计算机图形学 第五章 图形变换

合集下载

计算机图形学PPT神奇的齐次坐标与二维图形变换

计算机图形学PPT神奇的齐次坐标与二维图形变换
0 P’
例如:关于X轴对称
P(x,y)
P’(x’,y’)
x’=x
x
y’=-y
2 几何变换
以二维为例:
错切:也称为剪切、错位变换,用于产生弹性物体的变形处理。
y
y
y
(a)原图
x
x
x
(b)沿x方向错切
(c)沿y方向错切
2 几何变换
以二维为例: 错切:也称为剪切、错位变换,用于产生弹性物体的变形处理。
2 几何变换
以二维为例:
平移:指将p点沿直线路径从一个坐标位置移到另一个坐标位置的重定位 过程,是 一种不产生变形而移动物体的刚体变换。
y
P’
PT
Ty
Tx
0
x
P(x,y)
P’(x’,y’)
x’=x+Tx y’=y+Ty
Tx :x方向的平移矢量 Ty :y方向的平移矢量
2 几何变换
以二维为例:
比例:对p点相对于坐标原点沿x方向放缩Sx倍,沿y方向放缩Sy倍。其中Sx 和Sy称 为比例系数。
旋转
x’=xcosθ -ysinθ y’=xsinθ +ycosθ
cos sin 0
sin cos 0
0
0 1
3 齐次坐标的引入
T1
T3
a b p
x' y' 1 x y 1T2D x y 1c d q
l m s
T2
T4
其中:
T1是对图形进行比例、旋转、对称、 错切等变换;
T2是对图形进行平移变换; T3是对图形作投影变换; T4则可以对图形作整体比例变换。
旋转
x’=xcosθ -ysinθ y’=xsinθ +ycosθ

计算机图形学_ 二维图形变换_53 二维图形变换原理及齐次坐标_

计算机图形学_ 二维图形变换_53 二维图形变换原理及齐次坐标_
普通坐标×h→齐次坐标 齐次坐标÷h→普通坐标 当h = 1时产生的齐次坐标称为“规格化坐标”,因为前n个 坐标就是普通坐标系下的n维坐标
为什么要采用齐次坐标?
在笛卡儿坐标系内,向量(x,y)是位于z=0的平面上的点 ;而向量(x,y,1)是位于z=1的等高平面上的点
对于图形来说,没有实质性的差别,但是却给后面矩阵运 算提供了可行性和方便性
假如变换前的点坐标为(x,y),变换后的点坐标为(x*,y* ),这个变换过程可以写成如下矩阵形式:
x*, y*x,
x* a1x b 1 y c1
y•M
x*, y*x
a1
y
1
b 1
c1
a2 b2 c2
上两式是完全等价的。对于向量(x,y,1),可以在几何意义 上理解为是在第三维为常数的平面上的一个二维向量。
这种用三维向量表示二维向量,或者一般而言,用一个n+1维 的向量表示一个n维向量的方法称为齐次坐标表示法
n维向量的变换是在n+1维的空间进行的,变换后的n维结果 是被反投回到感兴趣的特定的维空间内而得到的。
如n维向量(p1,p2,...,pn)表示为(hp1,hp2,...,hpn,h), 其中h称为哑坐标。 普通坐标与齐次坐标的关系为“一对多”:
变换图形就是要变换图形的几何关系,即改变顶点的坐 标;同时,保持图形的原拓扑关系不变
仿射变换(Affine Transformation或 Affine Map)是一 种二维坐标到二维坐标之间的线性变换 (1)“平直性”。即:直线经过变换之后依然是直线
(2)“平行性”。即:平行线依然是平行线,且直线上 点的位置顺序不变)
采用了齐次坐标表示法,就可以统一地把二维线形变换表示 如下式所示的规格化形式:

图形的变换归纳总结

图形的变换归纳总结

图形的变换归纳总结图形变换是数学中的一个重要概念,它涉及到图形在平面内的平移、旋转、镜像和缩放等操作。

通过对图形变换的归纳总结,我们能够更好地理解其规律和性质,并应用于解决实际问题。

本文将从平移、旋转、镜像和缩放四个方面来归纳总结图形变换的相关知识。

一、图形平移图形平移是指在平面内保持大小和形状不变的情况下,将图形沿平行向量平移一定距离。

平移变换的特点是新旧图形相似,仅位置发生改变。

平移变换常用符号表示为T(x, y) = (x + a, y + b),其中T表示平移操作,(x, y)表示原始图形的坐标,而(a, b)表示平移向量的坐标。

通过平移变换,我们可以得到同一图形在不同位置的变化。

二、图形旋转图形旋转是指将图形按照某一中心点旋转一定角度,使其形状和大小保持不变。

旋转变换的特点是新旧图形相似,仅方向发生改变。

旋转变换常用符号表示为R(θ),其中R表示旋转操作,θ表示旋转的角度。

旋转角度可正可负,表示顺时针或逆时针方向的旋转。

通过旋转变换,我们可以得到同一图形在不同方向的变化。

三、图形镜像图形镜像是指将图形沿一条直线作对称操作,使其形状和大小保持不变。

镜像变换的特点是新旧图形相似,仅位置关系发生改变。

镜像变换常用符号表示为M(x, y),其中M表示镜像操作,(x, y)表示原始图形的坐标。

镜像操作可以分为水平镜像和垂直镜像两种情况。

通过镜像变换,我们可以得到同一图形在不同位置关系下的变化。

四、图形缩放图形缩放是指按照一定的比例改变图形的大小,使其形状保持不变。

缩放变换的特点是新旧图形相似,仅大小发生改变。

缩放变换常用符号表示为S(k),其中S表示缩放操作,k表示缩放的比例因子。

比例因子k可以大于1表示放大操作,也可以小于1表示缩小操作。

通过缩放变换,我们可以得到同一图形在不同大小比例下的变化。

通过对图形变换的归纳总结,我们可以发现以下规律:1. 平移、旋转和缩放操作都可以通过坐标变换实现,其中平移操作相对简单,仅需改变图形的坐标即可;旋转和缩放操作则需要通过旋转矩阵和缩放矩阵进行计算。

