第7章 求矩阵特征值的数值方法
第7章矩阵特征值和特征向量的数值解
![第7章矩阵特征值和特征向量的数值解](https://img.taocdn.com/s3/m/69c7846ceffdc8d376eeaeaad1f34693dbef106d.png)
3 2.689 319 6.737 850 6.747 559 0.398 562 0.998 561 1.000 000
4 1.595 686 2.379 870 2.381 309 0.670 088 0.999 396 1.000 000
5 2.680 956 6.772 616 6.723 220 0.398 761 0.999 910 1.000 000
的常用方法是迭代每一步对向量 u (k ) 规范化。引入函数 max( u (k ) ),它表示取
向 量 u (k ) 中 按模 最大 的分 量,例 如, u (k ) =(2,-5,4)T,则 max( u (k ) )=-5,这 样
u(k) ma x(u
(k
)
)
的最大分量为
1,即完成了规范化。
7.1 幂法
(6) if mk m0 或 mk m0 (1 mk ) then 输
出 mk , vi (i 1,2,, n), 停止计算; (7) m0 mk ; k k 1; 返回第 3 步。
例 7.1.1 试用幂法求矩阵
7 3 - 2
A
3
4
-
1
- 2 -1 3
按模最大的特征值和相应的特征向量 ( 105 ) 。
k
u(k)
v(k)
0
0.4
0.5
0.6
0.666 667 0.833 33 1.000 00
1 2.833 335 7.000 06 7.166 673 0.395 349 0.976 744 1.000 00
2 1.604 652 2.372 096 2.395 352 0.669 902 0.990 291 1.000 000
矩阵特征值问题的数值方法.
![矩阵特征值问题的数值方法.](https://img.taocdn.com/s3/m/588b72284a7302768e9939a4.png)
矩阵特征值问题的数值方法矩阵特征值设A 是n 阶矩阵,x 是非零列向量. 如果有数λ 存在,满足那么,称x 是矩阵A 关于特征值λ的特征向量. 很显然一般地有主特征值的乘幂迭代法设n 阶矩阵A 的n 个特征值按模从大到小排序为:n 其对应的n 个线性无关的特征向量分别为:设是任意一个非零的n 维向量,则:假设,构造一个向量序列:则:或者:当时:如果是矩阵A 的关于特征值的一个特征向量,特征值个特征那么对于任意一个给定的,也是特征值的特征向量。
所以,是对主特征值对应的特征向量的近似。
如果则会变得很大或者如果,则会变得很大,或者如果,则会变得非常小,在实际计算中,为避免这种情况的出现需对做归一化处理况的出现,需对做归一化处理:由:左乘得:所以主特征值的近似值所以主特征值的近似值:残余误差向量定义为:当迭代次数充分大时,残余误差将充分小。
逆乘幂法:类似地,也可以求模最小特征值和对应的特征向量特征向量。
上述问题的主特征值问题就是矩阵A 的模最小特征值问题。
结果,逆乘幂法的迭代公式为:在实际应用中,无需计算逆矩阵,但需求解线性系统实对称矩阵的基本定理:对实对称矩阵A ,一定存在一个正交相似变换使得为对角矩阵且其对角矩阵P ,使得:为对角矩阵,且其对角的特征值元素为矩阵A 的特征值。
相似变换:相似变换保持矩阵特征值(但不是特征向量)不变不变。
(证明略)正交相似变换:中。
正交相似变换的例子—坐标旋转:叫旋转矩阵。
容易验证:。
适当选择旋转角,可消去xy 项—得到对角阵D 。
矩阵特征值问题的数值方法实对称矩阵的基本定理再看下面的例子:令:O 平面的坐标旋转变换适当同样地有:。
则是在x-O-z 平面的坐标旋转变换。
适当x z —D 。
选择旋转角可消去z 项得到对角阵实对称矩阵的Jacobi 方法:全部特征值和特征向量根据实对称矩阵的基本定理,求得矩阵A 的全部特征值的关键是找到正交相似变换矩阵P 使部特征值的关键,是找到正交相似变换矩阵P ,使得为对角阵。
西安科技大学研究生数值分析课件7章矩阵特征值与特征向量计算
![西安科技大学研究生数值分析课件7章矩阵特征值与特征向量计算](https://img.taocdn.com/s3/m/f36552756edb6f1aff001fbb.png)
7 矩阵特征值与特征向量地计算设A 为n 阶方阵,所谓A 地特征值问题是求数λ和非零向量x ,使x Ax λ=成立.数λ称作A 地一个特征值,非零向量x 称作与特征值λ对应地特征向量.求给定方阵地特征值与特征向量是先求解特征方程()||0E A ϕλλ=-=然后对应于每一个特征值i λ,再求解退化地齐次线性方程组()0i E A x λ-=从而得到A 地特征值i λ及对应地特征向量x .但是这种方法计算机很大,计算过程复杂,因此有必要研究相对简单地数值解法.本章主要介绍三类计算特征值地方法:计算大型(稀疏)矩阵主特征地幂法与反幂法,计算中小型(实对称)矩阵全部特征值地Jacobi 法,计算中小型矩阵全部特征值地QR 法.7.1 特征值估计在矩阵特征值计算中,有时需要对特征值所在范围给出一个估计.这里介绍一种从矩阵地元素出发,运用较简便地运算估计特征值地方法.定义7-1 设()n m ij A a C ⨯=∈,称由不等式||ii i z a R -≤在复平面上确定地区域为矩阵A 地第i 个盖尔圆(Gerschgorin 圆),并用i G 表示.其中1||ni ij j j i R a =≠=∑称为盖尔圆i G 地半径(1,2,,)i n =.定理7-1 矩阵()n m ij A a C ⨯=∈地一切特征值均落在它地n 个盖尔圆地并集中,即1(1,2,,)ni jj G i n λ=∈=.证明 设λ是A 地任一特征值,12(,,,)T n x x x x =是λ对应地特征向量.令01||max ||i i i nx x ≤≤=,则00i x ≠.由Ax x λ=,可得001()ni j j i j a x x λ==∑.即∑≠==-ni j j j j i i i i x a x a 000001)(λ于是有 000000011i i jni j j ji ni j j i jji i i R x x ax x aa ≤≤=-∑∑≠=≠=λ这表明任一特征值0i G λ∈,从而也在A 地第n 个盖尔圆地并集中.例7-1 估计矩阵10.10.20.30.530.10.210.310.50.20.30.14A ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥---⎣⎦地特征值范围. 解 A 地4个盖尔圆为:1:|1|0.6G z -≤ 2:|3|0.8G z -≤ 3:|1| 1.8G z +≤ 4:|4|0.6G z +≤画在复平面上其区域如图7-1所示.图7-1 例7-1盖尔圆分布图于是A 地全部特征值就在这4个盖尔圆地并集中.为了更确切地知道某个特征值落在哪个或哪几个盖尔圆地并集中,给出如下第二盖尔圆盘定理.定理7-2 若A 地n 个盖尔圆中,有m 个盖尔圆构成地一个连通域(所谓连通域,是指其中地任意两点都可以用位于该区域内地一条折线连接起来),且该连通域与其余n m -个盖尔圆严格分离,则在该连通域中恰好有A 地m 个特征值(重特征值按重数重复计算).特别地,每个孤立地盖尔圆恰有A 地一个特征值(证明从略).由定理2可知,在例1中2G 与4G 中各有A 地一个特征值,而1G 与3G 构成地连通部分中有两个特征值,但不能确定这两个特征值具体落在哪个盖尔圆中.例7-2 估计矩阵10.80.50A -⎡⎤=⎢⎥⎣⎦地特征值范围. 解 A 地两个盖尔圆为:1:|1|0.8G z -≤,2:|0|0.5G z -≤在复平面上地区域如图7-2所示.图7-2 例7-2盖尔圆分布图此时只能判断A 地两个特征值落在1G 与2G 地并集中,至于是每个盖尔圆中各有一个特征值还是两个特征值都落在其中一个盖尔圆上则无法确定.实际上,由于1,21(12λ=±,1,2||0.5λ=>,所以两个特征值都不会在盖尔圆2G 中,而是落在盖尔圆1G 中.对于某些矩阵,可利用相似变换矩阵具有相同特征值地性质得到更确切地特征值范围.设()ij n m A a ⨯=,取正数12,,,n d d d 构成对角阵12diag(,,,)n D d d d =,对A 作相似变换,令1()iij n n jd B DAD a d -⨯==,由于B 相似于A ,所以B 与A 地特征值完全相同,又由于B 与A 地主对角线元素对应相等,所以B 与A 地盖尔圆圆心相同.这表明,若适当选取正数12,,,n d d d ,可以改变盖尔圆地半径,从而有可能将相交地盖尔圆分离得到仅含一个特征值地孤立盖尔圆.选取12,,,n d d d 地一般方法是:欲使A 地第i 个盖尔圆i G 地半径大而其余盖尔圆变小,就取1i d >,其余1()j d j i =≠.例7-3 求矩阵2050.841011210A j ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦地特征值范围. 解 A 地3个盖尔圆为:1:|20| 5.8G z -≤,2:|10|5G z -≤,3:|10|3G z j -≤其中1G 与2G 相交,而3G 孤立.记3G 中所含地一个特征值为3λ,如图7-3所示.为分离2G 与1G ,可以让A 地第3行元素绝对值变大,第3列元素绝对值变小.现取diag(1,1,2)D =,则12050.44100.52410B DAD j -⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦图7-3 例3盖尔圆分布图 图7-4 例7-3分离后盖尔圆分布图其3个盖尔圆分别是:1:|20| 5.4G z '-≤,2:|10| 4.5G z '-≤,3:|10|6G z j '-≤ 显然,B 地盖尔圆是3个孤立地盖尔圆,如图7-4,注意,此情况下,3G '地半径变大了.例7-4 设矩阵()ij n n A a ⨯=按行严格对角占优,则A 可逆.证明 由线性代数知,A 可逆地充分条件是||0A ≠,而1||nj j A λ==∏(其中j λ是A 地特征值),所以只要证明0j λ≠即可(1,2,,)j n =. 设λ是A 地任一特征值,则必存在某个盖尔圆i G 使∑≠=≤-ij ij i ii a R a λ.若0j λ=,则有∑≠≤ij ij ii a a ,而这与A 按行严格对角占优矛盾,故应有0λ≠,由λ地任意性,得||0A ≠.7.2 幂法与反幂法在线性代数中,设A 是n 阶方阵,若A 存在n 个线性无关地特征向量,则称这n 个特征向量构成A 地一个完全地特征向量组.例如,对矩阵320230005A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,110430102B -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦通过求解特征方程,不难求出A 地三个特征值为1231,5λλλ===,B地三个特征值为1232,1λλλ===.方阵A 可以找到三个线性无关地特征向量,而方阵B 找不到三个线性无关地特征向量.我们称方阵A 可对角化,而B 不可对角化. 7.2.1 幂法幂法地基本思想是构造一个向量序列使之逼近主特征值(矩阵地按模最大地特征值)对应地特征向量,然后求出主特征值.该方法简单易行,但收敛速度较慢.现设()ij n n A a ⨯=有一个完全地特征向量组12,,,n x x x ,其对应地特征值是12,,,n λλλ.已知A 地主特征值是单根1λ,即特征值满足条件12||||||n λλλ>≥≥任取一个非零初始向量0u ,由矩阵A 构造向量序列102210110k k k u Au u Au A u u Au A u++=⎧⎪==⎪⎪⎨⎪==⎪⎪⎩由于A 地完全特征向量组可以作为向量空间n R 地一组基,因此0u 可由12,,,n x x x 线性表示,即有01122n n u a x a x a x =+++ (设10a ≠)于是011122211111121()()k k k k k n n nn kk k i i i k i u A u a x a x a x a x a x a x λλλλλλελ===+++⎡⎤=+=+⎢⎥⎣⎦∑ 其中21()nk i k i i i a x λελ==∑.