利用导数分析方程的根和函数的零点教(学)案

合集下载

第2部分专题6第6讲 利用导数解决函数零点或方程根问题课件

第2部分专题6第6讲 利用导数解决函数零点或方程根问题课件

当h(e)≤0,即a1e-1+e+1e≤0, 即a≥ee2-+11时,h(1)·h(e)≤0.
由零点存在定理可知,此时h(x)在1,e上有零点.
又因为函数h
(x)

1,e
上单调递减,所以此时h
(x)

1,e
上有
一个零点.
②当a≤0时,即a+1≤1时, 当x∈(1,e)时,h′(x)>0, 所以h(x)在1,e上单调递增. h(1)=2+a,h(e)=a1e-1+e+1e>0. 当h(1)=2+a≤0,即a≤-2时,h(1)·h(e)≤0. 由零点存在定理,知此时h(x)在1,e上有零点.
当x>ln 2a时,f ′(x)>0,函数f(x)单调递增,
由f(x)在(-∞,0)上单调递增且f(0)=b-1>2a-1>0,f

ab=-
ba-1e-
b
a<0,
可得f(x)在(-∞,0)上有唯一零点,
由f(x)在(0,ln 2a)上单调递减,在(ln 2a,+∞)上单调递增,
且f(ln 2a)=(ln 2a-1)·2a-aln2(2a)+b>(ln 2a-1)·2a-aln2(2a)
令h′(x)=0,解得x=3,在 (0,3) 上h′(x)<0,在 (3,+∞) 上 h′(x)>0,
所以y=h(x)在(0,3) 上单调递减,在(3,+∞)上单调递增,且 h(3)=4-2ln 3>0,
所以f ′(x)>0在 (0,+∞) 上恒成立,所以函数f(x)在 (0,+∞) 上 单调递增.
(2)①由(1)知,当x∈(0,α)时,f ′(x)>0,f(x)在(0,α)上单调递 增;当x∈(α,π)时,f ′(x)<0,f(x)在(α,π)上单调递减,所以f(x)在 (0,π)上存在唯一的极大值点απ3<α<π2,

第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)

第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)

第06讲利用导数研究函数的零点(方程的根)(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:判断、证明或讨论函数零点的个数高频考点二:证明唯一零点问题高频考点三:根据零点情况求参数①利用最值(极值)研究函数零点问题②利用数形结合法研究函数的零点问题③构造函数研究函数零点问题第四部分:高考真题感悟第五部分:第06讲利用导数研究函数的零点(方程的根)(精练)1、函数的零点(1)函数零点的定义:对于函数()y f x=,把使()0f x=的实数x叫做函数()y f x=的零点.(2)三个等价关系方程0)(=xf有实数根⇔函数)(xfy=的图象与x轴有交点的横坐标⇔函数)(xfy=有零点.2、函数零点的判定如果函数()y f x=在区间[,]a b上的图象是连续不断的一条曲线,并且有()()0f a f b⋅<,那么函数()y f x=在区间(,)a b内有零点,即存在(,)c a b∈,使得()0f c=,这个c也就是()0f x=的根.我们把这一结论称为函数零点存在性定理.注意:单调性+存在零点=唯一零点1.(2022·全国·高二)已知函数()f x的定义域为[]15-,,部分对应值如下表:()f x的导函数()y f x='的图象如图所示,则下列关于函数()f x的命题:① 函数()y f x=是周期函数;② 函数()f x在[]02,是减函数;③ 如果当[]1,x t∈-时,()f x的最大值是2,那么t的最大值为4;④ 当12a<<时,函数()y f x a=-有4个零点.其中真命题的个数是A.4个B.3个C.2个D.1个2.(2022·甘肃·金昌市教育科学研究所高三阶段练习(文))已知函数()2e1xf x x a=+-()a R∈有两个极值点,则实数a的取值范围为()A.1,0e⎛⎫- ⎪⎝⎭B.2,0e⎛⎫- ⎪⎝⎭C.1,e⎛⎫-+∞⎪⎝⎭D.2,e⎛⎫-+∞⎪⎝⎭3.(2022·全国·高二)若函数()3239f x x x x m =--+仅有一个零点,则实数m 的取值范围是( )A .()5,-+∞B .(,27)(5,)-∞-⋃+∞C .(,27)-∞D .(,5)(27,)-∞-⋃+∞4.(2022·甘肃武威·模拟预测(文))函数()326f x x x m =-+有三个零点,则实数m 的取值范围是( )A .(﹣4,4)B .[﹣4,4]C .(﹣∞,﹣4]∪[4,+∞)D .(﹣∞,﹣4)∪(4,+∞)5.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定高频考点一:判断、证明或讨论函数零点(根)的个数1.(2022·全国·高二)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间1(,1)e,(1,e )内均有零点 B .在区间1(,1)e,(1,e )内均无零点C .在区间1(,1)e 内有零点,在区间(1,e )内无零点D .在区间1(,1)e 内无零点,在区间(1,e )内有零点2.(2022·全国·高三专题练习(文))已知函数()()12xx e f x e=-+,其中e 为自然对数的底数, 2.7182818e =……,则()f x 的零点个数为( ) A .0B .1C .2D .33.(2022·全国·高三专题练习(理))函数()()1ln 03f x x x x =->的零点个数为( )A .0B .1C .2D .34.(2022·全国·高二课时练习)求函数3()231f x x x =-+零点的个数为( ) A .1B .2C .3D .45.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定6.(2022·江苏苏州·模拟预测)方程3269100x x x -+-=的实根个数是______ .7.(2022·全国·高三专题练习)函数()1x f x e x =-+的零点个数是__________.8.(2022·广东佛山·高二阶段练习)已知函数()()1ln 2af x x a x x=+---,其中R a ∈. (1)若()f x 存在唯一极值点,且极值为0,求a 的值; (2)若2e a <,讨论()f x 在区间2[1,e ]上的零点个数.9.(2022·新疆·乌苏市第一中学高二阶段练习(文))给定函数()()1e xf x x =+.(1)判断函数()f x 的单调性,并求出()f x 的极值; (2)求出方程()()f x a a R =∈的解的个数.高频考点二:证明唯一零点(根)问题1.(2022·山西省长治市第二中学校高二阶段练习)已知函数321()(1)3=-++f x x a x x .(1)若1a =,求()f x 的单调区间及相应区间上的单调性; (2)证明:()f x 只有一个零点.2.(2022·陕西渭南·高二期末(文))已知函数()ln x axf x x+=,R a ∈. (1)若0a =,求()f x 的最大值;(2)若01a <<,求证:()f x 有且只有一个零点.3.(2022·广西玉林·模拟预测(文))已知函数217()ln 4,()2ln 22f x x x xg x x x =-=++. (1)求函数()f x 的最小值;(2)证明:函数()()()h x f x g x =+仅有一个零点.高频考点三:根据零点(根)情况求参数①利用最值(极值)研究函数零点(根)问题1.(2022·重庆市万州第二高级中学高二阶段练习)已知函数32()34f x x ax bx =+++在1x =-时有极值0. (1)求函数()f x 的解析式;(2)记()()21g x f x k =-+,若函数()g x 有三个零点,求实数k 的取值范围.2.(2022·山东师范大学附中高二阶段练习)已知函数()21xx x f x e+-=. (1)求函数()f x 的单调区间;(2)若函数()y f x a =-(a 为常数)有3个不同的零点,求实数a 的取值范围.3.(2022·宁夏六盘山高级中学高二阶段练习(理))已知函数3()91f x ax x =-+,0a >. (1)若3a =,求函数()f x 的极值;(2)若函数()f x 恰有三个零点,求实数a 的取值范围.4.(2022·北京丰台·一模)已知函数()f x = (1)当1a =时,求曲线()y f x =的斜率为1的切线方程; (2)若函数2()()3ag x f x =-恰有两个不同的零点,求a 的取值范围.5.(2022·广西桂林·二模(理))已知函数()()()211e 2xf x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.②利用数形结合法研究函数的零点(根)问题1.(2022·宁夏·银川二中高二期末(理))已知函数ln ()xf x x= (1)填写函数()f x 的相关性质;2.(2022·四川·阆中中学高二阶段练习(文))设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.3.(2022·全国·信阳高中高三阶段练习(理))已知函数()2e xf x a x =-(R a ∈,e 为自然对数的底数).(1)若()0f x =有两个不相等的实数根,求a 的取值范围;4.(2022·四川·雅安中学高二阶段练习(文))已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.5.(2022·全国·模拟预测(理))已知函数()()2x x f x e ae a =+∈R(1)讨论()f x 的单调性;(2)设()()21x g x a x e x =-+,若方程()()g x f x =有三个不同的解,求a 的取值范围.6.(2022·四川绵阳·二模(文))已知函数()2()ln 1R f x x ax a =+-∈(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 有且只有一个零点,求实数a 的取值范围.③构造函数研究函数零点(根)问题1.(2022·江苏宿迁·高二期末)已知函数()e xf x =(e 为自然对数的底数),()sing x a x =(,22x ππ⎡⎤∈-⎢⎥⎣⎦),a R ∈.(1)若直线:l y kx =与函数()f x ,()g x 的图象都相切,求a 的值; (2)若方程()()f x g x =有两个不同的实数解,求a 的取值范围.2.(2022·重庆南开中学高二期末)已知函数()()2ln ,f x x x g x x ax b ==++.(1)若()f x 与()g x 在1x =处有相同的切线,求实数,a b 的取值;(2)若2b =时,方程()()f x g x =在()1,+∞上有两个不同的根,求实数a 的取值范围.3.(2022·四川·成都七中高三阶段练习(理))已知函数()(1)f x a x =-,()e (1)x g x bx =-,R a ∈. (1)当2b =时,函数()()y f x g x =-有两个零点,求a 的取值范围; (2)当b a =时,不等式()()f x g x >有且仅有两个整数解,求a 的取值范围.4.(2022·全国·高三阶段练习)已知函数()()11ln e f x a x x=+++,()()e x g x x a a =++∈R .(1)试讨论函数()f x 的单调性;(2)若当1≥x 时,关于x 的方程()()f x g x =有且只有一个实数解,求实数a 的取值范围.5.(2022·河南·三模(理))已知函数()()ln 1f x x =+,()e 1xg x =-.(1)判断函数()()()h x f x g x =-的零点个数;6.(2022·江苏南京·高三开学考试)已知函数()(1)x f x e a x =+-,()sin cos g x ax x x =++ (1)求函数()f x 的最值;(2)令()()()h x f x g x =-,求函数()h x 在区间(,)4π-+∞上的零点个数,并说明理由.1.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)a x x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.2.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>;②10,22a b a <<≤.3.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b ex x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)一、单选题1.(2022·江苏·南京师大附中高三开学考试)已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为( )A .1B .2C .3D .与a 有关2.(2022·浙江省浦江中学高二阶段练习)已知函数()22x f x xe x x m =---在()0,∞+上有零点,则m 的取值范围是( )A .)21ln 2,-+∞⎡⎣B .)2ln 21,--+∞⎡⎣C .)2ln 2,-+∞⎡⎣D .21ln 2,2-+∞⎡⎫⎪⎢⎣⎭3.(2022·全国·高二)函数32()2f x x x x =-++-的零点个数及分布情况为( ) A .一个零点,在1,3⎛⎫-∞- ⎪⎝⎭内B .二个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,∞+内C .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,1,03⎛⎫- ⎪⎝⎭,()1,+∞内D .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,1,()1,+∞内4.(2022·全国·高二)直线y a =与函数33y x x =-的图象有三个不同的交点,则实数a 的取值范围为( ) A .(2,2)-B .[2,2]-C .[2,)+∞D .(,2]-∞-5.(2022·全国·高二)已知函数20()210x e x f x x x x -⎧≤=⎨--+>⎩,若函数()()g x f x kx =-有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .e -B .1-C .2D .2e6.(2022·河南·襄城高中高二阶段练习(理))已知函数()2ln f x x =,()322g x x ex ax =-+,其中e 为自然对数的底数,若方程()()f x g x =存在两个不同的实根,则a 的取值范围为( ) A .2,e ⎛⎫-∞ ⎪⎝⎭B .22,e e ⎛⎫-∞+ ⎪⎝⎭C .()2,e -∞D .22,e e ⎛⎫-∞- ⎪⎝⎭7.(2022·江西·高三阶段练习(理))已知函数22()2(2)e (1)e x x f x a a x x =+-++有三个不同的零点123,,x x x ,且1230x x x <<<,则3122312222e e e x x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( )A .3B .6C .9D .368.(2022·全国·高三专题练习)已知方程|ln |2x kx =+在区间()50,e 上恰有3个不等实数根,则实数k 的取值范围是( ) A .5331,e e ⎛⎫ ⎪⎝⎭B .5331,e e ⎡⎫⎪⎢⎣⎭C .4221,e e ⎛⎫ ⎪⎝⎭D .4221,e e ⎡⎫⎪⎢⎣⎭二、填空题9.(2022·河南焦作·二模(理))函数1()e ln 1x f x a x -=--在(0,)+∞上有两个零点,则实数a 的取值范围是_______. 10.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.11.(2022·浙江·镇海中学高二期末)已知不等式21e 0x x a +-≥有且只有两个整数解,则实数a 的范围为___________.12.(2022·全国·高二)已知函数3211()(2)1()32xf x ax ax e x a R =---+∈在区间1,22⎛⎫ ⎪⎝⎭上有3个不同的极值点,则实数a的取值范围是__________. 三、解答题13.(2022·河南·栾川县第一高级中学高二阶段练习(理))已知()2()e ()x f x x a a =+∈R .(1)若2是函数()f x 的极值点,求a 的值,并判断2是()f x 的极大值点还是极小值点; (2)若关于x 的方程()2ln e x f x x =在1,22⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.参考数据:ln 20.693≈14.(2022·陕西宝鸡·二模(文))已知函数()1e x f x ax =--,a ∈R . (1)讨论函数()f x 的单调性;(2)若方程()ln f x x x =在(1,e)上有实根,求实数a 的取值范围.15.(2022·河南·沈丘县第一高级中学高二期末(文))已知函数()ln f x x =. (1)当[)1,x ∞∈+时,证明:函数()f x 的图象恒在函数()322132=-g x x x 的图象的下方; (2)讨论方程()0f x kx +=的根的个数.16.(2022·吉林·长春外国语学校高二阶段练习)若函数()32113f x x ax bx =++-,当2x =时,函数()f x 有极值13-.(1)求函数的解析式;(2)若关于x 的方程()f x k =有三个解,求实数k 的取值范围.17.(2022·浙江浙江·二模)已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.。

第5讲 第3课时 利用导数研究函数的零点

第5讲 第3课时 利用导数研究函数的零点

24
突破核心命题 11拓展提能 12拓展提能 限时规范训练
考 点 三 构造函数法研究函数的零点 例 3 (2021·全国甲卷节选)已知 a>0 且 a≠1,函数 f(x)=axax(a>0).若
曲线 y=f(x)与直线 y=1 有且仅有两个交点,求 a 的取值范围.
解:曲线 y=f(x)与直线 y=1 有且仅有两个交点, 可转化为方程axax=1(x>0)有两个不同的解, 即方程lnx x=lnaa有两个不同的解.
当 x→0+时,h(x)→-∞,当 x→+∞时,h(x)→0, 作出函数 h(x)的图象与直线 y=kx-1 如图所示.
6
突破核心命题 11拓展提能 12拓展提能 限时规范训练
当直线 y=kx-1 与函数 h(x)的图象相切时,设切点坐标为(x0,lnx20x0), 则 k=1-2x30ln x0=lnx20xx00+1,即 3ln x0+x20-1=0,易得 x0=1,∴当直线 y= kx-1 与函数 h(x)的图象相切时,k=1.由图象知,当 0<k<1 时,直线 y=kx -1 与函数 h(x)的图象恰有两个交点,即函数 f(x)恰有两个零点,∴实数 k 的取值范围为(0,1).
11
突破核心命题 11拓展提能 12拓展提能 限时规范训练
当x∈(3,+∞)时,φ′(x)<0.
∴φ(x)在(-∞,3)上单调递增,在(3,+∞)上单调递减,且 φ(x)max=φ(3) =e13,
又 x→+∞时,φ(x)→0, x→-∞时,φ(x)→-∞, ∴φ(x)的图象如图所示.
12
突破核心命题 11拓展提能 12拓展提能 限时规范训练
29
突破核心命题 11拓展提能 12拓展提能 限时规范训练