计算机图形学5多边形扫描转换和区域填充

计算机图形学5多边形扫描转换和区域填充
这些属性独立于填充模式或填充颜色而设置这些属性独立于填充模式或填充颜色而设置且它们提供与且它们提供与线属性参数线属性参数线型线型线宽和线颜色线宽和线颜色相同的选择相同的选择也就是说也就是说可以以点线或划线可以以点线或划线宽或扁以及任何可用的颜色宽或扁以及任何可用的颜色来显示区域的边来显示区域的边而不必考虑怎样填充区域而不必考虑怎样填充区域
多边形分为凸多边形、凹多边形、含内环的多边 形等:
(1)凸多边形 任意两顶点间的连线均在多边形内。
(2)凹多边形
任意两顶点间的连线有不在多边形内的部分。
凸多边形
凹多边形
含内环的多边形
有关概念
1) 区域:一组相邻而且又相连的像素,而且具有 相同属性的封闭区域。 2)种类:①单域 ②复合域
3) 区域填充:以某种属性对整个区域进行设置的过 程。
另外使用增量法计算时,我们需要知道一条边何时不再与下 一条扫描线相交,以便及时把它从有效边表中删除出去,避免 下一步进行无谓的计算。 综上所述,有效边表AET的每个结点存放对应边的有关信息 如下:
x
△x
ymax
next
其中x为当前扫描线与边的交点,ymax是边所在的最大扫描 线值,通过它可以知道何时才能“抛弃”该边,△x表示从 当前扫描线到下一条扫描线之间的x增量即斜率的倒数。 next为指向下一条边的指针
P6(2,7)
P4(11,8) F G B P5(5,5) P3(11,3) C D
A
1
0 1
P1(2,2) P2(5,1) 2 3 4 5 6 7
E
8
9
10
11
一个多边形与若干扫描线
7
把多边形所有 的边全部填成这 样的结构,插到 这个指针数组里 面来。

图形变换概述

图形变换概述

0 1 ty
100÷÷÷÷÷÷÷÷÷
(x',y') (x,y)
0
辽宁师范大学计算机与信息技术学院 宋传鸣
X
《计算机图形学》
平移变换的特性
二维图形变换 平移是不产生变形而移动物体的刚体变换,物体上
图形变换概述 的每个点移动相同的坐标
几何变换
直线的平移是将平移方程加到线的每个端点上
平移变换
平移变换 旋转变换 放缩变换 错切变换
关于原点的对称变换 关于直线y=x的对称变换 关于直线y= –x的对称变换
对称变换 复合变换
视象变换
(-x,y) Y(x,y)
视窗变换
(y,x)
(-y,-x)
X
辽宁师范大学计算机与信息技术学院 宋传鸣
(-x,-y) (x,-y)
《计算机图形学》
旋转变换的特性
二维图形变换 旋转是一种不变形地移动物体的刚体变换,物体上
图形变换概述 的所有点旋转相同的角度
几何变换
直线段旋转是将每个端点旋转指定的旋转角
平移变换 旋转变换 放缩变换
多边形的旋转则是将每个顶点旋转指定的旋转角 曲线的旋转则是旋转控制取样点
0 -1 0
100÷÷÷÷÷÷÷÷
(xⅱ y
1)= (x
y
1)骣 ççççççç桫100
0 -1 0
100÷÷÷÷÷÷÷÷
Y (x,y)
X
辽宁师范大学计算机与信息技术学院 宋传鸣
(x,-y)
《计算机图形学》
对称(Mirror)变换
二维图形变换 关于Y轴进行对称变换的解析表示
图形变换概述
x'= –x

投影变换(计算机图形学)资料

投影变换(计算机图形学)资料

2009-2010-2:CG:SCUEC
10
正投影之三视图
当投影面与某个坐标轴垂直 时,得到的空间物体的投影 为正投影(三视图)
1. 三视图分为正视图、侧视图
和俯视图.
2. 对应的投影平面分别与x轴, y 轴,z轴垂直。
三视图
三视图常用于工程制图,因为在其上可以测量距离和
角度。但一个方向上的视图只反映物体的一个侧面,只有 将三个方向上的视图结合起来,才能综合出物体的空间结 构和形状。
2009-2010-2:CG:SCUEC
4
投影变换的概念
近平面
远平面 Z
X
投影平面 V′ U′
窗口 X′ Y′
Y 投影线
视点
透视投影
视点:三维空间中任意选择的一个点,亦称为投影中心 投影平面:不经过视点的任意一个平面 投影线:从视点向投影平面的引出的任意一条射线
2009-2010-2:CG:SCUEC
x
xq zc
yq
0
0 zc
xc yc
0 0
y z
xp
xq q
,
yp
yq q
q 0
0
1
zc
1
2009-2010-2:CG:SCUEC
8
平行投影
平行投影可以看成投影中心移向无穷远时的极限情况。
设给定的投影方向为( xd , yd , zd )。在要投影的对象附近任取一点
(xs , ys , zs),以此点为起点作一射线,其指向是投影方向的反方向,
oz 和 轴的单位方向向量为 (a11, a12 , a13 ) 、 (a21, a22 , a23 ) 和
(a31, a32 , a33 ) ,那么从坐标系oxyz到 o xyz 的变换是