注意到),,2(11n i i=<λλ,故当k →∞时,0k ε→,因此有111k k u a x λ≈由于1x 是主特征值1λ对应地特征向量,其乘上常数因子11k a λ仍为1λ地特征向量,故当k 充分大时,迭代向量k u 是1λ地特征向量地近似向量.为了利用迭代向量求出主特征值1λ地近似值,设()k i u 表示k u 地第i 个分量,则1111111()()()[]()()()k i i k ik i i k iu a x u a x ελε+++=+ 于是 11()lim()k ik k iu u λ+→∞= 这表明两相邻迭代向量对应分量地比值收敛于主特征值,亦即当k 充分大时,可用两相邻迭代向量地分量比作为主特征值地近似值,即11()()k ik iu u λ+≈若主特征值是A 地r 重实特征值,即12(1)r r n λλλ===≤≤,对应地r 个线性无关特征向量为12,,,n x x x .则有01111()r nkk k i k i i i i i i r u A u a x a x λλλ==+⎡⎤==+⎢⎥⎣⎦∑∑当k 充分大时,11rkk i i i u a x λ=≈∑即k u 仍为主特征值对应地特征向量地近似向量,相邻两迭代向量地分量比仍为主特征值地近似值.综上所述,有定理7-3 设A 是n 阶实矩阵,具有完全地特征向量组,主特征值是r 重根,即112||||||||(1)r r n r n λλλλ++>≥≥≥≤≤则对任意非零初始向量0u ,迭代向量0k k u A u = 满足 111lim(0)rki ikk i u a x a λ→∞==≠∑ ,11()lim ()k ik k iu u λ+→∞= 或 11rk k i i i u a x λ=≈∑,11()()k ik iu u λ+≈ 这样用非零初始向量0u 及矩阵A 构造向量序列{}k u 以计算A 地主特征值1λ及相应地特征向量地方法称为幂法.不过从上面地讨论中可以看到,如果1||1λ>或11<λ,迭代向量k u 当k →∞时,其不为零地分量就会趋于无穷大或趋于零.为克服这个缺点,可以在每步迭代中加上对向量规范化地步骤,使迭代向量地数量级保持在一个稳定地量级上,归纳起来,幂法地计算步骤为:步骤 1 给定非零初始向量0u ,精度12,εε,令00v u =;令(0)10max()v λ=,1=k ;步骤 2 迭代1-=k k Av u ,()1max()k k u λ=,其中)max(k u 表示k u 绝对值最大地分量;步骤3 规范化max()kk k u v u =; 步骤 4 若11k k v v ε--<且()(1)112||k k λλε--<,则k v 即为1λ地近似特征向量,()1k λ即为1λ地近似值;否则,1+=k k ,转步骤2继续迭代.例7-5 用幂法计算1.0 1.00.51.0 1.00.250.50.252.0A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦地主特征值和相应地特征向量,结果见表7-1.表7-1而此题地准确值为1 2.5365258λ= 1(0.748221,0.649661,1.000000)T x =7.2.2 幂法地加速幂法地收敛速度由比值21r λλ=来确定,r 越小收敛越快,而当1r ≈时收敛可能很慢.为了克服这一缺点,常采用原点平移法对幂法进行加速.设B A pE =-,其中p 是待定参数.显然,若A 地特征值为12,,,n λλλ,则B 地相应特征值(1,2,,)i k i n =为12,,,n p p p λλλ---,且A .B 地特征向量相同.这是因为对A 有特征方程||0i A E λ-=,而对B 有特征方程|||()|0i i B k E A p k E -=-+=,所以,i i i i p k k p λλ=+=-另一方面,若i x 是A 地对应i λ地特征向量,即i i i Ax x λ=则 ()()i i i i i i Bx A pE x Ax px p x λ=-=-=-原点平移法地思想是引入矩阵B ,恰当地选择参数p ,使11k p λ=-是B 地主特征值,且其速比2211maxB A p r r p λλλλ-=<=-,这样用幂法求B 地主特征值1k 地收敛速度就快于用幂法求A 地主特征值1λ,而一旦1k 求出,由11k p λ+=可得A 地主特征值,达到了加速地目地.但是为了选取恰当地选择参数p ,需要对A 地特征值地分布地大致了解. 例7-6 设4阶方阵A 有特征值15(1,2,3,4)j jj λ=-=其速比210.9A r λλ=≈.作变换 (12)B A pEp =-=则B 地特征值为12k =,21k =,30k =,41k =-,其速比2112B A k r r k ==<. 设A 地实特征值满足121n n λλλλ->≥≥>若2,n λλ地值可大致估计出,若要求1λ,考察待定参数p 地选取. 在原点平移法通过变换pE A B -=后,不论p 如何选取,矩阵地B 主特征值也只能是在n p λ-或 1p λ-.若希望求1λ,就应选择p ,使1p λ-称为B 地主特征值,即1||||n p p λλ->-这时B 地收敛速比B r 是比值21||/||p p λλ--和1||/||n p p λλ--中地较大者,即211||||max ,||||n B p p r p p λλλλ⎧⎫--=⎨⎬--⎩⎭显然B r 依赖于p 地选取,记做()B r p .为了使应用幂法求B 地主特征值地收敛速度尽可能快,我们希望选择最佳参数*p ,使*()min ()B B r p r p =由B r 地表示式(求二者之间地较大值)和)(*p r B 对)(p r B 地最小化要求,只有当2||||n p p λλ-=-时,()B r p 达到最小.由于2n p p λλ-=-会有得到矛盾地结果(2n λλ=),所以只能是2()n p p λλ-=--即 *22np λλ+=类似地,若用反幂法求最小特征值n λ,若1n λ-,1λ可大致估计,取最佳平移参数*112n p λλ-+=例7-7 取0.75p =,用原点平移法,计算例7-7中矩阵A 地主特征值.解 作变换B A pE =-,则0.2510.510.250.250.50.25 1.25B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对B 应用幂法,计算结果见表7-2.即1 1.7865914k ≈,则A 地主特征值1λ为110.75 2.5365914k λ=+=与例7-5比较,上述结果比例7-5迭代15次还好.表7-27.2.3 反幂法设方阵A 按模最小地特征值是n λ,且0n λ≠,则A 可逆.于是,由n n n Ax x λ=,可得11n n nA x x λ-=,这表明1nλ是1A -地主特征值.反幂法就是将幂法应用于1A -,通过求出1A -地主特征值得到A 地按模最小地特征值及其对应地特征向量.定理7-4 设A 是n 阶实矩阵,具有完全地特征向量组,其特征值满足12||||||0n λλλ≥≥≥>则对任意非零初始向量00u v =,按下述方式构造地迭代向量11k k u A v --= ,max()kk k u v u =满足lim max()n k k n x v x →∞=, 1lim max()k k nu λ→∞= /max()k n n v x x ≈,1max()k nu λ≈在实际计算中,可先对A 进行LU 分解,通过求解1k k Ly v -= ,k k Uu y =来求解方程组1k k Au v -=.反幂法地计算步骤为:步骤1 预先取定非零向量00u v =;给定精度12,εε;取(0)0m a x ()nu μ=; 步骤2 对矩阵A 作LU 分解,A LU =;令1=k ;步骤3 求解方程组1k k Ly v -= ,k k Uu y = 得到迭代向量k u ; 步骤4 规范化max()kk k u v u =步骤5 若11k k v v ε--<且()(1)2||k k n n μμε--<,则k v 即为A 地对应于n λ地近似特征向量,()1k nμ即为n λ地近似值;否则,令1+=k k ,转步骤3继续迭代.7.3 矩阵地两种正交变换本节先介绍镜面(初等)反射变换和平面旋转变换,它们是QR 算法和Jacobi 算法地基础.7.3.1 豪斯荷尔德(House holder )变换定义7-2 设有方阵B ,若当1i j >+时(,1,2,,)i j n =,0ij b =,则称B 是上Hessenberg 矩阵,即1112121222,1n n n n nn b b b b b b B b b -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦定义7-3 设向量ω满足21ω=,矩阵2T H E ωω=- (ω是列向量)称为初等反射矩阵,又称House holder 矩阵,记为()H ω,即211212212221212222122()2212n n n n n H ωωωωωωωωωωωωωωωω⎡⎤---⎢⎥---⎢⎥=⎢⎥⎢⎥---⎢⎥⎣⎦其中(1,2,,)i i n ω=是ω地分量.可以证明初等反射阵是对称阵()T H H =.正交阵()T H H E =. 例7-8 设向量0α≠,试证矩阵222TH E ααα=- 是一个初等反射阵. 证明 令2αωα=,则 222221||||||||1αωααα=== 由定义7-3,2222TTH E E ααωωα=-=-是初等反射阵.定理7-5 设,x y 是两个不相等地n 维列向量,且22||||||||x y =,则存在一个初等反射阵H,使得Hx y =证明 令2||||x yx y ω-=-,由例7-8可知22()()22||||T T Tx y x y H E E x y ωω--=-=-- 是一个初等反射阵.由于22||||()()T T T T Tx y x y x y x x y x x y y y -=--=--+ 注意到22||||||||x y =,即T T x x y y =,又()T T T T x y x y y x == ,故22||||2()T Tx y x x y x -=-从而22()()2||||T T x y x x y x Hx x x y --=--y y x x =--=)(. 例7-9 设1(1,2,2),(1,0,0)T T x e ==,用Householder 变换将x 化为与1e 同方向地向量.解 因为2||||3x =,可设13y e =,则22||||||||x y = 取21,1,1)||||T x y w x y -==--,构造Householder 矩阵[]11122212111,1,12123311221T H E ww -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦则13Hx e =推论 设向量12(,,,)0T n x x x x =≠,12()||||r sign x x =,且1x r ε≠-,则存在初等反射阵1222||||T T uu H E E uu u ρ-=-=- 使1Hx r ε=- .其中,1(1,0,,0)T ε=,1u x r ε=+,22||||/2u ρ=.设12(,,,)T n u u u u =,则12(,,,)T n u x r x x =+22222122222112111||||[()]221(2)2()n n u x r x x r rx x x x r r x ρ==++++=+++++=+引入初等反射阵地目地,是设法用一系列初等反射阵将原始矩阵约化成上Hessenberg 阵.由于约化过程是逐列进行地,我们先给出计算Hx 地算法步骤,该算法算出H 及r ,使Hx r ε=-,u 地分量冲掉x 地分量.(1)1max ||i i nx η≤≤=;(2)(1,2,,)ii i x x u i n η←==,此步规范化是为避免计算r 时产生溢出;(3) 12211()()nii r sign x x ==∑;(4)11u u r ←+;(5) 1ru ρ=; (6) r r η←;于是初等反射阵1T H E uu ρ-=-,1Hx r ε=-.