 力法
F/2
F/2
结构由三次超静定转化为一次超静定问题。
能量法/超静定问题 力法
1
1
1

《材料力学》课件1西电社 材力 第12章_能量法

《材料力学》课件1西电社 材力 第12章_能量法

解:1.在C处施加一单位力
A
2. 实际载荷下,AD、DC段的弯矩方程, BD杆的轴力为
B
M x Fx FN 2 2F
3.单位载荷下, AD、DC段的弯矩方程, A
BD杆的轴力为
l
l
F
x 45° D
C x
(a)
l
l
1
x 45° D
C x
M x x
FN 2 2
B
(b)
4. C截面的竖直位移
CV
1
F
0
2
说明: F与Δ均为广义量
1. F为集中力 — Δ是线位移
2. F为集中力偶 —Δ是角位移
返回
二、杆件应变能的计算
1. 轴向拉压杆
微段轴向变形 dΔl FN xdx
EA
轴力在d△l上
作的功
dW
1 2
FN x dΔl
FN2x dx
2EA
整根杆的应变能 V
FN2 x dx
2EA
l
当FN/EA为常量时
2. 弯矩方程及对其Me的 一阶偏导数
M
x
qx2 2
Me,
M x 1
M e
3. 根据卡氏定理计算 θB
B
l M x M xdx
0 EI M e
1 EI
ql3 6
M
el
Me =0
B
ql3 6EI
返回
例12-7 一平面刚架如图所示 已知: 各段杆的抗弯刚度均为EI, 求: C截面的竖直位移ΔCV与水平位移ΔCH
0 2
B
ql3 6EI
返回
例12-9 一正方形桁架结构如图所示 已知: 5根杆的拉压刚度EA相同,正方形边长为l, 试求: A、C两结点之间的相对水平位移ΔA-CH

材料力学 第11章 能量法讲解

材料力学 第11章 能量法讲解
x Me
A
l FAy
B FBy
(1) 应变能计算
梁的约束力
FA

FB

Me l
梁的弯矩方程
代入应变能公式
M (x)

FA x M e

x Me(l
1)

M 2(x) dx
l 2EI
1 2EI
l 0
M
2 e
(
x l
1)2 dx

M e2l 6EI
15/65
11.1 外力功与应变能 【例11-1】解
10/65
11.1 外力功与应变能
11.1.3 克拉贝依隆原理
F1Δ12 F2 Δ21
W

1 2
F1 Δ11


1 2
F2 Δ22

F1 Δ12

上式可推广到有多个广义力共同作用于线性弹性体的情况 Vε W

W

1 2
Fi Δi
上式称为克拉贝依隆原理。
式中为全部外力(F1,F2,…,Fi,…,Fn)在广义力Fi处
l GI p
M xdq
2
w M EI
12/65
11.1 外力功与应变能
M(x)
T(x) FN(x) FN(x)
11.1.4 杆件的应变能
dq
T(x) M(x)
dj
dx
dx dd
dx
dx
dVε

FN2 (x)dx 2EA

T 2 (x)dx 2GIp

M 2 (x)dx 2EI
则整个圆截面杆的应变能 Vε
FN2 (x) dx l 2EA

《材料力学》11-1能量法

《材料力学》11-1能量法

F1 dF
0
与外力功
W
1 0
Fd之和等于矩形面积
F1 1
线弹性范围内外力功等
F
F
于余功,能等于余能。
F1
F1
o
1
o
1
例题
试计算图示结构在荷载 F1 作用下的余能,结构中两杆的 长度均为 l,横截面面积均为A材料在单轴拉伸时的应力
—应变曲线如图所示。
B
D
K1nn1 1
C
F1
解:由结点C的平衡方程,可得两杆的轴力为
例题
xy平面内,由k根杆组成的杆系,在结点A处用铰链结 在一起,受到水平荷载和铅垂荷载作用,截面分别 为 A1,A2,Ai,Ak ,试用卡氏第一定理求各杆的轴力。
1
2
i
k
F1 A
F2
这种以位移为基本未知量,把它的求解当作关键性问题的方法称为位移法
本章作业
(II)3-2,
(II)3-4,
(II)3-10,
例题
图示在线弹性范围内工作的一端固定、另一端自由的圆轴,在自由端截面
上承受扭转力偶矩M1。材料的切变模量G和轴的长度 l 以及直径 d 均已知。 试计算轴两端的相对扭转角。
M1
d
A
B
l
四 余功、余能及卡氏第二定理
Wc
F1 dF
0
与余功相应的能称为余能
Vc V vcdV
vc
1 d
0
Vc
Wc
V cvc2Al2A nK lnn1 cF 1 o sn1
卡氏第二定理
F1
F2
F3
Fn
A
B
1
2
3
n

