刀具涂层技术与设备醮最新发展与应用
刀具涂层技术在钛合金加工中的应用
2018 4中一、钛合金特性、应用钛合金坚硬,不易被氧化,这些方面比其他金属制品要好很多,可以制成不易损伤、折断、比较轻的组装零件。
近几年钛合金大量取代铝合金,尤其是在航空领域上,就是因为钛合金在高温环境中不被融化,温度达到极高点时,它的力学性能超出其他金属材料近十倍,不仅可以耐高温而且不易被氧化,使用期限延长,更是有强的耐腐蚀力。
在湿润的环境或者在海水中,钛合金对点蚀具有很好的抵抗力,还有对酸的抗腐蚀力也超过不锈钢。
用钛合金制造的部件,有坚硬、不易融化、没有毒性、不被磁场干扰的优点。
因为钛合金具有超多优点,所以在飞机、火箭、航母制造业、汽车制造、医疗行业被推荐使用。
1950年,美国研发的F107巡航导弹,有些公司在其发动机的叶片轮中使用了钛合金,在应用中超出预期。
飞机与火箭的制作中,钛合金的应用最早是在发动机的风扇、机身等小部件中,这样飞行起来的重量就减轻了将近三分之一。
在海里,钛合金还为核潜艇的生产做出极大的贡献,不仅如此,在医学中钛合金也是受欢迎的,例如人工制造的骨头、矫正牙齿的装备、手术中使用的器械等等。
如今,被常用于人工小腿支撑骨头的材料为Ti6A L4V和Ti-3A l-2.5V两种合金,他们具有超强的属性,不易变形,不易腐蚀。
二、钛合金加工存在的难点(一)形变系数小在切削加工的整个过程中,因为刀具与切割品的磨擦会产生大量的刀屑,刀屑与刀具有较大的接触面积,大量的刀屑与刀具大面积接触会增大摩擦,因为力的作用,从而使温度增高,加大了切削工具的耗损度。
(二)工作温度高不仅有上一条说的摩擦升热,对于钛合金本身来说,自己具有传热性好,散热较慢的特性。
这样在切割过程中,会有温度的积累。
这也是温度增高的主要方面。
(三)热导率低在切割试验中,因为在整个切割过程中会有一部分热量的积累,而积累会在被切割品内部沉淀,因为钛合金不易导热,所以积累的热量无法向外界散出,故在切割刀具的刀刃中会承受大量的热量,温度增高很快,这样温度会把刀刃融化,缩短刀具的使用时间,使刀具磨损加重。
层刀具的试验总结及可行性研究分析(修改)
新型纳米陶瓷涂层刀具的试验总结及可行性研究分析一、前言:疲劳、磨损和腐蚀是工程材料常见的主要失效形式,而这三种失效方式又都与材料的表面状态密切相关,尤其是机械加工行业广泛使用的刀具,表现尤为明显。
随着企业机械加工设备的自动化水平不断提升,传统意义上的普通刀具已远不能满足设备升级的需求,如刀具磨损过快、加工产品的粗糙度较差、有些数控机床的主轴转速甚至达不到设计的50%,严重影响生产效率和先进设备的利用潜力,因而刀具表面沉积硬质涂层技术在近年来得到了迅速发展。
目前,国外工业化发达国家机械加工行业已普遍采用刀具涂层技术,使刀具的使用寿命显著提高(1-10倍),并大幅提高生产效率和加工产品的质量。
我国进口的刀具,如肯纳、山特维克、瓦尔特、三菱等著名刀具供应商,几乎全部带有涂层,因此刀具涂层技术的应用不仅是发展趋势,同时也代表着先进生产力。
陕西地金成表面工程有限公司是专业化从事金属材料表面强化技术研究、开发和服务加工的高科技企业,依托北航、西安交大等研发实力雄厚的科研院所,针对国内机械加工行业的现状和实际工况,自主开发出全自动控制磁控溅射——多弧离子沉积设备(两台)和系列新型纳米陶瓷涂层成熟技术,已在西安航空发动机公司、户县传动机械厂、宝鸡石油股份有限公司、法士特等企业广泛应用,并产生了非常明显的经济效益和社会效益。
二、刀具涂层的技术特点及使用范围1、磁控溅射——多弧离子沉积技术特点:磁控溅射——多弧离子沉积设备是集磁控溅射技术沉积膜层的细腻、致密和多弧离子沉积的离化率高、沉积速率快的优点为一体的新型复合技术,具有梯度功能连续过渡、多层多元结构交替组合的功能,可制备适用于各种工况需求的陶瓷涂层;整机设计先进、合理,采用工控机和可编程逻辑控制器控制整个镀膜流程,保证了工艺过程的稳定性和可重复性及膜层质量的精确控制。
轰偏电源的设计更有独到之处,兼有调压、整流、脉冲、保护、自动灭弧等功能,而且该技术无公害、无污染,绿色环保。
刀具涂层技术的现状及其发展趋势
刀具涂层技术的现状及其发展趋势机电商情网添加时间:2007-2-6 15:57:24 添加到我的收藏1 引言众所周知,刀具表面涂层技术是应市场需求而发展起来的一项优质表面改性技术,由于该项技术可使切削刀具获得优良的综合机械性能,不仅可有效地提高刀具使用寿命,而且还能大幅度地提高机械加工效率,因此该项技术已与材料、加工工艺并称为切削刀具制造的三大关键技术。
为满足现代机械加工高效率、高精度、高可靠性的要求,世界各国都十分注重涂层技术的发展。
目前我国刀具涂层技术的发展正处在一个十分关键的时刻,尤其是PVD 涂层技术,一方面原有的技术已不能满足切削加工日益变化的要求;另一方面国内各大工具厂涂层设备已到了必须更新换代的时期,因此有计划、按步骤的发展PVD技术,不仅能促进我国切削刀具产品技术水平的提高,而且还可获得巨大的经济效益和社会效益。
2 国际刀具涂层技术的现状及发展趋势刀具涂层技术目前仍可划分为两大类,即CVD(化学气相沉积)和PVD技术(物理气相沉积)。
2.1 国际CVD技术的发展CVD技术自上世纪六十年代出现以来,在硬质合金可转位刀具上得到了极为广泛的应用。
在CVD工艺中,气相沉积所需金属源的制备相对容易,可实现TiN、TiC、TiCN、TiBN、TiB2、Al2O3等单层及多元多层复合涂层,其涂层与基体结合强度高,薄膜厚度可达7~9μm,相对而言,CVD涂层具有更好的耐磨性。
