地震作用的计算和抗震验算

合集下载

地震作用与结构抗震验算

地震作用与结构抗震验算
上一页 下一页 返回
第一节地震作用
• 2.按作用大小分 • 地震作用按其作用大小可分为:多遇地震作用、基本地震作用和预
估的罕遇地震作用。下节主要介绍多遇地震作用的计算方法。
• 四、水平地震作用与风荷载的区别
• 水平地震作用与风荷载都是以水平作用为主的形式作用在建筑物上 的,但是它们作用的表现形式和作用时间的长短是有很大区别的。因 此,在结构设计中要求结构的工作状态是不同的。
上一页
返回
第二节地震作用的计算
• 一、动力计算简图
• 实际结构在地震作用下颠簸摇晃的现象十分复杂。在计算地震作用 时,为了将实际问题的主要矛盾突显出来,然后运用理论公式进行计 算设计,需将复杂的建筑结构简化为动力计算简图。
• 例如:对于图4-1(a)所示的实际结构一水塔,在确定其动力计算简图 时,常常将水箱及其支架的一部分质量集中在顶部,以质点m来表示; 而支承水箱的支架则简化为无质量而有弹性的杆件,其高度等于水箱 的重心高,其动力计算简图如图4-1(b)所示。这种动力计算体系称为 单质点弹性体系。
• 3)整根桩应一次连续压到设计标高,当必须中途 停压时,桩端应停留在软弱土层中,且停压的间隔 时间不宜超过24h;
上一页 下一页 返回
第一节地震作用
• 1.作用形式 • 风荷载是直接作用于建筑物表面上的压(吸)力,只和建筑物的体形、
高度、环境(地面粗糙度、地貌、周围的楼群)、受风面积大小等有关; 而地震作用都是由质量受振动而引发的惯性力,地震作用是通过场地、 地基、基础作用于结构上部的。 • 2.作用时间 • 风荷载的作用时间长,发生的机遇也多,因而要求结构在风荷载作 用下不能出现较大的变形,结构处于弹性工作状态;相反,发生地震 的机遇少,持续时间也短,但作用剧烈,故要求做到“小震不坏,中 震可修,大震不倒”。

第三章2 工程结构地震反应分析与抗震验算.ppt

第三章2 工程结构地震反应分析与抗震验算.ppt

h 1 ---直线下降段的斜率调整系数;按下式确定
h1 = 0.02 + (0.05 - z ) / 8 当h1 < 0时,取h1 = 0
h2 - -阻尼调整系数,h2 < 0.55时,取h2 = 0.55
h2
=1+
0.05 - z 0.06 +1.7z
Tg : 特征周期,见表3.2
max:水平地震系数的最大值 α max = kβ max ,β max= 2.25
结构在地震持续过程中经受的最大地震作用为
F
=
F (t ) max
= m &x&(t) + &x&g (t) max
= mSa
= mg Sa
&x&g (t) max = Gk = G
&x&g (t) max
g
G ---集中于质点处的重力荷载代表值;
g ---重力加速度
= Sa
&x&g (t) max
地震特征周期分组的特征周期值(s)
场地类别




第一组 0.25
0.35
0.45 0.65
查表确定 Tg Tg = 0.3
第二组 0.30
0.40
第三组 0.35
0.45
0.55 0.75 0.65 0.90
例:单层单跨框架。屋盖刚度为无穷大,质量集中于屋 盖处。已知设防烈度为8度,设计地震分组为二组,Ⅰ类 场地;屋盖处的重力荷载代表值G=700kN,框架柱线刚 度 ic = EIc / h = 2.6104 kN m ,阻尼比为0.05。试求该结构多 遇地震时的水平地震作用。

地震作用计算

地震作用计算

1.0.5 一般情况下,建筑的抗震设
防烈度应采用根据中国地震动参数区 划图确定的地震基本烈度(本规范设计 基本地震加速度值所对应的烈度值)。
设防烈度的确定——抗规附录A
(3)确定抗震设防烈度的目的
确定设计基本地震加速度和设计特征周期
或设计地震动参数
3.2.2 抗震设防烈度和设计基本地震加速度取值的对应关系, 应符合表3.2.2的规定。设计基本地震加速度为0.15g和0.30g 地区内的建筑,除本规范另有规定外,应分别按抗震设防烈度7 度和8度的要求进行抗震设计。
1.抗震设防的三水准目标——抗规GB50011-2010
1.0.1 按本规范进行抗震设计的建筑,其基本 的抗震设防目标是:当遭受低于本地区抗震设防 烈度的多遇地震影响时,主体结构不受损坏或不 需修理可继续使用;当遭受相当于本地区抗震设 防烈度的设防地震影响时,可能发生损坏,但经 一般性修理仍可继续使用;当遭受高于本地区抗 震设防烈度的罕遇地震影响时,不致倒塌或发生 危及生命的严重破坏。使用功能或其他方面有专 门要求的建筑,当采用抗震性能化设计时,具有 更具体或更高的抗震设防目标。
限批准作为一个地区抗震设防依据的地震 烈度。一般情况,取50年内超越概率10% 的地震烈度。 抗震设防标准 ——衡量抗震设 防要求高低的尺度,由抗震设防烈度或设 计地震动参数及建筑抗震设防类别确定。
(2)设防依据——抗规
1.0.4 抗震设防烈度必须按国家规
定的权限审批、颁发的文件(图件)确 定。
3.3.2 建筑场地为Ⅰ类时,对甲、乙类的建筑应允许仍
3.3.3 建筑场地为Ⅲ、Ⅳ类时,对设计基本地震加速度
C.建筑物使用功能的设防标准 ——自身 条件问题。
3.1.1 抗震设防的所有建筑应按现行国家