导数的应用之函数的零点教学设计

导数的应用之函数的零点教学设计

课例名称导数的应用之函数的零点
教学目标1.理解并掌握利用导数解决有关函数零点存在性问题的一类方法。

2.培养学生分析问题,发现问题,提出问题,解决问题的数学思维能力。

教学重难点1.教学重点:通过对题目的分析,进一步提出有效的问题,从而层层深入,最终发现问题的关键所在的思路历程。

2.教学难点:对突破与解决本节课关键问题的方法的理解与掌握。

学情分析学生已掌握有关利用导数来研究函数的单调性的基本理论与方法。

有待进一步加深和提高解决该类问题的思维能力水平。

教学方法1.情景引入。

对本节课难点的突破能够被学生很好地理解埋下伏笔,做好铺垫,另外,使得课堂很自然的进入到一种合作探究的良好“环境与气氛”中来。

2.通过问题驱动,合作探究式的师生互动完成对问题的分析与层层深入,直至发现本节课的核心问题即问题的关键所在。

3.前后呼应,利用本节课一开始埋下的伏笔,做好的铺垫,来完成对本节课核心问题的突破与解决。

1.情景引入。

问题:函数2x
y=与2
y x
=的图象共有几个交点()
A. 1
B. 2
C. 3
D. 4。

高中数学人教A版必修1第三章3、1、1方程的根与函数的零点的近似值 - 教案

高中数学人教A版必修1第三章3、1、1方程的根与函数的零点的近似值 - 教案

3.1.1 方程的根与函数的零点第二课一、教学目标:① 进一步巩固函数零点的概念,会求基本初等函数的零点;② 掌握方程的根与函数零点之间的等价关系,体会函数方程的转化思想; ③ 对函数零点,零点所在的区间及零点个数各题型有所思有所为。

二、课前预习:(务必课前总结)1、我们学习过的那些函数?它们的图像特点?①一次函数()0y kx b k =+≠:0k >时,是一条递增的直线;0k <时,是一条递减的直线。

b 是图像与y 轴交点的纵坐标,如0b =时,直线过原点。

②二次函数 ③指数函数 ④对数函数 ⑤幂函数2、默写函数零点定理与函数零点存在性定理三、教学过程探讨1:求函数()324f x x x =--+的零点。

探讨2:解决下列两个问题,并试图发现问题中的共性①确定正整数k 的值,使得函数()324f x x x =--+在区间(),1k k +上存在零点。

②试画出函数3y x =与24y x =-+的图像,并分析两个图像交点情况。

你所发现的共性:找出一个数0x 作为函数()324f x x x =--+零点的近似值。

(精度为0.1) 课堂练习:判断下列函数的零点个数①()22f x x x =-+②()lg 2f x x x =-+ ③()2log 2xf x x =+④()()2ln 23f x x x =-- ⑤()32221f x x x x =--+ 课后练习: 1.函数6)(2-+=x x x f 的零点为2.函数2)(+=ax x f 在区间)2,1(-上有零点,则a 的取值范围是3.函数11ln )(--=x x x f 的零点的个数是 ( )A .0个B .1个C .2个D .3个4.设函数3y x =与22xy -=的图象的交点为00()x y ,,则0x 所在的区间是 ( )A .(01),B .(12),C .(23),D .(34),5.根据表格中的数据,可以判定方程20x e x --=的一个零点所在的区间为))(1,(N k k k ∈+,则k 的值为 ;6、函数()11f x x =-的图像与函数()31y x =-的图像所有交点的横坐标之和等于 ( ) A. 2 B.4 C.6 D8.7、已知函数()21log 2xf x x ⎛⎫=- ⎪⎝⎭,且实数0a b c <<<满足()()()0f a f b f c <,若实数0x 是函数()y f x =的一个零点,那么下列不等式中不可能成立的是 ( ) A. 0x a < B. 0x c < C. 0x b > D. 0x c >8、确定正整数k 的值,使得函数()237xf x x =+-在区间(),1k k +上存在零点,并确定零点的一个近似值。

利用导数研究函数的零点或方程的根

利用导数研究函数的零点或方程的根

参考答案(1)函数g (x )=f '(x )-x3=1x −mx 2−x3(x >0). 令g (x )=0,得m =-13x 3+x (x >0).设h (x )=-13x 3+x (x ≥0),∴h '(x )=-x 2+1=-(x -1)(x +1). 当x ∈(0,1)时,h '(x )>0,此时h (x )在(0,1)内单调递增; 当x ∈(1,+∞)时,h '(x )<0,此时h (x )在(1,+∞)内单调递减. ∴当x =1时,h (x )取得极大值h (1)=-13+1=23.令h (x )=0,即-13x 3+x =0,解得x =0或x =√3.函数h (x )的图象如图所示.由图可知:①当m >23时,函数y =m 和函数y =g (x )的图象无交点; ②当m =23时,函数y =m 和函数y =g (x )的图象有且仅有一个交点;③当0<m <23时,函数y =m 和函数y =g (x )的图象有两个交点;④当m ≤0时,函数y =m 和函数y =g (x )的图象有且仅有一个交点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且仅有一个零点;当0<m <23时,函数g (x )有两个零点.当4027k <<时,3k k >,且2()0f k k =>,∴()f x 在(,)3k k 上有唯一一个零点, 同理13k k --<-,32(1)(1)0f k k k --=--+<,∴()f x 在(1,)3kk ---上有唯一一个零点,又()f x 在(,)33k k -上有唯一一个零点,∴()f x 有三个零点. 综上可知k 的取值范围为4(0,)27. 3.(2020·浙江省杭州第二中学高三三模)设函数11,(,2)(){1(2),[2,)2x x f x f x x --∈-∞=-∈+∞,则函数()()1F x xf x =-的零点的个数为( )A .4B .5C .6D .7【答案】C 【解析】,转化为如图,画出函数和的图像,当时,有一个交点, 当时,,,此时,是函数的一个零点, ,,满足,所以在有两个交点,同理,所以在有两个交点, ,所以在内没有交点,当时,恒有,所以两个函数没有交点,所以,共有6个.的图像在区间[1,1]-上有且仅有一个交点.在同一平面直角坐标系中画出函数11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与2y x m =+在区间函数[1,1]-上的大致图象如下图所示:结合图象可知:当(0)1h =,即1m =时,两个函数的图象只有一个交点;当(1)(1),11(1)(1)2h g m h g <⎧⇒-≤<-⎨-≥-⎩时,两个函数的图象也只有一个交点,故所求实数m 的取值范围是1|112m m m ⎧⎫-≤<-=⎨⎬⎩⎭或.。

高考数学专题一 微专题8 利用导数研究函数零点问题

高考数学专题一 微专题8 利用导数研究函数零点问题

④当x∈(π,+∞)时,ln(x+1)>1, 所以f(x)<0,从而f(x)在(π,+∞)上没有零点. 综上,f(x)有且仅有2个零点.
跟踪训练1 (2023·常德模拟)已知函数f(x)=x2+2-aln x(a∈R). x
(1)若f(x)在x=2处取得极值,求f(x)在点(1,f(1))处的切线方程;
因为 f(x)=x2+2x-aln x,x>0,
2x3-ax-2
所以 f′(x)= x2
(x>0),
令g(x)=2x3-ax-2,则g′(x)=6x2-a,
由 a>0,g′(x)=0,可得 x= a6,
所以 g(x)在0,
a6上单调递减,在
a6,+∞上单调递增,
由于 g(0)=-2<0,故当 x∈0,
a6时,g(x)<0,
又g(1)=-a<0,故g(x)在(1,+∞)上有唯一零点,设为x1,
从而可知f(x)在(0,x1)上单调递减,在(x1,+∞)上单调递增,
由于f(x)有唯一零点x0,故x1=x0,且x0>1,
所以有 2x30-ax0-2=0,x20+x20-aln x0=0,
联立得 2ln x0-x30-3 1-1=0,
(*)
令 h(x)=2ln x-x3-3 1-1,可知 h(x)在(1,+∞)上单调递增,
由于 h(2)=2ln 2-170<2×0.7-170<0,h(3)=2ln 3-2296>2×1-2296>0, 故方程(*)的唯一解,即f(x)的唯一零点x0∈(2,3),故[x0]=2.
考点二 由零点个数求参数范围
③若a<-1, (ⅰ)当x∈(0,+∞)时, 则g′(x)=ex-2ax>0, 所以g(x)在(0,+∞)上单调递增, 又g(0)=1+a<0,g(1)=e>0, 所以存在m∈(0,1), 使得g(m)=0,即f′(m)=0, 当x∈(0,m)时,f′(x)<0,f(x)单调递减, 当x∈(m,+∞)时,f′(x)>0,f(x)单调递增, 所以当x∈(0,m)时,f(x)<f(0)=0,

专题05 利用导数研究函数零点问题 (解析版)

专题05 利用导数研究函数零点问题 (解析版)

导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。

专题20 利用导数研究零点问题(解析版)

专题20  利用导数研究零点问题(解析版)


【解析】 ①当 a 0 时, 3x2 1 0 时, x 3 ,所以此时不符合题意; 3
②当 a 0 时, f '(x) 3ax2 6x 3x(ax 2) ,当 f '(x) 0 时,解得 x 2 或 x 0 ,则 f (x) 在 (,0) 上单 a
调递增,因为 f (0) 1 , f (1) a 2 0 ,则存在一零点在 (,0) 上,所以此时不符合题意;
lnlnx
x,
0 2
x 1, x2 ,1
x
2, 分情况讨论:
ln x x2 6 , x 2.
当 0 x 1 时, f (x) g(x) 1有 1 个解 x 1 ,此时有一个根. e
当1 x 2 时, f (x) g(x) 单调递增,且 f (1) g(1) 1, f (2) g(2) 2 ln 2 1,此时有一个
∈ ,f(x)>0 恒成立,即对 x∈ ,a>2- 恒成立.
令 l(x)=2- ,x∈ ,则 l'(x)=-
=
.
再令 m(x)=2ln x+ -2,x∈ ,m'(x)=- + = <0,m(x)在 上为减函数,于是 m(x)>m =2-2ln 2>0,
从而 l'(x)>0,于是 l(x)在 上为增函数,l(x)<l =2-4ln 2,
咨询电话 18100655369 陈老师 18118913693 张老师 18112398139 叶老师
中高考数理化思维训练 尖子生培优 艺考生文化课辅导 三步作文法 全国名校名师 一对一 精品小班授课
=-e-x0,y0=k(x0-2)=e-x0=-e-x0(x0-2),解得 x0=1,k=-1e;因此,当 x<2 时,f(x)=

人教版导数背景下的零点问题(共21张PPT)教育课件

人教版导数背景下的零点问题(共21张PPT)教育课件






















































:
























穿










































西
(




)






















之前有个网友说自己现在紧张得不得了,获得了一个大公司的面试机会,很不想失去这个机会,一天只吃一顿饭在恶补基础知识。不禁要问,之前做什么去了?机会当真就那么少?在我看来到处都是机会,关键看你是否能抓住。运气并非偶然,运气都是留给那些时刻准备着的人的。只有不断的积累知识,不断的进步。当机会真的到来的时候,一把抓住。相信学习真的可以改变一个人的运气。 在当今社会,大家都生活得匆匆忙忙,比房子、比车子、比票子、比小孩的教育、比工作,往往被压得喘不过气来。而另外总有一些人会运用自己的心智去分辨哪些快乐或者幸福是必须建立在比较的基础上的,而哪些快乐和幸福是无需比较同样可以获得的,然后把时间花在寻找甚至制造那些无需比较就可以获得的幸福和快乐,然后无怨无悔地生活,尽情欢乐。一位清洁阿姨感觉到快乐和幸福,因为她刚刚通过自己的双手还给路人一条清洁的街道;一位幼儿园老师感觉到快乐和幸福,因为他刚给一群孩子讲清楚了吃饭前要洗手的道理;一位外科医生感觉到幸福和快乐,因为他刚刚从死神手里抢回了一条人命;一位母亲感觉到幸福和快乐,因为他正坐在孩子的床边,孩子睡梦中的脸庞是那么的安静美丽,那么令人爱怜。。。。。。

基于深度学习的“利用导数研究函数的零点问题”微设计

基于深度学习的“利用导数研究函数的零点问题”微设计

,考频中学数学教学参考(上旬>2021年第3期基于深度学习的“利用导数研究函数的零点问题”微邓军民(广东省广州市第二中学)文章编号:1002-2171 (2021)3-0055-031数学深度教学郑毓信教授认为,数学深度教学是帮助学生“通过数学学会思维”,促进学生合作与互动、学会学习, 从而真正成为学习的主人的教学。

李善良教授认为,数学深度教学是为了学生核心 素养发展的教学,是通过有深意的数学活动,让学生 深度参与数学学习过程,深刻理解数学内容的本质和 思想,实现学生与教材、教师、生活经验深度对话,培 养学生质疑反思习惯和思维能力的教学。

数学深度 教学过程不是一个告知与接受的过程,而是一个交流 合作、深度探究、质疑反思的过程,是一个发现问题、 分析问题、解决问题的过程。

2高中数学深度教学的案例下面笔者以高三复习课“利用导数研究函数的零点问题”的微设计为例,简述对深度教学的思考与 实践。

2.1基础入手,模式识别数学是一门系统性很强的学科,在学习过程中应 循序渐进,重视落实教学要求。

中学数学的基础知识 是指数学教材中的概念、法则、公式、定理等必要的学 习内容,以及其中蕴含的数学思想方法等,还包括学 习数学的经验。

数学基础的形成,不是依赖单纯的课 堂教学,而是依赖学生参与其中的数学活动;不是依 赖记忆和理解,而是依赖学生深度学习的领会与 感悟。

例1已知二次函数/U )的最小值为一4,且关于 I 的不等式/(x )<0的解集为U k e R 且一1«3}。

(I )求函数/U )的解析式;*(n )求函数—4ln Z 的零点个数。

X数学是关于数与形的科学,数形结合是数学解题 的基本思想。

数学也是关于模式的科学,这反映了在 数学解题时,需要进行模式识别,需要构建标准的模 型。

教师应引导学生把几何的直观推理、代数的有序 推理、解题的通性通法与具体的案例结合起来,整体 把握数学解题的通性通法,抓住通性通法的本质,科 学有效地实施解题分析、促进解题思维链的形成、进 行解题后的反思与优化,从而通过有限的问题训练来 获得解答无限问题的解题智慧。

专题14 利用导数研究函数零点问题(解析版)

专题14 利用导数研究函数零点问题(解析版)

