模块化多电平换流器(MMC)原理简介共39页

合集下载

模块化多电平电压源换流器的数学模型

模块化多电平电压源换流器的数学模型

模块化多电平电压源换流器的数学模型
随着电力系统的发展和电力需求的增加,高电压直流(HVDC)传输系统被广泛应用,以解决传统交流输电系统存在的一些问题。

在HVDC系统中,多电平电压源换流器(MMC)是一种非常有效的换流器拓扑结构,能够实现高效能量转换和电压调节。

为了实现对MMC的控制和优化,需要建立一个准确的数学模型来描述其动态特性。

MMC的数学模型通常基于电路等效原理和电压源等模型。

以下是一个简化的MMC数学模型。

首先,MMC的主要组成部分是直流电压源和一组电容和电感组成的分别与直流电压源并联和串联的二极管和开关单元。

根据电路等效原理,可以将MMC模型化简为一个等效的电路网络。

其次,MMC的数学模型需要考虑到其动态特性,包括电压和电流的响应速度、能量损耗和功率因素等。

这需要考虑到电容和电感元件的动态特性以及开关单元的工作方式。

通过适当的参数选择和数学建模,可以准确地描述MMC的动态响应。

最后,MMC的数学模型还需要考虑到控制策略和控制算法。

MMC的控制策略包括电压控制、电流控制和功率控制等,其中电压控制是MMC的关键功能之一。

通过设计合适的控制算法,可以实现MMC的
稳定工作和有效能量转换。

总之,模块化多电平电压源换流器的数学模型是描述其动态特性和控制策略的基础。

通过准确的数学模型,可以实现对MMC系统的控制和优化,提高电力系统的稳定性和效率。

模块化多电平换流器(MMC)原理简介

模块化多电平换流器(MMC)原理简介

3、用途介绍
柔性直流输电
110KV侧短路容1000MVA 等效电感 0.0385
e1r Idc e2r DC1 e1l e2l
0.0385 [H]
R=0
3 [MVAR]
10 [MW]
A端电网
B端电网
R=0
#1
#2
e1l
rectify
inverter
e1r
0.0385 [H] #1 #2
3、用途介绍
5、MMC功率模块均压控制
每个MMC换流器的功率模块电压的分别进行均衡控制,6个桥臂相互之间没有影 响。 在一个控制周期内,则根据桥臂电流的方向确定此桥臂功率模块的投入/切除状态: (a)若桥臂电流为投入的模块电容充电,则功率模块按照电容电压从低到高的 顺序排列,最低的N个模块在该控制周期内一直处于投入状态。 (b)若桥臂电流为投入的模块电容放电,则功率模块按照电容电压从高到低的 顺序排列,最高的N个模块在该控制周期内一直处于投入状态。
据全国大部分的市场份额。
32
2、鼠笼型异步电机 在不影响“能起动”的前提下,尽可能减小起动电流, 以减小起动电流对电网的冲击 I. 降压起动(起动电流减小,起动转矩随电压平方减小) 1 自耦变压器降压起动
2 Y 转换起动
3 定子回路串电抗器起动 4 用晶闸管构成的交流调压器降压起动
33
2、鼠笼型异步电机
模块 2CL2 模块 2CL20
换流器1
换流器2
MMC主回路拓扑结构
技术特点
1)所需开关器件耐压低,对器件的一致性要求低; 2)电平数多,谐波大大降低;
3)开关频率更低,开关损耗更小,系统利用率更高。
4) 很容易实现背靠背结构,能量方便双向流动。 5)无需输出变压器,大大地减小了装置体积和损耗,并且 节约了成本。 siemens和中国电科院所投 运的VSC-HVDC工程均采用 此拓扑结构。 6) 模块化的结构使得容量拓展和冗余设计更为容易。