计算机图形学 图形变换ppt课件

计算机图形学 图形变换ppt课件

2
变换的数学基础(2/4)
矢量的数乘
ku x k U ku y ku z
矢量的点积
U V u v u v u v x x y y z z
性质
U V V U
U V 0 U V
U U 0 U 0
北大计算机系多媒体与人机交互
北大计算机系多媒体与人机交互
10
齐次坐标与二维变换的矩阵表示(3/4)
标准齐次坐标(x,y,1) 二维变换的矩阵表示
平移变换
x 1 0 t x x x 记为 T y 0 1 t y ( t , t ) y y x y 1 0 0 1 1 1
14
复合变换及变换的模式(3/6)
变换的结果与变换的顺序有关(矩阵乘 法不可交换)
Translate2D(1,0); Rotate2D(45); House(); Rotate2D(45); Translate2D(1,0); House();
北大计算机系多媒体与人机交互
15
复合变换及变换的模式(4/6)
变换具有统一表示形式的优点
便于变换合成 便于硬件实现
北大计算机系多媒体与人机交互
12
复合变换及变换的模式(1/6)
问题:如何实现复杂变换?
变换分解 变换合成
P x r( r,y r)
关于任意参照点
的旋转变换
R ( x , y ; ) T ( x , y ) R ( ) T ( x , y ) r r r r r r
关于y轴的对称变换
1 0 0 SYy 0 1 0 0 sin y sin cos 1 0 0 0 x x 记为 R 0 y ( ) y 1 1 1

第5章图形变换2

第5章图形变换2
T﹦TyTxTz 2.一般三维旋转变换(General 3D rotation) 更一般的旋转变换是绕空间任意轴作旋转变换。我 们可以用平移变换与绕坐标轴旋转变换的复合变换得到 其变换公式。如果给定旋转轴和旋转角,可以通过平移 及旋转给定轴使其与某一坐标轴重合,绕坐标轴完成指 定的旋转,然后再用逆变换使给定轴回到其原始位置。 各次变换矩阵乘起来即形成复合变换。
2015/12/17
计算机图形学演示稿 纪玉波制作 (C)
23
5.3.1 投影变换分类(Projection transformation classification) 在投影变换中,观察平面称为投影面(projection plane )。 将三维图形投影到投影面上,有两种基本的投影方式,即平 行 投 影 (parallel projection) 和 透 视 投 影 (perspective projection)。在平行投影中,图形沿平行线变换到投影面上; 对透视投影,图形沿收敛于某一点的直线变换到投影面上, 此点称为投影中心(center of projection),相当于观察点,也 称为视点(viewing position)。投影线与投影面相交在投影面 上形成的图象即为三维图形的投影。 平行投影和透视投影区别在于透视投影的投影中心到投 影面之间的距离是有限的,而平行投影的投影中心到投影面 之间的距离是无限的。当投影中心在无限远时,投影线互相 平行,所以定义平行投影时,给出投影线的方向就可以了, 而定义透视投影时,需要指定投影中心的具体位置。
计算机图形学演示稿 纪玉波制作 (C)
18
5.2.4 对称变换(Reflection) 三维对称变换可以是关于给定对称轴的或者是关 于给定对称平面的变换。关于给定对称轴的对称变换 等价于绕此轴旋转 180°,可以直接使用已讨论过的 相对于轴线的旋转变换公式。关于给定对称平面的对 称变换其最简单的是对称于坐标平面的变换。比如, 空间一点 P(x,y,z) 对XY 坐标平面对称变换时,只需改 变z 坐标的正负号,其它两坐标不变,因此,其变换 的矩阵表示为:

图形变换(转)

图形变换(转)

图形变换(转)主要内容:图形处理是CAD/CAM中的关键技术,包括图形⽣成、编辑和图形变换。

计算机图形学计算机图形学的概念计算机图形学的研究内容图形变换点的变换⼆维图形的变换⼆维图形的齐次变换⼆维图形的基本变换复合变换三维图形的齐次变换三维图形的基本变换复合变换1、什么是计算机图形学计算机图形学(Computer Graphics)是近30年来发展迅速、应⽤⼴泛的新兴学科,是计算机科学最活跃的分⽀之⼀。

计算机图形学是研究在计算机中如何表⽰图形,以及利⽤计算机进⾏图形的计算、处理和显⽰的相关原理与算法的⼀门学科。

随着计算机技术的发展,计算机图形学在CAD/CAM等计算机应⽤领域中占有越来越重要的地位。

计算机图形学的研究内容是⼗分丰富的。

虽然许多研究⼯作已经进⾏了多年,取得了不少成果,但随着计算机技术的进步和图形显⽰技术应⽤领域的扩⼤和深⼊,计算机图形学的研究、开发与应⽤还将得到进⼀步的发展。

2、图形变换的概念根据需要将已定义的图形从屏幕的某⼀位置移动到另⼀位置,或改变图形的⼤⼩和形状或利⽤已有的图形⽣成复杂的图形,这种图形处理的⽅法称为图形的⼏何变换,简称图形变换。