专题14利用导数研究函数零点问题一.函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.二.利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.三.利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解;(2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.专项突破一判断函数零点的个数一、单选题1.函数()23322f x x x =-+-所有零点的个数为()A .1B .2C .3D .4【解析】由题可知,2x ≠±,且233()()()22f x x f x x -=--+=--,故函数()f x 为定义域上的偶函数,且(0)0f =,当0x >,且2x ≠时,233()22f x x x =-+-,23()2(2)f x x x '=---当02x <<时,()0f x '<,函数()f x 单调递减,且(0)0f =,故函数()f x 在区间(0,2)上无零点,当2x >时,()0f x '<,函数()f x 单调递减,当2x →时,()f x →+∞,当x →-∞时,()f x →-∞,故函数()f x 在区间(2,)+∞上必存在一点0x ,使得0()0f x =,所以函数()f x 在区间(2,)+∞上有1个零点,又函数()f x 为定义域上的偶函数,则函数()f x 在区间(,2)-∞-上有1个零点,又(0)0f =,所以函数()f x 共有3个零点.故选:C.2.已知函数()31ln 01203x x x f x x x +>⎧⎪=⎨+≤⎪⎩,则函数()()1g x f x x =--的零点个数为()A .1B .0C .3D .2【解析】当0x >时,1ln 10x x x +--=,得ln 1x =,即e x =,成立,当0x ≤时,312103x x +--=,得31103x x -+=,设()3113g x x x =-+,()0x ≤,()()()21110g x x x x '=-=+-=,得1x =-或1x =(舍),当(),1x ∈-∞-时,()0g x ¢>,函数()g x 单调递增,当()1,0x ∈-时,()0g x ¢<,函数()g x 单调递减,所以1x =-时,函数取得最大值,()5103g -=>,()010g =>,()350g -=-<,根据零点存在性定理可知,()3,1x ∈--,存在1个零点,综上可知,函数有2个零点.故选:D3.函数()e ln 1xf x x x x =---的零点个数为()A .0B .1C .2D .3【解析】()()()()()1e 1111e e 1e 11e x xxx x x x x f x x x x x x x x+-+⎛⎫'=+--=+-+-= ⎪⎝⎭,令()e 1x h x x =-,,()0x ∈+∞,则()e e 0x xh x x =+>',故h (x )在(0,)+∞上单调递增,∵()010h =-<,()1e 10h =->,∴存在唯一的()00,1x ∈,使得()0 0h x =,即00 e 10xx -=,即001e x x =,00ln x x =-,∴当00x x <<时,()00h x <,()0f x '<,()f x 单调递减,当0x x >时,()00h x >,()0f x '>,()f x 单调递增,∴()0min 000000()e ln 1011xf x f x x x x x x ==--=+---=,∴函数()e ln 1xf x x x x =---的零点个数为1.故选:B .4.已知()e,a ∈+∞,则函数()ln e x f x a x ax x =+-的零点个数为()A .0B .1C .2D .3【解析】函数()ln e x f x a x ax x =+-定义域为(0,)+∞,求导得:()(1)(e )xa f x x x'=+-,令()e xa g x x=-,0x >,显然()g x 在(0,)+∞上单调递减,而e a >,()1e 0a g a =-<,(1)e>0g a =-,则存在0(1,)x a ∈,使得0()0g x =,即00e x ax =,当00x x <<时,()0>g x ,()0f x '>,当0x x >时,()0g x <,()0f x '<,因此,()f x 在0(0,)x 上单调递增,在0(,)x +∞上单调递减,0max 000000()()ln e (ln 1)0x f x f x a x ax x a x x ==+-=+->,而11111e e e (ln 1ln 110aaaf a a a a a a a a a=+-=-+-<-+-<,则存在101(,)x x a ∈使得1()0f x =,即()f x 在0(0,)x 上存在唯一零点,又()(ln e )a f a a a a =+-,令()ln e ,e x h x x x x =+->,1()1e 0x h x x'=+-<,则()h x 在(e,)+∞上单调递减,e x ∀>,e 2()(e)1e e 1e e 0h x h <=+-<+-<,于是得()0f a <,则存在20(,)x x a ∈使得2()0f x =,即()f x 在0(,)x +∞上存在唯一零点,综上得:函数()ln e x f x a x ax x =+-的零点个数为2.故选:C 5.已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为()A .1B .2C .3D .与a 有关【解析】令()()321103f x x a x x =-++=,得()3231x a x x =++.令()3231x y x x =++,2y a =,只需看两个图像的交点的个数.()()()()()22232222223121121103311x x x x x x x x y x x x x ++-+++'=⨯=⨯>++++所以()3231x y x x =++在R 上单调递增.当x →-∞时,y →-∞;当x →+∞时,y →+∞;所以2y a =与()3231x y x x =++有且只有一个交点.故选:A6.已知()f x 为R 上的可导函数,当0x ≠时,()()0f x f x x'+>,若()()1F x f x x=+,则函数()F x 的零点个数为()A .0B .1C .2D .0或2【解析】构造函数()()1g x xf x =+,其中0x ≠,则()()()g x f x xf x ''=+,当0x ≠时,()()()()0'+'+=>f x xf x f x f x x x.当0x <时,()()()0g x f x xf x =+'<',此时,函数()g x 单调递减,则()()01g x g >=;当0x >时,()()()0g x f x xf x ''=+>,此时,函数()g x 单调递增,则()()01g x g >=.所以,当0x <时,()()()110xf x F x f x x x +=+=<;当0x >时,()()()110xf x F x f x x x+=+=>.综上所述,函数()F x 的零点个数为0.故选:A.二、填空题7.设函数()f x 满足()()3229f x f x x x +-=-,则函数()()()3g x f f x =+的零点个数为______.【解析】因为()()3229f x f x x x +-=-①,所以()()3229f x f x x x -+=--②,①×2-②,得()32339f x x x =-,即()323f x x x =-,则()()23632'=-=-f x x x x x ,当2x >,或0x <时()0f x '>,)f x 单调递增,当02x <<时()0f x '<,()f x 单调递减,所以()f x 的极小值为()24f =-,极大值为()00f =,因为()323f x x x =-的零点为0或3,所以由()()()30g x f f x =+=,得()30f x +=或()33f x +=,即()3f x =-或()0f x =,因为()f x 的极小值为()24f =-,极大值为()00f =,所以方程()3f x =-有3个不同的实数解,又()0f x =有2个不同的实数解,所以()()()3g x f f x =+的零点个数为5.8.已知函数1e ,0,()2e ln ,0,x x x f x x x x +⎧≤=⎨⎩>则函数()()1g x f x =-零点的个数为___________【解析】0x ≤时,1()(1)x f x x e +¢=+,1x <-时,()0f x '<,()f x 递减;10-<≤x 时,()0f x '>,()f x 递增;则1x =-时,()f x 取极小值也是最小值(1)1f -=-;0x >时,()2(1ln )f x e x ¢=+,10x e<<时,()0f x '<,()f x 递减;1x e >时,()0f x '>,()f x 递增;则1=x e 时,()f x 取极小值也是最小值12f e 骣琪=-琪桫,综上所述,可作出()f x 图象,在作两条直线1y =±,结合图象可知,()f x 与1y =±有4个交点.三、解答题9.已知函数()1e 1xx f x x +=--.(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)判断函数f (x )的零点的个数,并说明理由.【解析】(1)由()()()212e e 031(1)x x x f x f x f x x +''=-⇒=+⇒=--,而()02f =,所以该函数在点(0,f (0))处的切线方程为:23(0)320y x x y -=-⇒-+=;(2)函数()f x 的定义域为(,1)(1,)-∞⋃+∞,由(1)可知:()22e (1)xf x x '=+-,当(,1)x ∞∈-时,()0,()f x f x '>单调递增,因为22111(2)(0)(e )22(03e 3f f --=-⋅=-<,所以函数在(,1)x ∞∈-时有唯一零点;当(1,)x ∈+∞时,()0,()f x f x '>单调递增,因为5245(2)()(e 3)(e 9)04f f =-⋅-<,所以函数在(,1)x ∞∈-时有唯一零点,所以函数f (x )有2个零点.10.设函数()2(21)(21)ln(),f x a x a x a R =-++-∈.(1)讨论()f x 在定义域上的单调性;(2)当0a ≥时,判断()f x 在[1-,1]2-上的零点个数.【解析】(1)由题意,函数()2(21)(21)ln()f x a x a x =-++-的定义域为(,0)-∞,可得221()2a f x a x+'=+,①当0a ≤时,()0f x '<,则()f x 在(,0)-∞上是减函数;②当0a >时,22212()212()2a a x a af x a x x+++'=+=,则当221(,2a x a+∈-∞-时,()0f x '>,()f x 单调递增;当221(2a x a+∈-时,()0f x '<,()f x 单调递减,所以函数()f x 在221(,)2a a +-∞-上单调递增,在221(,0)2a a+-上单调递减;(2)①当0a =时,函数()ln()f x x =-,令ln()0x -=,解得1x =-,故()f x 在[211,]--上有一个零点;②当0a >时,因为22112()21221022a a a a-++-=>,则2121[1,](,0)22a a +--⊆-,即()f x 在[1-,1]2-上单调递减,又(1)30f a -=-<,21()2(21)202f a a ln -=--+<,所以函数()f x 在[211,]--上没有零点.11.已知函数()sin f x x ax =+,其中[]0,x π∈.(1)当12a =-时,求()f x 的极值;(2)当1a ≥时,求()f x 的零点个数.【解析】(1)当12a =-时,()1sin 2f x x x =-,[]0,x π∈,求导得()1cos 2f x x '=-,[]0,x π∈,令()0f x '=,得3x π=,当0,3x π⎡⎫∈⎪⎢⎣⎭时,()0f x '>;当,3x ππ⎛⎤∈ ⎥⎝⎦时,()0f x '<.∴()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,3ππ⎛⎤⎥⎝⎦上单调递减,∴当3x π=时,()f x 取得极大值36f ππ⎛⎫=⎪⎝⎭,无极小值;(2)()cos f x x a '=+,[]0,x π∈,当1a ≥时,∵1cos 1x -≤≤,∴()0f x '≥,∴()f x 在区间[]0,π上单调递增,∴()()00f x f ≥=,故()f x 只有一个零点0.12.已知函数()22ln f x x a x =-,()222ln 2g x x x =-+-.(1)讨论函数()f x 的单调性;(2)当1a =时,判断()()g x f x -的零点个数.【解析】(1)()22a f x x x '=-()22x a x-=,故当0a ≤时,()0f x '≥,所以函数()f x 在()0,∞+上单调递增,当0a >时,令()0f x '>,得x >所以函数()f x 在)+∞上单调递增,令()0f x '<,得x <所以函数()f x 在(上单调递减,综上,当0a ≤时,函数()f x 在()0,∞+上单调递增,当0a >时,函数()f x 在)+∞上单调递增,在(上单调递减.(2)设()()()F x g x f x =-=2ln 22ln 2x x -+-,则()21F x x'=-,令()0F x '=,解得2x =,当()0,2x ∈时,()0F x '>;当()2,x ∈+∞时,()0F x '<;故()F x 最大值为()20F =,所以()()g x f x -有且只有一个零点2.13.已知()()2e 2ln xf x x a x x =-+(1)当e a =时,求()f x 的单调性;(2)讨论()f x 的零点个数.【解析】(1)因为e a =,0x >,()()2e e 2ln xf x x x x =-+所以()()()()()2e 22e 2e e 12e 2e x xx x f x x x x x x x x x x +⎛⎫⎛⎫'=+-+=+-=+- ⎪ ⎪⎝⎭⎝⎭,()10f '=令()e e x g x x x =-,()()2e 1e 0xg x x x'=++>,所以()g x 在()0,+∞单增,且()10g =,当()0,1∈x 时()e e 0xg x x x =-<,当()1,x ∈+∞时()ee 0x g x x x=->,所以当()0,1∈x 时()0f x ¢<,当()1,x ∈+∞时()0f x ¢>,所以()f x 在()0,1单调递减,在()1,+∞单调递增(2)因为()()()2ln 2ln e e 2ln e 2ln 0x x x x f x a x x a x x +=⋅-+=-+=令2ln t x x =+,易知2ln t x x =+在()0,+∞上单调递增,且R t ∈,故()f x 的零点转化为()()2ln e2ln e 0x xt f x a x x at +=-+=-=即e t at =,R t ∈,设()e t g t at =-,则()e t g t a '=-,当0a =时,()e tg t =无零点;当0a <时,()e 0tg t a '=->,故()g t 为R 上的增函数,而()010g =>,11e 10a g a ⎛⎫=-< ⎪⎝⎭,故()g t 在R 上有且只有一个零点;当0a >时,若(),ln t a ∈-∞,则()0g t '<;()ln ,t a ∈+∞,则()0g t '>;故()()()min ln 1ln g t g a a a ==-,若e a =,则()min 0g t =,故()g t 在R 上有且只有一个零点;若0e a <<,则()min 0g t >,故()g t 在R 上无零点;若e a >,则()min 0g t <,此时ln 1a >,而()010g =>,()()22ln 2ln 2ln g a a a a a a a =-=-,设()2ln h a a a =-,e a >,则()20a h a a-'=>,故()h a 在()e,+∞上为增函数,故()()e e 20h a h >=->即()2ln 0g a >,故此时()g t 在R 上有且只有两个不同的零点;综上:当0e ≤<a 时,0个零点;当e a =或0a <时,1个零点;e a >时,2个零点;14.已知函数()[]21sin cos ,0,2f x x x x ax x π=++∈.(1)当0a =时,求()f x 的单调区间;(2)当0a >时,讨论()f x 的零点个数.【解析】(1)当0a =时,函数()[]sin cos ,0,f x x x x x π=+∈,可得()sin cos sin cos f x x x x x x x =+-='.当x 在区间[]0π,上变化时,()f x ',f (x )的变化如下表:x 00,2π⎛⎫ ⎪⎝⎭2π,2ππ⎛⎫ ⎪⎝⎭π()f x '0+0-f (x )极小值1极大值2π -1所以()f x 的单调增区间为0,2π⎛⎫ ⎪⎝⎭;()f x 的单调减区间为,2ππ⎛⎫⎪⎝⎭.(2)由题意,函数()[]21sin cos ,0,2f x x x x ax x π=++∈,可得()()cos cos f x ax x x x a x =+=+'当1a ≥时,cos 0a x +≥在[0,]π上恒成立,所以[0,]x π∈时,()0f x '≥,所以()f x 在[0,]π上单调递增.又因为()01f =,所以f (x )在[0,]π上有0个零点.当01a <<时,令()0f x '=,可得cos x a =-.由10a -<-<可知存在唯一的0,2x ππ⎛⎫∈ ⎪⎝⎭使得0cos x a =-,所以当0[0,)x x ∈时,()0f x '≥,()f x 单调递增;当()0,x x π∈时,()0f x '<,()f x 单调递减,因为()01f =,0()1f x >,()2112f a ππ=-,①当21102a π->,即221a π<<时,()f x 在[0,]π上有0个零点.②当21102a π-≤,即220a π<≤时,()f x 在[0,]π上有1个零点.综上可得,当220a π<≤时,()f x 有2个零点;当22a π>时,()f x 有0个零点.15.已知函数()()()e 12e xxaf x a x a =+---∈R (1)求函数()f x 的单调区间.(2)若(,2]a ∈-∞,求函数()f x 在区间(,2]-∞上的零点个数.【解析】(1)由题意,得()()()()e 1e e 1,e e x x xx xa a f x a x +-=---='∈R当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增.当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <,所以()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.综上所述,当0a ≤时,()f x 的单调递增区间为R ,无单调递减区间,当0a >时,()f x 的单调递减区间为(,ln )a -∞,单调递增区间为(ln ,)a +∞;(2)由(1)可知当0a ≤时,()0f x '>在(,2]-∞上恒成立,所以()f x 在(,2]-∞上单调递增.因为()()22221010,2e 2e 20e e a f a f a a ⎛⎫=-=+-=+- ⎪⎝⎭,所以由零点存在性定理知,函数f 在(,2]-∞上有1个零点,当02a <≤时,若(,ln )x a ∈-∞,则()0f x '<,若(ln ,2]x a ∈,则()0f x '>,所以()f x 在(,ln )a -∞上单调递减,在(ln ,2]a 上单调递增,可得()()()()min ln 11ln f x f a a a ==--,①当1a =时,min ()0f x =,此时()f x 在(,2]-∞上有1个零点②当01a <<时min ()0f x <,因为当x →-∞时()()22,2e 20e af x f a ∞→+=+->,所以此时()f x 在(,2]-∞上有2个零点③当12a <≤时,min ()0f x >,此时()f x 在(,2]-∞上无零点.综上,当0a ≤或1a =时,()f x 在(,2]-∞上有1个零点,当01a <<时()f x 在(,2]-∞上有2个零点,当12a <≤时()f x 在(,2]-∞上无零点.16.已知函数()()e ,xf x ax a R =-∈.(1)讨论()f x 的单调性;(2)讨论()f x 在()0,+∞上的零点个数.【解析】(1)因为()e xf x ax =-,则'()f x e x a =-,当0a ≤时,'()f x 0<,此时()f x 在R 上单调递减;当0a >时,令'()f x 0=,可得ln x a =,则当(),ln x a ∈-∞时,'()f x 0>,()f x 单调递增,当()ln ,x a ∈+∞时,'()f x 0<,()f x 单调递减.综上所述:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞单调递增,在()ln ,a +∞上单调递减.(2)当0a ≤时,()f x 在()0,+∞上单调递减,又()01f =-,故当()0,x ∈+∞时,()1f x <-,故此时()f x 在()0,+∞无零点;当01a <≤时,ln 0a <,故()f x 在)0,+∞单调递减,同0a ≤时,此时()f x 在()0,+∞无零点;当1a >时,ln 0a >,故()f x 在()0,ln a 单调递增,在()ln ,a +∞单调递减,()()()ln ln 1f x f a a a ≤=-,若ln 10a -<,即1e a <<时,()ln 0f a <,故()f x 在()0,+∞无零点;若ln 10a -=,即e a =时,()ln 0f a =,此时()f x 在()0,+∞有一个零点ln a ;若ln 10a ->,即e a >时,()ln 0f a >,又因为()010f =-<,故()f x 在()0,ln a 上一定存在一个零点;又因为2ln ln a a >,且()2ln 0f a <,故()f x 在()ln ,2ln a a 上也一定存在一个零点;下证()2ln 0f a <:()()22ln 2ln 2ln ,e f a a a a a a a a =-=->,令2ln ,e y x x x =->,则'y 20xx-=<,即2ln y x x =-在()e,∞+单调递减,故2ln e e 2e 0y <-=-<,即2ln 0,(e)x x x -<>故()()2ln 2ln 0,e f a a a a a =-.故当e a >时,()f x 有两个零点.综上所述:当e a <时,()f x 在()0,+∞无零点;e a =时,()f x 在()0,+∞有一个零点ln a ;e a >时,()f x 有两个零点.专项突破二由函数零点个数求参数一、单选题1.若函数()2ln 2,02,0x x x f x x x a x ->⎧=⎨++≤⎩有且只有2个零点,则实数a 的取值范围为()A .01a <<B .01a <≤C .01a ≤≤D .01a ≤<【解析】根据题意,0x >时,()ln 2(0)f x x x x =->,此时()12f x x'=-()120f x x -'=>时,102x <<;()120f x x -'=<时,12x >,所以()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减0x >时,()1ln 2102max f x f ⎛⎫==--< ⎪⎝⎭,所以()f x 在()0,+∞上无零点从而0x ≤时,()f x 有2个零点,根据二次函数的性质可得()4400100a a f ∆=->⎧∴≤<⎨≥⎩,故选:D.2.若函数3()12f x x x a =-+有三个不同的零点,则实数a 的取值范围是()A .(,8)-∞-B .(,8)-∞C .[16,16]-D .(16,16)-【解析】3()12f x x x a =-+,2()3123(2)(2)f x x x x '=-=+-.令()0f x '=,解得12x =-,22x =.(,2)x ∈-∞-,()0f x '>,()f x 为增函数,(2,2)x ∈-,()0f x '<,()f x 为减函数,(2,)x ∈+∞,()0f x '>,()f x 为增函数.所以()(2)16f x f a =-=+极大值,()(2)16f x f a ==-+极小值.因为函数3()12f x x x a =-+有三个不同的零点,等价于方程()0f x =有三个不同的根.所以160160a a +>⎧⎨-+<⎩,解得1616a -<<.故选:D3.若关于x 的方程ln 0x ax -=有且只有2个零点,则a 的取值范围是()A .1(,e-∞B .1(,)e -∞C .1(0,]e D .1(0,e【解析】由ln 0x ax -=,得ln x a x=(0x >),令ln ()(0)xf x x x =>,所以关于x 的方程ln 0x ax -=有且只有2个零点,等价于函数()f x 的图像与直线y a =有两个交点,由ln ()(0)x f x x x =>,得'21ln ()(0)xf x x x -=>,当0x e <<时,'()0f x >,当x e >,'()0f x <,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以max ln 1()()e f x f e e e===,当x e >时,()0f x >,所以当10a e<<时,函数()f x 的图像与直线y a =有两个交点,所以a 的取值范围是1(0,)e,故选:D4.