中国科学 模块化多电平换流器范围

中国科学 模块化多电平换流器范围

模块化多电平换流器(MPC)是一种先进的电力电子变换器,广泛应用于各种电力系统中。

在中国,科学研究在模块化多电平换流器领域取得了显著进展。

以下是对这一领域研究内容的总结:
1. 模块化多电平换流器的拓扑结构:研究了不同拓扑结构的模块化多电平换流器,以满足不同应用场景的需求。

2. 控制策略:针对模块化多电平换流器的控制策略进行了深入研究,包括电压平衡控制、环流控制、功率因素校正等。

3. 模块化多电平换流器的应用:研究了模块化多电平换流器在直流输电、可再生能源并网、储能系统等领域的应用。

4. 模块化多电平换流器的可靠性:针对模块化多电平换流器的可靠性进行了研究,包括器件选择、热设计、过电压保护等方面。

5. 模块化多电平换流器的仿真与实验:开展了模块化多电平换流器的仿真与实验研究,以验证控制策略和系统性能。

6. 模块化多电平换流器的标准化:研究了模块化多电平换
流器的标准化问题,以促进其在电力系统中的广泛应用。

总之,中国在模块化多电平换流器领域的科学研究涵盖了从拓扑结构、控制策略到应用、可靠性、仿真与实验以及标准化等方面,取得了丰富的研究成果。

MMC柔性直流电基本原理精选全文

MMC柔性直流电基本原理精选全文

可编辑修改精选全文完整版MMC柔性直流电基本原理通常,为了减小长距离输电线路的损耗必须提高输电线路的电压等级,即必须采用高压输电。

现有的高压输电技术主要包括高压交流(HVAC)和高压直流(HVDC)两种主流技术。

由于输电线路造价低、相同绝缘条件下线路的电力输送能力强,高压直流输电技术更适用于长距离大容量的电力输送,目前,高压直流输电技术主要有:基于电流源型换流器的HVDC(LCC-HVDC),即常规直流输电技术基于电压源型换流器的HVDC(VSC-HVDC)由于可控性和兼容性更佳,VSC-HVDC在中国也被称为柔性直流输电,简称“柔直”。

近年来,模块化多电平换流器(MMC)以其模块化的结构、低谐波含量、高运行效率等优点在柔性直流输电领域获得了广泛关注,并在多个实际工程中获得应用。

对应用于直流输电系统的MMC来说,具有如下特点:换流器容量大——通常在数百至上千MW电压等级高——交、直流电压在百kV等级功率模块数量巨大——高达数百至数千例如:广东南澳多端柔直工程容量200MW,直流电压±160kV,交流电压166kV,青澳站换流器功率模块数量为1320个云南鲁西背靠背柔直工程容量1000MW,直流电压±350kV,交流电压380kV,广西侧换流器功率模块数量高达2808个现有文献对应用于柔性直流输电系统的MMC开展了较多的研究,包括电路拓扑、数学模型、调制与均压、桥臂环流谐波抑制、快速仿真方法、故障保护策略等在电路拓扑方面,现有文献重点研究了具有直流短路故障抑制能力的换流器拓扑基于半桥型功率模块构建的换流器结构简单,运行效率高,但是无法抑制直流短路故障基于全桥或者双箝位型功率模块构建的换流器具有短路故障抑制能力,但是所需功率器件多,损耗大,造价高在MMC的数学模型方面,现有文献主要对MMC的交流侧、直流侧等效模型进行了研究,分析了电容参数及桥臂电感参数的设计方法现有文献对MMC的均压与调制策略也进行了研究载波移相脉宽调制策略开关频率固定,需要对每个功率模块都进行闭环均压控制,功率模块数量较多时几乎难以实现最近电平逼近调制策略具有开关频率低、均压实现简单的特点,但是模块的开关具有随机性,功率模块的开关频率不固定在基于最近电平逼近调制策略的低开关频率均压策略方面,现有文献提出了若干方法,但是这些方法在基波周期中的大多数时间内令功率模块投切状态不变,导致模块电容电压波动范围很大现有文献分析了桥臂环流谐波分量产生的原因,推导了桥臂环流谐波特性,提出了桥臂环流dq同步旋转坐标系下多PI控制器的抑制方法,实现较为复杂;基于PR控制器的抑制方法坐标变换简便,易于实现另外,在实际工程中发现,功率模块中的控制电路具有恒功率的负载特性,负载的恒功率特性导致了MMC在不控充电阶段会出现正反馈机制的电压发散现象2.MMC基本原理MMC特点:模块化结构,冗余设计降低系统停机概率多电平输出,输出电压谐波含量低储能电容分散,降低了直流储能电容的体积单个功率模块电压等级低通过功率模块串联可以适用于高压大功率场合功率模块介绍:半桥功率模块工作状态上管(S1)开:输出电压为UC上管(S2)开:输出电压为0上管开,对电容进行充放电,定义为投入状态下管开,功率模块不参与工作,定义为切除状态2个半桥功率模块串联输出电压S2开(切除), S4开(切除),输出电压之和为0S2开(切除), S3开(投入),输出电压之和为UC2S1开(投入), S3开(投入),输出电压之和为UC1+ UC2两个功率模块串联连接时输出电压为0,UC,2 UC所以当多个半桥功率模块串联输出电压所有功率模块均处于切除状态,输出电压为零;任意一个处于投入状态,输出电压为UC;任意两个处于投入状态,输出电压为2UC;任意x个功率模块均处于投入状态,输出电压为xUC。