图形变换是计算机图形学的核⼼基础,通过图形变换,能够很⽅便地由简单图形派⽣出所需要的图形。

图形变换主要包括⼆维图形和三维图形的⼏何变换,投影变换等。

图形变换通常采⽤矩阵变换的⽅法,图形变换不同,其变换矩阵也不同,本节将重点介绍图形变换的矩阵⽅法及图形变换的程序设计。

2.1 点的变换在计算机绘图中,常常要进⾏诸如⽐例、对称、旋转、平移、投影等各种变换,图形可以⽤点集来表⽰,也就是点集定了,图形也就确定了。

如果点的位置变了,图形也就随之改变。

因此,要对图形进⾏变换,只要变换点就可以了。

由于点集可以⽤矩阵的⽅法来表达,因此对点的变换可以通过相应的矩阵运算来实现,即旧点(集)×变换矩阵矩阵运算新点(集)。

2.2 ⼆维图形变换⼆维图形变换主要包括⽐例,对称、错切、旋转、平移等。

计算机图形学第五章图形变换

计算机图形学第五章图形变换

计算机图形学第五章图形变换第五章图形变换重点:掌握⼆维⼏何变换、⼆维观察变换、三维⼏何变换以及三维观察变换。

难点:理解常⽤的平移、⽐例、旋转变换,特别是复合变换。

课时安排:授课4学时。

图形变换包括⼆维⼏何变换,⼆维观察变换,三维⼏何变换和三维观察变换。

为了能使各种⼏何变换(平移、旋转、⽐例等)以相同的矩阵形式表⽰,从⽽统⼀使⽤矩阵乘法运算来实现变换的组合,现都采⽤齐次坐标系来表⽰各种变换。

齐次坐标系齐次坐标系:n维空间中的物体可⽤n+1维齐次坐标空间来表⽰。

例如⼆维空间直线ax+by+c=0,在齐次空间成为aX+bY+cW=0,以X、Y和W为三维变量,构成没有常数项的三维平⾯(因此得名齐次空间)。

点P(x、y)在齐次坐标系中⽤P(wx,wy,w)表⽰,其中W是不为零的⽐例系数。

所以从n维的通常空间到n+1维的齐次空间变换是⼀到多的变换,⽽其反变换是多到⼀的变换。

例如齐次空间点P(X、Y、W)对应的笛卡尔坐标是x=X/W和y=Y/W。

将通常笛卡尔坐标⽤齐次坐标表⽰时,W的值取1。

采⽤齐次坐标系可以将平移、⽐例、旋转这三种基本变换都以相同的矩阵形式来表⽰,并统⼀地⽤矩阵乘法来实现变换的组合。

齐次坐标系在三维透视变换中有更重要的作⽤,它使⾮线形变换也能采⽤线形变换的矩阵表⽰形式。

5.1 ⼆维⼏何变换⼆维⼏何变换就是在平⾯上对⼆维点的坐标进⾏变换,从⽽形成新的坐标。

⼆维⼏何变换主要包括:平移、⽐例、旋转、对称、错切、仿射和复合变换。

5.1.1 ⼆维平移变换如图所⽰,它使图形移动位置。

新图p'的每⼀图元点是原图形p中每个图元点在x和y⽅向分别移动Tx和Ty产⽣,所以对应点之间的坐标值满⾜关系式x'=x+Txy'=y+Ty可利⽤矩阵形式表⽰成:[x' y']=[x y]+[Tx Ty]简记为:P'=P+T,T=[Tx Ty]是平移变换矩阵(⾏向量)。

从矩阵形式来看,平移变换是矩阵加法,⽽⽐例和旋转变换则是矩阵乘法。

图形变换基本概念

图形变换基本概念

图形变换基本概念图形变换是计算机图形学中的一个重要概念,它通过对图形进行特定操作来改变其形状、大小或位置。

图形变换常用于图像处理、动画制作和计算机图形学等领域,对于实现图像变换效果有着重要的作用。

本文将介绍几种常见的图形变换方法及其基本概念。

一、平移变换(Translation)平移变换是一种基本的图形变换方法,它将图形沿着指定的方向进行移动。

平移变换可以通过改变图形中所有点的坐标来实现。

设原始坐标为(x,y),平移变换后的坐标为(x',y'),则有如下公式:x' = x + dxy' = y + dy其中dx和dy分别是水平和垂直方向上的平移量。

通过改变dx和dy的值,可以实现图形的平移。

二、旋转变换(Rotation)旋转变换是将图形绕着指定点旋转一定角度的操作。

旋转变换可以通过改变图形中每个点的坐标来实现。

设原始坐标为(x,y),旋转变换后的坐标为(x',y'),则有如下公式:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ其中θ表示旋转的角度。

通过改变θ的值,可以实现图形的旋转。

三、缩放变换(Scaling)缩放变换是将图形按比例进行放大或缩小的操作。

缩放变换可以通过改变图形中每个点的坐标来实现。

设原始坐标为(x,y),缩放变换后的坐标为(x',y'),则有如下公式:x' = x * sxy' = y * sy其中sx和sy分别表示在水平和垂直方向上的缩放比例。