若函数()ln x f x a x e a =++有两个零点,则实数a 的取值范围为()A .(,)e +∞B .(,2)e -∞-C .(,)e -∞-D .(2,)e +∞【解析】因为函数()ln xf x a x e a =++有两个零点,定义域为()0,∞+;所以方程ln 0x a x e a ++=在()0,∞+上有两不等实根,显然0a ≠即方程ln 11x x a e +-=在()0,∞+上有两不等实根,令()ln 1xx g x e +=,则直线1=-y a 与曲线()ln 1xx g x e +=在()0,∞+上有两不同交点;因为()()211ln 1ln 1x x x xe x e x x x g x e e -+--'==,令()1ln 1h x x x=--,则()2110h x x x '=--<在()0,∞+上显然恒成立,因此()1ln 1h x x x=--在()0,∞+上单调递减,又()10h =,所以当()0,1x ∈时,()0h x >,即()0g x '>,所以()ln 1xx g x e +=单调递增;当()1,x ∈+∞时,()0h x <,即()0g x '<,所以()ln 1xx g x e +=单调递减;因此()()max 11g x g e ==,又当1x e >时,()ln 10x x g x e +=>;当10x e <<时,()ln 10xx g x e +=<,所以为使直线1=-y a 与曲线()ln 1xx g x e +=在()0,∞+上有两不同交点,只需110a e<-<,解得a e <-.故选:C.5.设函数()()ln ,0e 1,0xx x f x x x >⎧=⎨+≤⎩,若函数()y f x b =-有两个零点,则实数b 的取值范围是()A .()0,1B .[)0,1C .[]0,1D .[]{}20,1e-⋃-【解析】当0x >时,函数()ln f x x =单调递增;当0x ≤时,()()e 1xf x x =+,则()()e 20x f x x ='+=时,2x =-,所以当2x <-时,()0f x '<,20x -<≤时,()0f x '>,故当0x ≤时,()f x 在(),2-∞-上单调递减,在()2,0-上单调递增,所以()f x 在2x =-处取极小值,极小值为()22e f --=-,作出函数()f x的图象如图:因为函数()y f x b =-有两个零点,所以函数()y f x =与y b =有两个交点,所以当[]{}20,1e b -∈⋃-时函数()y f x =与y b =有两个交点,所以实数b 的取值范围为[]{}20,1e -⋃-.故选:D.6.已知函数()1e xf x x a -=+-有两个零点,则实数a 的取值范围为()A .21,0e ⎛⎫- ⎪⎝⎭B .21,e ⎛⎫-+∞ ⎪⎝⎭C .()2e ,0-D .()2e ,-+∞【解析】由题意,函数()1e xf x x a -=+-的定义域为R ,令()0f x =,即1e 0x x a -+-=,即()1e xa x =+⋅,设()()1e x g x x =+⋅,可得()()()e 1e 2e x x xg x x x '=++⋅=+⋅,当2x <-时,()0g x '<,当2x >-时,()0g x '>,所以()g x 在(,2)-∞-上单调递减,在(2,)-+∞上单调递增.又()212e g -=-,作出简图,如图所示,要使得函数()1e xf x x a -=+-有两个零点,只需y a =与()()1e xg x x =+⋅的图像有两个交点,所以210e a -<<,即实数a 的取值范围是210ea -<<.故选:A.7.已知函数()2e ln x f x a x x =-有两个极值点,则实数a 的取值范围是()A .10,2e ⎛⎫ ⎪⎝⎭B .1,e 2e ⎛⎫ ⎪⎝⎭C .(,2e)-∞D .10,e ⎛⎫ ⎪⎝⎭【解析】因为函数()2e ln x f x a x =-有两个极值点,所以()()2e ln 1xf x a x '=-+有两个相异的零点,即ln 12e xx a +=有两个交点,令()()ln 1,0,ex x g x x +=∈+∞,则()()()1ln 1,0,e xx x g x x -+'=∈+∞,令()()()1ln 1,0,h x x x x =-+∈+∞,则()2110h x x x'=--<恒成立,所以()h x 在()0,x ∈+∞上递减,且()()11ln1101h =-+=,所以()0,1x ∈时,()0h x >;()1,x ∈+∞时,()0h x <;所以()0,1x ∈时,()0g x '>;()1,x ∈+∞时,()0g x '<;所以()0,1x ∈时,()g x 单调递增;()1,x ∈+∞时,()g x 单调递减;()()max ln1111e e g x g +===,又当x →+∞时,()ln 10e x x g x +=→;0x →时,()ln 1e xx g x +=→-∞;所以当ln 12e xx a +=有两个交点时,则有102a e<<,即102e a <<,所以函数()2e ln x f x a x x =-有两个极值点,则实数a 的取值范围是102ea <<,故选:A 8.已知函数()()22e (e =--x xf x x x a )有三个零点,则实数a 的取值范围是()A .(0,1e -)B .(0,2e -)C .(0,1)D .(0,e )【解析】令()()()22e e 0=--=x xf x x x a ,所以22e 0-=x x 或e 0x x a -=,令()22e =-xg x x ,则()()2e '=-x g x x ,令()2(e )=-x h x x ,则()2(1)e '=-xh x ,当(,0)x ∈-∞时,()0h x '>,h (x )在(-∞,0)上单调递增;当,()0x ∈+∞时,()0h x '<,h (x )在(0,+∞)上单调递减,所以()(0)20h x h ≤=-<,即()0g x '<,所以g (x )在R 上单调递减,又()2110g e-=->,g (0)=20-<,所以存在0(1,0)x ∈-使得()00g x =,所以方程e 0x x a -=有两个异于0x 的实数根,则xxa e =,令()x x k x e =,则()1xx e xk -=',当(,1)x ∞∈-时,()0k x '>,k (x )在(-∞,1)上单调递增;当(1,)x ∈+∞时,()0k x '<,k (x )在(1,+∞)上单调递减,且()0k x >.所以()1()1k x k e ≤=,所以()x xk x e=与y a =的部分图象大致如图所示,由图知10a e<<,故选:A .9.函数()()()1e 21xf x a x x =---有两个零点,则a 的取值范围为()A .()32e ,14,⎛⎫-∞+∞ ⎪⎝⎭U B .321,4e ⎛⎫ ⎪⎝⎭C .()320,14e ,⎛⎫⋃+∞ ⎪⎝⎭D .324e ,⎛⎫+∞ ⎪⎝⎭【解析】令()0f x =得(21)(1)e x x a x -=-,令()e (21)x g x x =-,则()e (21)x g x x '=+,∴当12x <-时,()0g x '<,当12x >-时,()0g x '>,()g x ∴在1(,)2-∞-上单调递减,在1(2-,)∞+上单调递增,作出()g x 与(1)y a x =-的函数图象如图所示:设直线(1)y a x =-与()g x 的图象相切,切点为00(,)x y ,则()()()00000001e 1e 21xx y a x y x a x ⎧=-⎪=-⎨⎪=+⎩,解得00x =,01y =-,1a =,或032x =,3202e y =,324e a =,()f x 有两个不同的零点,()g x ∴(1)a x =-的函数图象有两个交点,01a ∴<<或324e a >,即()320,14e ,a ⎛⎫∈⋃+∞ ⎪⎝⎭.故选:C .10.已知()()()212()12e 1ex x f x x a x a --=-+++恰有三个不同的零点,则实数a 的范围为()A .()0,1B .()1,1-C .()0,e D .()1,0-【解析】由()()()()21212e 1e 0x x f x x a x a --=-+++=,得()()2111e e e x x x a x x ----=-,即()()11e1e0x x x x a --⎡⎤--+=⎣⎦.令()1e x g x x -=-,则()11e x g x -'=-,令()11e 0x g x -'=-=可得1x =,当(),1x ∈-∞时,()0g x '>,当()1,+∈∞x 时,()0g x '<,∴()g x 在(),1-∞单调递增,在()1,+∞单调递减,所以()()g 10x g ≤=,即()1e 0x g x x -=-=仅有唯一的解1x =.依题意,方程()11e 0x x a --+=有两个不同的解,即1y a =+与1ex x y -=有两个不同的交点,令()1ex x h x -=,则()11e x xh x --'=,易得()h x 在(),1-∞单调递增,在()1,+∞单调速减,()()11h x h ≤=,画出()h x 的草图观察图象可得01110a a <+<⇒-<<,故选:D .二、多选题11.已知()e xf x x ax b -=--()A .若24eb >,则()0,a ∞∃∈+,使函数()y f x =有2个零点B .若24e b >,则(),0a ∃∈-∞,使函数()y f x =有2个零点C .若240e b <<,则()0,a ∞∃∈+,使函数()y f x =有2个零点D .若240e b <<,则(),0a ∃∈-∞,使函数()y f x =有2个零点【解析】令()0f x =,则e xx ax b =+,所以设()e x x g x =,则()1e x xg x ='-当1x <时,()0g x '>,()g x 单调递增;当1x >时,()0g x '<,()g x 单调递减()g x 在1x =处取得极大值()11eg =当x 趋向于-∞时,()g x 趋向于-∞;当x 趋向于+∞时,()g x 趋向于0又()2ex x g x -''=,()20g ''=且当2x <时,()0g x ''<;当2x >时,()0g x ''>所以,2x =是函数()g x 的拐点,()222e g =,()212e g '=-所以()g x 在2x =处的切线方程为()2122ey x -=--,即2214e e y x =-+如图所示,ACD 正确,B 错误,故选:ACD12.已知函数()ln f x x x a =--有两个零点1x 、2x ,则下列说法正确的是().A .1a >B .121x x >C .121x x <D .122x x +>【解析】由()0f x =可得ln a x x =-,令()ln g x x x =-,其中0x >,所以,直线y a =与曲线()y g x =的图象有两个交点,()111x g x x x-'=-=,令()0gx '=,可得1x =,列表如下:x()0,11()1,+∞()g x '-+()g x 减极小值1增作出函数y a =与()y g x =的图象如下图所示:由图可知,当1a >时,函数y a =与()y g x =的图象有两个交点,A 对;121212ln ln 2x x x xx x -+<<-,其中12x x ≠,且1x 、2x 均为正数.先证明121212ln ln 2x x x x x x -+<-,其中120x x >>,即证()1122112122212ln 1x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>=++,令121x t x =>,()()21ln 1t p t t t -=-+,其中1t >,则()()()()222114011t p t t t t t -'=-=>++,所以,函数()p t 在()1,+∞上为增函数,当1t >时,()()10p t p >=,所以,当120x x >>时,121212ln ln 2x x x xx x -+<-,接下来证明:1212ln ln x x x x --120x x >>,即证12ln x x <=,令1t =>,即证12ln t t t <-,令()12ln h t t t t ⎛⎫=-- ⎪⎝⎭,其中1t >,则()222212110t t h t t t t -+'=--=-<,所以,函数()h t 在()1,+∞上为减函数,当1t >时,()()10h t h <=,所以,当120x x >>时,1212ln ln x x x x ->-由已知可得1122ln ln x x ax x a -=⎧⎨-=⎩,两式作差可得1212ln ln x x x x -=-,所以,12121ln ln x x x x -=-,1212121ln ln 2x x x xx x -+<=<-,故121x x <,122x x +>,B 错,CD 都对.故选:ACD.13.已知函数35,0()2ln ,0x x x f x x x ⎧-≤=⎨>⎩,若函数()()2g x f x x a =+-有3个零点,则实数a 可能的取值有()A .3B .2C .1D .0【解析】函数()()2g x f x x a =+-有3个零点,即方程()2f x x a +=有3个不同的实根,即函数()2y f x x =+与y a =的图象有3个不同的交点,令()()2h x f x x =+=33,02ln 2,0x x x x x x ⎧-≤⎨+>⎩,当0x ≤时,()()()233311h x x x x '=-=+-,当10x -<<时,()0h x '<,当1x <-时,()0h x '>,所以函数()h x 在(),1-∞-上递增,在()1,0-上递减,故当0x ≤时,()()max 12h x h =-=,又()00h =,当x →-∞时,()h x →-∞,当0x >时,()2ln 2h x x x =+在()0,∞+上递增,又1220e e h ⎛⎫=-+< ⎪⎝⎭,当x →+∞时,()h x →+∞,如图,作出函数()h x 的大致图像,结合图像可知,要使函数()2y f x x =+与y a =的图象有3个不同的交点,则a 的范图为02a ≤<.故选:CD.14.已知函数()()ln 1f x x x a x x =+-+在区间(1,+∞)内没有零点,则实数a 的取值可以为()A .-1B .2C .3D .4【解析】()()ln 1ln 1a f x x x a x x x x a x ⎛⎫=+-+=+-+ ⎪⎝⎭,设()ln 1a g x x a x =+-+则在1x >上,()y f x =与()y g x =有相同的零点.故函数()f x 在区间()1,+∞内没有零点,即()g x 在区间()1,+∞内没有零点,()221a x ag x x x x-'=-=,当1a ≤时,()20x ag x x -'=>在区间)1,+∞上恒成立,则()g x 在区间()1,+∞上单调递增.所以()()110g x g >=>,显然()g x 在区间()1,+∞内没有零点.当1a >时,令()0g x '>,得x a >,令()0g x '<,得1x a <<所以()g x 在区间()1,a 上单调递减增.在区间(),a +∞上单调递增.所以()()ln 2g x g a a a ≥=+-设()()ln 21h a a a a =+->,则()()11101a h a a a a-=-=<>所以()h a 在()1,+∞上单调递减,且()()3ln 310,4ln 420g g =->=-<所以存在()03,4a ∈,使得()00h a =,要使得()g x 在区间()1,+∞内没有零点,则()ln 20g a a a =+->,所以()013,4a a <<∈,综上所述,满足条件的a 的范围是()03,4a a <∈由选项可知:选项ABC 可使得()g x 在区间()1,+∞内没有零点,即满足题意.故选:ABC15.已知函数()()()1e 21xf x a x x =---在(,1)-∞上有两个不同的零点,则实数a 可能取到的值为()A .1-B .14C .12D .1【解析】令()0f x =,即()()1e 210xa x x ---=,所以()e 211x x a x -=-,因为函数()f x 在(,1)-∞上有两个不同的零点,设()()e 211x x g x x -=-,则y a =与()y g x =在(,1)-∞上有两个不同的交点,因为()()()()()()()222e 23e 21e 21e 2111x x x xx x x x x g x x x ⎡⎤--+⋅---⎣⎦'==--,令()0g x '=,则10x =,232x =,因为在(,1)-∞上,e 0x >,()210x ->,所以()g x 在(),0∞-上单调递增,在()0,1上单调递减,所以()()max 01g x g ==,且当0x <时,()0g x >;当1x →时,()g x →-∞,因为y a =与()y g x =在(,1)-∞上有两个不同的交点,所以01a <<,根据选项,符合条件的为B ,C ,故选:BC 三、填空题16.已知函数()2e e xf x x a =-有三个零点,则实数a 的取值范围是___________.【解析】由2e e 0x x a -=,得21e x a x -=.设()21e xg x x -=,则()()1e 2xg x x x -'=-.当(),0x ∈-∞时,()0g x '<,当()0,2x ∈时,()0g x '>,当()2,x ∈+∞时,()0g x '<,所以函数()g x 在区间(),0∞-上单调递减,在区间()0,2上单调递增,在区间()2,+∞上单调递减,又()()400,2eg g ==,故函数()21e xg x x -=的图象如图所示:故当40e a <<时,函数()2e e xf x a =-有三个零点,即40,e a ⎛⎫∈ ⎪⎝⎭.17.已知函数(2),1()ln(1)2,1x x x f x x x x +≤⎧=⎨--+>⎩,若函数()()g x f x a =-有四个零点,则实数a 的取值范围是______________.【解析】因为函数()()g x f x a =-有四个零点,所以方程()()0g x f x a =-=有4个不同的解,所以函数()f x 的图象与直线y a =有4个不同的交点,①当1x >时,()ln(1)2f x x x =--+,则1112()1111x xf x x x x -+-'=-==---,当12x <<时,()0f x '>,当2x >时,()0f x '<,所以()f x 在(1,2)上递增,在(2,)+∞上递减,所以当1x >时,()f x 有最大值(2)ln1220f =-+=,当1x →时,()f x →-∞,当x →+∞时,()f x →-∞②当1x ≤时,2()(2)(1)1f x x x x =+=+-,当1x =-时,()f x 有最小值1-所以()f x 的图象如图所示由图可知,当10a -<<时,函数()f x 的图象与直线y a =有4个不同的交点,所以实数a 的取值范围是(1,0)-18.已知函数()()e sin 0xf x a x x =->有两个零点,则正实数a 的取值范围为______.【解析】因为函数()()e sin 0,0xf x a x x a =->>有两个零点,所以方程()e sin 00,0xa x x a -=>>有两个根,所以()2,2Nx k k k πππ∈+∈,所以方程e sin xa x =其中()2,2N x k k k πππ∈+∈,有两个根,设e ()sin xg x x=,()2,2N x k k k πππ∈+∈,,所以2e sin cos e ()sin x xx x g x x-'=,令()0g x '=可得e sin cos e 0x x x x -=,化简可得24x k ππ=+,N k ∈,所以当22,N 4k x k k πππ<<+∈时,()0g x '<,函数()g x 单调递减,当22,N 4k x k k ππππ+<<+∈时,()0g x '>,函数()g x 单调递增,作函数()g x 的图象可得,由图象可得,当9((44g a g ππ<<时,直线y a =与函数e()sin xg x x=,()2,2N x k k k πππ∈+∈,,的图象有且仅有两个交点,944a ππ<<时,函数()()e sin 0xf x a x x =->()0a >有两个零点,故答案为:944e e )ππ.19.若函数()ln e 1xf x x ax =--+不存在零点,则实数a 的取值范围是______.【解析】因为函数()ln e 1xf x x ax =--+不存在零点,所以方程ln e 10x x ax --+=无实数根,所以方程ln e ln e xx ax -+=无实数根,即方程ln e 1x x a x-+=无实数根,故令()()'2ln e 1e e ln ,x x x x x xg x g x x x -+-+-==,令()e e ln ,0x x h x x x x =-+->,故()'1e 0xh x x x=--<恒成立,所以,()h x 在()0,∞+上单调递减,由于()10h =,所以,当()0,1x ∈时,()0h x >,即()'0g x >,当()1,x ∈+∞时,()0h x <,即()'0g x <,所以函数()g x 在()0,1x ∈上单调递增,在()1,x ∈+∞上单调递减,所以()()max 11e g x g ==-,所以,当方程ln e 1x x a x-+=无实数根时,1e a >-即可.所以,实数a 的取值范围是()1e,+-∞四、解答题20.已知函数()ln 1xf x m x =-+.(1)求()f x 的导函数;(2)若()f x 在1,12⎡⎤⎢⎥⎣⎦上有零点,求m 的取值范围.【解析】(1)因为()ln 1xf x m x =-+,所以()()()()221111l ln 1n 1x x x x x f x x x ++-'==++-(2)由(1)知()()211ln 1x x f x x +-'=+,因为1,12x ⎡⎤∈⎢⎥⎣⎦,所以ln 0x -≥,所以()()211ln 01x x f x x +-'=>+,从而()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以()min 12ln 223f x f m ⎛⎫==-- ⎪⎝⎭,()()max 1f x f m ==-.因为()f x 在1,12⎡⎤⎢⎥⎣⎦上有零点,所以02ln203m m -≥⎧⎪⎨--≤⎪⎩,解得2ln 203m -≤≤.21.已知函数()ln R kf x x k k x=--∈,(1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e)内无零点,求k 的取值范围.【解析】(1)()ln k f x x k k R x =--∈ ,,(1,e)x ∈,221()k x k f x x x x+'∴=--=-(Ⅰ)当1k -≤,即1k ≥-时,10x k x +≥->()0f x '∴<,()f x ∴在(1,e)单调递减(Ⅱ)当e k -≥,即e k ≤-时,e 0x k x +≤-<()0f x '∴>,()f x ∴在(1,e)单调递增(Ⅲ)当1e k <-<,即e 1k -<<时,当1x k <<-时,()0f x '>,()f x 单调递增;当e k x -<<时,()0f x '<,()f x 单调递减综上所述,(Ⅰ)当1k ≥-时,()f x 在(1,e)单调递减(Ⅱ)当e k ≤-时,()f x 在(1,e)单调递增(Ⅲ)当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减(2)由(1)知:当1k ≥-时,()()10f x f <=即()0f x <,()f x ∴在(1,e)无零点,当e k ≤-时,()(1)0f x f >=即()0f x >,()f x ∴在(1,e)无零点当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减()(1)0,(1,)f x f x k ∴>=∈-,()(e)1,(,e)ekf x f k x k >=--∈-∴只需(e)10e k f k =--≥即可,即1(11e k -≤-,1e11e 1ek ∴≤=--,ee 1ek ∴-<≤-综上所述,e(,][1,)1ek ∈-∞-+∞- 22.已知函数()3226185=--+f x x x x .(1)求函数()f x 的单调区间;(2)若函数()()g x f x a =+至多有两个零点,求实数a 的取值范围.【解析】(1)依题意:()()()261218631'=--=-+f x x x x x ,故当(),1x ∈-∞-时,()0f x '>,当()1,3x ∈-时,()0f x '<,当()3,x ∈+∞时,()0f x '>,∴()f x 的单调增区间为(),1-∞-,()3,+∞,单调减区间为()1,3-;(2)令()0g x =,得()a f x -=.∵()115f -=,()349=-f ,结合f (x )单调性,作出f (x )图像:。