材料力学13能量法

材料力学13能量法
FN (x)
T (x)
M (x)
FN (x)
T (x)Fs(x)

FN2 (x) dx l 2EA(x)
T 2(x) dx l 2GIp (x)
M 2(x) dx l 2EI (x)
kFs 2 (x) dx l 2GA(x)
对若k于是杆双用件向来及弯修杆曲正系,横的弯力变矩弯形沿曲是形时以心切弯主应曲轴力变分不形解沿为, 截主面的均,匀因分轴布力的和修剪正力系远数小,
)
再施加P1
AB又伸长
Dl AB

P1l1 EA
P2保持不变,作功为
V 2

P2

P1l1 EA
P1作功为
V 3

P12l1 2EA
(5)应变能是可逆的。(跳板跳水) 总功仍为上述表达式。10
直接利用功能原理求位移的实例 利用能量法求解时,所列
例 求简支梁外力P作用点C的挠度。 弯矩方程应便于求解。
V F

FL3 48 EI
wC
29
说明: (1)卡氏第二定理只适用于线性弹性体
δi

Vε Fi
(2)Fi 为广义力,i为相应的位移
一个力
一个力偶
一对力
一对力偶
一个线位移
一个角位移
相对线位移
相对角位移
30
(3)卡氏第二定理的应用
(a) 轴向拉伸与压缩
δi

Vε Fi

Fi
22
F
B2
wC1
解:由功的互等定理 F wC1 M B2
得:F

wC1

M
Fl 2 16EI

材料力学能量法知识点总结

材料力学能量法知识点总结

材料力学能量法知识点总结材料力学是工程力学的重要分支之一,研究材料在受力作用下的变形与破坏行为。

能量法是材料力学的基础理论之一,通过利用能量守恒原理,分析和求解材料的力学问题,具有重要的理论和实践价值。

本文将对材料力学能量法的基本概念、原理和应用进行总结。

1. 弹性势能与弹性应变能材料在受力作用下产生的变形能够存储为弹性势能,其中最常用的势能是弹性应变能。

弹性应变能是由于材料的弹性变形而储存的能量,可表示为弹性应变能密度。

2. 弹性势能的计算方法弹性应变能的计算方法主要有两种:一是通过力学平衡方程和材料力学性质的函数关系进行积分计算;二是通过应力-应变关系和应变能密度公式进行计算。