建筑抗震项目三

建筑抗震项目三

xg
(
)e
(t
)
sin
d
(t


)d
(3)运动微分方程的全解
将式(2)与式(3)取和,即为常微分方程的全解。
3.2单质点弹性体系水平地震作用计算
3.2.2 单质点弹性体系水平地震作用计算的反应谱法
1.地震反应谱 地震反应谱是指单质点体系的地震最大绝对加速度反应
与其自振周期T之间的关系曲线,根据地震反应内容的不同, 可分为位移反应谱、速度反应谱及加速度反应谱。 2.设计反应谱
3.2.3 地震影响系数曲线
地震的随机性使每次的地震加速度记录的反应谱曲线各 不相同。因此,为了满足房屋建筑的抗震设计要求,将大量 强震记录按场地、震中距进行分类,并考虑结构阻尼比的影 响,然后对每种分类进行统计分析,求出平均β 谱曲线,然 后根据的关系,将β 谱曲线转换为α 谱曲线,作为抗震设计 用标准反应谱曲线。
x(t) 2 x(t) 2 x(t) 0
当 1 时,为过阻尼状态;当 1 时,为欠 阻尼状态;当 1 时,为临界阻尼状态。
根据结构动力学可得到单质点弹性体系欠阻尼状态
下的自由振动的解为:
x(t)

e t
(x0
cosd t

x0
x0 d
3.2单质点弹性体系水平地震作用计算
我国建筑抗震设计规范中采用的设计反应谱(α -T)曲线
地震影响系数α 谱曲线
1.参数说明;
2.当 =0.05时,地震影响系数谱曲线由四部分组成; 3.当 ≠0.05时,地震影响系数曲线的阻尼调整系数和形
状参数调整;
3.2单质点弹性体系水平地震作用计算
4.根据抗震设计反应谱,如何确定结构上所受的地震作用,计 算步骤如下:

新抗震规范——地震作用和结构抗震验算

新抗震规范——地震作用和结构抗震验算

5 地震作用和结构抗震验算5.1 一般规定5.1.1各类建筑结构的地震作用,应符合下列规定:1一般情况下,应至少在建筑结构的两个主轴方向分别计算水平地震作用,各方向的水平地震作用应由该方向抗侧力构件承担。

2有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。

3质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响;其它情况,应允许采用调整地震作用效应的方法计入扭转影响。

48、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用5平面投影尺度很大的空间结构,应视结构形式和支承条件,分别按单点一致、多点、多向或多向多点输入计算地震作用。

注:8、9度时采用隔震设计的建筑结构,应按有关规定计算竖向地震作用。

【说明】本次修订,拟明确大跨空间结构地震作用的计算要求。

1、平面投影尺度很大的空间结构指,跨度大于120m、或长度大于300m、或悬臂大于40m的结构。

2、关于结构形式和支承条件(1)周边支承空间结构,如:网架、单、双层网壳、索穹顶、弦支穹顶屋盖和下部圈梁-框架结构,当下部支承结构为一个整体、且与上部空间结构侧向刚度比大于等于2时,应允许采用三向(水平两向加竖向)单点一致输入计算地震作用;当下部支承结构由结构缝分开、且每个独立的支承结构单元与上部空间结构侧向刚度比小于2时,应采用三向多点输入计算地震作用;(2)两线边支承空间结构,如:拱,拱桁架;门式刚架,门式桁架;圆柱面网壳等结构,当支承于独立基础时,应采用三向多点输入计算地震作用。

(3)长悬臂空间结构,应视其支承结构特点,采用多向单点一致输入、或多向多点输入计算地震作用。

3、关于单点一致输入仅对基础底部输入一致的加速度反应谱或加速度时程进行结构计算。

4、关于多向输入沿空间结构基础底部,三向同时输入,其地震动参数(加速度峰值或反应谱峰值)比例取:水平主向:水平次向:竖向= 1.00:0.85:0.65。

地震作用和抗震验算新规定

地震作用和抗震验算新规定

第七讲地震作用和抗震验算新规定王亚勇赖明吕西林李英民杨溥郭子雄(一)新的设计反应谱的主要特点1、89规范的设计反应谱的主要特点89规范的设计反应谱、即地震影响系数曲线,是根据大量实际地震加速度纪录的反应谱进行统计分析并结合工程经验和经济实力的综合结果。