高考数学科学复习创新方案:利用导数研究函数的零点问题

高考数学科学复习创新方案:利用导数研究函数的零点问题

利用导数研究函数的零点问题例1(2022·新高考Ⅰ卷改编)已知函数f(x)=e x-x,g(x)=x-ln x.(1)判断直线y=b与曲线y=f(x)和y=g(x)的交点分别有几个;(2)证明:曲线y=f(x)和y=g(x)有且只有一个公共点;(3)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.解(1)设S(x)=e x-x-b,S′(x)=e x-1,当x<0时,S′(x)<0,当x>0时,S′(x)>0,故S(x)在(-∞,0)上为减函数,在(0,+∞)上为增函数,所以S(x)min=S(0)=1-b.当b<1时,S(x)min=1-b>0,S(x)无零点;当b=1时,S(x)min=1-b=0,S(x)有1个零点;当b>1时,S(x)min=1-b<0,而S(-b)=e-b>0,S(b)=e b-2b,设u(b)=e b-2b,则当b>1时,u′(b)=e b-2>0,故u(b)在(1,+∞)上为增函数,故u(b)>u(1)=e-2>0,故S(b)>0,故S(x)=e x-x-b有两个不同的零点.,设T(x)=x-ln x-b,T′(x)=x-1x当0<x<1时,T′(x)<0,当x>1时,T′(x)>0,故T(x)在(0,1)上为减函数,在(1,+∞)上为增函数,所以T(x)min=T(1)=1-b.当b<1时,T(x)min=1-b>0,T(x)无零点;当b=1时,T(x)min=1-b=0,T(x)有1个零点;当b>1时,T(x)min=1-b<0,而T(e-b)=e-b>0,T(e b)=e b-2b>0,所以T(x)=x-ln x-b有两个不同的零点.综上可知,当b<1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是0;当b=1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是1;当b>1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是2.(2)证明:由f(x)=g(x)得e x-x=x-ln x,即e x+ln x-2x=0,设h(x)=e x+ln x-2x,其中x>0,故h′(x)=e x+1x-2,设s(x)=e x-x-1,则当x>0时,s′(x)=e x-1>0,故s(x)在(0,+∞)上为增函数,故s(x)>s(0)=0,即e x>x+1,所以h′(x)>x+1x-1≥2-1>0,所以h(x)在(0,+∞)上为增函数,而h(1)=e-2>0,e1e3-3-2e3<e-3-2e3<0,故h(x)在(0,+∞)上有且只有一个零点x0,且1e3<x0<1,当0<x<x0时,h(x)<0,即e x-x<x-ln x,即f(x)<g(x),当x>x0时,h(x)>0,即e x-x>x-ln x,即f(x)>g(x),所以曲线y=f(x)和y=g(x)有且只有一个公共点.(3)证明:由(2)知,若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,则b=f(x0)=g(x0)>1,此时e x-x=b有两个不同的解x1,x0(x1<0<x0),x-ln x=b有两个不同的解x0,x2(0<x0<1<x2),故e x1-x1=b,e x0-x0=b,x2-ln x2-b=0,x0-ln x0-b=0,所以x2-b=ln x2,即e x2-b=x2,即e x2-b-(x2-b)-b=0,故x2-b为方程e x-x=b的解,同理x0-b也为方程e x-x=b的解,所以{x1,x0}={x0-b,x2-b},而b>10=x2-b,1=x0-b,即x1+x2=2x0.利用导数确定函数零点或方程根的个数的常用方法(1)构建函数g(x)(需g′(x)易求,g′(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义域区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.(2)利用函数零点存在定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.(2024·衡水模拟)已知函数f(x)=(x-2)e x.(1)求函数f(x)的单调区间和极值;(2)若g(x)=f(x)-a,讨论函数g(x)的零点个数.解(1)f(x)的定义域为R,f′(x)=e x+(x-2)e x=(x-1)e x,又e x>0恒成立,∴当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0,∴函数f(x)的单调递减区间为(-∞,1),单调递增区间为(1,+∞).函数f(x)的极小值为f(1)=-e,无极大值.(2)当x<2时,f(x)<0,当x>2时,f(x)>0,结合(1)中结论作出函数图象如图,∴g(x)的零点个数等价于f(x)的图象与直线y=a的交点个数.当a≥0时,f(x)的图象与直线y=a有且仅有一个交点;当-e<a<0时,f(x)的图象与直线y=a有两个不同的交点;当a=-e时,f(x)的图象与直线y=a有且仅有一个交点;当a<-e时,f(x)的图象与直线y=a无交点.综上所述,当a∈[0,+∞)∪{-e}时,g(x)有唯一零点;当a∈(-e,0)时,g(x)有两个不同的零点;当a∈(-∞,-e)时,g(x)无零点.例2(2022·全国乙卷)已知函数f(x)=ax-1x-(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.解(1)当a=0时,f(x)=-1x -ln x(x>0),则f′(x)=1x2-1x=1-xx2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=-1.(2)由f(x)=ax-1x -(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).当a=0时,由(1)可知,f(x)不存在零点;当a<0时,f′(x)=x-1)x2,若x∈(0,1),f′(x)>0,f(x)单调递增,若x∈(1,+∞),f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;当a>0时,f′(x)=x-1)x2,若a=1,则f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点,若a>1,则f(x)(1,+∞)为f(1)=a-1>0,所以f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知,f(x)a>1满足条件.若0<a<1,则f(x)在(0,1)因为f(1)=a-1<0,所以f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知,f(x)0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数图象与x轴的交点个数,或者两个相关函数图象的交点个数确定参数满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.(2024·南阳一中月考)设函数f(x)=(x-2)ln(x-1)-ax,a∈R.(1)若f(x)在(2,+∞)上单调递增,求a的取值范围;(2)若f(x)有两个不同的零点,求a的取值范围.解(1)∵f′(x)=ln(x-1)+1-1x-1-a(x>1),令H(x)=ln(x-1)+1-1x-1-a(x>1),则H′(x)=1x-1+1(x-1)2>0,∴f′(x)在(1,+∞)上单调递增,∵f(x)在(2,+∞)上单调递增,∴f′(2)≥0,∴-a≥0⇒a≤0.∴a的取值范围是(-∞,0].(2)f(x)=0⇒a=(x-2)ln(x-1)x,令g(x)=(x-2)ln(x-1)x,故g′(x)=1x-1-2·xx-1-ln(x-1)x2=(x-1)-1x-1+2ln(x-1)x2,令h(x)=(x-1)-1x-1+2ln(x-1),∴h′(x)=1+1(x-1)2+2x-1>0,∴h(x)在(1,+∞)上单调递增,又h(2)=0,∴当1<x<2时,h(x)<0,即g′(x)<0,当x>2时,h(x)>0,即g′(x)>0,∴g(x)在(1,2)上单调递减,在(2,+∞)上单调递增,∴g(x)≥g(2)=0,又由当x→1时,x-2x→-1,ln(x-1)→-∞,则g(x)→+∞;当x→+∞时,x-2x→1,ln(x-1)→+∞,则g(x)→+∞,若f(x)有两个不同的零点,则需满足a>0.∴a的取值范围为(0,+∞).例3(2023·泰州模拟)已知函数f(x)=e x-ax2+bx-1,其中a,b为常数,e 为自然对数的底数,e=2.71828….(1)当a=0时,若函数f(x)≥0,求实数b的取值范围;(2)当b=2a时,若函数f(x)有两个极值点x1,x2,现有如下三个命题:①7x1+bx2>28;②2a(x1+x2)>3x1x2;③x1-1+x2-1>2.请从①②③中任选一个进行证明.解(1)当a=0时,f(x)=e x+bx-1,f′(x)=e x+b,当b≥0时,因为f(-1)b<0,所以此时不符合题意;当b<0时,当x∈(-∞,ln(-b))时,f′(x)<0,f(x)单调递减,当x ∈(ln (-b ),+∞)时,f ′(x )>0,f (x )单调递增,所以f (x )min =f (ln (-b ))=-b +b ln (-b )-1,要使f (x )≥0,只需f (x )min =-b +b ln (-b )-1≥0,令g (x )=x -x ln x -1,则g ′(x )=-ln x ,当x ∈(0,1)时,g ′(x )>0,g (x )单调递增,当x ∈(1,+∞)时,g ′(x )<0,g (x )单调递减,所以g (x )≤g (1)=0,则由g (-b )=-b +b ln (-b )-1≥0,得-b =1,所以b =-1,故实数b 的取值范围为{-1}.(2)证明:当b =2a 时,f (x )=e x -ax 2+2ax -1,f ′(x )=e x -2ax +2a ,令φ(x )=f ′(x )=e x -2ax +2a ,则φ′(x )=e x -2a ,因为函数f (x )有两个极值点x 1,x 2,所以φ(x )=f ′(x )=e x -2ax +2a 有两个零点,若a ≤0,则φ′(x )>0,φ(x )单调递增,不可能有两个零点,所以a >0,令φ′(x )=e x -2a =0,得x =ln (2a ),当x ∈(-∞,ln (2a ))时,φ′(x )<0,φ(x )单调递减;当x ∈(ln (2a ),+∞)时,φ′(x )>0,φ(x )单调递增,所以φ(x )min =φ(ln (2a ))=4a -2a ln (2a ),因为φ(x )有两个零点,所以4a -2a ln (2a )<0,则a >12e 2.设x 1<x 2,因为φ(1)=e >0,φ(2)=e 2-2a <0,所以1<x 1<2<x 2,因为φ(x 1)=φ(x 2)=0,所以e x 1=2ax 1-2a ,e x 2=2ax 2-2a ,则e x 2e x 1=x 2-1x 1-1,取对数得x 2-x 1=ln (x 2-1)-ln (x 1-1),令x 1-1=t 1,x 2-1=t 2,则t 2-t 1=ln t 2-ln t 1,即t 2-ln t 2=t 1-ln t 1(0<t 1<1<t 2).若选择命题①:令u (t )=t -ln t ,则u (t 1)=u (t 2),u ′(t )=1-1t,当0<t <1时,u ′(t )<0,当t >1时,u ′(t )>0,所以u (t )=t -ln t 在(0,1)上单调递减,在(1,+∞)上单调递增,令v (t )=u (t )-u (2-t )=2t -ln t +ln (2-t )-2(0<t <2),则v ′(t )=2(t -1)2t (t -2)≤0,v (t )在(0,2)上单调递减,因为0<t 1<1,所以v (t 1)>v (1)=0,即u (t 1)-u (2-t 1)>0,亦即u (t 2)=u (t 1)>u (2-t 1),因为t 2>1,2-t 1>1,u (t )=t -ln t 在(1,+∞)上单调递增,所以t 2>2-t 1,则x 2-1>2-(x 1-1),整理得x 1+x 2>4,所以7x 1+bx 2=7x 1+2ax 2>7x 1+7x 2>28,故①成立,得证.若选择命题②:令u (t )=t -ln t ,则u (t 1)=u (t 2),u ′(t )=1-1t,当0<t <1时,u ′(t )<0,当t >1时,u ′(t )>0,所以u (t )=t -ln t 在(0,1)上单调递减,在(1,+∞)上单调递增,令v (t )=u (t )-t -1t -2ln t ,则v ′(t )=(t -1)2t2≥0,v (t )在(0,+∞)上单调递增,又v (1)=0,所以当t ∈(0,1)时,v (t )=u (t )-v (1)=0,即u (t )<因为0<t 1<1,所以u (t 2)=u (t 1)<因为t 2>1,1t 1>1,u (t )=t -ln t 在(1,+∞)上单调递增,所以t 2<1t 1,所以x 2-1<1x 1-1,即x 1x 2<x 1+x 2,所以x1x2<x1+x2<2312e2(x1+x2)<23a(x1+x2),所以2a(x1+x2)>3x1x2,故②成立,得证.若选择命题③:因为x1-1=t1,x2-1=t2,则t2-t1=ln t2-ln t1=2ln t2t1,因为0<t1<1<t2,所以t2t1>1.令F(t)=ln t-2(t-1)t+1,则当t>1时,F′(t)=(t-1)2t(t+1)2>0,所以F(t)=ln t-2(t-1)t+1在(1,+∞)上单调递增,则F(t)=ln t-2(t-1)t+1>F(1)=0,所以ln t>2(t-1)t+1,则t2-t1=2ln t2t1>4·t2-t1t2+t1,两边约去t2-t1后,化简整理得t1+t2>2,即x1-1+x2-1>2,故③成立,得证.(1)研究函数零点问题,要通过数的计算(函数性质、特殊点的函数值等)和形的辅助,得出函数零点的可能情况.(2)函数可变零点(函数中含有参数)性质的研究,要抓住函数在不同零点处函数值均为零,建立不同零点之间的关系,把多元问题转化为一元问题,再使用一元函数的方法进行研究.已知函数f(x)=a e-x+ln x-1(a∈R).(1)当a≤e时,讨论函数f(x)的单调性;(2)若函数f(x)恰有两个极值点x1,x2(x1<x2),且x1+x2≤2ln3,求x2x1的最大值.解(1)函数的定义域为(0,+∞),f ′(x )=-a e -x+1x =e x -ax x e x ,∵a ≤e ,∴e x -ax ≥e x -e x .设g (x )=e x -e x ,则g ′(x )=e x -e ,当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增,∴g (x )≥g (1)=0,∴f ′(x )≥0,f (x )在(0,+∞)上单调递增.∴当a ≤e 时,函数f (x )在(0,+∞)上单调递增.(2)依题意,f ′(x 1)=f ′(x 2)=0x 1=ax 1,x 2=ax 2,两式相除得,e x 2-x 1=x 2x 1,设x 2x 1=t ,则t >1,x 2=tx 1,e (t -1)x 1=t ,∴x 1=ln t t -1,x 2=t ln t t -1,∴x 1+x 2=(t +1)ln tt -1.设h (t )=(t +1)ln t t -1(t >1),则h ′(t )=t -1t -2ln t (t -1)2,设φ(t )=t -1t-2ln t (t >1),则φ′(t )=1+1t 2-2t =(t -1)2t 2>0,∴φ(t )在(1,+∞)上单调递增,则φ(t )>1-11-2ln 1=0,∴h ′(t )>0,则h (t )在(1,+∞)上单调递增,又x 1+x 2≤2ln 3,即h (t )≤2ln 3,又h (3)=2ln 3,∴t ∈(1,3],即x 2x 1的最大值为3.课时作业一、单项选择题1.(2023·全国乙卷)函数f (x )=x 3+ax +2存在3个零点,则a 的取值范围是()A .(-∞,-2)B .(-∞,-3)C .(-4,-1)D .(-3,0)答案B解析f (x )=x 3+ax +2,则f ′(x )=3x 2+a ,若f (x )存在3个零点,则f (x )存在极大值和极小值,则a <0.令f ′(x )=3x 2+a =0,解得x =--a3或x =-a 3,且当x ∈∞∪时,f ′(x )>0,当x ∈--a 3,f ′(x )<0,故f (x )的极大值为f,若f (x )存在3个零点,则,即a -a3+2>0,a -a3+2<0,解得a <-3.故选B.2.(2023·济宁二模)已知函数f (x ),x ≤0,ln x ,x >0,若函数g (x )=f (x )-f (-x )有5个零点,则实数a 的取值范围是()A .(-e ,0)-1e ,C .(-∞,-e)∞答案C解析y =f (-x )与y =f (x )的图象关于y 轴对称,且f (0)=0,要想g (x )=f (x )-f (-x )有5个零点,则当x >0时,-x =a ln x 要有2个根,结合对称性可知,x<0时也有2个零点,故满足有5个零点.