如果要将H 作用于矩阵A ,设i a 是A 地第i 列向量,则12(,,,)n A a a a =,12(,,,)n HA Ha Ha Ha = 其中,11()()(1,2,,)T T i i i i Ha E uu a a u a ui n ρρ--=-=-=.下面讨论用初等反射阵约化原始矩阵A 称为上Hessenberg 阵地步骤.11121(1)(1)2122211121(1)(1)212212n n n n nn a a a a a a a A A A a a a a a ⎡⎤⎢⎥⎡⎤⎢⎥===⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦步骤1 不妨设(1)210a ≠(否则这一步不需约化),选择初等反射阵1R ,使(1)12111R a r ε=-,其中: 1(1)(1)2212112(1)1211112111121211111()(())(1)1()2ni i T r sign a a u a r n u r r a R E u u εερρ=-⎧=⎪⎪⎪=+-⎨⎪==+⎪⎪=-⎩∑是维单位坐标列向量 令11100U R ⎡⎤=⎢⎥⎣⎦则(2)(2)(2)(1)111213111212111(2)(2)(1)(1)222312112210A a A a A R A U AU a A R a R A R ⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦其中,(2)11A 是21⨯阵,(2)22a 是2n -维列向量,(2)23A 是2n -阶方阵.步骤k 设对A 已进行了1k -步约化,即111(2)()()()()11121,111,11(2)()()()1222,12,2()()()1,1,()()()1,1,11,()()(),1(2,3,,1)k k k k k k k k k k k n k k k k kn k k k k kk k k k n k k k k k k k k nk k k nkn k nnA U A U k n a a a a a a r a a a a r a a a a a a a a a ----+--++++++==-⎡⎢-⎢=-⎣()()()111213()()22230k k k k k A a A a A ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦⎡⎤=⎢⎥⎣⎦其中,()11k A 是(1)k k ⨯-阵,()22k a 是n k -维列向量,()23k A 是n k -阶方阵.设()220k a ≠,选初等反射阵()k R n k -阶,使()221k k k R a r ε=-,其中1ε是n k -维单位坐标向量,可得1()()221,1()221()1,1()(())()nk k k k k ik i k k kk k k k kk nT k k k k r sign a a u a r r r a R E u u ερρ+=++-⎧=⎪⎪⎪=+⎨⎪=+⎪⎪=-⎩∑ 令 00k k E U R ⎡⎤=⎢⎥⎣⎦则 ()()()1112131()()2223()()()111213()12300k k k k k k k k k k k k k k k k k k k k k A a A R A U A U R a R A R A a A R r R A R ε+⎡⎤==⎢⎥⎣⎦⎡⎤=⎢⎥-⎣⎦ 可见1k A +地左上角1k +阶子阵为上Hessenberg 阵,从而约化又进了一步.重复此过程,直到122112211(2)122(3)233(1)1n n n n n nn A U U U AU U U a r a r a r a -----=⨯⨯⨯⎡⎤⎢⎥-⨯⨯⎢⎥⎢⎥=-⨯⎢⎥⎢⎥⎢⎥-⎣⎦使原始矩阵A 在一系列初等反射阵地作用下,约化为上Hessenberg 阵.综上所述,有定理7-6.定理7-6 如果A 是n 阶实矩阵,则存在初等反射阵122,,,n U U U -,使221122n n U U U AU U U C --=(上Hessenberg 阵)例7-10 试证矩阵A 与其约化成为地上Hessenberg 阵C 有相同地特征值.证明 记221n P U U U -=,由于初等反射阵是正交对称阵,故122T n P U U U -=,且P 是正交阵,故T PAP C =.于是||||||||||||T T C E PAP E P A E P A E λλλλ-=-=-=-其中T PP E =,||||1T P P =.这表明A 与C 具有相同地特征多项式,即两者有相同地特征值.进一步,设y 是C 地对应于特征值λ地特征向量,即Cy y λ=,则有T PAP y y λ= ()()T T A P y P y λ=这表明T P y 为A 地对应于λ地特征向量,于是求原始矩阵A 地特征值与特征向量可转化为求上Hessenberg 阵C 地特征值和特征向量.定理7-7 若A 是实对称矩阵,则存在初等反射阵122,,,n U U U -使2211221112211()n n n n n U U U AU U U c b b c b C b b c ----⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦对称三对角阵 证明 由定理7-6,存在初等反射阵可使A 约化为上Hessenberg 阵C ,当A 是对称矩阵时,C 亦为对称阵,即T C C =,且T C 亦为上Hessenberg 阵,故C 是对称三对角阵.例7-11 用豪斯荷尔德方法将下述矩阵化为上Hessenberg 阵.1437232427A A ---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦解 (1)对1k =,确定变换阵111000U R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,(1)2124a ⎡⎤=⎢⎥⎣⎦ 其中1R 为初等反射阵,使(1)121110R a r ⎡⎤=-⎢⎥⎣⎦(1)12124.472136r a ==≈(1)12111 6.472136244u a r ε⎡⎡⎤+=+=≈⎢⎢⎥⎣⎦⎣⎦11121()2)28.94427r r a ρ=+≈[]1111110 6.4721361 6.472136401428.944270.4472070.8944230.8944230.447216TR E u u ρ-=-⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦--⎡⎤=⎢⎥-⎣⎦(2)计算(1)122R A .记(1)221232(,)27A a a ⎡⎤==⎢⎥⎣⎦,于是 (1)1221112 3.1304967.155419(,) 1.788855 1.341640R A R a R a --⎡⎤==⎢⎥-⎣⎦其中,111111111()()(1,2)T T i i i i R a E u u a a u a u i ρρ--=-=-=(3)计算(1)121A R 及(1)1221()R A R ,即求 1(1)121211(1)1223373.1304967.1554191.788855 1.341640T T T b A R b R R R A b ⎡⎤--⎡⎤⎡⎤⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦7.6026340.4472127.800030.3999990.399999 2.200000-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦其中,11111()(1,2,3)T T T Ti i i b R b b u u i ρ-=-=(4)计算2111A U AU =.(1)12121(1)1221447.6026340.4472124.4721367.8000030.39999900.399999 2.2000000A R A r R A R ⎡⎤--⎡⎤⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥-⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦为上Hessenberg 阵.7.3.2 平面旋转变换 定义7-4 称矩阵111(,)111i j csi P i j scj ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦第列第列第行第行 为平面旋转矩阵,又称Givens 矩阵,其中cos c θ=,sin s θ=.平面旋转阵(,)P i j 是一个正交阵,与单位阵只有在(,),(,),(,i i i j j j j i四个位置上地元素不一样,用其左乘矩阵A 只改变A 地第i 行和第j 行元素.设12(,,,)T n x x x x =则平面旋转变换Px y =地结果为⎪⎩⎪⎨⎧≠=+-=+=ji k x y cx sx y sx cx y k kj i j j i i ,若令/i c x =,j s x =, 则平面旋转变换向量y 地第i个分两为22j i x x +,第j 个分量为0,其余分量即为x 对应地分量.和初等反射变换一样,用平面旋转变换也可以将一个方阵化为上Hessenberg 矩阵,也可以将将一个方阵化为上三角矩阵.7.4 QR 算法7.4.1 矩阵地QR 分解定理7-8 设A 是可逆矩阵,则存在正交矩阵121,,,n P P P -使121()n P P P A R -=上三角矩阵且R 地主对角元素0(1,2,,1)ii r i n >=-.证明 若10(2,3,,)j a j n ==,则A 地第一列不需约化.若有某个 10(2)j a j n ≠≤≤,则可选择1(1,)j P j P =使A 地第一列中第j 个元素变为零.一般地,可设平面旋转矩阵12131,,,n P P P ,使(2)(2)11121(2)(2)222113122(2)(2)200nn nn nn r a a a a P P P A A a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦记111312nP P P P =,则12P A A =.同理,若(2)20(3,4,,)j a j n ≠=,可选取23242,,,n P P P 使(2)(2)(2)1112131(3)(3)22232(3)(3)2212323333(3)(3)3nn n n n n nn r a a a r a a P P P A A a a a a -⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦记2223nP P P =,则213P P A A =.重复上述过程,可得一系列正交阵121,,,n P P P -使11121222121n n n nn r r r r r P P P A R r -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ 定理7-9 (矩阵地QR 分解)如果n 阶实矩阵A 可逆,则A 可分解为一正交阵Q 和上三角阵R 地乘积,即A QR =,且当R 地对角元素都为正数时分解唯一.证明 由定理8知存在正交阵11,,n P P -使121n P P P A R -=为上三角阵,记121T n Q P P P -=,于是T Q A R =由于(1,2,,1)i P i n =-是正交阵,则T Q 亦为正交阵,故A QR =. 若A 有两种QR 分解,记为1122A Q R Q R ==其中12,R R 为上三角阵且主对角元素都为正数,12,Q Q 为正交阵,于是12121T Q Q R R -=注意121R R -是上三角阵地乘积,结果仍为上三角阵,而12,TQ Q 是正交阵,所以121R R -也应是正交阵.若记121D R R -=,由其上三角性T D 应是下三角阵,1D -应是上三角阵;由其正交性由1T D D -=,故D 只能是对角阵,且有2T D D D E ==.