通过改变sx和sy的值,可以实现图形的缩放。

四、错切变换(Shearing)错切变换是将图形在水平或垂直方向上斜向延伸的操作。

错切变换可以通过改变图形中每个点的坐标来实现。

设原始坐标为(x,y),错切变换后的坐标为(x',y'),则有如下公式:x' = x + myy' = nx + y其中n和m分别表示在水平和垂直方向上的错切系数。

计算机图形学基础教程(Visual C++版)第05章 二维图形变换与裁剪(清华大学出版社 孔令德)

计算机图形学基础教程(Visual C++版)第05章 二维图形变换与裁剪(清华大学出版社 孔令德)
x O
y
5-19 设备坐标系
图形学中常用的坐标系
规格化设备坐标系(Normalized Device Coordinate,NDC) 将设备坐标系规格化到(0.0,0.0)到(1.0,1.0)的 范围内而定义的坐标系。 规格化设备坐标系独立于具体输出设备。 一旦图形变换到规格化设备坐标系中,只要作一个简 单的乘法运算即可映射到具体的设备坐标系中。
wyt (xw,yw) 0000 wyb
vyt (xv,yv) 0000 vyb
wxl
wxr
vxl
已知窗口内的一点P的坐标(xw,yw),求视区中 对应点P’的坐标(xv,yv) 这属于相对于任一参考点的二维几何变换
vxr
变换步骤为:
1.将窗口左下角点(wxl,wyb)平移到观察坐标系 原点
写成方程为:
xv S x xw vxl wxl S x yv S y yw vyb wyb S y
则窗视变换的展开式为:

xv a x w b yv c y w d
裁剪
图形变换到观察坐标系下,需要按照窗口进行 裁剪,即只保留窗口内的那部分图形,去掉窗 口外的图形 假设窗口是标准矩形,即边与坐标轴平行的矩 形,由 上(y=wyt)、 下(y=wyb)、 左(x=wxl)、 右(x=wxr) 四条边描述
30
裁剪——点的裁剪
点是构成图形的基本元素 点的裁剪:
wxl x wxr, 且wyb y wyt
把图形全部打散成点进行裁剪?
31
二维直线段的裁剪
直线的裁剪是二维图形裁剪的基础 裁剪的实质是判断直线是否与窗口相交,如相 交则进一步确定位于窗口内的部分

计算机图形学-第5章-几何变换课件

计算机图形学-第5章-几何变换课件
二维变换矩阵:
a d g T2D b e h
c f i
注意:T2D可看作三个行向量,其中 ✓[1 0 0]:表示x 轴上的无穷远点 ✓[0 1 0]:表示y 轴上的无穷远点
✓[0 0 1]:表示原点
•计算机图形学-第5章-几何变换
5.3.4 二维几何变换的一般形式
从变换功能上可把T2D分为四个子矩阵
2.窗口区:用户指定的任一区域(W) n 窗口区W小于或等于用户域WD n 小于用户域的窗口区W叫做用户域的子域。
n 窗口可以有多种类型,矩形窗口、圆形窗口、多边形窗口等等 n 窗口可以嵌套,即在第一层窗口中可再定义第二层窗口,在第I层窗
口中可再定义第I+1层窗口等等。
•计算机图形学-第5章-几何变换
2.错切变换
3) 当b0且d0时, (x* y* 1)=(x+by dx+y 1) :图形沿x,y两个方向作错切位
移。 ∴错切变换引起图形角度关系的改变,甚至导致图形
发生变形。
•计算机图形学-第5章-几何变换
5.3.4 二维几何变换的一般形式
设图形上一点的坐标为P(x,y),经过二维几何变换后的坐标为P’(x’, y’),变换矩阵一般可写为:
by
dx ey
1
0 0 1
当b=d=0,a=-1,e=1时,(x* y* 1)=(-x y 1):与y轴对称的反射变换。 当b=d=0,a=1,e=-1时,(x* y* 1)=( x -y 1):与x轴对称的反射变换。 当b=d=0,a=e=-1时,(x* y* 1)=(-x -y 1):与原点对称的反射变换。 当b=d=1,a=e=0时,(x* y* 1)=(y x 1):与y=x对称的反射变换。 当b=d=-1,a=e=0时,(x* y* 1)=(-y -x 1):与y=-x对称的反射变换。

新-第5章之一-三维图形生成和变换技术-1

新-第5章之一-三维图形生成和变换技术-1
j B j,m ( v ) = C m v j (1 − v ) m − j
计 机图 机图

(i=0 如果用一系列直线段将相邻的点 Pi0,Pi1…Pim(i=0,1…n) n) 和 P0j,P1j…Pnj(j=0,l,…m)—一连接起来组成一张空间网格 (j=0 一连接起来组成一张空间网格 称这张网络为m 次曲面特征网格,如图所示。 ,称这张网络为m×n次曲面特征网格,如图所示。 类似于Bezier曲线情况,特征网格框定了P( Bezier曲线情况 类似于Bezier曲线情况,特征网格框定了P(u,v)的大致形 是对特征网格的逼近。 状;P(u,v)是对特征网格的逼近。 p33 p03 p13 p23 3*3次的特 3*3次的特 征曲面网格 p02 p32 p12 p22 p01 p31 p11 p
计 机图 机图