当x =1时,-1=0,不符合题意;当x ≠1时,a =-x ln x ,令h (x )=-xln x ,定义域为(0,1)∪(1,+∞),h ′(x )=1-ln x (ln x )2,令h ′(x )>0得0<x <1,1<x <e ,令h ′(x )<0得x >e ,故h (x )=-xln x在(0,1),(1,e)上单调递增,在(e ,+∞)上单调递减,且当x ∈(0,1)时,h (x )=-x ln x>0恒成立,h (x )=-xln x在x =e 处取得极大值,其中h (e)=-e ,故a ∈(-∞,-e),此时直线y =a 与h (x )=-xln x的图象有两个交点.故选C.3.(2023·银川三模)已知函数f (x )=mx -ln x +m 在区间(e -1,e)上有唯一零点,则实数m 的取值范围为()A.-e e 2+1,e 2+1-1e +1,-ee +1,1,e 2+答案B解析函数f (x )=mx -ln x +m ,令f (x )=0,则ln x ,即m =x ln x x +1,令h (x )=x ln x x +1,则h ′(x )=x +1+ln x (x +1)2,令k (x )=x +1+ln x ,则k ′(x )=1+1x >0,所以函数y =k (x )在区间(e -1,e)上单调递增,故k (x )>k (e -1)=e -1>0,所以h ′(x )>0,故函数y =h (x )在区间(e -1,e)上单调递增,故h (e -1)<h (x )<h (e),即-1e +1<h (x )<e e +1,所以-1e +1<m <ee +1,故实数m -1e +1,故选B.4.(2023·邢台二模)已知函数f (x )=x -ln x +m (m ∈R ),若f (x )有两个零点x 1,x 2(x 1<x 2),则下列关系式不正确的是()A .m <-1B .x 1+x 2≤2C .0<x 1<1D .e x 1-x 2=x 1x 2答案B解析f ′(x )=1-1x =x -1x,令f ′(x )=0,解得x =1,故函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,如图,故f (x )min =f (1)=1+m <0,即m <-1,并且0<x 1<1,故A ,C 正确;由于x 1,x 2为f (x )的零点,故有x 1-ln x 1+m =0①,x 2-ln x 2+m =0②,两式相减得,x 1-x 2=lnx 1x 2,即e x 1-x 2=x 1x 2,故D 正确;由①②可知,m =ln x 1-x 1=ln x 2-x 2,令g (x )=ln x -x ,则g (x 1)=g (x 2),g ′(x )=1x -1=1-x x ,所以在(0,1)上,g ′(x )>0,g (x )单调递增,在(1,+∞)上,g ′(x )<0,g (x )单调递减,令h (x )=g (x )-g (2-x )=ln x -x -ln (2-x )+2-x =ln x -ln (2-x )-2x +2,则h ′(x )=1x+12-x -2=2x 2-4x +2x (2-x )=2(x -1)2x (2-x ),所以当0<x <1时,h ′(x )>0,所以h (x )在(0,1)上单调递增,所以h (x )<h (1)=0,所以g (x 1)<g (2-x 1),又因为g (x )在(1,+∞)上单调递减,且g (x 2)=g (x 1),所以x 2>2-x 1,即x 1+x 2>2,故B 不正确.故选B.二、多项选择题5.(2022·新高考Ⅰ卷)已知函数f (x )=x 3-x +1,则()A .f (x )有两个极值点B .f (x )有三个零点C .点(0,1)是曲线y =f (x )的对称中心D .直线y =2x 是曲线y =f (x )的切线答案AC解析因为f (x )=x 3-x +1,所以f ′(x )=3x 2-1,令f ′(x )=3x 2-1=0,得x=±33.由f ′(x )=3x 2-1>0,得x <-33或x >33;由f ′(x )=3x 2-1<0,得-33<x <33.所以f (x )=x 3-x +1∞在-33,f (x )有两个极值点,故A 正确;因为f (x )的极小值-33+1=1-239>0,f (-2)=(-2)3-(-2)+1=-5<0,所以函数f (x )在R 上有且只有一个零点,故B 错误;因为函数g (x )=x 3-x 的图象向上平移一个单位长度得函数f (x )=x 3-x +1的图象,函数g (x )=x 3-x 的图象关于原点(0,0)中心对称,所以点(0,1)是曲线f (x )=x 3-x +1的对称中心,故C 正确;假设直线y =2x 是曲线y =f (x )的切线,切点为(x 0,y 0),则f ′(x 0)=3x 20-1=2,解得x 0=±1.若x 0=1,则切点坐标为(1,1),但点(1,1)不在直线y =2x 上,若x 0=-1,则切点坐标为(-1,1),但点(-1,1)不在直线y =2x 上,所以假设不成立,故D 错误.故选AC.6.(2023·秦皇岛二模)已知函数f (x )=ln x -ax 有两个零点x 1,x 2,且x 1<x 2,则下列说法正确的是()A .aB .y =f (x )在(0,e)上单调递增C .x 1+x 2>6D .若a x 2-x 1<2-aa答案ABD解析由f (x )=ln x -ax ,可得f ′(x )=1x-a (x >0),当a ≤0时,f ′(x )>0,∴f (x )在x ∈(0,+∞)上单调递增,与题意不符;当a >0时,令f ′(x )=1x -a =0,解得x =1a ,∴当x f ′(x )>0,f (x )单调递增,当x f ′(x )<0,f (x )单调递减,∴当x =1a 时,f (x )取得极大值,又函数f (x )=ln x -ax 有两个零点x 1,x 2(x 1<x 2),∴ln 1a -1>0,可得0<a <1e .综上可得,0<a <1e ,故A 正确;当a →1e时,x 1+x 2→2e<6,故C 错误;∵当x f (x )单调递增,a ∴(0,e)B 正确;∵f (x )a 1,x 1,2a ,x 2f (1)=-a <0=f (x 1),∴x 1>1.∵ln 2a -2<ln e 2-2=0=f (x 2),∴x 2<2a ,∴x 2-x 1<2a -1=2-a a ,故D 正确.故选ABD.7.(2024·福建省名校联盟模拟)机械制图中经常用到渐开线函数inv x =tan x -x ,其中x 的单位为弧度,则下列说法正确的是()A .x ·inv x 是偶函数B .inv x -π2-k π,π2+k 2k +1个零点(k ∈N )C .inv x -π2-k π,π2+k 4k +1个极值点(k ∈N )D .当-π2<x <0时,inv x <x -sin x答案ABD解析函数inv x =tan x -x ∈R|x ≠n π+π2,n ∈显然y =x 和inv x 均为奇函数,因此x ·inv x 是偶函数,A 正确;当x -π2,令h (x )=inv x ,h ′(x )=1cos 2x -1≥0,函数inv x -π2,x =0时,inv x =0,即函数inv x -π2,x -π2+k 1π,π2+k 1k 1∈Z 时,令x=t +k 1π,t -π2,则tan x -x =tan(t +k 1π)-(t +k 1π)=tan t -t -k 1π,令y =tan t -t ,t -π2,y =tan t -t -π2,R ,直线y =k 1π(k 1∈Z )与y =tan t -t ,t -π2唯一交点,因此函数inv x 在-π2+k 1π,π2+k 1k 1∈Z 上有唯一零点,所以inv x -π2-k π,π2+k2k +1个零点(k ∈N ),B 正确;由B 项知,函数inv x -π2+k 1π,π2+k 1k 1∈Z 上为增函数,因此inv x 不存在极值点,C 错误;令函数f (x )=inv x -x +sin x ,求导得f ′(x )=1cos 2x -2+cos x ,当-π2<x <0时,设u =cos x ∈(0,1),g (u )=1u2-2+u ,求导得g ′(u )=1-2u 3<0,函数g (u )在(0,1)上单调递减,g (u )>112-2+1=0,即f ′(x )>0,因此f (x )π2,f (x )<f (0)=0,即inv x <x -sin x ,D 正确.故选ABD.8.(2024·日照模拟)已知函数f (x )=x 2+x -1e x ,则()A .函数f (x )只有两个极值点B .若关于x 的方程f (x )=k 有且只有两个实根,则k 的取值范围为(-e ,0)C .方程f (f (x ))=-1共有4个实根D .若关于x 的不等式f (x )≥a (x +1)的解集内恰有两个正整数,则a 的取值范,12e答案ACD解析对f (x )求导得f ′(x )=-x 2-x -2e x =-(x +1)(x -2)ex,当x <-1或x >2时,f ′(x )<0,当-1<x <2时,f ′(x )>0,即f (x )在(-∞,-1),(2,+∞)上单调递减,在(-1,2)上单调递增,因此f (x )在x =-1处取得极小值f (-1)=-e ,在x =2处取得极大值f (2)=5e 2,A 正确;由上述分析可知,曲线y =f (x )及直线y=k 如图所示,由图可知,当-e<k≤0或k=5e2时,直线y=k与曲线y=f(x)有2个交点,所以若方程f(x)=k有且只有两个实根,则k的取值范围为(-e,0]∪5e2,B错误;由f(x)=0,得x2+x-1=0,解得x=-1±52,令f(x)=t且f(t)=-1,由图可知,f(t)=-1有两解分别为-1-52<t1<-1,t2=0,所以f(x)=t1或f(x)=t2,而1+5<2e,则-1-52>-e,则f(x)=t1有两解.又t2=0,由图可知f(x)=t2也有两解.综上,方程f(f(x))=-1共有4个实根,C正确;因为直线y=a(x+1)过定点(-1,0),且f(1)=1e ,f(2)=5e2,f(3)=11e3,记k1=f(1)-01-(-1)=12e,k2=f(2)-02-(-1)=53e2,k3=f(3)-03-(-1)=114e3,所以k3<a≤k1,D正确.故选ACD.三、填空题9.(2024·长沙模拟)已知函数f(x)=e x-2ax+a,若f(x)恰有两个零点,则实数a的取值范围是________.答案12e32,+∞解析函数f(x)=e x-2ax+a,定义域为R,显然x=12不是f(x)的零点,令f(x)=0,得a=e x2x-1,设g(x)=e x2x-1,则g′(x)=(2x-3)e x(2x-1)2,令g′(x)<0,解得x<32且x≠12,令g ′(x )>0,解得x >32,故g (x )∞递增.当x <12时,g (x )<0,当x >12时,g (x )>0,当x =32时,g (x )取得极小值=12e 32,作出函数g (x )的大致图象如图所示,结合图象可知,实数a 的取值范围是e 32,+10.(2023·福州三模)如果两个函数分别存在零点α,β,满足|α-β|<n ,则称两个函数互为“n 度零点函数”.若f (x )=ln (x -2)与g (x )=ax 2-ln x 互为“2度零点函数”,则实数a 的最大值为________.答案12e解析因为函数f (x )的零点为3,所以设函数g (x )的零点为x 0,则|x 0-3|<2,解得1<x 0<5.g (x 0)=ax 20-ln x 0=0,a =ln x 0x 20(1<x 0<5),令h (x )=ln xx 2(1<x <5),求导得h ′(x )=1-2ln xx3,令h ′(x )=0,得x =e ,所以当x ∈(1,e)时,h ′(x )>0,h (x )单调递增;当x ∈(e ,5)时,h ′(x )<0,h (x )单调递减,所以h (x )max =h (e)=12e .所以实数a 的最大值为12e.四、解答题11.(2023·广州模拟)已知函数f (x )=e x -1+e -x +1,g (x )=a (x 2-2x )(a <0).(1)求函数f (x )的单调区间;(2)讨论函数h (x )=f (x )-g (x )的零点个数.解(1)由f (x )=ex -1+e-x +1,可得f ′(x )=ex -1-e-x +1=e 2(x -1)-1ex -1,令f ′(x )=0,解得x =1,当x <1时,则x -1<0,可得f ′(x )<0,f (x )在(-∞,1)上单调递减;当x >1时,则x -1>0,可得f ′(x )>0,f (x )在(1,+∞)上单调递增.故函数f (x )的单调递减区间是(-∞,1),单调递增区间是(1,+∞).(2)由h(x)=0,得f(x)=g(x),因此函数h(x)的零点个数等价于函数f(x)与g(x)图象的交点个数.因为g(x)=a(x2-2x)(a<0),所以g(x)的单调递增区间是(-∞,1),单调递减区间是(1,+∞),所以当x=1时,g(x)取得最大值g(1)=-a.由(1)可知,当x=1时,f(x)取得最小值f(1)=2,当-a<2,即-2<a<0时,函数f(x)与g(x)的图象没有交点,即函数h(x)没有零点;当-a=2,即a=-2时,函数f(x)与g(x)的图象只有一个交点,即函数h(x)只有一个零点;当-a>2,即a<-2时,函数h(x)有两个零点,理由如下:因为h(x)=f(x)-g(x)=e x-1+e-x+1-a(x2-2x),所以h(1)=2+a<0,h(2)=e+e-1>0,由函数零点存在定理,知h(x)在(1,2)内有零点.又f(x)在(1,+∞)上单调递增,g(x)在(1,+∞)上单调递减,所以h(x)=f(x)-g(x)在(1,+∞)上单调递增,所以h(x)=f(x)-g(x)在(1,+∞)上只有一个零点.又因为f(2-x)=e(2-x)-1+e-(2-x)+1=e1-x+e x-1=f(x),所以f(x)的图象关于直线x=1对称,因为g(x)的图象关于直线x=1对称,所以f(x)与g(x)的图象都关于直线x=1对称,所以h(x)=f(x)-g(x)在(-∞,1)上也只有一个零点.所以当a<-2时,函数h(x)=f(x)-g(x)有两个零点.ax2-ln x.12.(2024·镇江模拟)已知函数f(x)=12(1)若a=1,求f(x)的极值;(2)若方程f(x)=1在区间[1,2]上有解,求实数a的取值范围.解(1)当a=1时,f(x)=12x2-ln x,f′(x)=x2-1x,令f′(x)=0,得x=1,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极小值为f(1)=12,无极大值.(2)因为f′(x)=ax-1x =ax2-1x,①若a≥1,当x∈[1,2]时,f′(x)≥0恒成立,所以f(x)在[1,2]上单调递增,要使方程f(x)=1在[1,2]1)≤1,2)≥1,1,-ln2≥1,得1+ln22≤a≤2,因为1+ln22<1,所以1≤a≤2.②若a≤14,当x∈[1,2]时,f′(x)≤0恒成立,所以f(x)在[1,2]上单调递减,此时f(x)≤f(1)=a2≤18,不符合题意.③若14<a<1,当1≤x<1a时,f′(x)<0,当1a<x≤2时,f′(x)>0,所以f(x)在12上单调递增,此时f(1)=a2<12,f(1)<12,要使方程f(x)=1在[1,2]上有解,则需f(2)=2a-ln2≥1,解得a≥1+ln22,所以1+ln22≤a<1.综上可知,实数a的取值范围为1+ln22,2.13.(2021·全国甲卷)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=x22x(x>0),f′(x)=x(2-x ln2)2x(x>0).令f′(x)>0,得0<x<2ln2;令f′(x)<0,得x>2ln2,故函数f(x)(2)要使曲线y=f(x)与直线y=1有且仅有两个交点,即方程x aa x =1(x>0)有两个不同的解,故方程ln xx=ln aa有两个不同的解.设g(x)=ln xx(x>0),则g′(x)=1-ln xx2(x>0).令g′(x)=1-ln xx2=0,解得x=e.令g′(x)>0,则0<x<e,此时函数g(x)单调递增.令g′(x)<0,则x>e,此时函数g(x)单调递减.故g(x)max=g(e)=1e,且当x>e时,g(x)又g(1)=0,故要使方程ln xx =ln aa有两个不同的解,则0<ln aa<1e.即0<g(a)<g(e),所以a∈(1,e)∪(e,+∞).综上,a的取值范围为(1,e)∪(e,+∞).14.(2023·济南模拟)已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2(x1<x2),证明:x41x2>e3(e=2.71828…为自然对数的底数).解(1)g(x)=f(x)x =ln x-ax-1,g′(x)=1x-a,①当a≤0时,g′(x)>0,g(x)在(0,+∞)上单调递增;②当a>0时,令g′(x)=0,解得x=1a,当x g′(x)>0,g(x)单调递增,当x g′(x)<0,g(x)单调递减.综上,当a≤0时,g(x)在(0,+∞)上单调递增;当a>0时,g(x)(2)证明:由题意知,f′(x)=ln x-2ax,x1,x2是f′(x)=0的两根,即ln x1-2ax1=0,ln x2-2ax2=0,解得2a=ln x1-ln x2x1-x2,(*)要证x41x2>e3,即证4ln x1+ln x2>3,即证4·2ax1+2ax2>3,把(*)式代入得ln x1-ln x2x1-x2(4x1+x2)>3,所以应证ln x1x2<3(x1-x2)4x1+x2=4·x1x2+1令t=x1x2,0<t<1,即证h(t)=ln t-3(t-1)4t+1<0(0<t<1)成立,而h′(t)=1t -15(4t+1)2=16t2-7t+1t(4t+1)2>0,所以h(t)在(0,1)上单调递增,h(t)<ln1-3×(1-1)4×1+1=0,不等式得证.。