又因12,R R 地主对角元素都为正数,即有222212diag[,,,]diag[1,1,,1]n D d d d E ===故1(1,2,,)i d i n ==,则D E =,于是12R R =,12Q Q =.例7-12 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=212240130A 地QR 分解. 解 方法1:利用初等反射阵进行QR 分解令(0)1(0,0,2)T a =,取(0)112||||2d a ==,则)2,0,2(81211)0(111)0(11-=--=e d ae d a u1110012010100TH E u u ⎡⎤⎢⎥=-=⎢⎥⎢⎥⎣⎦,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1302402121A H 再令(0)2(4,3)T a =,取(0)222||||5d a ==,则(1)2212(2)22121,3)||||T a d e u a d e -==--2224312345TH E u u ⎡⎤=-=⎢⎥-⎣⎦令2210014305534055H H ⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦于是21212051002H H A R ⎡⎤⎢⎥=-=⎢⎥⎢⎥-⎣⎦故123405521243005155002100T TA H H R ⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦方法2:利用平面旋转阵进行QR 分解. 取1202,0100221221=+==+=s c ,则130********T ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,132********T A ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦再取53)3(43,54)3(44222222-=-+-==-+=s c ,则231004305534055T ⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,2313212051002T T A R ⎡⎤⎢⎥=-=⎢⎥⎢⎥-⎣⎦ 故13233405521243005155002100T T A T T R ⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦例7-13 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110133044A 地QR 分解,使得R 地对角线元素为正数.解 A A =1地第一列T x ]0,3,4[1=,521=x .用1x 构造镜面反射阵1H ,使得T y x H ]0,0,5[111==,令T y x u ]0,3,1[111-=-=,有⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=10005453053542221111u u u E H T ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-==11054005355112A H A 2A 地第2列对角线以下为T x ]1,0[2=,122=x .用2x 构造镜面反射阵2~H ,使得T y x H ]0,1[~222==,令T y x u ]1,1[222-=-=,易得 ⎥⎦⎤⎢⎣⎡=-=01102~222222u u u E H T,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=010100001~122H H 于是有R A H A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==54001105355333,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-==010540535305421H H Q容易验证,QR A =.请读者用平面旋转变换对本例地矩阵A 进行QR 分解.7.5.3 QR 算法QR 算法就是利用QR 分解构造一个矩阵序列{}k A ,当k 充分大时,k A 是近似地上三角矩阵,而该上三角阵地对角元素便是原始矩阵A 地全部特征值.设1()n n ij n n A A a R ⨯⨯==∈,对A 做QR 分解,即A QR =其中R 为上三角阵,Q 为正交阵.利用这个分解可得新矩阵(对QR 交换乘积)2T A RQ Q AQ == 由于2A 是1A 经过正交相似变换得到地,因此2A 与1A 有相同地特征值.再对2A 做QR 分解,按上述方式又可得新矩阵3A ,且3A 与2A 也具有相同地特征值.具体地说,其步骤为:设1A A =,做QR 分解111A Q R =求矩阵211111T A R Q Q A Q ==求得k A 后对k A 作QR 分解k k k A Q R =求矩阵1Tk k k k k k A R Q Q A Q +==只要A 可逆,由定理9可知,按上述方法可唯一确定矩阵序列{}k A ,且序列中任意k A 与原始矩阵有相同特征值.因此只要恰当选择正交相似变换阵12,,,k Q Q Q ,使1111111T T TT TT T k k k k k k k k k k k k k k A Q A Q Q Q A Q Q Q Q Q A Q Q Q +----====当k →∞时,逼近一个上三角阵,便可求出A 地全部特征值(为所逼近上三角阵地主对角元素).可见,QR 算法地关键在于选择正交变换阵(1,2,)k Q k =.从定理7-8地证明看到,正交变换阵k Q 是一系列平面转换矩阵地乘积,这些平面旋转矩阵是用来将k A 地主对角线以下元素约化为零地.如果将QR 算法直接应用于原始矩阵,计算量很大,所以在实际计算中,总是先将原始矩阵用豪斯赫尔德方法约化为上Hessenberg 阵,而后再对上Hessenberg 阵应用QR 算法.可以证明,由上Hessenberg 阵用QR 算法生成地矩阵序列中地每个矩阵仍为上Hessenberg 阵.7.5 雅可比方法雅可比方法是用来计算实对称矩阵地全部特征值及特征向量地一种有效方法.它地基本思想是,通过一组正交相似变换对称矩阵A 化为对角矩阵,得其全部特征值.定理7-10 设A 为n 阶对称矩阵,T C PAP =,其中P 为正交矩阵,则22||||||||F F C A = 证明 一方面2222111||||()()nnnFiji i j i A a tr A A λ======∑∑∑另一方面2221||||()()()nTFi i C tr C C tr C C λ====∑由假设()()i i A C λλ=,故22||||||||F F C A =.设n n A R ⨯∈为对称矩阵,(,)P i j 为一平面旋转矩阵,则T C PAP =(其中()ij n n C c ⨯=)地元素计算公式为:(1)22cos sin 2sin cos ii ii jj ij c a a a θθθθ=++22sin cos 2sin cos jj ii jj ij c a a a θθθθ=+-(2)1()sin 2cos 22ij ji jj ii ij c c a a a θθ==-+ (3)第i 行元素和第j 列元素cos sin (,)ik ki ik jk c c a a k i j θθ==+≠ (4)第j 行元素和第i 列元素 cos sin (,)jk kj jk ik c c a a k i j θθ==+≠(5)(,,)lk lkc a l k i j =≠这说明,当A 经过一初等正交相似变换化为C 时,只需按上述公式计算C 地第i 列.第j 列元素,由对称性可得第i 行和第j 行元素,C 地其余元素与A 地对应元素相同.设A 地非对角元素0ij a ≠,我们可选择平面旋转阵(,)P i j ,使T C PAP =地非对角元素0ij ji c c ==.由定理11可选择(,)P i j ,使sin 2cos 202jj iiij ji ij a a c c a θθ-==+=即选择θ,使22(||)4ij ii jja tg a a πθθ=≤-其中定理7-11 设n n A R ⨯∈为对称阵,0ij a ≠为A 地一个非对角元素,则可选择一平面旋转阵(,)P i j ,使T C PAP =地非对角元素0ij ji c c ==且T C PAP =与A 地元素满足下述关系(1)2222(,)ik jk ik jkc c a a k i j +=+≠(2)222222ii jj ii jj ij c c a a a +=++ (3)22(,,)iklk c a l k i j =≠证明 由上面地计算ij c 公式直接计算可知(1)成立.由(1)及定理7-10可证(2).如果用()S A 表示A 地非对角线元素地平方和,()D A 表示A 地对角线元素平方和,则2()()2ijD C D A a =+ ,2()()2ij S C S A a =- 这说明C 地对角线元素平方和比A 地对角线元素平方和增加了22ij a ,C 地非对角线元素平方和比A 地非对角线元素平方和减少了22ij a .下面介绍雅可比方法.首先在A 地非对角元素中选择绝对值最大地元素(称为主元素),如11||max ||i j lk l ka a ≠=可设110i j a ≠,否则A 已经对角化了.由定理12,选择一平面旋转矩阵111(,)P i j ,使111TAP AP =地非对角元素11110i j j i c c ==. 再选(1)1()lkn n A a ⨯=地非对角元素中地主元素,如 22(1)(1)||max ||0i j lk l ka a ≠=≠由定理12,又可选择一平面旋转矩阵222(,)P i j ,使2212T A P A P =地非对角元素2222(2)(2)i j j i a a ==(注意上次消除了地主元素这次又可能变为不是零). 继续这个过程,连续对A 实行一系列平面旋转变换,消去非对角线绝对值最大地元素,直到将A 地非对角元素全化为充分小为止,从而求得A 地全部(近似)特征值.定理7-12 (雅可比方法地收敛性)设()ij n n A a ⨯=为实对称矩阵,对A 施行上述一系列平面旋转变换1(1,2,)Tm m m mA P A P m -==则 lim ()m m A D→∞=对角矩阵证明 记()()m m lk n n A a ⨯=,()2()m m lk l kS a ≠=∑由定理7-11地(2)可得()212()m m m ij S S a +=-其中 ()()||max ||m m ijlk l ka a ≠= 又由于()2()2()(1)()m m m lk ij l kS a n n a ≠=≤-∑即()2()(1)m m ij S a n n ≤- 由以上得12(1)(1)m m S S n n +≤-- 反复应用上式,即得1102(1)(2)(1)m m S S n n n ++≤->-故 lim 0m m S →∞= 可以证明()lim m ll m a →∞存在(1,2,,)l n =. 下面介绍特征向量地计算.由雅可比收敛定理知,当m 充分大时2112T TTmm P P P AP P P D ≈记12T T T T m m R P P P =,则T m R 地列向量就是A 地近似特征向量.计算Tm R 可采用累积地办法,用一数组R 保存Tm R ,开始时R E ←,以后对A 每进行一次平面旋转变换,就进行计算Tm R RP ←用初等正交阵T m P 右乘R 只需计算R 地两列元素,若记(,)m m P P i j =,则Tm RP 地计算公式为()()cos ()sin (1,,)()()sin ()cos li li lj li li lj l n θθθθ←+⎧⎪=⎨←+⎪⎩R R R R R R关于sin θ和cos θ地计算如下.