八十年代中后期,美国85%的硬质合金工具采用了涂层处理,其中CVD涂层占到了99%;九十年代中期,CVD涂层硬质合金刀片在涂层硬质合金刀具中仍占到了80%以上。
但CVD工艺也有其先天性的缺陷,一是工艺处理温度高,易造成刀具材料抗弯强度的下降;二是薄膜内部为拉应力状态,使用中易导致微裂纹的产生;三是CVD工艺所排放的废气、废液会造成工业污染,对环境影响较大,与目前所提倡的绿色工业相抵触,因此九十年代中期后高温CVD技术的发展受到了一定的制约。
刀具涂层技术的应用
刀具涂层技术的应用自20世纪60年代化学气相沉积(CVD)涂层硬质合金刀片问世发来,涂层技术被广泛应用于硬质合金可转位刀具的表面处理。
而20世纪80年代初,TiN物理气相沉积(PVD)涂层高速钢刀具的出现,以使高速钢刀具的性能发生了革命性的变革。
由于涂层技术可有效提高切削刀具的使用寿命,使用刀具获得优良的综合机械性能,大幅度地提高机械加工效率,因此涂层技术已经在切削刀具提高性能的工艺中得到极为广泛的应用于。
刀具涂层技术通常可分为化学气相沉积(CVD)技术和物理气相沉积(PVD)技术两大类,本文拟从这两方面分别介绍国内外刀具涂层技术的应用情况。
1、刀具涂层技术的应用(1)CVD涂层技术的应用CVD是使挥发性化合气体发生分解或化学反应,并在被镀工件上形成沉积成膜的方法。
在CVD工艺中,气相沉积所需金属源的制备相对容易,可实现TiN、TiC、TiCN、TiBN、TiB2、AL2O3等单层及多元多层复合涂层。
CVD涂层镀层密实,涂层与基体结合强度高,附着力强,均匀性好,形状复杂的工件也可得到合金副的镀层,薄膜厚度可达5—12微米,因此CVD涂层具有更好的耐磨性。
但其工艺处理温度高,易造成刀具材料抗弯强度的下降,薄膜内部为拉应力状态,使用中易导致微裂纹的产生,因此只适合于硬质合金车削类刀具的表面涂层,其涂层刀具适合于中型、重型切削的高速加工及半精加工。
自1968年第一批CVD涂层硬质合金刀具问世至今,该涂层技术已发展了近35年。
在这35年间,CVD涂层技术从单一成份发展到多种成份、从单一膜层发展到多元多膜层,经过大量的试验,完成了批量大规模的工业化生产。
如今,CVD涂层硬质合金在涂层硬质合金刀具中占到了80%以上的份额,CVD涂层技术已广泛应用于各类硬质合金刀具。
其涂层工艺的主要发展阶段及应用领域见下表:1968——TiN、TiN——方法CVD——硬质合金刀具、模具涂层1973——TiCN、TiC+AL2O3——CVD ——硬质合金刀具、模具涂层1981——TiC+AL2O3+TiN、AL-O-N——CVD——硬质合金涂层1982——TiCN——MT-CVD——硬质合金刀具涂层1986——Diamond、CBN——CVD、PVD——硬质合金刀具涂层1990——TiN、TiCN、TiC——PCVD——模具、螺纹刀具、铣刀等1993——TiN+TiCN(CVD)+TiN(PVD)——CVD+PVD——硬质合金铣削类刀具涂层1993——厚膜纤维状TiCN——MT-CVD——硬质合金车削类刀具涂层(用于粗、半精加工)从上表可以发现,CVD涂层技术主要用于硬质合金类各种切削刀具。
浅谈21世纪刀具材料的现状和发展趋势
20世纪是刀具材料大发展的历史时期——各种难加工材料的出现和应用,先进制造系统、高速切削、超精密加工、绿色制造的发展和付诸实现,对刀具提出了全新要求,令刀具的品种、类型、数量和性能均比过去有了长足发展。
反过来,刀具技术的革新又有力推动机械制造工业的一次又一次腾飞。
21世纪,刀具材料将有大发展。
刀具材料与工件双方交替发展和相互促进,成为切削技术不断向前发展的历史规律。
在未来,刀具材料必将面临工件材料性能提高、加工批量加大和制造精度提升的更严峻挑战。
材料科学的进步,推动了刀具材料的发展;而刀具材料的发展,应考虑原材料资源的制约。
新品种的出现,新旧品种各自所占比重的变化以及它们之间相互竞争和相互补充的格局,将成为未来刀具材料发展的新特点材料资源并非“取之不尽”纵观各种刀具材料,除人造金刚石的原料为石墨(碳元素)外,其它品种都离不开碳化物、氮化物、氧化物和硼化物。
在现代刀具中,碳化物用得最多。
在刀具材料的各个组份中,以Fe3C、WC、TiC、Mo2C、TiN、Al2O3、Si3N4等用量最大,此外还须用到金属Co。
在发展各种新型刀具材料时,主要考虑机械、物理性能的进步和适应工件加工的需要以及刀具材料与工件材料的匹配。
而在很长一段时间里,人们忽略了资源的储存。
高速钢和硬质合金都以W和Co为主要原料,其价格昂贵。
中国富W少Co,而W资源除国内使用外,还大量出口,当今全球使用的W中约有75~80%来自中国,可是中国的W资源只够用50年。
中国使用的Co主要向国外购买,价格昂贵,况且全世界Co资源的储存量也是有限的。
这就警示我们在发展新型刀具材料时,还需充分考虑如何节约贵重资源。
有些刀具材料组份,如Al2O3、Sl2O3、Si3N4、TiC 等,虽然蕴藏丰富,但要付出工艺和制造的成本,故其价格亦不菲。
现代新型材料及其应用展望1.高速钢在现代切削加工中,高速钢的性能已不够先进,但因其稳定性好,能接受成形加工,目前在刀具材料总消耗量中高速钢刀具仍占到40%。
刀具表面处理浅谈
切削刀具表面涂层技术浅谈王朋朋摘要:随着材料科学的发展和机械加工技术的进步,我们对切削金属时的刀具的要求也日益提高。
切削刀具向着高切削速度、高可靠性、长寿命和高精度的方向发展。
因此,刀具表面的涂层技术就显得愈加重要。