模块化多电平换流器型直流输电内部环流机理分析

模块化多电平换流器型直流输电内部环流机理分析
为此,西门子公司首先提出采用多个子模块串 联的模块化多电平换流器(modular multilevel con- verter,MMC)。国外在MMC方面的研究起步较 早[8’9],并用于牵引电力机车等AC/AC变换的领 域,这种情况下子模块一般采用全桥结构,又称为级 联H桥(cascade H bridge,CHB),文献[10一12]对 其基本工作原理、调制方式等做了研究,并研制了2 MW,17电平的试验样机。在直流输电领域,桥臂 子模块仅需采用半桥结构。由西门子公司承建的美 国Trans Bay Cable Project是世界上首个采用 MMC技术的直流输电工程,计划与2010年投运, 设计功率400 MW,直流电压士200 kV,每个桥臂由
(11)
根据互补对称性,有:
“。(£)=丢u“1+惫sin(甜。£)); (12)
i。(t)一÷Id。(1一msin(oDot+妒))。 (13) ’ o
式中,∞。为基波角频率。因此,可以通过适当的调 制方式控制各桥臂投入的子模块数目以构成近似正 弦的电压Upj、U nj(j—a,b,c),实现与2电平拓扑一样 的有功无功解耦控制。
平MMC-HVDC双端系统模型,并采用了子模块电压均衡控制方法,仿真结果验证了该模型的有效性和环流计算 公式的准确性。
关键词:模块化多电平换流器;直流输电,环流;2倍频;负序;电压均衡
中田分类号:TM
文献标志码:A
文章编号:1003-6520(2010 J02-0547—06
Mechanism Analysis on the Circulating Current in Modular Multilevel
但MMC拓扑也有自身的缺点:由于分布式布 置的储能电容,使得各子模块电容电压的均衡分配 成为难点。各相之间能量分配的不平衡,导致换流 器内部环流的存在,使本来正弦的桥臂电流发生畸 变,同时增加了对开关器件额定电流的要求。本文 将主要针对内部环流这一问题展开讨论,并给出环 流大小的计算式。