第09讲 利用导数研究函数的零点问题及方程的根(学生版) 备战2025年高考数学一轮复习学案(新高考

第09讲 利用导数研究函数的零点问题及方程的根(学生版) 备战2025年高考数学一轮复习学案(新高考

第09讲利用导数研究函数的零点问题及方程的根(6类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较大,分值为15-17分【备考策略】1能用导数证明函数的单调性2能结合零点的定义及零点存在性定理解决零点问题3能结合方程的根的定义用导数解决方程的根的问题【命题预测】导数的综合应用是高考考查的重点内容,也是高考压轴题之一近几年高考命题的趋势,是稳中求变、变中求新、新中求活,纵观近几年的高考题,导数的综合应用题考查多个核心素养以及综合应用能力,有一定的难度,一般放在解答题的最后位置,对数学抽象、数学运算、逻辑推理等多个数学学科的核心素养都有较深入的考查,需综合复习利用导数研究函数零点的方法(1)通过最值(极值)判断零点个数的方法借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.利用导数研究函数方程的根的方法(1)通过最值(极值)判断零点个数(方程的根)的方法借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数(方程的根)或者通过零点个数(方程的根)求参数范围.(2)数形结合法求解零点(方程的根)对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点(方程的根)①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数(方程的根)寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.1.(2024·湖北武汉·模拟预测)已知函数()()21ln R 2f x x ax a =-Î.(1)当1a =时,求()f x 的最大值;(2)讨论函数()f x 在区间21,e éùëû上零点的个数.2.(2024·湖南长沙·三模)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()h x 零点的个数.3.(2024·河北保定·二模)已知函数()sin cos f x a x x x =+.(1)若0a =,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()π,πx Î-,试讨论()f x 的零点个数.1.(2024·山东·模拟预测)已知函数()1e 4xf x =-(1)求曲线()y f x =在点()()1,1f 处的切线l 在y 轴上的截距;(2)探究()f x 的零点个数.2.(2024·浙江·模拟预测)已知函数()()e sin 1xf x a x x =+--.(1)当12a =时,求()f x 的单调区间;(2)当1a =时,判断()f x 的零点个数.3.(2024·河南·模拟预测)已知函数()()20,e x ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.1.(2022·全国·高考真题)已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.2.(2022·全国·高考真题)已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 的取值范围.3.(2024·湖南邵阳·三模)已知函数()32113f x x x =-++.(1)求函数()f x 的单调递增区间;(2)若函数()()()g x f x k k =-ÎR 有且仅有三个零点,求k 的取值范围.4.(2024·广东茂名·一模)设函数()e sin xf x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.1.(2024·广东汕头·三模)已知函数2)()(e x f x x ax =-.(1)若曲线()y f x =在=1x -处的切线与y 轴垂直,求()y f x =的极值.(2)若()f x 在(0,)+¥只有一个零点,求a .2.(2024·福建泉州·模拟预测)已知函数()32,f x x ax a =-+ÎR .(1)若2x =-是函数()f x 的极值点,求a 的值,并求其单调区间;(2)若函数()f x 在1,33éùêúëû上仅有2个零点,求a 的取值范围.3.(2024·全国·模拟预测)已知函数()ln f x x kx =+的单调递增区间为()0,1.(1)求函数()f x 的图象在点()()e,e f 处的切线方程;(2)若函数()()e xaxg x f x =-有两个零点,求实数a 的取值范围.4.(2024·安徽·三模)已知函数()e e (1),0x x f x a a x a -=--+>.(1)求证:()f x 至多只有一个零点;(2)当01a <<时,12,x x 分别为()f x 的极大值点和极小值点,若()()120f x kf x +>成立,求实数k 的取值范围.1.(2024·浙江温州·一模)已知()11e xf x -=(0x >).(1)求导函数()f x ¢的最值;(2)试讨论关于x 的方程()f x kx =(0k >)的根的个数,并说明理由.1.(2024·山西·模拟预测)已知函数()sin ln(1)f x x x ax =++-,且()y f x =与x 轴相切于坐标原点.(1)求实数a 的值及()f x 的最大值;(2)证明:当π,π6x éùÎêúëû时,1()22f x x +>;(3)判断关于x 的方程()0f x x +=实数根的个数,并证明.2.(2024·河南信阳·一模)已知函数()ln(1)3mf x x x =++.(1)若3m =-,求证:()0f x £;(2)讨论关于x 的方程2π()sin 03π2x f x +=在(1,2)-上的根的情况.1.(2024·贵州贵阳·二模)已知函数1()ln ,2f x ax x a x=+ÎR .(1)当1a =时.求()f x 在(1,(1))f 处的切线方程;(2)若方程31()2f x x x=+存两个不等的实数根,求a 的取值范围.2.(2024·山东烟台·三模)已知函数()()e xf x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.1.(2023·广东梅州·三模)已知函数()2e xf x ax =-,a ÎR ,()f x ¢为函数()f x 的导函数.(1)讨论函数()f x ¢的单调性;(2)若方程()()22f x f x ax ¢+=-在()0,1上有实根,求a 的取值范围.2.(2024·全国·模拟预测)已知函数e ()xf x ax b =+的图象在点(0,(0))f 处的切线方程为210x y ++=.(1)求,a b 的值;(2)若()21mf x x =-有两个不同的实数根,求实数m 的取值范围.1.(2021·全国·高考真题)已知0a >且1a ¹,函数()(0)ax x f x x a =>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.2.(2022·全国·高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.1.(2024·江苏·模拟预测)已知函数()2ln 3f x a x x =++在1x =处的切线经过原点.(1)判断函数()f x 的单调性;(2)求证:函数()f x 的图象与直线5y x =有且只有一个交点.2.(2024·陕西西安·二模)设函数21()(1)e 2x f x ax x =+-.(1)当1a £时,讨论()f x 的单调性;(2)若[2,2]x Î-时,函数()f x 的图像与e x y =的图像仅只有一个公共点,求a 的取值范围.3.(2024·云南昆明·模拟预测)已知函数()log a axf x x =.(1)当2a =时,求()f x 的单调区间;(2)证明:若曲线()y f x =与直线21y a =有且仅有两个交点,求a 的取值范围.1.(2023·全国·高考真题)函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A .(),2-¥-B .(),3-¥-C .()4,1--D .()3,0-2.(2024·全国·高考真题)(多选)设函数32()231f x x ax =-+,则( )A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心3.(2022·全国·高考真题)(多选)已知函数3()1f x x x =-+,则( )A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线4.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,()f x 恰 有2个零点;②存在负数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有3个零点;④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是.1.(2024·四川绵阳·模拟预测)函数()e x f kx b x =--恰好有一零点0x ,且0k b >>,则0x 的取值范围是( )A .(,0)-¥B .(0,1)C .(,1)-¥D .(1,)+¥2.(2024·陕西铜川·模拟预测)已知0w >,若函数()ln ,0,3πsin ,π03x x x f x x x w ì->ïï=íæöï+-££ç÷ïèøî有4个零点,则w 的取值范围是( )A .47,33æùçúèûB .47,33éö÷êëøC .710,33æùçúèûD .710,33éö÷êëø3.(2024·全国·模拟预测)(多选)已知函数()31f x x ax =-+,a ÎR ,则( )A .若()f x 有极值点,则0a £B .当1a =时,()f x 有一个零点C .()()2f x f x =--D .当1a =时,曲线()y f x =上斜率为2的切线是直线21y x =-4.(2024·安徽·模拟预测)若关于x 的方程()eln e ln e xxm m x x +=+-有解,则实数m 的最大值为 .5.(2024·天津北辰·三模)若函数22()233(3)f x a x a x x =----有四个零点,则实数a 的取值范围为 .一、单选题1.(2023·陕西西安·模拟预测)方程e 1x a x -=+有两个不等的实数解,则a 的取值范围为( )A.æöç÷ç÷èøB .211,e æö--ç÷èøC .21,0e æö-ç÷èøD .1,0e æö-ç÷èø2.(2024·四川凉山·二模)若()sin cos 1f x x x x =+-,π,π2x éùÎ-êúëû,则函数()f x 的零点个数为( )A .0B .1C .2D .3二、多选题3.(2024·四川成都·模拟预测)已知函数3()1f x x x =++,则( )A .()f x 有两个极值点B .()f x有一个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线4.(2024·辽宁·模拟预测)已知函数()e xxf x =-,则下列说法正确的是( )A .()f x 的极值点为11,e æö-ç÷èøB .()f x 的极值点为1C .直线2214e e y x =-是曲线()y f x =的一条切线D .()f x 有两个零点三、填空题5.(2024·全国·模拟预测)方程()1ln 0x x k -++=有两个不相等的实数根,则实数k 的取值范围为 .6.(2024·山西·三模)已知函数12,0()e ,0x x x f x x x ì+>ï=íï£î,若函数()()()g x f x x m m =-+ÎR 恰有一个零点,则m 的取值范围是.7.(23-24高三上·四川内江·期末)已知函数()324f x x x t =+-,若函数()f x 的图象与曲线25y x =有三个交点,则t 的取值范围是 .四、解答题8.(2023·广西河池·模拟预测)已知函数()()22ln f x x x ax a =-+ÎR (1)当1a =时,求函数()f x 在()()1,1f 处的切线方程;(2)若函数()f x 与直线y ax a =-在1,e e éùêúëû上有两个不同的交点,求实数a 的取值范围.9.(23-24高三上·北京大兴·阶段练习)已知()ln f x x =,(1)求()f x x的极值;(2)若函数()y f x ax =-存在两个零点,求a 的取值范围.10.(2024·湖南邵阳·三模)已知函数()32113f x x x =-++.(1)求函数()f x 的单调递增区间;(2)若函数()()()g x f x k k =-ÎR 有且仅有三个零点,求k 的取值范围.一、单选题1.(2024·全国·模拟预测)已知过点(2,0)-的直线与函数2()e 2x f x x +=+的图象有三个交点,则该直线的斜率的取值范围为( )A .(,1)-¥-B .(,0)-¥C .(1,0)-D .(1,)-+¥2.(2024·贵州贵阳·一模)已知函数()e ,0e ,0x a x f x x x -ì+>ï=íï<î,若方程()e 0f x x +=存在三个不相等的实根,则实数a 的取值范围是( )A .(),e -¥B .(),e -¥-C .(),2e -¥-D .(),2e -¥二、填空题3.(2024·重庆·模拟预测)若函数e ()e x x f x a =+的图象与函数e ()e xxg x x =+的图象有三个不同的公共点,则实数a 的取值范围为.4.(2024·湖北黄冈·二模)已知函数()()e 1e kxf x k =--与函数()()1e ln 1xg x x--=的图象有且仅有两个不同的交点,则实数k 的取值范围为 .5.(2024·福建泉州·一模)已知函数()(1)e e x x f x x a =-+-有且只有两个零点,则a 的范围.三、解答题6.(2024·广东深圳·模拟预测)已知()sin cos f x x x a x =-在π2x =时取得极大值.(1)讨论()f x 在[]π,π-上的单调性;(2)令()24sin 4cos 4h x x x x x =--+,试判断()h x 在R 上零点的个数.7.(2024·全国·模拟预测)已知函数()2e =-+x f x x a ,x ÎR ,()()2x f x x x j =+-.(1)若()x j 的最小值为0,求a 的值;(2)当0.25a <时,证明:方程()2f x x =在()0,¥+上有解.8.(2024·广东梅州·二模)已知函数()e xf x =,()21g x x =+,()sin 1h x a x =+(0a >).(1)证明:当()0,x Î+¥时,()()f x g x >;(2)讨论函数()()()F x f x h x =-在()0,π上的零点个数.1.2.3.4.9.(2024·广西南宁·二模)已知函数()ln f x x ax =-(1)若()f x 在定义域内单调递增,求a 的取值范围,(2)若函数()()1g x f x x =-+恰有两个零点,求a 的取值范围,10.(2024·广西贺州·一模)已知函数()ln ,2a f x x x a x=++ÎR .(1)若12a >-,讨论()f x 的单调性;(2)若关于x 的方程2()ef x =有且只有一个解,求a 的取值范围.1.(2022·浙江·高考真题)设函数e ()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ÎR ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a æö<-<-ç÷èø;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea a x x a --+<+<-.(注:e 2.71828=L 是自然对数的底数)2.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+.(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点①21,222e a b a <£>;②10,22a b a <<£.3.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+Î(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b e x x e b>+.(注: 2.71828e =×××是自然对数的底数)4.(2020·全国·高考真题)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.5.(2020·全国·高考真题)已知函数32()f x x kx k =-+.(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.6.(2020·全国·高考真题)已知函数()(2)x f x e a x =-+.(1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.7.(2019·全国·高考真题)已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.8.(2019·全国·高考真题)已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.9.(2019·全国·高考真题)已知函数()sin ln(1)f x x x =-+,()f x ¢为()f x 的导数.证明:(1)()f x ¢在区间(1,2p-存在唯一极大值点;(2)()f x 有且仅有2个零点.10.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+Î在()0,+¥内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为 .。