关键词:刀具表面处理;刀具表面涂层;物理气相沉积Abstract: With the development of Materials Science and Mechanical technology advances, we are metal cutting tool requirement also is increasing day by day. Cutting tool in high cutting speed, high reliability, long life and high precision in the direction of development. As a result, coating on the surface of the cutting tool technology becomes more and more important.Keywords: Tools Surface ; Tools Surface Coating; PVD随着科学技术,工艺生产的进步,对材料的要求愈来愈高,同时对切削材料的刀具的要求愈加复杂,要求切削的速度不断提高,传统的普通刀具往往不能够满足现在的新的要求。
虽然可以采取各种手段,提高刀具材料的硬度和耐磨性,但同时也会使刀具的强度和韧性下降,从而影响切削加工零件的使用性能。
刀具的耐磨性在于表面质量,提高表面质量的主要手段是对刀具表面进行表面处理。
一.刀具表面涂层技术介绍与特点表面涂层技术,就是再刀具基体上涂覆一层或多层硬度高、耐磨性好的金属或非金属化合物薄膜,一般采用TiC、TiAlN等,由于刀具表面涂层具有很高的硬度和耐磨性,同普通刀具相比,在原来的刀具强度的基础上,又可以很好的提高刀具的表面的硬度、耐磨性和刀具的切削性能,因而可以显著的延长刀具的使用寿命。
刀具涂层的分类与应用
刀具涂层的分类与运用1 引言作为基本财产的制作业正在产生着革命性的变更,制作技巧也已产生了质的变更.尤其是近几年高速切削加工技巧的运用,在大幅度进步临盆效力的同时也极大地进步了产品的质量,可以以为高速切削加工技巧已成为切削制作业的主流.高速切削加工技巧的成长与运用同时带动了相干技巧的敏捷成长.高速切削顾名思义,是高的速度.大的进给量.机床的快速移动.快速换刀等,最终表现为临盆效力的大幅度进步.但是应当指出的是高速切削只是一个相对的概念,跟着加工方法.工件材料以及刀具选择的变更,高速切削加工的速度消失很大变动规模.一般以为高速加工的切削速度为通例切削速度的5~10倍,如加工碳素钢切削速度为500~2000m/min;铸铁为600~3000m/min;铝合金为1000~7000m/min;铜为900~5000m/min.高速切削刀具技巧是实现高速加工的症结技巧之一,而刀具材料的高温机能是影响高速切削刀具技巧成长的重中之重.因为在高速切削加工中所产生的切削热对刀具的磨损比通例切削高得多,是以对刀具材料有更高的请求:高硬度.高强度和耐磨性;高的韧性和抗冲击才能;高的红硬性和化学稳固性;抗热冲击才能.刀具概况涂层技巧是应市场需求而成长起来的一种概况改性技巧,自上世纪60年月消失以来,该项技巧在金属切削刀具制作业内得到了极为普遍的运用.尤其是高速切削加工技巧消失之后,涂层技巧更是得到了缓慢的成长与运用,并成为高速切削刀具制作的症结技巧之一.该项技巧经由过程化学或物理的办法在刀具概况形成某种薄膜,使切削刀具获得优秀的分解切削机能,从而知足高速切削加工的请求.归纳起来切削刀具概况涂层技巧具有以下特色:1.采取涂层技巧可在不降低刀具强度的前提下,大幅度地进步刀具概况硬度,今朝所能达到的硬度已接近100GPa;2.跟着涂层技巧的飞速成长,薄膜的化学稳固性及高温抗氧化性加倍凸起,从而使高速切削加工成为可能;3.润滑薄膜具有优越的固相润滑机能,可有用地改良加工质量,也合适于干式切削加工;4.涂层技巧作为刀具制作的最终工序,对刀具精度几乎没有影响,并可进行反复涂层工艺.涂层切削刀具所带来的益处:可大幅度进步切削刀具寿命;有用地进步切削加工效力;显著进步被加工工件的概况质量;有用地削减刀具材料的消费,降低加工成本;削减冷却液的运用,降低成本,利于情形呵护.2 刀具涂层的分类众所周知,传统刀具涂层技巧重要可分为两大类,但因为市场需求的变更及涂层技巧本身的特点,物理涂层技巧的成长受到了更大的存眷.PVD技巧在得到飞跃性成长的同时,其运用市场也得到了普遍的拓展.与最初成长比拟,不但涂层成分种类繁多,近几年来在涂层构造上更是有了冲破性的成长,并已为市场合接收.跟着PVD技巧在市场中愈来愈普遍的运用,熟悉懂得各类涂层的特点及实用范畴愈加显得重要.是以本文拟对当前PVD涂层进行分类,并剖析各类薄膜所实用范畴,目标是让运用者对各类涂层有一个较体系的懂得,加倍合理地运用涂层刀具.从PVD技巧的成长和运用角度,笔者以为PVD涂层可按2种办法进行分类.1.按涂层成分分类按涂层成分对涂层进行分类简练.清楚明了,基于对材料机能的熟悉,运用者轻易懂得涂层的功效,易为市场合接收,是以今朝各涂层企业更多的是以不合的涂层成分向用户介绍.推举其技巧及产品.按成分对涂层区分平日可分为两大类,即硬涂层和软涂层.硬涂层以TiN.TiCN.TiAlN等为代表,包含了单层薄膜和复合薄膜,跟着市场需求的变更及涂层技巧的成长,新的涂层成分不竭被开辟出来,到今朝为止所运用的硬涂层成分已有几十种之多;软涂层顾名思义薄膜的硬度相对较低,平日为1000HV阁下.软涂层今朝种类其实不久不多,以MoS2.碳基薄膜为主,在切削加工范畴内,其目标是经由过程在硬涂层概况笼罩一层这种薄膜,试图增长涂层概况的润滑性,改良被加工工件概况质量,以知足某些运用范畴的须要.2.按涂层构造分类尽管按成分进行涂层分类具有优越的市场基本,但从PVD技巧的成长来看,涂层的内部构造的变更已越来越多地影响着涂层刀具的运用后果.