模块化多电平的工作原理

模块化多电平的工作原理

模块化多电平的工作原理
模块化多电平是一种能源管理系统中常用的工作原理,其基本原理是将电力系统分成多个模块化的电平。

每个电平都有自己的电源和负载,并且可以根据需求进行灵活配置。

模块化多电平的工作原理包括以下几个方面:
1. 分级管理:整个电力系统被分成多个电平,每个电平都有自己的电源和负载。

电平之间通过相应的控制和通信系统进行连接和管理。

通过分级管理,可以实现对不同电平的控制和监测,提高电力系统的稳定性和可靠性。

2. 高效转换:每个电平都有自己的电源,可以根据需求选择不同类型的电源,如蓄电池、太阳能电池等。

电源与负载之间通过转换器进行能量转换。

转换器可以根据输入和输出电压的需求,实现高效转换和能量传输,从而提高能源利用率和功率密度。

3. 自适应控制:模块化多电平系统中的每个电平都有自己的控制系统。

控制系统可以根据负载需求和电源状态,自适应调整电平的工作状态。

通过自适应控制,可以实现电力系统的动态调整和优化,以提高系统的性能和效率。

4. 安全保护:模块化多电平系统中的每个电平都配备有相应的保护装置。

保护装置可以监测和保护电平的电源和负载,以防止电力系统出现故障或意外情况。

保护装置可以根据需要进行配置,以提供安全和可靠的电力供应。

通过以上的工作原理,模块化多电平系统可以实现对电力系统的灵活管理和控制,提高能源利用率和电力系统的可靠性。

这种工作原理在微电网、可再生能源系统等领域得到广泛应用。

模块化多电平换流器(MMC)调制方法综述

模块化多电平换流器(MMC)调制方法综述

•分布式电源及并网技术!电器与能效管理技术(2017%). 8)模块化多电平换流器(MMC )调制方法综述王蕊1,王斌2,万杰星1(!东南大学电气工程学院,江苏南京210096;2.中航宝胜海洋工程电缆有限公司,江苏南京225100)摘要:介绍了模块化多电平换流器(MMC )的拓扑和工作原理,分类别详叙了各种调制方法。

总结了不同调制技术的优缺点和应用场合,为MMC 的工程应用提供了借鉴意义。

提出了 MMC 调制技术的改进方向,对进一步的研究探索有积极意义。

关键词:模块化多电平换流器;调制技术;载波移相调制法;载波层叠调制;最近电平逼近调制;多电平SVPWM ;特定次谐波消除脉宽调制中图分类号:TM 46文献标志码# A文章编号# 2095-8188(2017)08-0043-05DOI : 10.16628/j . cnki . 2095-8188. 2017. 08. 011王 蕊(1993—),女,硕士研究生,研 究方向为电力电子 技术在电力系统中 的应用。

Review on Modulation Metliods for Modular Multi-level ConvertersWANG Rui 1, WANG Bin 2, WAN Jiexing 1(1. School of Electrical Engineering ,Southeast University ,Nanjing 210096,China ;2. China Ocean Engineering Baoshen Cable Co .,Ltd .,Nanjing 225100,China )Abstract : The topology and working principle ofmodular multi-level converter ( MMC ) were introduced andthe different modulation methods were introduced in detail . Next,it summarized the advantages and disadvantages of different modulation techniques and applications,providing a reference for the MMC ) s engineering application .At last , this paper put forward the improvement direction of MMC modulation technology ,significance for the further research and exploration .Key words : modular multi-level converter ( MMC ); modulation technique ; carrier phase shifted SPWM ( CPS -SPWM ); phase disposition PWM (PDPWM ); nearest level modulation (NLM ); multi-level space vector PWM ( SVPWM ); selective harmonic elimination PWM ( SHEPWM )步的研究成果,展现出良好的应用前景[1]。

模块化多电平换流器(MMC)原理简介方案

模块化多电平换流器(MMC)原理简介方案

4、MMC控制策略
【总体控制功能设计】 外环控制器:换流器1作为从站,换流器2作为主站,高压直流电压(额定极间电压 20 kV)由换流器1从站负责控制,两站之间的有功功率可以反转,两站各自的无功 功率控制相互独立。 换流器1为直流电压环+无功功率给定; 换流器2为有功功率给定+无功功率给定;
5、MMC功率模块均压控制
为了保持 磁通为常数,调频时应同时调压,使 U/F=C, 变频调速系统常被称为变压变频(VVVF) 调速系统
(Variable voltage,variable frequnecy)
35
3 异步电动机的调速
变频调速
n

n0(1
s
)

60 f1 p
(1
s
)
MMC目前的技术能力能够满足: 在1-50Hz变频工况,功率单元按照
2、主回路参数设计
桥臂电感Larm设计
由于交流侧的三相线电压有效值为10 kV,即相电压有效值为5.77 kV。由于 直流电压为20 kV,则MMC输出的交流相电压有效值最大为7.07 kV。 ±2.5 Mvar,零功率因数运行时,允许电感上的压降最大为 7.07kV 5.77kV 1.3kV 此时,允许的网侧电感最大值为1.3 kV/(2×50 Hz×π×145A)=28.6 mH。 在初始引进技术资料中取值20mH。
3、用途介绍
柔性直流输电
R=0 R=0
110KV侧短路容1000MVA 等效电感 0.0385
0.0385 [H]
rectify e1r Idc
e1l inverter
e1l
e1r
#1 #2
e2r DC1 e2l
#1 #2