由定理7-11知,当0ij a ≠时,可选θ满足2tg2ij ii jja a a θ=-方ii jj a a ≠时,由22tg 1tg21tg dθθθ=≡- 得到tg θ地二次方程2tg 2tg 10d θθ+-=解得tg θ=选取tg 0d d θ>=<由此得 |tg |1θ≤可由集合{},,ii jj ij a a a 来计算sin ,cos θθ,设0,||max ||ij ij lk l ka a a ≠≠=,则210tg ,()10cos sin cos ii jj ija a d a d t s d d c t ct sθθθθ-⎧=⎪⎪⎪≥⎧⎪=≡=⎨-<⎨⎩⎪⎪=≡⎪⎪=⋅=≡⎩如果jj ii ij a a a -<<,则12ij ii jja t d a a ≈=-,将c,s 代入定理7-9地(1)中可得ii ii ij jj jj ij ij ji c a ta c a ta c c ⎧=+⎪=-⎨⎪==⎩ 每迭代一次地主要工作是选m A 地非对角线元素中地主元素与计算T 111m m m +++=A P AP .首先计算sin ,cos ,θθ,只需计算1m +A 地第i 列,第j 列元素,再算对称元素,不用做3个矩阵地乘法.计算机计算时,需要两组工作单元,以便存储A (或m A )和R .可用()2()m m lk l ka ε≠=<∑S 控制迭代终止,其中ε是要求地精度.例7-14 用雅可比方法计算对称阵210121012⎡⎤-⎢⎥--⎢⎥⎢⎥-⎣⎦A = 地特征值.解 第1步0=A A ,选非对角线元素中地主元素121(1,2)a i j =-==0,1,1/0.7071068,1/0.7071068d t c s ======T 111100.7071068030.70710680.70710680.70710682⎡⎤-⎢⎥==-⎢⎥⎢⎥--⎣⎦A P AP第2步 在1A 中选非对角元素地主元素(1)130.7071068(1,3)a i j =-==0.7071068,0.5176381,0.8880738,0.4597008d t c s ====T 22120.63397460.325057600.325057630.627963000.62798302.366025-⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦A P A P 第3步 在2A 中选非对角元素地主元素(2)230.627930(2,3)a i j =-==0.5047869,0.6153960,0.8516540,0.5241045d t c s =-=-==-T 33230.63397460.27683660.17036420.27683663.38644600.170364201.979579⎡⎤--⎢⎥=-⎢⎥⎢⎥-⎣⎦A P A P 第4步 在3A 中选非对角元素地主元素(3)120.2768366(1,2)a i j =-==4.971292,0.09958013,0.9950785,0.09909004d t c s ====T 44340.606407200.169525803.4140130.016881400.16952580.016881401.979579⎡⎤-⎢⎥=⎢⎥⎢⎥-⎣⎦A P A P 第5步 在4A 中选非对角元素地主元素(4)130.1695258(1,3)a i j =-==4.050038,0.1216293,0.9926842,0.1207395d t c s ==== 2T 255450.58578790.20382521000.203825210 3.4140130.0167579000.016757902.000198--⎡⎤⨯⎢⎥=⨯⎢⎥⎢⎥⎣⎦A P A P 于是A 地特征值为1233.414013, 2.000198,0.5857879λλλ===A 地精确特征值为12(1 3.414214λ=≈,22λ=,32(10.585786λ=-≈ 且可逐步求出412345T T T T T T R P P P P P =地列向量,即得A 地近似特征向量.雅可比方法是一个求对称矩阵A 地全部特征值及特征向量地迭代方法,精确度较高,但计算量较大,对稀松带状矩阵经过平面旋转变换后其稀松带状将被破坏,所以很少使用.习题71.设911203111(2102113810A j j B ⎡⎤⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦试估计它们地特征值所在地范围.2.编写幂法程序,并求矩阵732341213A -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦地主特征值及对应地特征向量(准确到小数点后3位).3.若p 是A 地特征值j λ地一个近似值,且||||()j i p p i j λλ-<-≠则1j pλ-是1()A pE --地主特征值.试用反幂法求矩阵134231111A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦地最接近于6地特征值及对应地特征向量.4.设有向量(2,1,2)Tx=,试构造初等反射阵H,使(3,0,0)THx=.5.设(2,3,0,5)Tx=,(1,0,0,5)Te=,用Householder变换化x为与e同方向向量.6.设031042212A⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求其QR分解.7.设221022212A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求其QR分解.8.利用初等反射阵将134312421A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦正交相似约化为对称三对角阵.9.试用平面旋转变换阵对矩阵A作QR分解,其中111021245A⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦.10.按下列要求编写程序框图.(1)将一般矩阵用豪斯赫尔德方法约化称上Hessenberg阵.(2)对矩阵作QR分解.(3)对上Hessenberg阵应用QR算法求全部特征值及相应地特征向量.11.用QR算法求矩阵120211013A⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦地全部特征值.12.设A是对称矩阵,λ和(1)x x=是A地一个特征值及相应地特征向量.又设p是一个正交阵,使1(1,0,0,,0)Tpx e==证明T=是第一行和第一列除了λ外,其余元素均为零.B PAP。
数值分析-第7章 矩阵特征值问题的数值解法n
![数值分析-第7章 矩阵特征值问题的数值解法n](https://img.taocdn.com/s3/m/ac50acb4c77da26925c5b0a6.png)
7
9 11 12
6.104716
6.026349 6.006637 6.003327
(-0.450275, -0.322058, 1.0)
(-0.445914, -0.318617, 1.0) (-0.444814, -0.31775, 1.0) (-0.444630, -0.317606, 1.0)
其中i为A的特征值,P的各列为相应于i的特征向量。
P -1 AP D
2
n
2
定理7.1.3 ARnn,1, …, n为A的特征值,则
(1)A的迹数等于特征值之和,即 tr ( A) aii i
i 1 i 1
n
n
(2)A的行列式值等于全体特征值之积,即
1 xi(k +1) / xi(k )
i 1,2,, n
可见,当k充分大时, ( k ) 近似于主特征值, ( k +1) 与x ( k )的对应非零分量的比值 x x 近似于主特征值。
在实际计算中需要对计算结果进行规 , 范化。因为当 1 1时,x (k ) 趋于零, 当1 1时, x ( k )的非零分量趋于无穷。 从而计算时会出现下溢 或上溢。
特征值的范围. 解 我们先分别求出各个圆盘区域。 D1 = {z:|z – 1|£0.6};D2 = {z:|z – 3|£0.8} D3 = {z:|z + 1|£1.8};D4 = {z:|z + 4|£0.6}. 易见D2和D4为 弧立圆盘分别 包含A的两个实 特征值.
求特征值的技巧
![求特征值的技巧](https://img.taocdn.com/s3/m/a8d12babb9f67c1cfad6195f312b3169a451ea2c.png)
求特征值的技巧特征值(eigenvalue)是矩阵在线性代数中非常重要的一个概念,它具有广泛的应用。
本文将探讨特征值的求解技巧。
首先,我们来了解一下特征值的定义。
给定一个n阶方阵A,如果存在一个非零向量v,使得满足Av=λv,其中λ为常数,那么λ就是A的特征值,v就是对应于λ的特征向量。
特征值与特征向量的求解可以分为数值方法和解析方法两种。
下面分别介绍这两种方法。
一、数值方法:1. 幂迭代法:幂迭代法是一种较为简单和常用的求矩阵最大特征值的方法。
其基本思想是通过迭代过程不断逼近最大特征值的值和对应的特征向量。
具体步骤如下:(1)取一个初始向量v0,通常为单位向量。
(2)迭代计算出序列:v1 = Av0, v2 = Av1, ..., vn = Avn-1。
(3)计算序列vn的模长:vn = √(vn * vn)。
(4)对vn进行归一化得到单位向量: vn = vn / vn 。
(5)判断收敛条件,如果满足收敛条件,则取vn为最大特征值对应的特征向量。
2. QR算法:QR算法是一种用于求解特征值的数值方法,可以同时求得所有特征值和特征向量。
它的基本思想是通过不断迭代,将矩阵A转化为上三角矩阵R,并使其对角线上的元素逼近A的特征值。
具体步骤如下:(1)将矩阵A分解为QR,其中Q为正交矩阵,R为上三角矩阵。
(2)计算矩阵A的逆:A^-1 = R^-1 * Q^-1。
(3)计算新矩阵B = R * Q。
(4)重复步骤1-3,直到矩阵B对角线上的元素收敛为止。
收敛时,矩阵B 的对角线元素即为矩阵A的特征值。
二、解析方法:1. 特征多项式:给定一个n阶方阵A,A的特征多项式定义为P(λ) = A - λI ,其中I为n 阶单位矩阵。
特征多项式的根即为矩阵A的特征值。
特征多项式可以通过展开矩阵A-λI的行列式来求解。
2. 特征向量的求解:通过求解特征多项式得到的特征值,可以求得对应的特征向量。
对于每个特征值λi,我们需要求解线性方程组(A - λiI)v = 0,其中v为特征向量。
矩阵特征值与特征向量的计算-Rung-Kutta方法
![矩阵特征值与特征向量的计算-Rung-Kutta方法](https://img.taocdn.com/s3/m/bb4d07feed630b1c58eeb57c.png)
每步须算Ki 的个数 2 3
4
5
6
可达到的最高精度 O(h2 ) O(h3 ) O(h4 ) O(h4 ) O(h5 )
7
O(h6 )
n8
O(hn−2 )
由于龙格-库塔法的导出基于泰勒展开,故精度主要受
解函数的光滑性影响。对于光滑性不太好的解,最好 采用低阶算法而将步长h 取小。
R − K方法的主要优缺点
二级R-K方法
二级R-K方法的形式为
其局部截断误差为 将 中的各项作Taylor展开
Taylor展开有 可得 令
二级R-K能达到的 最高阶数是二阶
常用的二级二阶R-K方法
取
,得
该方法称为改进的Euler公式(梯形公式的预估校正格式)
取
,得
该方法称为中点公式
取
,得
该方法称为Heun(休恩)方法
当 为实数时,得Euler法的绝对稳定区间是
二级R-K方法的绝对稳定区间
二阶二级R-K方法的计算公式为
由此可知,二阶二级R-K方法的绝对稳定区间是 当 为实数时,得绝对稳定区间是
一些常用方法的绝对稳定区间
R-K法的绝对稳定区域
k = 4 • 3. k =3
• 2. k=2 k = 1 • 1.
题相容的充分必要条件是该单步法至少是一阶方
法。
我们本章讨论的数值方法都是与原初值问题相容的!
收敛性
定义:对任意固定的 步法产生的解 ,均有
, 若初值问题的单
则称该方法是收敛的。
我们本章讨论的数值方法都是收敛的!