抗震设计反应谱通常用三个参数:最大地震影响系数αmax 、特征周期 T g 和长周期段反应谱曲线的衰减指数γ来描述。

而且不同阻尼比条件下的反应谱曲线也是不同的,89规范提供了考虑近、远震和不同场地条件下阻尼比为5 % 的标准设计反应谱,其最长周期为 3秒。

应该说,89规范的设计反应谱基本适应了我国八、九十年代工程建设抗震设防的要求,除房屋建筑外,各类工程设施及构筑物均参照它提出类似的设计反应谱。

2、加速度设计反应谱用于抗震设计的局限性(1)强震地面运动长周期成分的存在地震学研究和强震观测证明,强震情况下,地面运动确定存在长周期分量,其周期可以长达10秒甚至100秒,地震震级从5级到8级,其谱值在10秒周期处最大相差不超过50倍,在100秒周期处,不超过250倍。

在震级M5时,周期在3秒以内,信噪比已经大到可以满足工程使用要求了。

同时还证明,谱曲线至少存在二个拐角周期。

如图1和表1所示。

图1 不同震级下强震地面运动福里叶振幅谱注:噪声指在强震加速度记录数据处理过程中引入的长周期误差研究表明,地震动长周期分量与震源规模、震源距有关,由此可以推出与震级、烈度的关系,从而建立起具有工程实用意义的关系来。

见公式(1)PSV =f1(M,R,T)=f2(L,W,R,T) (1)=f3(I,R,T)式中:PSV为拟速度反应谱,M为震级,R为震源距,L为断层长度,W为断层宽度,I 为烈度,T是反应谱周期。

(2)现有强震加速度记录中长周期成份的损失由于强震仪频率响应范围的限制无法记录到超过10秒以上的地面运动成分,在超过5秒以上的成分中也存在失真,而且在对加速度记录进行误差修正时将数字化过程零线修正所产生的噪声滤出的同时也将地面运动长周期分量滤去了。

土木工程抗震第3章教案工程结构地震反应分析与抗震验算

土木工程抗震第3章教案工程结构地震反应分析与抗震验算

第3章 工程结构地震反应分析与抗震验算1、地震作用的计算方法:底部剪力法(不超过40m 的规则结构)、振型分解反应谱法、时程分析法(特别不规则、甲类和超过规定范围的高层建筑)、静力弹塑性方法。

一般的规则结构:两个主轴的振型分解反应谱法;质量和刚度分布明显不对称结构:考虑扭转或双向地震作用的振型分解反应谱法;8、9度时的大跨、长悬臂结构和9度的高层建筑:考虑竖向地震作用。

2、结构抗震理论的发展:静力法、定函数理论、反应谱法、时程分析法、非线性静力分析方法。

3、单自由度体系的运动方程:g xm kx x c x m -=++或m t F x x x e /)(22=++ωξω 。

杜哈美积分x(t)= ⎰----tt t e xd )(g dd )(sin )(1ττωτωτξω , ωξωm cm k 2,2== 单自由度体系自由振动:)sin cos ()(d d000t x xt x e t x d t ωωξωωξω++=- 。

4、最大反应之间的关系:d v a S S S 2ωω==5、地震反应谱:单自由度体系在给定的地震作用下某个最大反应与体系自振周期的关系曲线。

特点:⑴阻尼比对反应谱影响很大;⑵对于加速度反应谱,当结构周期小于某个值时幅值随周期急剧增大,大于某个值时,快速下降;⑶对于速度反应谱,当结构周期小于某个值时幅值随周期增大,随后趋于常数;⑷对于位移反应谱,幅值随周期增大。

地震反应谱是现阶段计算地震作用的基础,通过它把随时程变化的地震作用转化为最大等效侧向力。

6、单自由度体系的水平地震作用:F G k G gt x t xS mgg g a αβ===maxmax)()(β为动力系数,k 为地震系数,α=k β为水平地震影响系数。

7、抗震设计反应谱αmax 地震影响系数最大值,查表;T 为结构周期;T g 为特征周期,查表;例:单层单跨框架。

屋盖刚度为无穷大,质量集中于屋盖处。

第三章 地震作用与抗震验算(4)

第三章 地震作用与抗震验算(4)
3.地震波选取 ◆强震持时
一般为结构基本周期的5~10倍,且≥12s。
强震持续时间
地震加速度记录
3.11 时程分析法
3.地震波选取
加速度(g)
0.3
0.2 0.1 0
0.1
0.2 0.3 0 5 10 15 20 25时间(s)
[美]英佩里亚尔谷地震
1940年El Centro地震的加速度记录(南-北分量)
动荷载下钢材的应力-应变关系
3.13 抗震验算
2.承载力验算
S
R
RE 承载力抗震调整系数