3. 弹性势能的应用弹性势能的应用涉及材料的变形、破裂、接头设计等问题。

通过计算弹性势能可以判断材料是否会发生破裂,并可用于材料的优化设计。

4. 塑性势能与塑性应变能材料在塑性变形时会产生塑性势能,塑性势能是由于材料的塑性变形而储存的能量。

塑性应变能可表示为塑性应变能密度。

5. 塑性势能的计算方法塑性势能的计算方法适用于材料的非弹性变形过程,常用的方法有等效应力法和Mises准则。

通过计算塑性势能可以估计材料在受力作用下的变形程度和破坏形式。

6. 塑性势能的应用塑性势能的应用主要涉及材料的变形、强度分析和塑性成形工艺等问题。

通过计算塑性势能可以评估材料的强度和变形能力,并可用于材料的成形优化。

7. 总势能与变分原理材料受到多种因素的叠加作用时,总势能是各种势能的代数和。

变分原理是能量法的基本原理之一,通过对总势能进行变分,得到材料力学问题的基本方程。

8. 总势能的应用总势能的应用主要涉及材料的稳定性分析和振动问题。

通过计算总势能可以判断材料的稳定性,预测振动频率和振动模式。

9. 耗散能与损伤模型材料在受力作用下会发生能量损耗,产生耗散能。

通过建立耗散能与应变的关系,可以描述材料的损伤行为,并建立损伤模型进行应力-应变分析。

材料力学能量法

材料力学能量法

材料力学能量法
材料力学是研究材料在外力作用下的变形、破坏和稳定性等问题的学科。

能量法是材料力学中的一种重要分析方法,它通过能量的守恒原理来分析材料的力学性能,为工程实践提供了重要的理论支撑。

本文将对材料力学能量法进行介绍,包括能量原理、应用范围、解题方法等内容,希望能为相关领域的研究人员和工程师提供一些参考。

在材料力学中,能量原理是指系统在外力作用下,能量的总变化等于外力所做的功。

根据这一原理,可以利用能量方法来分析材料的力学性能。

能量方法的应用范围非常广泛,可以用于分析材料的弹性、塑性、断裂等问题,也可以用于分析结构的稳定性和动力响应。

在工程实践中,能量方法被广泛应用于材料设计、结构优化和故障分析等领域。

在使用能量方法进行分析时,首先需要建立系统的能量平衡方程,然后根据系统的力学性能和外力条件,确定系统的势能和动能表达式。

接下来,可以利用能量平衡方程来推导系统的力学性能参数,比如应力、应变、位移等。

最后,通过求解能量平衡方程,可以得到系统的稳定性、破坏条件等重要信息。

除了上述基本方法外,能量方法还可以结合其他分析方法,比如有限元方法、变分原理等,来进行更复杂的问题分析。

在工程实践中,能量方法通常与实验测试和数值模拟相结合,可以为工程设计和材料选择提供重要的参考依据。

总之,材料力学能量法是一种重要的分析方法,它通过能量的守恒原理来分析材料的力学性能,为工程实践提供了重要的理论支撑。

希望本文的介绍能够对相关领域的研究人员和工程师有所帮助,也希望能够引起更多人对材料力学能量法的关注和研究。

材料力学能量法最经典解析PPT课件

材料力学能量法最经典解析PPT课件

能量法——利用定理求变形
极坐标方程是给一 个角度能够确定一 个挠度。因此该问 题是求任意位置角 的径向变形。
注意2个角度φ和θ的意义。 Φ用于表 示力F作用下任意位置上的弯矩。而θ 是用于表示任意位置的挠度,单位力 作用的位置。摩尔积分应该是对Φ积 分。 Φ在0到360度变化。
能量法——利用定理求变形
能量法——其他
超静定——与拉压杆相关
每根杆都沿杆的方 向线变形,后旋转 到变形后的位置。 变形用作垂线代替。
超静定——与拉压杆相关
此处注意CD杆
变形转换后是 BC杆变形的一 半。
超静定——与拉压杆相关
超静定——与拉压杆相关
广义胡克定律的应用。 每一点的应力状态为
p p
超静定——弯扭相关
此题仍然是有两个变 量,x是所求任意截面 的挠度值,而ξ是任意 截面的弯矩值,摩尔 积分是对ξ积分。
超静定——弯扭相关
超静定——弯扭相关
此类题目重点是分析圆盘 及2根杆的受力情况及变 形情况。
超静定——弯扭相关
该表达式上课过 程中没有出现过, 但是很容易推导 出来。
超静定——弯扭相关
超静定——弯扭相关
超静定——弯扭相关
超静定——弯扭相关
超静定——弯扭相关
此题目的重点是分析的方法和思路。由弹簧变 形与力和力矩之间的关系找到变形协调方程求 解超静定问题。
能量法——利用力做功求变形
能量法——利用力做功求变形
应力已知,计算应变能从而得到外力 功,最终获得力作用下的变形。
能量法——利用力做功求变形
能量法——利用力做功求变形
能量法——互等定理
该表达式上课过 程中没有出现过, 但是很容易推导 出来。积分求得 挠曲线后可得到 弯矩方程,进而 计算应变能。