第五章
三维图形生成和变换技术
5.1 第五章 三维图形的概念 三维图形生成和变换技术 5.1在计算机图形学中最重要的部分还是三维图形生 三维图形的概念 成与变换, 不仅人们对它感兴趣, 成与变换 , 不仅人们对它感兴趣 , 而且在实际应用中 5.2 自由曲面的生成 更加广泛。 更加广泛 。 三维图形生成比起二维图形生成要复杂得 5.3 三维图形变换 多 , 其根本原因在于我们的图形输入设备和输出设备 5.4 三维图形剪裁和消隐技术 基本上都是二维的, 基本上都是二维的 , 用这些二维的图形设备去表现空
r (u, v ) = r1 u) + av (
式中a是沿母线方向的常矢量。 式中a是沿母线方向的常矢量。
(o <= u, v <= 1)
图5.4 柱面
计 机图 机图 学
Bezier(贝塞尔 贝塞尔) 二、Bezier(贝塞尔)曲面

计算机图形学三维图形变换

计算机图形学三维图形变换

主视图变换矩阵
1 0 0 0 1 0 0 0 1 0 0 0
Tv
0 0
0 0
0 1
0
0
0 0
0
0
பைடு நூலகம்
0
0
1 0 0 0
0 0 0 1 0 0
0
0
0
1
0
0 0 1
0
0 0 1
俯视图变换矩阵
1 0 0 0 1
0
0 0 1 0 0 0
TH
0 0
1 0
0 0
0 0 0 0
cos(90) sin(90)
三维图形变换
基本几何变换
基本几何变换都是相对于原点和坐标
轴进行的几何变换,有平移、缩放和 旋转等。在以下的讲述中,均假设用
p(x, y, z) 表示三维空间上一个未被变 换的点,而该点经过某种变换后得到 的新点用 p'(x', y', z') 表示。
平移变换
平移是指将点沿直线路径从一个坐标位置移动 到另一个坐标位置的一个重定位过程。
0 1
0
0
0 0
0 0 0 1 0 0
0
0
0
1
0
0
0
1
0
0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
1 0 0 0
0
Rx ( )
0
c
d b
b
d c
0
0
dd
0 0 0 1
Ry ( )
d 0 a 0
Ry
(
)
0
a
1 0
0 d

计算机图形学实用教程第5章 图形变换与裁剪1

计算机图形学实用教程第5章 图形变换与裁剪1
v yt v yb wyt wyb ( yw wyb ) v yb
(x w , y w)
yb
yv
Ow Yu
W xl 视图区
W xr
Xw
令பைடு நூலகம்
V yt
(x v , y v)
V yb

xv axw c
yv byw d
Ou
V xl
V xr
Xu
窗口与视图区的对应关系
本章内容
5.基本几何变换的齐次坐标表示
平移变换
1 y 1 0 Tx 0 1 Ty 0 0 1
x
比例变换
y 1 x
x
旋转变换
逆时针为正
y 1 x
S x y 1 0 0
0 Sy 0
0 0 1
x
y 1 x
cos sin 0 y 1 sin cos 0 0 1 0
当 S x S y时,变换前的图形与变换后的图形相似 当 S x S y 1时,图形将放大,并远离坐标原点 当 0 S x S y 1 时,图形将缩小,并靠近坐标原点 当 S x S y时,图形将发生畸变
3.旋转变换(rotation) 点P绕原点逆时针转θ度角 (设逆时针旋转方向为正方向)
指相对于原点的比例变换
S x 平行于x轴的方向上的缩放量 S y 平行于y轴的方向上的缩放量
x
y
几何关系
x' x S x y' y S y
y
相对于原点的比例变换
重心
矩阵形式
x
y x
S x y 0
0 Sy

计算机图形学第五讲图形变换ppt课件

计算机图形学第五讲图形变换ppt课件
0 0 1 20
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
旋转变换ቤተ መጻሕፍቲ ባይዱ
• 将坐标系平移回原来的原点
1 0 0
x*y*1 x2 y2 1 0 1 0x2 y2 1 Txf yf
二维图形的几何变换
• 设二维图形变换前坐标为(x,y,1),变换后为
(x*,y*,1)
a d g

1.
二维变换矩阵
T2D
b
e
h
c f i
• 注意:T2D可看作三个行向量,其中 • [1 0 0]:表示x 轴上的无穷远点
• [0 1 0]:表示y 轴上的无穷远点
• [0 0 1]:表示原点
9
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
x*y*1 xy1 c so in c ss io n 0 0 s xco ys sin xsi n yco1 s
0 0 1
14
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
3、 当h=1时产生的齐次坐标称为“规格化坐
标”,因为前n个坐标就是普通坐标系下的n维坐
标。
7
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章图形变换重点:掌握二维几何变换、二维观察变换、三维几何变换以及三维观察变换。