RE S R
3.13 抗震验算
2.承载力验算
地震作用效应与其他作用效应基本组合
S G S EG Eh S Ehk Ev S Evk w w S wk
1.2 不利 G 1.0 有利
T1 折减系数 T T 1 附加周期△T(s) 场地类别 Ⅲ类 当高宽比 烈度 大于3时,顶 0.08 8度 层不折减。
9度 0.10
0.9
Ⅳ类 0.20 0.25
3.13 抗震验算
1.确定地震作用计算方向
◆一般情况下,应允许在建筑结构的两个主轴方向分 别计算水平地震作用并进行抗震验算,各方向的水 平地震作用应由该方向抗侧力构件承担。 ◆有斜交抗侧力构件的结构;当相交角度大于15° 时,应分别计算各抗侧力构件方向的水平地震作 用。 ◆质量和刚度分布明显不对称的结构,应计入双向水 平地震作用下的扭转影响;其他情况,应允许采用 调整地震作用效应的方法计入扭转影响。 ◆8、9度时的大跨度和长悬臂结构及9度时的高层建 筑,应计算竖向地震作用。
动力方程 ti 1 Cx t i 1 Kxt i 1 m g ti 1 m x x

地震作用的计算和抗震验算

地震作用的计算和抗震验算
7
17.7.2
单质点体系的地震作用
今以任一微分脉冲作用进行讨论,设它 在t=τ-dτ时开始作用,作用时间为 x dτ,则冲量大小为 g (t )d 动量增量为 mx( ) 从动量定理,得
g (t )d x
由通解式可求得当τ-dτ时,作用 一个 g (t )d 微分脉冲的位移反应为 x ( ) x ( t ) g dx( ) e sin ' (t )d 地震作用下的质点位移分析 ' 将所有微分脉冲作用后产生的自由振动叠加,得总位移反应
质点相对于地面的最大加速度反应为
10
17.7.2
单质点体系的地震作用
地震反应谱:主要反映地面运动的特性 最大相对位移 最大相对速度 最大加速度 最大反应之间的关系 在阻尼比、地面运动确定后,最大反应只是结构周期的函数。 单自由度体系在给定的地震作用下某个最大反应与体系自振周 期的关系曲线称为该反应的地震反应谱。
h=5m
地震影响系数最大值(阻尼比为0.05) (2)求水平地震影响系数
地震影响 烈度
6 0.04 ----7 0.08(0.12) 0.50(0.72) 8 0.16(0.24) 0.90(1.20) 9 0.32 1.40
查表确定
多遇地震 罕遇地震
22
17.7.2
单质点体系的地震作用
例:单层单跨框架。屋盖刚度为无穷大,质量集中于屋 盖处。已知设防烈度为8度,设计地震分组为二组,Ⅰ类 场地;屋盖处的重力荷载代表值G=700kN,框架柱线刚 度 ,阻尼比为0.05。试求该结构多 遇地震时的水平地震作用。 解: (1)求结构体系的自振周期 (2)求水平地震影响系数 查表确定
地震特征周期分组的特征周期值(s)

室外给水排水和燃气热力工程抗震设计 (5)地震作用和结构抗震验算

室外给水排水和燃气热力工程抗震设计 (5)地震作用和结构抗震验算

地震作用和结构抗震验算5.1 一般规定5.1.1 各类厂站构筑物的地震作用,应按下列规定确定:1 一般情况下,应对构筑物结构的两个主轴方向分别计算水平向地震作用,并进行结构抗震验算;各方向的水平地震作用,应由该方向的抗侧力构件全部承担。

2 设有斜交抗侧力构件的结构,应分别考虑各抗侧力构件方向的水平地震作用。

3 设防烈度为9度时,水塔、污泥消化池等盛水构筑物、球形贮气罐、水槽式螺旋轨贮气罐、卧式圆筒形贮气罐应计算竖向地震作用。

5.1.2 各类构筑物的结构抗震计算,应采用下列方法:1 湿式螺旋轨贮气罐以及近似于单质点体系的结构,可采用底部剪力法计算;2 除第1款规定外的构筑物,宜采用振型分解反应谱法计算。

5.1.3 管道结构的抗震计算,应符合下列规定:1 埋地管道应计算地震时剪切波作用下产生的变位或应变;2 架空管道可对支承结构作为单质点体系进行抗震计算。

5.1.4 计算地震作用时,构筑物(含架空管道)的重力荷载代表值应取结构构件、防水层、防腐层、保温层(含上覆土层)、固定设备自重标准值和其他永久荷载标准值(侧土压力、内水压力)、可变荷载标准值(地表水或地下水压力等)之和。

可变荷载标准值中的雪荷载、面部和操作平台上的等效均布荷载,应取50%计算。

5.1.5 一般构筑物的阻尼比(ζ)可取0.05,其水平地震影响系数应根据烈度、场地类别、设计地震分组及结构自振周期按图5.1.5采用,其形状参数应符合下列规定:1 周期小于0.1s的区段,应为直线上升段。