材料力学 第10章 能量法

材料力学 第10章 能量法

材料力学第10章能量法在材料力学这门学科中,能量法是一种重要的分析方法。

它可以帮助我们计算杆件受力、弯曲、扭转等方面的机械能量,以及计算受力杆件的变形和应力分布等方面的物理能量。

本文将对材料力学第10章中的能量法做一简要介绍和讲解。

第一节:能量法的基本概念能量法的基本概念是物理学中的能量守恒定律。

根据能量守恒定律,能量可以被转化为其他形式,但总能量守恒不变。

在材料力学中,能量法通过分析杆件的受力变形过程,计算机械能、变形能和应变能等不同形式的能量,来求解某些物理量,如杆件的应力、变形等。

第二节:能量法的应用能量法可以应用在杆件的弯曲、扭转、受力等方面。

其中,弯曲问题是最为常见的。

在弯曲分析中,我们需要计算杆件上各点的剪力和弯矩,使用能量法时,我们可以采用双曲线弧长法和曲率半径法来计算。

在扭转分析中,我们需要计算杆件上各点的切向力和扭矩,使用能量法时,我们可采用扭转角度法和扭转能的变化法来计算。

在受力分析中,我们需要计算杆件上各点的应力和应变,使用能量法时,我们可以用弹性能和破裂能来计算杆件的应力和应变等物理量。

第三节:能量法的计算过程在应用能量法进行分析时,需要进行以下步骤:1. 建立受力变形模型:根据杆件的几何形状和受力情况建立受力变形模型,确定受力分布和变形情况。

2. 确定杆件的位移和应变能量:计算杆件受力变形后的弹性能、变形能等物理能量。

3. 利用能量守恒定律:将机械能、弹性能、变形能和应变能等能量之和等于零,根据能量守恒定律和受力变形模型,求解杆件的位移、应力和应变等物理量。

4. 对解得的结果进行有效检验:通过检查应力、应变等物理量的分布情况,对解得的结果进行有效检验。

总而言之,能量法是材料力学分析领域中非常重要的分析方法。

它广泛应用于工程设计、科研和生产实践等领域。

通过掌握能量法的理论基础和实际应用方法,可以有效地分析和解决杆件受力、弯曲、扭转等方面的技术问题,推动材料力学学科的发展进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能量法
W内 FNd(l) Md Fsd
n
W外= Pii i 1
n Pii FNd(l) Md Fsd
i 1
能量法
虚功原理: 在虚位移中,外力所做虚功等于内力在相应虚变
形上所做虚功(外力虚功等于杆件虚变形能)
n Pii FNd(l) Md Fsd Td
4E I
1 W 2 P AV
由Ve W,得:
3 PR3 PR3
AV 2GI p 2EI
能量法
R
S
例:试求图示四分之一圆曲杆的变形能,并利用功 能原理求B截面的垂直位移。已知EI 为常量。
能量法
解: M() PR sin
Ve
l
M 2 ( )
2EI
Rd
2 ( PR sin)2 Rd
1 2
m
ml EI
m2l 2E I
M 2l 2E I
横力弯曲:M 2(x)Ve Nhomakorabeal
dx 2EI ( x)
能量法
例:试求图示悬臂梁的变形能,并利用功能原理求 自由端B的挠度。
能量法
解:
M (x) P x
W
1 2
P wB

l
M 2 (x) dx 2EI
l 0
(Px)2 2EI
dx
i 1
可用于线弹性材料,也可用于非线弹性材料。
能量法
§12-7 单位载荷法 莫尔积分
P1 P2
C
用虚功原理可以导出计算结构一点位移的单位载荷法
能量法
P1 P2
Fs (x)
C M (x)
1 M (x)d
P0 1 Fs (x) C M (x)
d M (x) dx
EI
n
i 1
Pi
i
FN
1 P Pl 2 EA
P
P2l FN2l 2EA 2EA
P