雷同的涂层成分.不合的构造情势,可以导致涂层刀具运用后果的截然不合.是以熟悉懂得今朝PVD涂层薄膜的构造情势,对于该项技巧的现实运用有着十分重要的意义.就今朝PVD技巧的成长状况,涂层薄膜构造大体可分类如下:a.单一层涂层涂层由某一种化合物或固溶体薄膜构成,理论上讲在薄膜的纵向发展偏向上涂层成分是恒定的,这种构造的涂层可称之为通俗涂层.假如接洽到PVD的成长过程,现实上在曩昔相当长的时代内一向采取这种技巧,个中包含众所周知TiN.TiCN.TiAlN 等.跟着运用市场请求的不竭进步,人们也愈加熟悉到这种涂层的局限性,无论是显微硬度.高温机能.薄膜韧性等都难于大幅度进步,但这种涂层在市场中仍占领必定比例.b.复合涂层图1 CrN+CBC复合薄膜图2 TiAlCN梯度薄膜图3 多层薄膜图4 AlN+TiN+CrN纳米薄膜图5(nc-Ti1-xAlxN)(/-Si3N4)纳米复合相构造薄膜c.由多种不合功效(特点)薄膜构成的构造可以称之为复合涂层构造膜,其典范涂层为今朝的硬涂层+ 软涂层,每层薄膜各具不合的特点,从而使涂层更具优越的分解机能.图1所示为CrN+CBC复合涂层,个中CBC为碳基薄膜.d.梯度涂层涂层成分沿薄膜纵向发展偏向慢慢产生变更,这种变更可所以化合物各元素比例的变更,如TiAl-CN中Ti.Al含量的变更,也可以由一种化合物逐渐过渡到另一种化合物,如由CrN 逐渐过渡到CBC.可以预感这种构造能有用降低因成分突变而造成的内部微不雅应力的增长.图2所示为TiAlCN梯度薄膜.e.多层涂层多层涂层由多种机能各别的薄膜叠加而成,每层膜化学组分根本恒定.今朝在现实运用中多由2种不合薄膜构成,因为所采取的工艺消失差别,不合企业的多层涂层刀具,其各膜层的尺寸也不近雷同,平日由十几层薄膜构成,每层薄膜尺寸大于几十纳米,最具代表性的有AlN+TiN.TiAlN+TiN涂层等.与单层涂层比拟,多层涂层可有用地改良涂层组织状况,克制粗大晶粒组织的发展,多层薄膜如图3 所示.f.纳米多层涂层这种构造的涂层与多层涂层相似,只是各层薄膜的尺寸为纳米数目级,又可称为超显微构造.理论研讨证其实纳米调制周期内(几纳米至几十纳米),与传统的单层膜或通俗多层膜比拟,此类薄膜具有超硬度.超模量效应,其显微硬度超出40GPa是可以预期的,并且在相当高的温度下,薄膜仍可保存异常高的硬度.是以这类膜具有优越的市场运用远景,其典范代表为AlN+TiN.AlN+TiN+CrN涂层等.如图4所示,为AlN+TiN+CrN纳米膜系,其调制周期约为7nm.g.纳米复合构造涂层纳米复合构造涂层.以(nc-Ti1-xAlxN)(/-Si3N4)纳米复合相构造薄膜为例,在强等离子体感化下,纳米TiAlN 晶体被镶嵌在非晶态的Si3N4体内(见图5),当TiAlN晶体尺寸小于10nm 时,位错增殖源难于启动,而非晶态相又可阻拦晶体位错的迁徙,即使在较高的应力下,位错也不克不及穿越非晶态晶界.这种构造薄膜的硬度可以达到50GPa 以上,并可保持相当优良的韧性,且当温度达到900℃~1100℃时,其显微硬度仍可保持在30GPa 以上;此外这种薄膜同时可获得优良的概况质量,是以工业运用远景辽阔.3 涂层的运用跟着PVD技巧的敏捷成长,在现实运用中涂层的合理选择愈加显得重要.今朝涂层薄膜不但要解决硬度问题,其韧性.抗氧化性.概况光滑度及润滑性等都须要根据不合的切削前提进行分解斟酌.从现实的切削加工状况来看,仅凭涂层成分进行选择,在现实运用中已难以获取最佳经济效益.本文根据上述两种涂层分类,浅析现实切削加工中PVD涂层薄膜的选用.1.车削加工车削加工的特色是持续.稳固.切削力及切削温度变更小,相对而言切削温度较高,是以在选择涂层类别时,涂层的硬度和高温抗氧化性是重点斟酌身分.a.加工钢材时可选用纳米复合构造薄膜(nc-Ti1-xAlxN)(/-Si3N4)及AlTiN薄膜,这两种薄膜都具有极高的概况硬度,且红硬性优越,运用温度可达到1100℃.b.铸铁加工平日也可选择上述2种薄膜.c.铝及铝合金加工的特色是熔点低,在切削加工中极易形成积屑瘤,且氧化了的切屑可形成Al2O3,导致摩擦感化的加强.当硅含量在4%~13%之间时,硅在铝内形成固溶体+共晶体组织,这种脆性.针状的片状硅的搀杂,在切削进程中,具有磨料感化,导致刀具早期掉效;而当Si含量进一步进步时粗大的组织使切削机能进一步降低.假如采取干式切削,可加剧这种磨损的成长,加工这类有色金属金刚石涂层刀具是最佳的选择计划之一,但斟酌到可行性及经济性,对于PVD而言,涂层应具有高的硬度及优良的润滑性.当Si 含量小于12%时,可选择多层TiCN+MoS2复合薄膜及TiAlCN+CBC梯度薄膜;而当Si含量大于12%时,则可选用纳米复合构造薄膜(nc-Ti1-xAlxN)(/-Si3N4)或单层的TiCN 薄膜.d.高强度合金的加对象有变形大.加工硬化大.切削温度高的特色,此外因为该类合金中含有大量的碳化物.氮化物等,其显微硬度可达2000 ~3000HV.在选择用于此类涂层时,其显微硬度.高温机能.润滑性是应侧重斟酌的身分.平日可选用纳米复合构造薄膜(nc-Ti1-xAlxN)(/-Si3N4)或TiAl-CN+CBC 复合薄膜.e.对于铜及其合金而言,涂层极具针对性,而与加工方法接洽关系性较低.紫铜塑性.韧性大,易粘屑,是以须要有用地解决排屑问题,一般选用CrN膜;而对于铜合金(黄铜.青铜),因为材料强度的进步,平日采取单层TiCN 或多层TiCN 薄膜.f.塑胶材料的加工特点是导热性差.磨料性.回弹性等,且大多采取干式切削加工方法,是以薄膜的显微硬度及热绝缘性是重点斟酌的身分,除了CVD的金刚石薄膜外,也可选用多层TiCN薄膜.2.