2 自0.1s至特征周期区段,应为水平段,相应阻尼凋整系数为1.0,地震影响系数为最大值αmax,应按本规范5.1.7条规定采用。

3 自特征周期Tg至5倍特征周期区段,应为曲线下降段,其衰减指数(γ)应采用0.9。

4 自5倍特征周期至6s区段,应为直线下降段,其下降斜率调整系数(ηi)应取0.02。

5 特征周期应根据本规范附录A列出的设计地震分组按表5.1.5的规定采用。

地震作用和结构抗震验算

地震作用和结构抗震验算

地震作用和结构抗震验算地震是地球表面或内部地壳发生震动的现象,它是由于地壳运动中的应力积累和释放所引起的。

地震作用对结构物有着严重的破坏力,因此建筑结构的抗震设计和验算非常重要。

本文将介绍地震的作用机理以及结构抗震验算的方法。

地震作用机理:地震作用是由地壳运动引起的震动传递到建筑物上造成的。

地震的震源是地壳运动过程中的断层破裂,震中是地震能量释放的地点,位于震中周围的区域被称为震源区。

地震波是地壳运动所引起的能量在地球中传播时所激发的波动。

地震波包含三种类型:纵波、横波和表面波。

纵波是一种相对较快的波动,其振动方向与传播方向一致。

横波是振动方向垂直于传播方向的波动。

表面波是短周期的波动,其主要分为Rayleigh波和Love波。

Rayleigh波是一种振动旋转的表面波,而Love波是横向振动的表面波。

地震波在地下传播到地表后,将引起建筑结构的震动。

地震作用主要包括地震波引起的惯性作用、地震波引起的弹性变形作用和地震波引起的地基反力作用。

惯性作用是由于地震波的振动引起结构物惯性力的作用,迫使结构产生振动。

弹性变形作用是指结构物在地震波的激励下产生的临时弹性变形。

地基反力作用是指在地震波的力作用下,地基上产生的反向力。

结构抗震验算的方法:结构抗震验算是指通过对结构物在地震作用下的力学行为进行计算和分析,来确定结构抗震性能的一种方法。

常见的结构抗震验算方法包括动力弹塑性时程分析、静力弹塑性分析和模态超静定校验分析。

动力弹塑性时程分析是目前最为常用的抗震验算方法之一、它通过建立结构动力方程,利用数值求解方法得到结构在地震波作用下的时程反应。

这个方法可以考虑结构的非线性性质,如塑性材料的非线性、接触的失效等。

静力弹塑性分析是一种较为简化的抗震验算方法。

它是通过假设地震作用时结构处于静力平衡状态,根据结构的强度和刚度性能进行计算。

这个方法适用于一些简单的结构和小震级地震的验算。

模态超静定校验分析是一种结构验算方法,它通过分析结构的模态形式来确定结构的抗震性能。

建筑抗震课件(第三章 地震作用和结构抗震验算)

建筑抗震课件(第三章 地震作用和结构抗震验算)
建 为什么要称为地震作用﹖ 是因为结构地震反应是地震通过结构惯性引起的,因此地
筑 震作用(即结构地震惯性力)是间接作用,而不称为荷载,但 为了应用方便,将地震作用等效为某种形式的荷载作用,
抗 这就是等效地震荷载。

3.1 概述
第 3.1.2 质点体系及其自由度

实际结构在地震作用下摇晃的现象十分复杂。在计 算地震作用时,为了将实际问题的主要矛盾突出来,
三 质点自振周期变化的曲线为地震反应谱。 由于地震的随机性,即使在同一地点、同一烈度,每次地震的地面加速
章 度记录也很不一致,因此需要根据大量的强震记录计算出对应于每一条 强震记录的反应谱曲线,然后统计求出最有代表性的平均曲线作为设计 依据,这种曲线称为标准反应谱曲线。
建 筑 抗 震 各种因素对反应谱的影响
章 运用理论公式进行计算设计,需将复杂的建筑结构
简化为动力计算简图。
单质点弹性体系
建 筑 多质点弹性体系 抗 震
3.1 概述
第 单质点弹性体系 三 章
常常将水箱及其支 架的一部分质量集 中在顶部,以质点 m来表示




水塔
支承水箱的支架 则简化为无质量 而有弹性的杆件, 其高度等于水箱
的重心高
3.1 概述
建 去的微量,故:

m[x(t) xg (t)] kx(t)


3.3单质点弹性体系的水平地震作用计算

这样,在地震作用下,质点在任一时刻的相对位移
三 将与该时刻的瞬时惯性力成正比。因此,可认为这一相
章 对位移是在惯性力的作用下引起的,虽然惯性力并不是
真实作用于质点上的力,但惯性力对结构体系的作用和