收敛性判别
定理7.3:设增量函数
在区域
上连续,并对变量y和h满足Lipschitz条件。如果单步 法与微分方程初值问题相容,则单步法收敛。
矩阵特征值的求法举例
![矩阵特征值的求法举例](https://img.taocdn.com/s3/m/df715a39e97101f69e3143323968011ca300f722.png)
矩阵特征值的求法举例
矩阵的特征值是线性代数中一个非常重要的概念,它对于矩阵的性质和求解问题具有
重要意义。
特征值是一个数,它可以通过解一个特征方程来求得,特征方程是一个关于特
征值的多项式方程。
下面我们将通过几个具体的例子来介绍矩阵特征值的求法。
假设我们有一个2×2矩阵A,其元素如下所示:
A = |a b|
|c d|
我们希望求解矩阵A的特征值。
我们将矩阵A减去一个单位矩阵的倍数,得到新的矩阵B:
B = A - λI
λ是一个未知的数,I是单位矩阵。
具体地,我们有:
接下来,我们需要求解特征方程,即求解方程|B| = 0。
|a-λ b | = (a-λ)(d-λ) - bc = 0
|c d-λ|
展开计算得到:
这个二次方程就是特征方程。
根据一元二次方程的求解公式,我们有:
λ = [(a+d) ± √((a+d)^2 - 4(ad-bc)) ] / 2
这里,√表示开方。
通过求解该二次方程,我们就能够求得矩阵A的特征值。
具体的计算过程比较复杂,可以使用数值方法(如牛顿法)来求解,或者使用专门的
软件工具进行计算。
总结:
通过以上两个例子,我们可以看到求解矩阵特征值的过程其实就是求解一个代数方程
的过程。
对于小规模的矩阵,我们可以通过手工计算来得到特征值,但对于大规模的矩阵,
通常需要借助计算机来进行计算。
矩阵特征值的求法对于理解和应用线性代数有着重要的意义,它在很多领域(如数学、物理、金融等)中都有广泛的应用。
计算方法之计算矩阵的特征值和特征量
![计算方法之计算矩阵的特征值和特征量](https://img.taocdn.com/s3/m/0eec9c4aba68a98271fe910ef12d2af90242a800.png)
计算方法之计算矩阵的特征值和特征量计算矩阵的特征值和特征向量是线性代数中的一个重要问题,它在科学研究和工程应用中有着广泛的应用。
本文将介绍计算矩阵特征值和特征向量的方法,包括特征方程法、幂法、反幂法和QR方法。
一、特征值和特征向量的定义给定一个n阶方阵A,如果存在一个非零向量x和一个标量λ,满足以下方程:Ax=λx其中,x被称为A的特征向量,λ被称为A的特征值。
二、特征方程法特征方程法是计算矩阵特征值和特征向量的一种常用方法,其基本思想是通过求解矩阵的特征方程来求得特征值。
对于一个n阶方阵A,其特征方程为:A-λI,=0其中,I是n阶单位矩阵,A-λI,表示A-λI的行列式。
解特征方程可以得到n个特征值λ₁,λ₂,...,λₙ。
然后,将这些特征值带入原方程组(A-λI)x=0,求解线性方程组得到n个特征向量x₁,x₂,...,xₙ。
三、幂法幂法是一种通过迭代来计算矩阵最大特征值和对应的特征向量的方法。
首先,随机选择一个非零向量b₀,并进行归一化,得到单位向量x₀=b₀/,b₀。
然后,通过迭代的方式,计算xₙ₊₁=Axₙ,其中xₙ为第k次迭代得到的向量。
在迭代过程中,向量xₙ的模长会逐渐趋近于最大特征值对应的特征向量。
当迭代收敛后,xₙ就是矩阵A的最大特征值对应的特征向量。
四、反幂法反幂法是一种通过迭代来计算矩阵最小特征值和对应的特征向量的方法。
首先,随机选择一个非零向量b₀,并进行归一化,得到单位向量x₀=b₀/,b₀。
然后,通过迭代的方式,计算xₙ₊₁=(A-σI)⁻¹xₙ,其中σ为待求的特征值。
在迭代过程中,向量xₙ的模长会逐渐趋近于特征值σ对应的特征向量。
当迭代收敛后,xₙ就是矩阵A的特征值为σ的特征向量。
五、QR方法QR方法是一种通过迭代来计算矩阵特征值和特征向量的方法。
首先,将矩阵A进行QR分解,得到矩阵A=QR,其中Q是正交矩阵,R是上三角矩阵。
然后,计算矩阵B=RQ,重复以上步骤,直到矩阵B收敛。
第章矩阵特征值的计算
![第章矩阵特征值的计算](https://img.taocdn.com/s3/m/5fe3dc95185f312b3169a45177232f60dccce713.png)
第章矩阵特征值的计算矩阵特征值是矩阵理论中的一个重要概念,它在很多领域中都有广泛的应用,如物理、化学、工程等。
本文将从特征值的定义、计算方法和应用举例等方面进行阐述。
一、特征值的定义对于一个n阶方阵A,如果存在一个非零向量x,使得Ax=kx,其中k 是一个常数,那么k称为A的特征值,x称为A的对应于特征值k的特征向量。
从定义可以看出,矩阵A的特征值和特征向量是成对出现的,特征向量可以是一个实数或是一个向量,特征值可以是实数或是复数。
二、特征值的计算方法1.直接计算法此方法适合于较小的矩阵。
给定一个n阶矩阵A,首先构造特征方程det(A-λI)=0,其中I是n阶单位矩阵,λ是未知数,然后求解特征方程得到特征值,将特征值代入(A-λI)x=0求解对应的特征向量。
2.幂法幂法是一种迭代方法,适用于大型矩阵。
假设特征值的绝对值最大,那么从非零向量b开始迭代过程,令x0=b,求解x1=A*x0,然后再将x1作为初始值,求解x2=A*x1,以此类推,直到收敛为止。
最后,取最终得到的向量xn,其模即为特征值的近似值。
3.QR方法QR方法是一种迭代方法,可以用于寻找特征值和特征向量。
首先将矩阵A分解为QR,其中Q是正交矩阵,R是上三角矩阵,然后对R进行迭代,重复进行QR分解,直到收敛。
最后,得到的上三角矩阵的对角元素即为特征值的近似值,在QR分解的过程中,特征向量也可以得到。
三、特征值的应用举例1.物理学中的量子力学量子力学中的哈密顿算符可以表示为一个矩阵,物理量的测量值就是对应的特征值。
例如,电子的自旋可以有上自旋和下自旋两种状态,上自旋对应的特征值为1,下自旋对应的特征值为-12.工程中的振动问题在工程中,矩阵特征值可以用来求解振动问题。
例如,振动系统的自由度决定了特征向量的个数,而特征值则表示了振动的频率。
通过计算矩阵的特征值和特征向量,可以预测系统的振动频率和振型。
3.网络分析中的中心性度量在网络分析中,矩阵特征值可以用来计算节点的中心性度量。
计算方法--矩阵特征值的数值计算方法(2011).
![计算方法--矩阵特征值的数值计算方法(2011).](https://img.taocdn.com/s3/m/835ad43d482fb4daa58d4b1b.png)
(3)对任意正整数 m ,m 是矩阵 A m 的特征值;
1 A (4)当矩阵 可逆时, 是矩阵 A 1 的特征值;
并且
x 仍然是矩阵 kA, kE A, A m 的分别对应于特征值
k , k , m , 1 的特征向量。
类似:若
是A的特征值,
( )是 ( A) 的特征值;
det(A3 2 A 4E)
设 f ( x) x 3 2x 4 ,则 f ( A) A3 2 A 4E 因为 A 的特征值为 1,2,3,所以
f ( A) A3 2 A 3E 的特征值为
f (1) , 1
f (2) , 4 f (3) 21
于是 det(A3 2 A 4E) (1) 4 21 84
AX X
成立,则 称为方阵A的特征值, X 称为A的对应于特征值 的特征向量。
矩阵的特征值与特征向量 如
1 A 2
1 4
取 2
1 X 1
1 AX 2
1 1 2 X 4 1 2
则特征向量 2 是特征值,
1 是特征向量. X 1
矩阵的特征值与特征向量
特征方程、特征根
A E 称为方阵A的特征多项式 记作f ( )
显然,A的特征值就是特征方程的根, 也称特征根。
注意
n阶方阵A有n个特征值。 (重根按重数计算),
1 0 0 求矩阵 A 2 5 2 的特征值和特征向量。 2 4 1
全部特征向量为 kp2 lp3
其中数 k , l 是不同时为零的任意常数。
第7章 计算矩阵的特征值和特征向量
![第7章 计算矩阵的特征值和特征向量](https://img.taocdn.com/s3/m/958a536a58fafab069dc029d.png)
A (7)
0 0 2.125825 = 0 8.388761 0.000009 0 0.000009 4.485401
从而A的特征值可取为 A
λ1≈2.125825, λ2≈8.388761, λ3≈4.485401
V
下面分析吉文斯变换作用到对称矩阵后正 交相似的变换效果。
注:
bpp = (app cosϑ − aqp sinϑ) cosϑ − (apq cosϑ − aqq sinϑ) sinϑ
注:
1 − s
2 t 1 − t
2
= 0 ⇒
t
2
+ 2 st
− 1 = 0
雅可比方法就是对A连续施行以上变换的方法。 取p,q使 a pq = max aij
由于求解高次多项式的根是件困难的事上述方法一般无法解出阶数略大n4的矩阵特征值的精确解在实际计算中难以按定义计算矩阵特征值
第7章 计算矩阵的特征值和特征向量
在线性代数中,一个n阶矩阵A,若有数λ及非零n维向量 v满足Av=λv,则称λ为A的特征值,v为属于特征值λ的特征 向量。在线性代数中,先计算矩阵A的特征多项式,即计算 det(λ I - A)= λn +…+(-1)ndetA的根,算出A的n个特征值λ i, i=1,2, …,n。然后解线性方程组(A- λiI)v=0,计算出对 应于λ i的特征向量。由于求解高次多项式的根是件困难的事, 上述方法一般无法解出阶数略大(n>4)的矩阵特征值的精确解, 在实际计算中难以按定义计算矩阵特征值。 本章介绍一些简单有效的计算矩阵特征值和特征向量 的近似值的数值方法。
7 .2
反 幂 法
反幂法
Av = λv ⇒ A v =
矩阵特征值计算矩阵的特征值和特征向量
![矩阵特征值计算矩阵的特征值和特征向量](https://img.taocdn.com/s3/m/86957eedd0f34693daef5ef7ba0d4a7302766c92.png)
矩阵特征值计算矩阵的特征值和特征向量矩阵是线性代数中的重要概念之一,它在众多学科领域中都有广泛的应用。
而矩阵的特征值和特征向量则是矩阵分析与应用中的核心内容之一。
本文将详细介绍矩阵特征值的计算方法,以及如何求解矩阵的特征向量。
1. 特征值和特征向量的定义首先,我们来了解一下什么是矩阵的特征值和特征向量。
给定一个n阶方阵A,如果存在一个数λ以及一个非零n维列向量X,使得满足下述条件:AX = λX那么,λ就是矩阵A的一个特征值,而X则是对应于特征值λ的特征向量。
特征值和特征向量的求解在很多应用中都具有重要的意义。
2. 特征值的计算方法接下来,我们介绍几种常见的特征值计算方法。
2.1 特征多项式法特征多项式法是求解特征值的一种常用方法。
它利用方阵A减去λ乘以单位矩阵I之后的行列式为零的性质,构造出特征多项式,并求解多项式的根即可得到特征值。
举个例子,对于二阶方阵A = [a, b; c, d],其特征多项式为:| A - λI | = | a-λ, b; c, d-λ | = (a-λ)(d-λ) - bc = 0解这个方程可以得到A的特征值。
2.2 幂迭代法幂迭代法也是一种常见的特征值计算方法。
它利用特征向量的性质,通过迭代计算来逼近矩阵的特征值。
其基本思想是,给定一个初始向量X0,不断迭代计算:Xk+1 = AXk然后对得到的向量序列进行归一化处理,直到收敛为止。
最后得到的向量X就是对应的特征向量,而特征值可以通过如下公式计算:λ = X^TAX / X^TX2.3 QR方法QR方法是一种数值稳定性较好的特征值计算方法。
它利用矩阵的QR分解的性质来逐步逼近矩阵的特征值。