钻削加工钻削加工也属于持续加工切削方法,其涂层种类的选择根本与车削加工相似.但所需留意的是通孔加工消失载荷的突变,是以所选择薄膜应具有优越的韧性.如在通俗钢材的加工中,可选用多层膜;若在一般的切削前提下,单层的TiN薄膜也会获得优越的运用后果.3.铣削加工在高速加工范畴,铣削加工占领极其重要的地位,而PVD技巧的成长也从整体铣刀的涂层扩大到可转位刀片规模,并且已取得了冲破性的进展.铣削加工是一种断续加工方法,尤其在高速加工前提下,刀具受载状况极其庞杂,刀具因不竭受到大小.地位不合的机械冲击和热冲击载荷感化,可激发薄膜的决裂.脱落等现象的产生,从而导致刀具的早期掉效.a.加工通俗钢材时可选用TiCN.纳米复合构造薄膜(nc-Ti1-xAlxN)(/-Si3N4).AlCrN薄膜,这三种薄膜都具有较好的韧性.b.与通俗钢材比拟,铸铁的铣削加工平日导致刀具磨料磨损,涂层刀具的概况硬度更为重要,是以可选择纳米复合构造薄膜(nc-Ti1-xAlxN)(/-Si3N4).AlTiN.AlCrN薄膜.c.对于铝及铝合金的加工,当Si 含量小于12%时,可选择多层TiCN+MoS2复合薄膜及TiAlCN+CBC梯度薄膜;而当Si含量大于12% 时,则可选用纳米复合构造薄膜(nc-Ti1-xAlxN)(/-Si3N4)及多层TiCN 薄膜.d.高强度合金的铣削加工平日可选用多层TiCN+MoS2.梯度TiAlCN+CBC.AlCrN 薄膜.4.螺纹加工螺纹加工也一种持续切削方法,相对于通俗车削加工,这种加工属于成型加工模式,切削速度相对较低,不轻易断屑,且对刀具的几何尺寸有严厉请求,刀具刃口渺小的缺点也可导致工件的报废.是以薄膜的致密性.韧性以及概况的润滑性是重要斟酌的身分.a.加工通俗钢和高强度合金时可选用TiCN+MoS2复合薄膜.TiAlCN+CBC梯度薄膜及TiAlN纳米多层薄膜,这三种薄膜都具有优越的韧性及优良的润滑性.b.与通俗钢材比拟,铸铁的螺纹加工平日以磨料磨损为主,薄膜的致密性.韧性.硬度一致重要,是以常可选择TiAlCN 及TiCN 多层薄膜.c.对于铝及铝合金的加工,当Si含量小于12%时,可选择CrN+CBC及TiCN多层薄膜;而当Si含量大于12%时,则可选择TiAlCN+CBC 及TiCN多层薄膜.4 结语近年来刀具概况涂层技巧成长的特色是敏捷及多元化.由图6可以看图6 2003年TiN.TiCN.TiAlN涂层运用情形出,经由几年的过程,TiN涂层一统世界的情形已不复消失,尤其在硬质合金刀具运用范畴,TiAlN涂层的比例已超出TiN,而其它种类涂层也有增长趋向.显然薄膜技巧的成长不竭地为切削加工供给更有用.更经济的手腕,跟着该项技巧的飞速成长,各类超显微构造.超硬度.特别功效薄膜的消失势必促进切削加工计划的进一步优化.对于运用者而言,充分懂得各类涂层及其所实用的运用规模愈加显得重要.因为篇幅所限,本文仅针对各类涂层所合适的加工方法及材料进行了阐述,而现实运用中特别材料(如硬度达到50HRC以上).切削速度.冷却方法等前提的不合,对涂层刀具的选用也都邑产生重要的影响。
刀具常用的涂层
刀具常用的涂层
1. 氮化钛涂层(TiN)
TiN是一种通用型PVD涂层,可以提高刀具硬度并具有较高的氧化温度。
该涂层用于高速钢切削刀具或成形工具可获得很不错的加工效果。
2. 氮化铬涂层(CrN)
CrN涂层良好的抗粘结性使其在容易产生积屑瘤的加工中成为**涂层。
涂覆了这种几乎无形的涂层后,高速钢刀具或硬质合金刀具和成形工具的加工性能将会大大改善。
3. 石涂层(Diamond)
CVD石涂层可为非铁金属材料加工刀具提供*佳性能,是加工石墨、金属基复合材料(MMC)、高硅铝合金及许多其它高磨蚀材料的理想涂层。
4. 涂层设备
适用于硬铣、攻丝和钻削加工的涂层各不相同,分别有其特定的使用场合。
此外,还可以采用多层涂层,此类涂层在表层与刀具基体之间还嵌入了其它涂层,可以进一步提高刀具寿命。
5. 氮碳化钛涂层(TiCN)
TiCN涂层中添加的碳元素可提高刀具硬度并获得更好的表面润滑性,是高速钢刀具的理想涂层。
6. 氮铝钛或氮钛铝涂层(TiAlN/AlTiN)
TiAlN/AlTiN涂层中形成的氧化铝层可以有效提高刀具的高温加工寿命。
主要用于干式或半干式切削加工的硬质合金刀具可选用
该涂层。
根据涂层中所含铝和钛的比例不同,AlTiN涂层可提供比TiAlN 涂层更高的表面硬度,因此它是高速加工领域又一个可行的涂层选择。
磁控溅射技术在刀具涂层中的应用
能见度观测做为气象观测的一个重要要素,其观测资料直接关系 着对大气层结的稳定度、大气污染指数等的判断,能见度的好坏影响着 航空、航海、高速公路等交通安全,其观测的准确性为人类的活动提供 安全保障。在目前广范使用自动仪器观测的情况下,能见度观测是少数 仍采用人工观测的要素之一。在白天,由于光线充足,目标物充分,对于 能见度的观测还是能够满足地面观测规范要求的,但在夜间,特别是在 无目标灯的情况下,能见度的观测就有一定的难度,难免产生一定的误 差。为了做好夜间能见度的观测,减少误差,总结以下几个方面的经验 与方法:
TiCN 膜也是研究比较多的一种多元膜,在刀具表面的应用也比较
多,TiCN 膜兼有 TiC 和 TiN 膜的韧性和硬度,比常用的 TiN 刀具的耐用
ห้องสมุดไป่ตู้
度高 2~4 倍,在此基础上又出现了(Ti,Zr)CN,(Ti,Al)CN,(Ti,Si)CN 多元
膜层。
在膜层复合化、多层化发展方面,国内外科研工作者也做了很多工
下,运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,