地震作用和抗震验算规范

地震作用和抗震验算规范

地震作用和抗震验算规范地震是地球内部能量释放的结果,是一种强烈的地质灾害。

地震可以给建筑物、基础设施等人类活动和生活场所带来严重破坏。

因此,为了确保建筑物在地震中的安全性,抗震设计和抗震验算是非常重要的工作。

地震作用是指地震波在建筑物中的作用力。

地震波包含有地表波、体波、面波等多种波形。

地震波会传播到建筑物的结构体系中,引起结构的震动,产生作用力。

地震作用的主要表现有结构内力、结构位移和结构变形等。

抗震验算规范是根据地震灾害的发展规律和建筑物的结构特点,制定出来的一系列规定和规范,用于指导工程设计师进行抗震设计和验算工作。

抗震验算规范包括世界各国的规范和地区的规范,其中,我国的《建筑抗震设计规范》被广泛应用于建筑工程中。

抗震验算是指根据抗震设计规范,对建筑物的结构进行计算和验证。

抗震验算的目标是验证结构在地震作用下的安全性,确定结构的受力状态。

抗震验算主要包括以下几个方面:1.地震响应分析:通过数值分析方法,计算地震波在建筑物结构中的传播和作用过程,获得结构的地震响应。

2.结构受力分析:根据地震响应,确定结构内力和应力。

结构受力分析的目标是确定结构的受力状态,确认结构的受力安全性。

3.结构抗震性能评估:通过对结构受力分析结果的评估,判断结构的抗震性能是否满足设计要求。

根据评估结果,确定结构需要采取的增强措施。

4.结构设计优化:根据抗震验算结果,结合结构的实际情况,对结构进行修正和优化,提高结构的抗震性能。

抗震验算规范的实施,可以有效提高建筑物的抗震能力和抗震安全性,降低地震灾害对建筑物造成的破坏。

因此,在建筑工程中,抗震验算是非常重要的工作,需要工程设计师严格按照规范要求进行,确保结构的安全可靠。

同时,还需要不断研究和改进抗震设计方法,提高抗震验算的精度和可靠性,从而更好地保护人民生命财产安全。

地震作用与结构抗震验算

地震作用与结构抗震验算

地震作用与结构抗震验算地震作用与结构抗震验算?这个话题听起来有点沉重,是不是?你是不是一听就想:“哎呀,这又是啥复杂的东西?是不是要我们做啥高深的计算?”放心,我不是要给你讲一堆难懂的公式和公式背后的晦涩原理。