首先,对矩阵A进行QR分解,得到一个正交矩阵Q和一个上三角矩阵R。
然后,将分解后的矩阵R与矩阵Q逆序相乘,得到一个新的矩阵A'。
重复进行QR分解和相乘的操作,直到收敛为止。
最后,得到的矩阵A'的对角线上的元素即为矩阵A的特征值。
矩阵特征值的计算
![矩阵特征值的计算](https://img.taocdn.com/s3/m/343c71fc69dc5022abea0017.png)
物理、力学和工程技术中的许多问题在数学上都归结为求矩 阵的特征值和特征向量问题。
� 计算方阵 A 的特征值,就是求特征多项式方程:
| A − λI |= 0 即 λn + p1λn−1 + ⋅ ⋅ ⋅ + pn−1λ + pn = 0
的根。求出特征值 λ 后,再求相应的齐次线性方程组:
(13)
为了防止溢出,计算公式为
⎧ Ay k = xk −1
⎪ ⎨
m
k
=
max(
yk )
( k = 1, 2, ⋅ ⋅⋅)
⎪ ⎩
x
k
=
yk
/ mk
(14)
相应地取
⎧ ⎪
λ
n
⎨
≈
1 mk
⎪⎩ v n ≈ y k ( 或 x k )
(15)
9
(13)式中方程组有相同的系数矩阵 A ,为了节省工作量,可先对
11
11
≤ ≤ ⋅⋅⋅ ≤
<
λ1 λ2
λn −1
λn
对应的特征向量仍然为 v1, v2 ,⋅⋅⋅, vn 。因此,计算矩阵 A 的按模
最小的特征值,就是计算 A−1 的按模最大的特征值。
� 反幂法的基本思想:把幂法用到 A−1 上。
任取一个非零的初始向量 x0 ,由矩阵 A−1 构造向量序列:
xk = A−1xk−1 , k = 1, 2, ⋅⋅⋅
如果 p 是矩阵 A 的特征值 λi 的一个近似值,且
| λi − p |<| λ j − p | , i ≠ j
1 则 λ i − p 是矩阵 ( A − pI )−1 的按模最大的特征值。因此,当给
矩阵特征值问题的数值计算
![矩阵特征值问题的数值计算](https://img.taocdn.com/s3/m/714004df5022aaea998f0ff6.png)
矩阵特征值问题的计算方法特征值问题:A V=λV¾直接计算:A的阶数较小,且特征值分离得较好 特征值:det(λI-A)=0,特征向量:(λI-A)V=0¾迭代法:幂法与反幂法¾变换法:雅可比方法与QR方法内容:一、 特征值的估计及其误差问题二、 幂法与反幂法三、 雅可比方法四、 QR方法一、 特征值的估计及其误差问题 (一)特征值的估计结论 1.1:n 阶矩阵()ij n n A a ×=的任何一个特征值必属于复平面上的n 个圆盘:1,||||,1,2,ni ii ij j j i D z z a a i n =≠⎧⎫⎪⎪=−≤=⎨⎬⎪⎪⎩⎭∑"(10.1) 的并集。
结论1.2:若(10.1)中的m个圆盘形成一个连通区域D,且D与其余的n-m个圆盘不相连,则D中恰有A的m个特征值。
(二)特征值的误差问题结论1.3:对于n 阶矩阵()ij n n A a ×=,若存在n 阶非奇异矩阵H ,使得11(,,)n H AH diag λλ−=Λ=", (10.2)则11min ||||||||||||||i p p p i nH H A λλ−≤≤−≤∆ (10.3)其中λ是A A +∆的一个特征值,而(1,,)i i n λ="是A 的特征值,1,2,p =∞。
结论1.4:若n 阶矩阵A 是实对称的,则1min ||||||i p i nA λλ≤≤−≤∆。
(10.4)注:(10.4)表明,当A 是实对称时,由矩阵的微小误差所引起的特征值摄动也是微小的。
但是对于非对称矩阵而言,特别是对条件数很大的矩阵,情况未必如此。
二、 幂法与反幂法(一) 幂法:求实矩阵按模最大的特征值与特征向量假设n 阶实矩阵A 具有n 个线性无关的特征向量,1,iV i n =",则对于任意的0nX R ∈,有 01ni ii X a V ==∑,从而有01111112((/))n nk k k i i i i ii i nk k i i i i A X a A V a V a V a V λλλλ======+∑∑∑.若A 的特征值分布如下:123||||||||n λλλλ>≥≥≥",则有01111()k kk A X a V λλ→∞⎯⎯⎯→为对应的特征向量须注意的是,若1||1λ<,则10kλ→,出现“下溢”,若1||1λ>,则1kλ→∞,出现“上溢”,为避免这些现象的发生,须对0kA X 进行规范化。
方法求矩阵全部特征值
![方法求矩阵全部特征值](https://img.taocdn.com/s3/m/65f9e62f49d7c1c708a1284ac850ad02de8007b7.png)
方法求矩阵全部特征值求解矩阵的全部特征值是一个重要的问题,它在线性代数和数值计算中都有广泛的应用。
在本文中,将详细介绍几种方法来求解矩阵的全部特征值,包括特征值分解方法、幂迭代方法、QR方法、Jacobi方法和带位移的QR方法。
特征值是一个矩阵的最重要的性质之一,它描述了矩阵的行为和性质。
特征值可以用于计算矩阵的条件数、正交变换、矩阵的相似性和对角化等。
求解矩阵的全部特征值可以通过特征值分解来实现。
特征值分解是将一个矩阵分解成一个对角矩阵和一个特征向量矩阵的乘积。
根据特征值分解的定义,可以得到以下公式:A=QΛQ^(-1)其中A是一个n×n的矩阵,Λ是一个对角矩阵,Q是一个n×n的正交矩阵,^(-1)表示矩阵的逆。
通过特征值分解,可以求解矩阵的全部特征值和对应的特征向量。
特征值分解的方法有很多种,比如QR方法、Jacobi方法和带位移的QR方法。
幂迭代是一种求解矩阵最大特征值和对应特征向量的迭代方法。
幂迭代的基本思想是通过不断迭代矩阵的幂次来逼近最大特征值和对应特征向量。
幂迭代的过程可以通过以下公式表示:x(k+1)=Ax(k)其中x(k)表示第k次迭代的特征向量,A表示待求解的矩阵。
幂迭代的收敛性取决于一个非零初始向量的选择和特征值的大小。
当初始向量与最大特征值对应的特征向量接近时,幂迭代可以得到最大特征值的逼近值。
通过迭代可以不断逼近最大特征值,同时得到对应特征向量。
QR方法是一种求解实对称矩阵全部特征值的方法,它通过迭代将矩阵变换为上三角矩阵。
QR方法的基本步骤包括QR分解、矩阵相似变换和迭代。
在每一次迭代中,矩阵A都被变换为一个上三角矩阵R,并且特征值逐步靠近对角线的元素。
Jacobi方法是一种通过旋转矩阵将矩阵对角化的方法。
Jacobi方法的基本思想是通过多次相似变换将矩阵的非对角元素逐步置为零,使得矩阵对角化。
Jacobi方法的关键步骤是选择旋转角度和旋转矩阵,通过旋转操作将非对角元素置为零。
线性方程组与矩阵特征值求解的数值方法
![线性方程组与矩阵特征值求解的数值方法](https://img.taocdn.com/s3/m/4c9cfe3d1611cc7931b765ce050876323112749e.png)
线性方程组与矩阵特征值求解的数值方法线性方程组与矩阵特征值求解是线性代数中的两个重要问题。
线性方程组解决了形如Ax=b的方程组,其中A为一个m×n的矩阵,b为一个m 维的向量,求解x使得该方程组成立。
矩阵特征值求解是求解形如Ax=λx的特征值和特征向量问题,其中A为一个n×n的矩阵,λ为特征值,x为特征向量。
这两个问题在实际应用中有广泛的应用,如计算机图形学、仿真和优化等领域。
本文将介绍线性方程组和矩阵特征值求解的数值方法。
一、线性方程组的求解方法1.1直接法直接法是指通过一系列的代数运算和变换直接求解线性方程组的解。
经典的直接法有高斯消元法、LU分解法和Cholesky分解法等。
这些方法的时间复杂度通常为O(n^3)。
直接法的优点是解的精度高,稳定性好,适用于小规模的问题。
1.2迭代法迭代法是指通过迭代计算逼近线性方程组的解。
迭代法的基本思想是将原方程组转化为递推的形式,并选择一个初始解,通过递推计算得到趋于或精确的解。
常用的迭代法有Jacobi迭代法、Gauss-Seidel迭代法和SOR迭代法等。
这些方法的时间复杂度通常为O(n^2)。
迭代法的优点是适用于大规模问题,但收敛速度慢,精度较差。
二、矩阵特征值求解方法2.1幂法幂法是求解特征值最大的特征值与对应特征向量的方法。
假设有一个n×n的矩阵A,选择一个初始向量x(0),通过迭代计算x(k)=Ax(k-1)/,Ax(k-1),其中,·,表示向量的范数,直到收敛为止。
最后得到的x为特征向量,特征值为λ=(Ax·x)/(x·x)。
幂法的收敛速度较慢,但适用于特征值分布差异较大的情况。
2.2反幂法反幂法是求解特征值最小的特征值与对应特征向量的方法。
和幂法类似,反幂法选择一个初始向量x(0),通过迭代计算x(k)=(A-λI)^-1x(k-1)/,(A-λI)^-1x(k-1),其中I为单位矩阵,λ为近似的特征值,直到收敛为止。
矩阵特征值计算
![矩阵特征值计算](https://img.taocdn.com/s3/m/822790f633d4b14e852468d6.png)
9 矩阵特征值计算在实际的工程计算中,经常会遇到求n 阶方阵A 的特征值(Eigenvalue)与特征向量(Eigenvector)的问题。
对于一个方阵A ,如果数值λ使方程组Ax =λx即 (A-λI n )x =0有非零解向量(Solution Vector)x ,则称λ为方阵A 的特征值,而非零向量x 为特征值λ所对应的特征向量,其中I n 为n 阶单位矩阵。
由于根据定义直接求矩阵特征值的过程比较复杂,因此在实际计算中,往往采取一些数值方法。
本章主要介绍求一般方阵绝对值最大的特征值的乘幂(Power)法、求对称方阵特征值的雅可比法和单侧旋转(One-side Rotation)法以及求一般矩阵全部特征值的QR 方法及一些相关的并行算法。
1.1 求解矩阵最大特征值的乘幂法1.1.1 乘幂法及其串行算法在许多实际问题中,只需要计算绝对值最大的特征值,而并不需要求矩阵的全部特征值。
乘幂法是一种求矩阵绝对值最大的特征值的方法。
记实方阵A 的n 个特征值为λi i =(1,2, …,n ),且满足:│λ1│≥│λ2│≥│λ3│≥…≥│λn │特征值λi 对应的特征向量为x i 。
乘幂法的做法是:①取n 维非零向量v 0作为初始向量;②对于k =1,2, …,做如下迭代:u k =Av k -1 v k = u k /║u k ║∞ 直至<-∞∞+k k u u 1ε为止,这时v k +1就是A 的绝对值最大的特征值λ1所对应的特征向量x 1。
若v k -1与v k 的各个分量同号且成比例,则λ1=║u k ║∞;若v k -1与v k 的各个分量异号且成比例,则λ1= -║u k ║∞。
若各取一次乘法和加法运算时间、一次除法运算时间、一次比较运算时间为一个单位时间,则因为一轮计算要做一次矩阵向量相乘、一次求最大元操作和一次规格化操作,所以下述乘幂法串行算法21.1的一轮计算时间为n 2+2n =O(n 2 )。
第七章 求矩阵特征值的数值方法
![第七章 求矩阵特征值的数值方法](https://img.taocdn.com/s3/m/4d3c2b09eff9aef8941e061f.png)
4
定理 2.关于正交矩阵有如下结论
(1)单位矩阵是正交矩阵。 (2)若 A 为正交矩阵,则 A
1
AT 。
(3)若 A 为正交矩阵,则 A 也是正交矩阵。 (4)若 A 为正交矩阵,则 A 1 或 A 1 。 (5)若 A, B 为同阶正交矩阵,则 AB 与 BA 也是正交矩阵。
5
n
k
在 a1 a2 0 时,这是一个主特征向量。
18
② 当 1 2 时, 2 是 A 2 的主特征值,故
1,2 lim max( A2 zk ) .