在该区域中电离出大量的离子 Ar+ 用来轰击靶材,从而实现磁控溅射沉
积速率高的特点。随着碰撞次数的增加,电子 e1 的能量逐渐降低。同时
e1 逐步远离靶面,并沿着磁力线来回振荡,待电子能量消耗尽时,在电
场 E 的作用下最终沉积在基片上。由于该电子的能量很低,传给基片的
3.从地面观测规范要求出发,严格遵循夜间能见度观测要求,在观 测前应提前 5 分钟到达观测点,待眼睛适应后,再进行观测;再者,能见 度的观测应遵循连续性原则,在黄昏时能见程度迅速下降,这并不一定 是能见度的下降,有时是因为人眼的视感对比度的减小,光线不足而引 起的原来看得见的目标物变得模糊。如没有新的天气系统影响时,短时 间内能见度不会突然产生大的变化。故在进行交接班的时候,接班员应
刀具技术最新研究报告
刀具技术最新研究报告一、引言刀具技术作为制造业的基础和关键环节,对于提高生产效率、保证加工质量和降低生产成本具有举足轻重的作用。
近年来,随着我国制造业的快速发展,刀具技术的创新与突破显得尤为重要。
然而,目前我国刀具技术与国际先进水平相比仍有一定差距,尤其在高端刀具领域。
因此,深入研究刀具技术,推动我国刀具行业的技术进步,具有重要的现实意义。
本研究报告旨在探讨刀具技术的最新发展动态,分析现有技术存在的问题与不足,提出针对性的研究假设,并对刀具技术的未来发展进行展望。
研究问题的提出主要围绕以下几个方面:一是刀具材料的研究与应用;二是刀具结构设计与优化;三是刀具加工工艺的创新与发展。
通过本研究,力求为刀具行业提供有益的理论指导和实践参考。
研究目的与假设:本研究旨在提高刀具性能,降低生产成本,假设通过优化刀具材料、结构和加工工艺,可以显著提升刀具的使用寿命和加工效率。
研究范围与限制:本报告主要针对金属切削刀具展开研究,不包括非金属切削刀具和其他特殊用途刀具。
研究范围涵盖刀具设计、制造、应用及维护等方面。
本报告简要概述了刀具技术的背景、重要性、研究问题、目的与假设以及研究范围与限制,为后续内容的展开奠定了基础。
以下是本报告的主要研究内容与发现。
二、文献综述在刀具技术领域,国内外学者进行了大量研究。
早期研究主要关注刀具材料的研究与应用,如高速钢、硬质合金等。
随着技术的发展,研究者逐渐转向刀具结构设计与优化,以及加工工艺的创新。
以下对相关研究成果进行简要回顾。
在理论框架方面,研究者提出了刀具寿命模型、切削力模型等,为刀具设计和优化提供了重要依据。
同时,有关切削稳定性、切削温度和表面质量等方面的研究,为刀具技术在实际应用中的性能评估提供了理论支持。
主要研究发现包括:一是刀具材料对刀具性能具有重要影响,新型材料如陶瓷、金刚石等具有较高硬度和耐磨性;二是刀具结构优化可显著提高加工效率,如采用非对称刀具结构、涂层技术等;三是加工工艺参数的合理选择与调整,有助于提高刀具使用寿命和加工质量。
机加工刀具基础知识
机加工刀具基础知识目录1. 机加工刀具概述 (3)1.1 机加工基础知识 (4)1.2 刀具在机加工中的作用 (5)1.3 刀具分类 (5)2. 机加工刀具材料 (7)2.1 常用刀具材料 (8)2.2 刀具材料的性能特点 (10)2.3 刀具材料的选择原则 (11)3. 机加工刀具形状与几何参数 (12)3.1 刀具几何角度 (13)3.2 刀具前角、后角和刃倾角 (14)3.3 刀具的几何形状 (15)3.4 刀具的切削刃和刀尖圆角 (16)4. 刀具的种类与应用 (18)5. 刀具的结构与特性 (19)5.1 刀片的结构和形状 (20)5.2 刀体的结构和选择 (21)5.3 刀具的刃磨技术和刃磨方法 (22)6. 刀具的安装与使用 (23)6.1 刀具的安装方法 (25)6.2 刀具的安装注意事项 (26)6.3 刀具的夹紧与定位 (27)7. 刀具的选择与更换 (28)7.1 刀具选择的原则 (29)7.2 刀具选择的依据 (30)7.3 刀具更换的步骤和方法 (31)8. 刀具的维护与保养 (33)8.1 刀具的日常保养 (34)8.3 刀具的修磨与再利用 (36)9. 刀具的失效与对策 (37)9.1 刀具失效形式 (39)9.2 刀具失效原因分析 (40)9.3 刀具失效的处理方法 (41)10. 数控机床刀具管理 (43)10.1 刀具数据管理的必要性 (44)10.2 刀具数据管理系统的应用 (45)10.3 刀具的库存管理与优化 (46)11. 刀具发展趋势 (47)11.1 高性能刀具的发展 (49)11.2 智能化刀具的应用 (50)11.3 绿色刀具的研发与推广 (51)12. 附加知识 (53)12.2 刀具设计与优化 (55)12.3 刀具测试与评估 (57)1. 机加工刀具概述机加工刀具是制造业中的核心组件,负责将金属、塑料等材料切割、整形和去除多余部分,以达到设计规格。
我国超硬刀具高速切削技术发展现状、问题及前景
・
超 硬材料合 成现状 、 艺及技 术 ・ 邓福铭 工
等
我 国超硬 刀具 高速切 削技术发展现状 、 问题及前景 2 1 6月 0 0年
我国超硬刀具高速切 削技术发 展现状 、 问题及前景
邓 福铭 卢 学军 ’
1 中国矿 业 大学 ( 、 北京 ) 硬 刀 具材 料研 究 所 北 10 8 超 003 2 北 京迪 蒙特 佳 工模 具技 术 有 限公 司 北京 10 8 、 003
又 随切 削 速 度 的增 大 而 下 降 j 。如 图 1所 示 。
当切削速度提高 1 、 O倍 进给速度提高 2 O倍 、 远
高速切 削 ( ihSedC tn , Hg pe ut g 简称 H C) i S