咱们今天聊聊这个事儿,尽量让它简单、轻松,还能让你一听就懂。

毕竟,谁不想在地震来临时,既能保命,又能保住家里那点心爱的家具和“千金难买”的遥控器呢,对吧?首先嘛,地震这一东西,大家都知道,来的时候毫无征兆。

你说它不来吧,又好像就随时可能给你来个“地动山摇”。

你说它来了吧,就真是让人哭笑不得。

房子摇一摇、墙皮掉一掉,心脏就跟着一阵阵跳。

你看,大家都希望地震来得时候,房子能稳稳地、不动摇,咱才有安全感。

而这其中的关键,就是“抗震设计”,就好比你穿上防震服一样,给建筑戴上一层保护膜。

说到抗震设计,咱们就得聊聊它的一个核心问题——结构抗震验算。

这个名字听着挺复杂,但其实它就是让建筑在地震中不至于像纸糊的一样塌了。

验算的过程其实就是在模拟地震的情况下,看看你的房子能不能顶得住摇晃。

这个“摇晃”可不是轻轻的晃几下,地震可是有劲儿的,它能让你的房子像玩具一样乱抖。

所以下面的验算可得仔细了,不能马虎。

你可以想象,房子就像是一台复杂的机器,每一根梁、每一根柱子、每一块墙都好比机器的零部件。

每个零件都有自己的承重能力和抗震能力。

你想象一下,如果其中某个零部件不行,地震一来,整个机器就“嘎嘎嘎”地坏掉了。

所以,验算就是要检查每个部分的强度、灵活性,确保它们能在摇晃中保持稳定,保证整个建筑不出事儿。

不过,地震不是“随便”就能设计出来的。

设计师得根据地震的强度、建筑的高度、地基的好坏这些因素来算。

你如果住在一个地震带,比如说咱们常说的四川、云南那些地方,设计师可能就得给你的房子加点“装备”,比如说用更强的材料,或者增加一些特殊的支撑结构。

这个就是为了让你在地震来临时,房子能承受住震动,不至于崩塌。

地震的力量可不是闹着玩的。

地震作用和结构抗震设计要点3

地震作用和结构抗震设计要点3

地基与结构相互作用的考虑
《抗震规范》规定 1)结构抗震计算,一般情况下,可不考虑地基与结构相
互作用的影响; 2)8度和9度时建造在Ⅲ,Ⅳ类场地土上,采用箱基、刚
性较好的筏基和桩箱联合基础的钢筋混凝土高层建筑, 当结构基本周期处于特征周期的1.2倍至5倍范围时, 若计入地基与结构动力相互作用的影响,对刚性地基 假定计算的水平地震剪力可按下列规定折减,其层间 变形可按折减后的楼层剪力计算。
mg(
xg max )( g
Sa ) xg max
Gk
G
为地震影响系数, 质点所受水平地震力与该质点重力之比。
我国《建筑抗震设计规范》(GB 50011-2010) 将地震影响系数曲线分为4个部分,覆盖的房屋 自振周期从0至6S。
加速度影响曲线,无量刚化,弹性反应谱
GB 50011-2010, Fig. 5.1.5
FXji j tj X jiGi FYji j tjYjiGi Ftji j tj ri2 jiGi
单向地震作用下
SEk
mm
jk S j Sk
j 1 k 1
双向地震作用下
SEk SEk
S
2 x
(0.85S y )2
S
2 y
(0.85S x )2
时程反应法
适用情况:
特别不规则的建筑,甲类建筑和表中所列的高层建筑
2max
When:Tg Ti 5Tg
( Tg T
) 2 m ax
加速度影响曲线
When : 5Tg Ti 6.0s [2 0.2 1 (T 5T g)]max
Geq 结构等效总重量
For SDOM,
For MDOM,
Geq =G1

第五章-地震作用和结构抗震设计要点

第五章-地震作用和结构抗震设计要点

Geq——结构等效总重力荷载,单质点应取总重力荷载代 表值,多质点可取总重力荷载代表值的85%; Fi ——质点 i 的水平地震作用标准值 Gi ,Gj ——分别为集中于质点i 、j 的重力荷载代表值; Hi ,Hj ——分别为质点 i 、j
η
的计算高度;
ζ
δn——顶 部 附 加 地震作用 系数 ,多层 钢筋混凝土 和钢结 构房屋可按表6采用,多层内框架砖房可采用0.2,其 他房屋可采用0.0; ∆Fn ——顶部附加水平地震作用。
i =1 i =1 n n 2
式中 Fji——j 振型 i 质点的水平地震作用标准值; aj——相应于 j 振型自振周期的地震影响系数; Xji——j 振型 i 质点的水平相对位移; γj ——j 振型的参与系数。 水平地震作用效应(弯矩、剪力、轴向 力和变形),应按 下式确定:
S Ek = ∑ S j
有斜交抗侧力构件的结构,当相交角度大于15 度时, 应分别考虑各侧力构件方向的水平地震作用; 质量和刚度明显不对称的结构,应考虑双向水平地震 作用下的扭转影 响。其他情况,可以采用调整 地震作 用效应的方法计入扭转影响; 8度和9度的大跨度结构、长悬臂结构及9度时的高层建 筑,应考虑竖向地震作用。
1.1.2 地震作用计算方法
现行《抗震规范》的抗震设计计算采用以下三种方法: 适用于多自由度体系的振型分解反应谱法; 将多自由度体系看作等效单自由度体系的底部剪力法; 直接输入地震波求解运动方程及结构地震反应的时程分 析法 。
《抗震规范》对上述三种方法的使用范围作了如下规定: 高度不超过40m,以剪切变形为主且质量和刚度沿高 度分布比较均匀的结构,以及近似于单质点体系的结 构,可采用底部剪力法等简化方法 ; 除上述以外的建筑结构,宜采用振型分解反应谱法; 特别不规则的建筑,甲类建筑和表1所列的高层建 筑,应采用时程分析法进行多遇地震作用下的补充计 算,并取多条时程曲线计算结果的平均值与振型分解 反应谱法计算结果的较大值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.7 地震作用的计算和抗震验算
17.7.1 地震作用的概念 地震作用——振动过程中作用于建筑结构上的惯性力。 结构的地震反应——结构振动时的速度、加速度及位移等。 各类建筑结构的地震作用,应满足以下要求: 1 一般情况下,应允许在建筑结构的两个主轴方向分别计算 水平地震作用并进行抗震验算,各方向的水平地震作用应由 该方向抗侧力构件承担。 2 有斜交抗侧力构件的结构,当相交角度大于 15 °时,应分 别计算各抗侧力构件方向的水平地震作用。 3 质量和刚度分布明显不对称的结构,应计入双向水平地震 作用下的扭转影响;其他情况,应允许采用调整地震作用效 应的方法计入扭转影响。 4 8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计 算竖向地震作用;
1
17.7.2 单质点体系的地震作用
1.计算简图 单自由度弹性体系:
将结构参与振动的全部质量集中于一点,用无重量的弹性直杆 支承于地面形成单质点体系,当该体系只作单向振动时,就形成了 一个单自由度体系。如等高单层厂房、水塔等
单质点弹性体系计算简图 (a)单层厂房及简化体系;(b)水塔及简化体系
2
17.7.2 单质点体系的地震作用
地震作用下的质点位移分析
将所有微分脉冲作用后产生的自由振动叠加,得总位移反应
上式为杜哈默积分,它与通解之和就是微分方程的全解。即
8
17.7.2 单质点体系的地震作用
由Duhamel积分可得零初始条件下质点相对于地面的位移为
最大位 移反应
质点相对于地面的速度为
质点相对于地面的最大速度反应为
9
17.7.2 单质点体系的地震作用
由上式可见,结构的自振周期与其质量和刚度的大小有关。质 量越大,则其周期就越长,而刚度越大,则其周期就越短。
自振周期是结构的一种固有属性,也是结构本身一个很重要的 动力特性。 4.强迫振动 (1)瞬时冲量及其引起的自由振动 如图,荷载P与作用时间△t 的乘积,即 P·△t 称为冲量。当作用时间为瞬时dt 时,则称Pdt为瞬时冲量。 根据动量定律,冲量等于动量的增量, 故有: Pdt mv mv0 若体系处于静止状态,则初速度为0,故 体系在瞬时冲量作用下获得的速度为: 瞬时冲量及其引起的自由振动
4.对于位移反应谱,幅值随周期增大。
2.运动方程
x(t)
m(x xg ) m
cx kx
阻尼力
xg (t)
根据达朗贝尔原理,物体在运动中的任一瞬时,作用在物体上 的外力与惯性力相互平衡,故
运动方程
上式还可简化为
3
17.7.2 单质点体系的地震作用
式中
ω——体系的圆频率;ζ——体系的阻尼比 上式是一个常系数的二阶非齐次微分方程。它的解包含两部分: 一是对应于齐次微分方程的通解,另一个是特解。前者表示自由振 动,后者表示强迫振动。 3.自由振动 (1)自由振动方程
6
17.7.2 单质点体系的地震作用
v Pdt / m
又因体系原处于静止状态,故体系的初位移为零。这样可认为 在瞬时荷载作用后的瞬间,体系的位移仍为零。也就是说,原来静
止的体系在瞬时冲量的影响下将以初速度 Pdt / m作自由振动。根据
自由振动的方程式的解,并令其中 x(0) 0, x(0) Pdt / m ,则可得:
今以任一微分脉冲作用进行讨论,设它
在t=τ-dτ时开始作用,作用时间为
dτ,则冲量大小为 xg (t)d动量增量为
mx( ) 从动量定理,得
xg (t)d
x( ) xg (t)d
由通解式可求得当τ-dτ时,作用
一个 xg (t)d 微分脉冲的位移反应为 dx( ) e(t ) xg ( ) sin '(t )d '
x(t) et Pdt sin 't m
其位移时程曲线如上图所示。 (2)杜哈默积分
方程的特解就是质点由外荷载引起的强迫振动,它可以从上述瞬 时冲量的概念出发来进行推导。
可将 xg (t)看作随时间变化的m=1的“干扰力”,并认为是由
无穷多个连续作用的微分脉冲所组成,
7
17.7.2 单质点体系的地震作用