l
FN2 (x) dx 2EA(x)
l l
能量法
二、扭转
m
m
Ve
W
1 m
2
1 m ml 2 GIp
m2l 2G I p
T2l 2G I p
Ve
l
T 2(x) dx
2GI p (x)
能量法
三、弯曲
纯弯曲:
Ve
W
1 m
2
l
dM(( lx))EIMM( xd)dx
Qd
Td
能量法
莫尔定理(莫尔积分)
对组合变形
l
M
(
x)M EI
(x)
dx
FN (x) FN (x) dx T (x)T (x) dx M (x)M (x) dx
l
EA
l GI p
l EI
注意:上式中δ应看成广义位移, 把单位力看成与广义位移对应的广义力
P2l3 6EI
由Vε W,得
能量法
Pl 3 wB 3EI
()
例:试求图示梁的变形能,并利用功能原理求C 截面的挠度。
能量法
Ve
解:
M 2(x) l 2EI
dx
a 0
Pb l
x1
2
2EI
dx1
b
0
Pa l
x2
2EI
2
dx2
P2b2 2EI l 2
a3 3
P2a2 2EI l 2
2E I
0
P2R3
8EI
W
1 2
P
BV
由V e W ,得:
PR3
BV 4EI
能量法
R
§12-4 互等定理
i j
载荷作用点 位移发生点
能量法
功的互等定理:
P1 12 P2 21
若P1 P2 ,则得
位移互等定理:
12 21
能量法
例:求图示悬臂梁中点C处的铅垂位移ΔC。
能量法
vC1
dx
能量法
例:轴线为半圆形的平面曲杆,作用于A端的集 中力P垂直于轴线所在的平面。试求A点的垂直位移。 已知GIp、EI为常量。
能量法
解:T() PR(1 cos) , M() PR sin
Ve
l
T 2 ( )
2GI p
Rd
l
M 2 ( )
2EI
Rd
3 P2 R3 P2 R3
4GI p
M (x) Px, M (x) 1
B
l
M (x)M (x) dx EI
l 0
Px EI
dx
Pl 21
2 EI
能量法
例:计算图(a)所示开口圆环在 P力作用下切 口的张开量 ΔAB 。EI=常数。
能量法
M () PR(1 cos)
M () R(1 cos)
AB
2
0
M
( )M
EI
( )
b3
3
P 2a 2b 2 6EI l
W
1 2
P wC
由Ve W,得:
wC
Pa2b2 3EIl
能量法
Pb l
x1
Pa l
x2
§12-3 应变能的普遍表达式
组合变形杆件应变能

l
FN2 (x) 2E A( x)
dx
l
T 2(x) 2GI p (x)
dx
l
M 2 (x) 2EI ( x)
Rd
3 PR3
EI
2 PR2 (1 cos)2 R d EI 0
第十二章 能量法
§12-1 功能原理 在弹性范围内,弹性体在外力作用下发生变形而 在体内积蓄的能量,称为弹性变形能,简称应变能。 物体在外力作用下发生变形,物体的应变能在数 值上等于外力在加载过程中在相应位移上所做的功, 即
Ve=W
能量法
§12-2 杆件应变能计算
一、轴向拉伸和压缩
Vε W
1 P l 2
P3P3
i
n
W = Pii i 1
能量法
1.在虚位移中,杆件原有外力、内力保持不变,且 始终是平衡的; 2.虚位移满足边界条件和连续性条件; 3.符合小变形要求; 4.是实际发生的位移。
能量法
M
FN
FN
d(l)
d
M Fs
Fs
d
dW内 FNd(l) Md Fsd
W内 FNd(l) Md Fsd
能量法
例:试用莫尔定理计
算图(a)所示悬臂梁
A
自由端B的挠度和转
角。
A
A
能量法
P
B
x
l
1
xB
1
B
x
解:(1)在B截面作用一单位力, 如图(b)所示 M (x) Px, M (x) x
wB
l
M (x)M (x) dx EI
l 0
Px 2 EI
dx
1
Pl 3 3EI
(2)在B截面作用一单位力偶, 如图(c)所示
B2
解:由功的互等定理P wC1 mB2
P
l
2
得:P wC1 m
2 2EI
由此得:C
wC1
ml 2 8EI
能量法
例:长为 l 、直径为 d 的圆杆受一对横向压力 P 作用, 求此杆长度的伸长量。已知E和m。
能量法
解:由位移互等定理知,①杆的伸长量等于 ②杆直径的减小量
l ① d ② e d e d
P
4 P d
AE d E
能量法
例:已知简支梁在均布载荷 q 作用下,梁的中点挠
度 w 5ql 4 。求梁在中点集中力P作用下(见 384EI
图),梁的挠曲线与梁变形前的轴线所围成的面积A。
A
能量法
A
5ql 4 qA P
384EI
能量法
5Pl 4 A
384EI
§12-6 虚功原理
PP11
PP22
相关文档
最新文档