通 常是 指 用 比常规 切 削 速 度 和 进 给 速 度 高 得 多
摘要 本文介绍 了国内外高速切削技术 的发展历程及其与超硬刀具 技术发展 中的相互关
系, 分析了国内超硬刀具高速切削技术发展 中存在 的主要问题 , 最后对 国内超硬刀具高速
切削技术发展前景进行 了展望 , 并对 以后的发展提出了建议 。 关键词 高速切削 超硬刀具 数控机床
St t 一 0 ae f— t e Ar fH ih e d Cuti f S pe —ha d M a e i l h to g Sp e tng o u r r t ra
提高切削效率 、 降低 生产成本 。因此 , 改进刀具
材料对于降低切削成本 比其它任何单一 过程 的
礴
疆 签
改变更具 潜力 , 如何 合理 地选 择 与应用 现代 刀
具材料是降低加工成本 、 获得经济效益 的关键 。
无独有偶 的是 , 上世 纪七十年代 中期 , 在美
刀具涂层技术的研究现状和发展趋势
刀具涂层技术的研究现状和发展趋势一、本文概述刀具涂层技术作为提升刀具性能、延长刀具使用寿命的重要手段,在现代制造业中发挥着至关重要的作用。
随着科学技术的不断进步,刀具涂层技术的研究和应用也在不断深化。
本文旨在全面概述刀具涂层技术的研究现状,分析其发展趋势,为相关领域的科研工作者和从业人员提供参考和借鉴。
本文将首先介绍刀具涂层技术的基本概念、分类及其应用领域,阐述涂层技术在提高刀具硬度、耐磨性、抗腐蚀性等性能方面的优势。
随后,本文将重点分析当前刀具涂层技术的研究现状,包括涂层材料的选择、制备工艺的优化、涂层与基材的结合机制等方面。
还将探讨涂层技术在不同制造领域中的应用案例,以及在实际应用中遇到的问题和挑战。
本文将展望刀具涂层技术的发展趋势,包括新型涂层材料的研发、涂层制备技术的创新、涂层性能的优化等方面。
通过对刀具涂层技术未来发展方向的探讨,旨在为相关领域的科研工作者和从业人员提供有益的启示和思考。
二、刀具涂层技术的基础知识刀具涂层技术是一种通过物理或化学方法在刀具表面形成一层或多层薄膜的技术,旨在提高刀具的性能和寿命。
这些涂层能够显著增强刀具的硬度、耐磨性、抗热性以及化学稳定性,从而提升刀具在切削过程中的切削效率、加工精度和使用寿命。
涂层材料的选择是刀具涂层技术的关键。
目前,常用的涂层材料主要包括金属氧化物(如氧化铝、氧化钛)、金属氮化物(如氮化钛、氮化铬)、金属碳化物(如碳化钛、碳化钨)以及金刚石和类金刚石等。
这些材料具有优异的物理和化学性能,能够在刀具表面形成坚固的保护层。
涂层技术主要分为物理气相沉积(PVD)和化学气相沉积(CVD)两大类。
物理气相沉积技术通过物理过程将涂层材料蒸发并沉积在刀具表面,主要包括真空蒸发、溅射、离子镀等方法。
而化学气相沉积技术则通过化学反应在刀具表面生成涂层,包括热化学气相沉积和等离子化学气相沉积等。
涂层结构的设计也是刀具涂层技术中的重要环节。
涂层结构通常由底层、中间层和顶层组成,旨在实现涂层与基体之间的良好结合、提高涂层的耐磨性和抗热性,以及优化涂层表面的性能。
金刚石涂层在刀具上的应用综述
金刚石涂层在刀具上的应用综述【摘要】随着金刚石涂层被广泛应用,其在切削刀具上的应用也引起了广泛关注。
本文对金刚石涂层的市场,金刚石薄膜的制备及工艺,涂层性能评价指标进行了综述,希望对评价、提高和改进金刚石涂层刀具产品性能有指导意义。
【关键词】金刚石涂层;超硬刀具;刀具寿命[Abstract] With the diamond coating is widely used,its application in the cutting tool also attracted wide attention. By reviewing the market for diamond coating,preparation and process,coating performance evaluation of diamond films,we want to evaluate,enhance and improve the performance of diamond coated tool.[Keywords] diamond coating;Superhard tool;tool life1.引言随着汽车,航空和航天等工业的发展,有色金属及合金、纤维增强塑料、纤维增强金属以及石墨、陶瓷等新型先进材料越来越多的应用到这些工业产品中,这对机械加工提出了高效率,高精度等要求,普通刀具已经不能满足需求,而迫切需要一种耐磨性更高、能稳定实现高精、高效、寿命更长的超硬刀具,金刚石涂层刀具因其具有十分接近天然金刚石的硬度和耐磨性高的弹性模量、极高的热导率、良好的自润滑性和化学稳定性等优异性能,成为加工难加工材料的理想刀具。
1.1金刚石涂层介绍金刚石是自然界最硬的材料,摩擦系数很小,导热性很好,是用于制作切削工具的最佳材料,但金刚石很脆,因此普通的金刚石工具只能用于精加工,而不能用于粗加工。
金刚石单晶工具和金刚石聚晶工具虽然凭借其使用寿命和加工质量的优势在国内外市场销售多年,但因其价格昂贵,抗冲击性差,应用范围较小。
一种高韧性硬质涂层及制备工艺和应用以及刀具
层的厚TiAlN ,6nm 至4层的厚度为TiSiN 所述,一个周期内,本申请的某些实施例中[0010]。
m μ5.4至5.3所述高韧性硬质涂层厚度为,期个周180至140所述高韧性硬质涂层包含,层TiAlN 层和TiSiN 涂层包括周期性交替沉积的所述高韧性硬质,本申请所提供的高韧性硬质涂层采用如前所述的制备工艺制成[0009]。
基体采用硬质合金,本申请的某些实施例中[0008]。