' 1 2
单自由度体系自由振动曲线
4
17.7.2 单质点体系的地震作用
' ——有阻尼单自由度弹性体系的圆频率
阻尼越大,自振频率越慢。 比较上图中的各条曲线可知,无阻尼体系(ζ=0)自由振动时 的振幅始终不变,而有阻尼体系自由振动的曲线则是一条逐渐衰减 的波动曲线,即振幅随时间的增加而减小,并且体系的阻尼越大, 其振幅的衰减就越快。 (2)自振周期与自振频率
yg (t ) (ms 2 )
绝对加速度反应谱
Elcentro 1940 (N-S) 地震记录
t (s)
14
17.7.2 单质点体系的地震作用
相对位移反应谱
地震反应谱的特点 1.阻尼比对反应谱影响很大 2.对于加速度反应谱,当结构周期小于某 个值时幅值随周期急剧增大,大于某个值 时,快速下降。 3.对于速度反应谱,当结构周期小于某个 值时幅值随周期增大,随后趋于常数。
11
17.7.2 单质点体系的地震作用
yg (t ) (ms 2 )
位移反应谱
Elcentro 1940 (N-S) 地震记录
t (s)
12
17.7.2 单质点体系的地震作用
yg (t ) (ms 2 )
相对速度反应谱
Elcentro 1940 (N-S) 地震记录
t (s)
13
17.7.2 单质点体系的地震作用
质点的绝对加速度为
质点相对于地面的最大加速度反应为
10
17.7.2 单质点体系的地震作用
地震反应谱:主要反映地面运动的特性 最大相对位移
最大相对速度
最大加速度 最大反应之间的关系
在阻尼比、地面运动确定后,最大反应只是结构周期的函数。 单自由度体系在给定的地震作用下某个最大反应与体系自振周 期的关系曲线称为该反应的地震反应谱。
自振周期: T 2 / 体系的频率: f 1/T
体系的圆频率: 2 / T 2f
在实际结构中,阻尼比ζ的数值一般较小,其值大约在0.01~0.1之
间。因此有阻尼频率 与'无阻尼频率ω相差不大,在实际计算中可
近似地取 '
由上式可得单自由度体系自振周期的计算公式为
T 2 m / k
5
17.7.2 单质点体系的地震作用
相关文档
最新文档