函数与导数之零点问题(解析版)

函数与导数之零点问题(解析版)

函数与导数之零点问题一.考情分析零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点.二.经验分享1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法:(1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点.2.导数研究函数图象交点及零点问题利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;③研究函数)(x h 的单调性和极值(必要时要研究函数图象端点的极限情况); ④画出函数)(x h 的草图,观察与x 轴的交点情况,列不等式;⑤解不等式得解.探讨函数)(x f y =的零点个数,往往从函数的单调性和极值入手解决问题,结合零点存在性定理求解.三、题型分析(一)确定函数的零点与方程根的个数问题例1.【四川省成都七中2020届高三上半期考试,理科数学,12】函数)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,则方程0log )(2=-x x f 的根个数为( )A.3B.4C.5D.6 【答案】C【解析】)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,根据性质我们可以画出函数图像,方程0log )(2=-x x f 的根个数转化成⎩⎨⎧==x y x f y 2log )(的交点个数,有图像可以看出,一共有5个交点,ABCDE.其中我x=8处是要仔细看图,是易错点。

《方程的根与函数的零点》(第二课时)——零点存在性定理教学设计

《方程的根与函数的零点》(第二课时)——零点存在性定理教学设计

【课堂聚焦·教学设计】《方程的根与函数的零点》(第二课时)——零点存在性定理教学设计广西南宁市第四中学 敬 燕一、教材分析本节课内容是人教版《普通高中课程标准实验教科书数学1必修A版》第三章《函数的应用》第一节《函数与方程》第一小节的第二课时。

函数是中学数学的核心概念,函数与其他知识具有广泛的联系,而函数的零点就是其中的一个联结点,它从不同的角度,将数与形、函数与方程有机地联系在一起。

本节课是在学生系统地掌握了函数的概念及性质,掌握基本初等函数、方程的根与函数零点之间的关系后,学习函数在某个区间上存在零点的判定方法并结合函数的图像和性质来判断方程的根的存在性,为后续学习“用二分法求方程的近似解”打基础。

因此,本节课内容具有承前启后的作用,地位重要。

二、学情分析这个阶段的普通高中学生,思维仍属于经验性的逻辑思维,很大程度上仍需依赖具体形象的经验材料来理解抽象的逻辑关系。

通过初中数学的学习,学生已经对一次函数、二次函数的图像与性质有了深刻了解,在第二章《基本初等函数(Ⅰ)》中又学习了指数函数、对数函数及幂函数的基本性质,掌握了函数图像的一般画法,具备了一定的看图识图能力,这为本节课利用函数图像判断函数在某个区间上存在零点提供了一定的知识基础。

对于函数零点的判断,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。

三、设计理念本节课采用探究式教学,按照“问题驱动—激发兴趣—创设情境—探索新知—实践应用—总结反思”的基本模式展开教学,其中渗透数形结合、由特殊到一般等数学思想方法。

探究式教学倡导学生的主动参与,亲身经历知识的产生、发展、理解与应用的过程。

本节课的设计笔者以学生为主,从学生熟悉的天气变化入手,让学生轻松掌握用图像法求零点存在的条件。

其次,教学过程中,教师鼓励学生多动手画图。

通过画图,不仅锻炼了学生动手、动脑的能力,教师还可以了解学生对知识掌握的情况。

四、教学目标1.知识与技能(1)体验零点存在性定理的形成过程,理解零点存在性定理。

利用导数研究函数零点问题教案(2019年13日)

利用导数研究函数零点问题教案(2019年13日)

利用导数研究函数零点问题武胜中学 李开勇学习内容分析:导数是微积分的核心概念之一,它是研究函数的单调性、最值等问题最一般、最有效的工具,对我们描绘函数的图像带来极大的方便,高考对导数的考查重在导数的应用,如求函数的单调区间、极值最值、解决实际问题以及不等式的结合。

而利用导数对函数性质的研究有利于我们解决函数的零点问题。

近几年高考也出现了函数零点问题或者可转化为函数零点问题的题目,《考点一》利用最值(极值)判断零点个数已知函数f (x )=-12ax 2+(1+a )x -ln x (a ∈R). 当a =0时,设函数g (x )=xf (x )-k (x +2)+2.若函数g (x )在区间[12,+∞)上有两个零点,求实数k 的取值范围.【解】)g (x )=x 2-x ln x -k (x +2)+2在x ∈[12,+∞)上有两个零点,即关于x 的方程k =x 2-x ln x +2x +2在x ∈[12,+∞)上有两个不相等的实数根. 令函数h (x )=x 2-x ln x +2x +2,x ∈[12,+∞),则h ′(x )=x 2+3x -2ln x -4(x +2)2, 令函数p (x )=x 2+3x -2ln x -4,x ∈[12,+∞). 则p ′(x )=(2x -1)(x +2)x 在[12,+∞)上有p ′(x )≥0, 故p (x )在[12,+∞)上单调递增. 因为p (1)=0,所以当x ∈[12,1)时,有p (x )<0,即h ′(x )<0,所以h (x )单调递减; 当x ∈(1,+∞)时,有p (x )>0,即h ′(x )>0,所以h (x )单调递增.因为h ⎝ ⎛⎭⎪⎫12=910+ln 25,h (1)=1,所以k 的取值范围为⎝ ⎛⎦⎥⎤1,910+ln 25.利用函数的极值(最值)判断函数零点个数,主要是借助导数研究函数的单调性、极值后,通过极值的正负、函数单调性判断函数图象走势,从而判断零点个数或者利用零点个数求参数范围.《考点二》数形结合法研究零点问题[典例引领]已知f (x )=ax 2(a ∈R),g (x )=2ln x .(1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.【解】 (1)F (x )=ax 2-2ln x ,其定义域为(0,+∞),所以F ′(x )=2ax -2x =2(ax 2-1)x(x >0). ①当a >0时,由ax 2-1>0,得x >1a, 由ax 2-1<0,得0<x <1a , 故当a >0时,F (x )在区间⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在区间⎝⎛⎭⎪⎫0,1a 上单调递减. ②当a ≤0时,F ′(x )<0(x >0)恒成立.故当a ≤0时,F (x )在(0,+∞)上单调递减.(2)原式等价于方程a =2ln x x 2在区间[2,e]上有两个不等解. 令φ(x )=2ln x x 2,由φ′(x )=2x (1-2ln x )x 4易知,φ(x )在(2,e)上为增函数,在(e ,e)上为减函数, 则φ(x )max =φ(e)=1e ,而φ(e)=2e 2,φ(2)=ln 22. 由φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=ln e 4-ln 2e 22e 2<ln 81-ln 272e 2<0,所以φ(e)<φ(2).所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e. 即f (x )=g (x )在[2,e]上有两个不相等的解时a 的取值范围为[ln 22,1e). 《考点三》构造函数法研究零点问题[典例引领]设函数1()(01)ln f x x x x x=>≠且 (1) 求函数()f x 的单调区间;(2) 试确定a 的取值范围,讨论12=a x x 解的个数。

第10讲利用导数研究函数的零点问题 高考数学

第10讲利用导数研究函数的零点问题 高考数学

=




=



=

,构造函数

=

,求导得

, >
在 −∞, 上单调递减,在 , 上单调递增, , +∞ 上单调递减,
且 = ,
试卷讲评课件
=


> 及


→ +∞ 时 → ,
的图像如图,得到 =
当<或 = 时, 有一个零点;
当> 时, 有两个零点.
试卷讲评课件
练1
f x = 2ex − 5x 2 的零点的个数为(
A.0
B.1
)
D.3

C.2
【分析】先把零点个数转化为函数交点个数,再构造函数 =

,结

合导函数求解单调性及极值最后应用数形结合求解.
【详解】由
π
4
2e
a =______

【分析】常数分离得

=


= 有唯一的解,求出 的单调性与


极值,由 有且仅有一个零点可得 = .
试卷讲评课件
【详解】当 = 时, = ≥ 恒成立, 在[, ]上无零点.
1
, +∞
e
【分析】由 ′
2
3 1
,
2
2e e
3
0, 2
2e

,令


1
∪ , +∞
e

=
<<


,则直
上的图象有两个交点,利用导数分析函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数研究方程的根和函数的零点 总结:方程()0=x f 的根()的零点函数x f y =⇔
()轴的交点的恒坐标的图像与函数x x f y =⇔
方程()()x g x f =的根()()的根方程0=-⇔x g x f ()()()的零点x g x f x h -=⇔ ()()。

的图象的交点的横坐标与函数x f y x g y ==⇔
1.设a 为实数,函数()a x x x x f +--=23,当a 什么范围内取值时,曲线()x f y =与x
轴仅有一个交点。

2、已知函数f (x )=-x 2
+8x,g (x )=6ln x+m
(Ⅰ)求f (x )在区间[t ,t +1]上的最大值h (t );
(Ⅱ)是否存在实数m ,使得y =f (x )的图象与y =g (x )的图象有且只有三个不同的交点?若存在,求出m 的取值范围;,若不存在,说明理由。

解:(I )22()8(4)16.f x x x x =-+=--+ 当14,t +<即3t <时,()f x 在[],1t t +上单调递增,22()(1)(1)8(1)67;h t f t t t t t =+=-+++=-++
当41,t t ≤≤+即34t ≤≤时,()(4)16;h t f ==当4t >时,()f x 在[],1t t +上单调递减,
2()()8.h t f t t t ==-+综上,2267,3,()16,34,8,4t t t h t t t t t ⎧-++<⎪=≤≤⎨⎪-+>⎩
(II )函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数 ()()()x g x f x φ=-的图象与x 轴的正半轴有且只有三个不同的交点。

22()86ln ,
62862(1)(3)'()28(0),x x x x m x x x x x x x x x x
φφ=-++-+--∴=-+==>Q 当(0,1)x ∈时,'()0,()x x φφ>是增函数;当(0,3)x ∈时,'()0,()x x φφ<是减函数;
当(3,)x ∈+∞时,'()0,()x x φφ>是增函数;当1,x =或3x =时,'()0.x φ= ()(1)7,()(3)6ln 315.x m x m φφφφ∴==-==+-最大值最小值
Q 当x 充分接近0时,()0,x φ<当x 充分大时,()0.x φ>
∴要使()x φ的图象与x 轴正半轴有三个不同的交点,必须且只须 ()70,()6ln 3150,x m x m φφ=->⎧⎪⎨=+-<⎪⎩
最大值最小值 即7156ln3.m <<-所以存在实数m ,使得函数()y f x =与()y g x =的图象有且只有三个不同的交点,m 的取值范围为(7,156ln 3).-
3、已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4-上的最大值是12。

(I )求()f x 的解析式;
(II )是否存在自然数,m 使得方程37()0f x x
+=在区间(,1)m m +内有且只有两个不等的实数根?若存在,求出m 的取值范围;若不存在,说明理由。

恒成立问题:
4:已知函数()()0ln 2
>+-=a a x a x x f 在()∞+,0满足()0≥x f 恒成立,求a 的取值范围。

5:已知函数()(),ln 2,22x x x g x
a x x f +-=+=其中0>a ,若对于(),,0,21+∞∈∀x x
都有()()21x g x f ≥恒成立,求a 的取值范围。

课后练习
2、已知函数3
()31,0f x x ax a =--≠ ()I 求()f x 的单调区间;
()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交点,求m
的取值范围。

.解析:(1)'22()333(),f x x a x a =-=-
当0a <时,对x R ∈,有'
()0,f x > 当0a <时,()f x 的单调增区间为(,)-∞+∞
当0a >时,由'()0f x >解得x <x >
由'()0f x <解得x <<
当0a >时,()f x 的单调增区间为(,)-∞+∞;()f x 的单调减区间为
(。

(2)因为()f x 在1x =-处取得极大值,
所以'2(1)3(1)30, 1.f a a -=⨯--=∴=
所以3'2()31,()33,f x x x f x x =--=-
由'()0f x =解得121,1x x =-=。

由(1)中()f x 的单调性可知,()f x 在1x =-处取得极大值(1)1f -=, 在1x =处取得极小值(1)3f =-。

因为直线y m =与函数()y f x =的图象有三个不同的交点,又(3)193f -=-<-,(3)171f =>,
结合()f x 的单调性可知,m 的取值范围是(3,1)-。

3、设函数329()62
f x x x x a =-+-. (1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值;
(2)若方程()0f x =有且仅有一个实根,求a 的取值范围.
解:(1) '2
()3963(1)(2)f x x x x x =-+=--,
因为(,)x ∈-∞+∞,'()f x m ≥, 即 239(6)0x x m -+-≥恒成立, 所以 8112(6)0m ∆=--≤, 得34m ≤-
,即m 的最大值为34- (2) 因为 当1x <时, '()0f x >;当12x <<时, '()0f x <;当2x >时, '()0f x >;
所以 当1x =时,()f x 取极大值 5(1)2
f a =-; 当2x =时,()f x 取极小值 (2)2f a =-;
故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或52
a >
. 4、方程076223=+-x x ,在()2,1内根的个数。

相关文档
最新文档