min 5蚀对基体进行离子刻,A 80靶电流为,靶Cr 开启阴极弧,Pa 5.0气压调整为,V 800‑体偏压为调整基;min 30对镀膜腔室进行辉光溅射清洗,V 1000‑基体偏压为,Pa 2设定腔内气压为,向镀膜腔室通入氩气,基体放入镀膜腔室后,中S1步骤,本申请的某些实施例中[0007]。
%.at 50含量为Al ,%.at 50含量为Ti ,阴极弧钛铝靶中,本申请的某些实施例中[0006]。
%.at 25含量为Si ,%.at 75含量为Ti ,高功率脉冲磁控钛硅靶中,本申请的某些实施例中[0005]。
min 275至180沉积时间为,层TiSiN 层和TiAlN 在基体上交替沉积,S4;2A/cm 5.1至5.0调节钛铝靶平均电流密度为,同时开启阴极弧钛铝靶;Hz 500脉冲频率为,微秒200至50脉宽为,2W/cm 20至5调节钛硅靶的平均功率密度为,靶开启高功率脉冲磁控钛硅,℃600至300沉积温度为,V 100‑调节基体偏压为,S3;Pa 6.1镀膜腔室中气压设置为,50%且氮气的体积占比,向镀膜腔室通入氩气和氮气,S2;对基体进行预处理,S1:本申请所提供的高韧性硬质涂层的制备工艺包括如下流程[0004]。
所采用的技术方案如下,和应用以及刀具本申请提供一种高韧性硬质涂层及制备工艺,为解决上述技术问题中的至少之一[0003]发明内容。
两种涂层的性能层的涂层结构且能够间距TiSiN 层和TiAlN 好的工艺在基体表面制备具有然而目前尚无良。
金属材料表面超疏水涂层的研究进展
金属材料表面超疏水涂层的研究进展目录一、内容描述 (2)1. 超疏水涂层的定义与意义 (3)2. 金属材料表面处理技术的发展背景 (4)二、超疏水涂层材料的研究进展 (5)1. 纳米材料在超疏水涂层中的应用 (6)纳米TiO2、SiO2等颗粒的制备与应用 (7)纳米复合材料的设计与性能优化 (9)2. 有机高分子材料在超疏水涂层中的应用 (10)涂层材料的表面接枝改性技术 (11)自组装单分子层的构筑与性能研究 (12)3. 生物启发型超疏水涂层的研究 (13)蜡烛蜡、硅酮等生物启发材料的模仿与应用 (14)生物矿化原理在涂层设计中的应用 (15)三、超疏水涂层制备方法的研究进展 (17)1. 化学气相沉积法 (18)2. 动力学激光沉积法 (19)3. 离子束溅射法 (20)4. 溶液沉积法 (21)5. 微纳加工技术 (22)四、超疏水涂层性能评价及优化策略 (23)1. 表面张力与接触角测量 (24)2. 耐磨性、耐腐蚀性等性能评估 (26)3. 涂层稳定性与耐久性分析 (27)4. 性能优化策略与实验方法 (28)五、超疏水涂层在特定领域的应用研究进展 (29)1. 抗生物污染涂层的研发与应用 (30)2. 防腐蚀保护涂层的性能研究 (32)3. 光学性能改进的超疏水涂层设计 (33)4. 涂层在航空航天、电子电气等领域的应用探索 (34)六、结论与展望 (35)1. 超疏水涂层技术的发展趋势 (36)2. 存在的问题与挑战 (38)3. 未来研究方向与应用前景展望 (39)一、内容描述随着科技的不断发展,材料科学领域对于表面性能的要求日益提高,尤其是在防水、防污、自清洁等方面具有特殊需求的材料。
金属材料作为现代工业的重要基础材料,其表面性能的优劣直接影响到产品的使用寿命和可靠性。
对金属材料表面进行超疏水涂层的研发和应用成为了当前研究的热点。
超疏水涂层是一种具有特殊表面性能的涂层,其表面的水接触角大于150,表现出“荷叶效应”,即水滴在涂层表面上能够迅速滚落,而不会附着和渗透。
TiAlSiN纳米复合涂层的研究进展
TiAlSiN纳米复合涂层的研究进展目录1. 内容概括 (2)1.1 TiAlSiN涂层特性及应用概述 (2)1.2 纳米复合涂层的优势及发展趋势 (3)1.3 本文研究内容与创新之处 (5)2. TiAlSiN涂层结构与表征 (6)2.1 TiAlSiN涂层相组成与缺陷 (7)2.2 TiAlSiN涂层显微结构及形貌表征 (7)2.3 TiAlSiN涂层物性表征方法 (9)3. TiAlSiN纳米复合涂层制备方法 (10)3.1 物理气相沉积法 (11)3.1.1 溅射沉积 (12)3.1.2 磁控溅射 (13)3.1.3 等离子射束沉积 (14)3.2 化学气相沉积法 (16)3.3 高能离子注入技术 (17)3.4 其他制备方法 (18)4. TiAlSiN纳米复合涂层性能优化 (19)4.1 工艺参数优化 (20)4.2 添加剂调控 (21)4.3 后処理技术 (23)5. TiAlSiN纳米复合涂层应用研究 (24)5.1 轴承件耐磨性 (25)5.2 刀具材料高硬度 (27)5.3 热场环境应用 (27)5.4 其他应用领域 (29)6. 结论与展望 (30)1. 内容概括本文主要探讨了TiAlSiN纳米复合涂层的研究进展。
首先概述了纳米复合涂层的重要性,其不仅拥有优异的物理和化学性能,而且在多种应用领域具有广泛的应用前景。
文章详细介绍了TiAlSiN纳米复合涂层的制备技术,包括物理气相沉积(PVD)、化学气相沉积(CVD)以及溶胶凝胶法等方法的最新研究进展。
文章接着介绍了这种纳米复合涂层的性能特点,包括硬度、耐磨性、耐腐蚀性和高温稳定性等,并对其性能优化方法进行了探讨。
文章还涉及TiAlSiN纳米复合涂层在各个领域的应用现状,包括机械零件、刀具、汽车零部件等。
本文总结了当前研究的不足之处和未来研究方向,指出今后需要解决的问题和未来的发展趋势。
该领域需要进一步优化涂层的制备工艺,提高其性能并扩大应用领域,以实现工业的大规模应用和商业化的前景。