k
计算时,迭代可能发散,但是
A2 zk Ayk 1 mk 1 Azk 1 mk 1mk 2 zk 2 max( A2 zk ) mk 1mk 2 , mk 1mk 2 1 k 。
17
j a1 x1 a2 x2 a j x j 1 j 3 zk k n j max a1 x1 a2 x2 a j x j 1 j 3 a1 x1 a2 x2 k max(a1 x1 a2 x2 )
P A x am Am x am1 Am1 x ...... a1 Ax a0 x
am x am1
m m 1
x ...... a1 x a0 x P x
7
即, P 是 P A 的一个特征值
定理 5. 为方阵 A 的特征值,若 x1 , x2 都是属于 的特 征向量,则
第七章 求矩阵特征值的数值方法
1
1、预备知识
定义 1 设 A (aij ) nn , 如果 AT A ,则称 A 为对称矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎤
x
j
⎥ ⎥⎦
→ a1x1 + a2 x2 (k → ∞)
max(a1x1 + a2 x2 )
在 a1 + a2 ≠ 0 时,这是一个主特征向量。
18
② 当 λ1 = −λ2 时, λ 2 是 A2 的主特征值,故
λ1,2
=
± lim k →∞
max( A2zk ) .
计算时,迭代可能发散,但是
A2 zk = Ayk+1 = mk+1 Azk+1 = mk+1mk+2 zk+2
⎜ ⎝
⎡
n
max ⎢⎢⎣a1x1
+ a2 x2
+
aj
j =3
λj λ1
⎞k −1 ⎟ ⎠
x
⎛ ⎜ ⎝
λj λ1
⎞k −1 ⎟ ⎠
⎤
j
⎥ ⎥⎦
xj
⎤ ⎥ ⎥⎦
⎫ ⎪ ⎪⎪ ⎬ ⎪ ⎪ ⎭⎪
,
∑∑ ( ) =
λ1
⎡
m
ax
⎢ ⎢⎣
a1
x1
+
a2
x
2
+
n j=2
a
j
⎛ ⎜ ⎝
λj λ1
⎞k ⎟ ⎠
⎤
x
j
⎥ ⎥⎦
+
n
aj
j=2
⎛ ⎜ ⎝
λj λ1
⎞k −1 ⎟ ⎠
⎤
x
j
⎥ ⎥⎦
→
λ1
k → ∞ (主特征值),
15
∑∑ ( ) zk
=
a1 x1
+
n j=2
aj
⎛ ⎜ ⎝
λj λ1
⎞k ⎟ ⎠
⎡ max ⎢⎢⎣a1x1
+
n
aj
j=2
⎛ ⎜ ⎝
λj λ1
xj
⎞k ⎟ ⎠
xj
⎤ ⎥ ⎥⎦
→
x1 max( x1)
k → ∞, a1 ≠ 0
⎡
m
ax
⎢ ⎢⎣
a1
x1
+ a2 x2
+
n
aj
j=2
⎛ ⎜ ⎝
λj λ1
⎞ k −1 ⎟ ⎠
⎤
x
j
⎥ ⎥⎦
→
λ1
k→∞
17
∑∑ zk
=
a1 x1
+ a2 x2
+
n
aj
j =3
⎛ ⎜ ⎝
λj λ1
⎞k ⎟ ⎠
⎡ max ⎢⎢⎣a1 x1
+ a2 x2
+
n
aj
j=3
⎛ ⎜ ⎝
λj λ1
xj
⎞k ⎟ ⎠
也是属于 λ 的特征向量。
证明: A(a1x1 + a2 x2 ) = a1Ax1 + a2 Ax2 = λ (a1x1 + a2 x2 ) ,
所以. a1x1 + a2 x2 是属于 λ 的特征向量。
8
2.幂法
幂法是计算实矩阵按模最大的特征值及其对应特征 向量的一种迭代方法,主要适用于中小型矩阵和大型稀疏 矩阵。
k = 1, 2," ,
26
迭代计算得
k
0
yk
mk
1
zk
1
1
1 0.875 -0.25 0.0417
2 2.0417 -1.298 0.3512
3 2.4071 -1.679 0.4834
4 2.4725 -1.748 0.5076
5 2.4825 -1.758 0.5113
0.875 2.0417 2.4071 2.4725 2.4825
则称 A 为正定矩阵。
2
定理 1. 设 A = (aij ) ∈ R n×n ,则下列条件等价 (1) A 为正定矩阵; (2) A 的所有特征值都是正数; (3) A 的各阶顺序主子式均大于零。
3
定义 3. 设 A = (aij ) ∈ C n×n ,且 AT A = I ,则称 A 为正交矩阵。
5
定理 3. λ 为方阵 A 的特征值,则 λ 是方程 λI − A =0
的根。
注.显然,若 λ 为方阵 A 的特征值,则存在向量 x ≠ 0 ,使得:
Ax = λ x ,即齐次线性方程组 (λ I − A) x = 0 有非零解,所以系
数行列式 λ I − A = 0 。属于 λ 的特征向量是 (λ I − A) x = 0 的
第七章 求矩阵特征值的数值方法
1
1、预备知识
定义 1 设 A = (aij )n×n , 如果 AT = A ,则称 A 为对称矩阵。 定义 2 设 A = (aij ) ∈ R n×n 是对称矩阵,且对 ∀x ∈ Rn , x ≠ 0 ,
都有
n
∑ xT Ax = aij xi x j > 0 , i, j=1
1 -0.286 0.0476
1 -0.636 0.172
1 -0.697 0.2008
1 -0.707 0.2053
1 -0.708 0.2059
27
所以,特征值
λ3
=
1 2.4825
=
0.4028
,
相应特征向量 x = (1, −0.708, −0.2059)T 。
28
4、原点位移技术
幂法的收敛速度取决于收敛因子即次大特征值与 最大特征值之比,当收敛因子越小,收敛越快。由于 一般情况下的收敛因子不是很小,所以幂法的收敛速 度是很慢的。如果经若干次幂法迭代后得到特征值的 一个粗糙近似值a和对应的粗糙特征向量x,那么取初 始位移为a,以x为初始向量,作动态原点位移的反幂 法,就可以加速收敛性。
非零解.
6
定理 4. λ 为方阵 A 的特征值, P (t ) 是一个多项式,则 P (λ ) 是 P ( A) 的一个特征值。 证明:设 P (t ) = amt m + am−1t m−1 + ...... + a1t + a0 ,x 是属于 λ 的
特征向量。则
( ) P A = am Am + am−1Am−1 + ...... + a1A + a0 I , P ( A) x = am Am x + am−1Am−1x + ...... + a1Ax + a0 x
为了避免求 A−1 ,通常利用解线性方程组方法。其迭代格式
( ) 为,取初始向量 z0 z0 ∞ = 1 , 解线性方程组得yk
⎧⎪⎨mAyk k==mzakx−1( yk ) k = 1, 2,"
⎪⎩zk = yk / mk
24
当 λ1 ≥ λ2 ≥ ... ≥ λn−1 > λn 时,有
mk
→
+ a2 x2
+
n
aj
j=3
⎛ ⎜ ⎝
λj λ1
⎞k −1 ⎟ ⎠
xj
⎤ ⎥ ⎥⎦
⎡ max ⎢⎢⎣a1x1
+ a2 x2
+
n
aj
j=3
⎛ ⎜ ⎝
λj λ1
⎞k −1 ⎟ ⎠
xj
⎤ ⎥ ⎥⎦
可得:
Azk
+
λ1zk
→
2λ1a1 x1
max (a1x1 + a2 x2 )
(k
→
∞)
Azk
− λ1zk
→
−2λ1a2 x2
max (a1x1 + a2 x2 )
(k
→
∞)
(属于 λ1 和 λ2 = −λ1 的特征向量)
21
例
1.
用幂法求矩阵
A
=
⎜⎛ ⎜
2 3
4 9
6 15
⎟⎞ ⎟
的按模最大的特征
⎜⎝ 4 16 36⎟⎠
值和对应的特征向量。
解:取初始向量 z0 = (1,1,1)T ,由
⎧⎪⎨mykk
= Azk−1 = max(
4
定理 2.关于正交矩阵有如下结论
(1)单位矩阵是正交矩阵。
(2)若 A 为正交矩阵,则 A−1 = AT 。 (3)若 A 为正交矩阵,则 AT 也是正交矩阵。 (4)若 A 为正交矩阵,则 A = 1 或 A = −1 。 (5)若 A, B 为同阶正交矩阵,则 AB 与 BA 也是正交矩阵。
= amλ m x + am−1λ m−1x + ...... + a1λ x + a0 x = P (λ ) x
即, P (λ ) 是 P ( A) 的一个特征值
7
定理 5. λ 为方阵 A 的特征值,若 x1, x2 都是属于 λ 的特
征向量,则
( ) a1x1 + a2 x2 a1 + a2 ≠ 0
又设 z0 = a1x1 + a2 x2 +" + an xn ,
Ax j = λj x j ( j = 1, 2,", n) ,
∑ 因此有: zk
=
λ1k
⎡ ⎢a1 x1 ⎣
+
j
n =2
a
j
(
λj λ1
)k
⎤ xj ⎥
⎦
。
所以, zk 渐近于特征方向,但是 zk 可能无限增长或收敛于零。
10
⎜⎛ 2 0 1⎟⎞ 例如,矩阵 A = ⎜ 1 1 0⎟ ,取 z0 = (1, 0,1)T ,利用上述方法