难点:理解常用的平移、比例、旋转变换,特别是复合变换。

课时安排:授课4学时。

图形变换包括二维几何变换,二维观察变换,三维几何变换和三维观察变换。

为了能使各种几何变换(平移、旋转、比例等)以相同的矩阵形式表示,从而统一使用矩阵乘法运算来实现变换的组合,现都采用齐次坐标系来表示各种变换。

齐次坐标系齐次坐标系:n维空间中的物体可用n+1维齐次坐标空间来表示。

例如二维空间直线ax+by+c=0,在齐次空间成为aX+bY+cW=0,以X、Y和W为三维变量,构成没有常数项的三维平面(因此得名齐次空间)。

点P(x、y)在齐次坐标系中用P(wx,wy,w)表示,其中W是不为零的比例系数。

所以从n维的通常空间到n+1维的齐次空间变换是一到多的变换,而其反变换是多到一的变换。

例如齐次空间点P(X、Y、W)对应的笛卡尔坐标是x=X/W和y=Y/W。

将通常笛卡尔坐标用齐次坐标表示时,W的值取1。

采用齐次坐标系可以将平移、比例、旋转这三种基本变换都以相同的矩阵形式来表示,并统一地用矩阵乘法来实现变换的组合。

齐次坐标系在三维透视变换中有更重要的作用,它使非线形变换也能采用线形变换的矩阵表示形式。

5.1 二维几何变换二维几何变换就是在平面上对二维点的坐标进行变换,从而形成新的坐标。

二维几何变换主要包括:平移、比例、旋转、对称、错切、仿射和复合变换。

5.1.1 二维平移变换如图所示,它使图形移动位置。

新图p'的每一图元点是原图形p中每个图元点在x和y方向分别移动Tx和Ty产生,所以对应点之间的坐标值满足关系式x'=x+Txy'=y+Ty可利用矩阵形式表示成:[x' y']=[x y]+[Tx Ty]简记为:P'=P+T,T=[Tx Ty]是平移变换矩阵(行向量)。

从矩阵形式来看,平移变换是矩阵加法,而比例和旋转变换则是矩阵乘法。

若这三种变换都能运用乘法来实现的话,我们就可以实现三种变换的任意组合。

为了实现这个目的,一般采用齐次坐标系来表示这三种变换,齐次坐标系中的平移变换矩阵形式是5.1.2 二维比例变换如图所示,它改变显示图形的比例。

新图形p'的每个图元点的坐标值是原图形p中每个图元点的坐标值分别乘以比例常数Sx和Sy,所以对应点之间的坐标值满足关系式x'=x·Sxy'=y·Sy可利用矩阵形式表示成:简记成p'=P·S,其中是比例变换矩阵。

在齐次坐标系中的比例变换矩阵形式是:5.1.3 二维旋转变换二维旋转变换:图形相对坐标原点的旋转如图所示,它产生图形位置和方向的变动。

新图形p'的每个图元点是原图形p每个图元点保持离坐标原点距离不变并绕原点旋转θ角产生的,并以逆时针方向旋转为正角度,对应图元点的坐标值满足关系式x'=xcosθ-ysinθy'=xsinθ+ycosθ用矩阵形式表示成简记为P'=P·R,其中是旋转变换矩阵。

在齐次坐标系中的比例变换矩阵形式是5.1.4 二维对称变换二维对称变换(或称反射变换)是产生物体镜像的一种变换,该变换实际上是比例变换的几种特殊情况。

1、以y轴为对称线的对称变换变换后,图形点集的x坐标值不变,但符号相反;y坐标值不变。

矩阵表示形式为:2、以x轴为对称线的对称变换变换后,图形点集的x坐标值不变;y坐标值不变,但符号相反。

矩阵表示形式为:3、以原点为对称的对称变换变换后,图形点集的x和y坐标值不变,但符号相反。

矩阵表示形式为:4、以直线y=x为对称线的对称变换变换后,图形点集的x和y坐标对调。

矩阵表示形式为5、以直线y=-x为对称线的对称变换变换后,图形点集的x和y坐标对调,但符号相反。

矩阵表示形式为5.1.5 二维错切变换二维错切变换:是一种会使物体形状发生变化的变换。

常用的错切变换有两种:改变x坐标值和改变y坐标值。

1、图形沿x方向的错切数学表达式为x'=x+SH x·y SH x≠0y'=y矩阵表示为2、图形沿y方向的错切数学表达式为x'=xy'=SH y·x+y SH y≠0矩阵表示为5.1.6 二维仿射变换二维仿射变换的形式为:x'=a xx x+a xy y+b xy'=a yx x+a yy y+b y变换的坐标x'和y'都是原始坐标x和y的线性函数。

参数aij 和bk是由变换类型确定的常数。

仿射变换具有平行线转换成平行线和有限点映射到有限点的一般特性。

平移、比例、旋转、对称和错切变换是二维仿射变换的特例,任何常用的二维仿射变换总可表示为这五种变换的组合。

5.1.7 二维复合变换二维复合变换:前面所讨论的图形变换是相对于坐标原点或坐标轴来进行的。

在实际中,常常需要相对于任意点或任意轴来进行变换。

为了做到这一点,可通过计算多个基本变换矩阵的乘积来得到总的变换矩阵或称为复合变换矩阵,从而实现任意顺序的组合变换。

常见的组合变换有:1、绕任意点的旋转绕任意点(或称基准点)(x r,y r)的旋转:该变换可分成如图所示的三个步骤来实现(1)平移物体使基准点位置被移到坐标原点;(2)绕坐标原点旋转;(3)平移物体使基准点回到原始位置。

该变换顺序的复合变换矩阵为:2、相对任意点的比例变换相对任意点(固定点)(x f,y f)的比例变换:该变换可分成如图所示的三个步骤来实现(1)平移物体使固定点与坐标原点重合;(2)相对于坐标原点的比例变换;(3)平移物体使固定点回到原始位置。

该变换顺序的复合变换矩阵为3、矩阵的组合特性即矩阵乘法满足结合率,不满足交换率。

在进行连续变换时一定要按变换次序进行变换矩阵的运算,否则不同次序的变换会产生不同的变换结果。

如下图所示。

5.2 二维观察变换在实际应用中,用户要求图形系统具有能从已有的图形显示数据(对应一个完整的图形)中方便地选出数据(对应某一区域的图形)进行显示的能力,我们把在用户坐标系中预先选定的将产生图形显示的区域称为窗口。

同样,在使用中用户也要求能控制显示图形在显示屏上的位置和大小,我们把在显示器坐标系中规定的显示图形区域称为视口。

观察变换就是把这种用户坐标系中窗口的图形变换到显示器的视口中以产生显示。

设用户选定的窗口范围为(wxl,wyl)和(wxr,wyr),视口范围为(vxl,vyl)和(vxr,vyr)。

将窗口中的图形转为视口中图形的过程:1、先平移窗口使其左下角与坐标原点重合;2、再比例变换使其大小与视口相等;3、最后再通过平移使其移到视口位置。

窗口中的全部图形经过与此相同的变换后便变换成视口中的图形了。

因此视见变换矩阵是:5.3 三维几何变换三维几何变换是二维几何变换的扩展。

三维齐次变换可用4×4矩阵表示。

平移变换 - 比例变换 - 旋转变换 - 绕空间任意轴的旋转变换 - 对称变换 -错切变换5.3.1 三维平移变换三维平移变换:将空间点(x,y,z)平移到新空间点(x',y',z'),齐次变换矩阵为:变换过程为:[x' y' z' 1]=[x y z 1]·T(T x,T y,T z)其中,T x,T y,T z分别为在x,y,z坐标轴方向上的平移量。

5.3.2 三维比例变换三维比例变换:沿各坐标轴方向分别乘以一个比例系数,以实现各个方向上的缩放功能。

比例变换矩阵为变换过程为[x' y' z' 1]=[x y z 1]·S(S x,S y,S z)其中,S x,S y,S z分别为在x,y,z坐标轴方向上的比例系数。

5.3.3 三维旋转变换三维旋转变换:是指将物体绕某个坐标轴旋转一个角度,所得到的空间位置变化。

我们规定旋转正方向与坐标轴矢量符合右手法则,即从坐标轴正值向坐标原点观察,逆时针方向转动的角度为正。

如图所示。

绕三个基本轴的旋转变换:1、绕z轴旋转θ角。

空间物体绕z轴旋转时,物体各顶点的x,y坐标改变,而z坐标不变。

绕z轴旋转矩阵为:2、绕x方向旋转θ角同理,绕x轴旋转变换矩阵为:3、绕y方向旋转θ角同理,绕y轴旋转变换矩阵为:5.3.4 绕空间任意轴的旋转变换图a:变换之前绕空间任意轴的旋转变换:先将图形随直线(旋转轴)一起移动和旋转并使直线与某一坐标轴重合,再将图形绕直线进行旋转变换,最后将旋转变换后的图形和直线一起作相反的旋转和移动并使直线回到原来位置。

具体变换步骤是:1、平移使点(x1,y1,z1)位于坐标原点,变换矩阵是:2、绕x轴旋转,使直线处在x-z平面上。

为此,旋转角应等于直线在y-z 平面上的投影与z轴夹角。

因此投影线与z轴夹角θ的旋转变换矩阵是:3、绕y轴旋转,使直线与z轴重合。

如图所示,直线与z轴夹角-φ的旋转变换矩阵是:4、进行图形绕直线即绕z轴旋转,旋转矩阵是:5、使直线回到原来位置,结果图形即为原图形绕指定直线旋转变换后的图形。

直线回到原来位置需要进行(3)~(1)的逆变换,其中:图形绕空间任意轴旋转的总变换矩阵是5.3.5 三维对称变换三维对称变换可以是关于给定对称轴的或者是关于给定对称平面的变换。

三维对称矩阵的建立类似于二维的。

关于给定对称轴的对称变换等价于绕此轴旋转180o。

关于平面的对称变换等价于四维空间中的180o旋转。

当对称平面是坐标平面时(x-y,或x-z,y-z),可以将此变换看成是左手系和右手系之间的转换。

上图给出了将坐标系从右手系转换到左手系的对称变换例子,该变换改变z坐标符号,保持x坐标和y坐标值不变,关于x-y平面的点对称变换矩阵为:类似的关于y-z平面和x-z平面的对称变换矩阵分别将x和y的值取反。

关于其它平面的对称变换可以由平移、旋转及坐标平面对称变换复合而得。

5.3.6 三维错切变换三维错切变换:在三维空间中,除了相对于x或y轴的变换以产生物体的变形外,还可产生相对于z轴的变形。

三维形体的错切变换矩阵为:其中,SH x1和SH x2为沿x方向的错切系数,SH y1和SH y2为沿y方向的错切系数,SH z1和SH z2为沿z方向的错切系数。

5.4 三维观察变换三维观察变换所起的作用是完成从用户空间选取的一部分物体描述变换到显示屏上指定的视口中的图形描述。

从用户的图象描述产生显示器上的图形描述的处理过程如图所示。

一、取景变换和规范化视见体变换取景变换即是完成从用户坐标系中的描述到观察坐标系中的描述的坐标变换,主要包括:1、观察平面的确定(即指定观察坐标系)(1)首先挑选一个用户坐标点称为观察参考点VRP,即该点为观察坐标系的原点;(2)其次,通过给定观察平面法向量来选择观察坐标系的Z v轴和观察平面方向;(3)第三,指定一观察向上向量,通过该向量来建立观察坐标系的Y v轴;(4)最后,确定观察点又称为投影中心(若为透视投影时)或确定投影方向(若为平行投影时)。

相关文档
最新文档