基于新型模块化多电平变换器的五电平PWM整流器

基于新型模块化多电平变换器的五电平PWM整流器

基于新型模块化多电平变换器的五电平PWM整流器一、本文概述随着电力电子技术的不断发展,多电平变换器已成为现代电力系统中重要的研究方向之一。

模块化多电平变换器(Modular Multilevel Converter, MMC)因其高电压、大容量的特性,在高压直流输电(HVDC)、风力发电和电机驱动等领域具有广泛的应用前景。

本文旨在研究一种基于新型模块化多电平变换器的五电平PWM(脉冲宽度调制)整流器,通过对其拓扑结构、工作原理和控制策略的分析,为现代电力电子系统的优化设计与稳定运行提供理论支持和技术指导。

本文首先介绍了模块化多电平变换器的基本原理和五电平PWM整流器的拓扑结构,阐述了其在现代电力电子系统中的重要性和优势。

接着,详细分析了五电平PWM整流器的工作原理,包括其调制策略、开关状态切换以及功率因数校正等方面。

在此基础上,本文提出了一种适用于五电平PWM整流器的控制策略,旨在实现高效、稳定的能量转换和电网接入。

本文还对五电平PWM整流器的性能进行了仿真和实验研究,验证了其在实际应用中的可行性和有效性。

通过对比传统整流器与五电平PWM整流器的性能,本文进一步证明了新型模块化多电平变换器在提升电力电子系统性能、降低谐波污染和提高能源利用效率等方面的优势。

本文的研究对于推动模块化多电平变换器和五电平PWM整流器在现代电力电子系统中的应用具有重要意义。

通过对其拓扑结构、工作原理和控制策略的研究,有望为电力电子技术的发展提供新的思路和方向,为现代电力系统的智能化、绿色化和高效化提供有力支持。

二、模块化多电平变换器原理及特性分析随着电力电子技术的不断发展,模块化多电平变换器(Modular Multilevel Converter, MMC)已成为高压大功率应用中的关键设备。

MMC以其独特的结构设计和灵活的扩展性,在电力系统中得到了广泛应用。

本文所研究的五电平PWM整流器,正是基于MMC的一种实现方式。

模块化多电平换流器(MMC)原理简介..39页PPT

模块化多电平换流器(MMC)原理简介..39页PPT
Thank you
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
模块化多电平换流器(MMC)原理简介..
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7Байду номын сангаас有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯

MMC的工作原理与基本特性PPT

MMC的工作原理与基本特性PPT

瞬时有功功率除了直流 分量外,主要包含6k次
0.01 0.02 0.03 0.04
时间(s)
谐波分量。对于瞬时有
功功率的直流分量,解 析值为350 MW,仿真 值为351 MW,两者之 间的误差为0.3%
12
解析计算值 仿真值
瞬时有功功率 (MW)
9
6
3
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
数学模型
U dc
urj irj icirj uc,rj ic,rj uL,rj iT1 iD1 iT2 iD2
换流器内部
ZJU
MMC数学模型的基本假设
所有电气量均以工频周期T为周期; a、b、c三相的同一电气量在时域上依次滞后T/3;
1) 2)
3) 同相上、下桥臂的同一电气量在时域上彼此相差T/2;
L0
L0
相单元
+
vb
vc -
U dc o U dc 2
ism
A
B
T1
D1
L0
R0
L0
R0
SM1 SM2
L0
R0
SM1 SM2
usm+ T 2
-
C0
D2
+ uc -
+ una -
SMN
+ unb -
SMN
+ unc -
SM1 SM2
SMN
ina
inb
inc
ZJU
子模块的3种工作状态
ZJU
MMC运行原理
谐波次数
瞬时无功功率
ZJU
200
解析计算曲线 仿真曲线
瞬时无功功率(Mvar)

模块化多电平换流器稳态功率运行范围的确定方法

模块化多电平换流器稳态功率运行范围的确定方法

模块化多电平换流器稳态功率运行范围的确定方法模块化多电平换流器(MMC)是一种新型的高压直流输电技术,它具有高效率、高稳定性和灵活性等优点。

然而,在实际应用中,MMC 在稳态功率运行范围的确定方面存在一定的挑战。

本文将介绍一种确定MMC稳态功率运行范围的方法,并探讨其优势和适用性。

一、MMC的稳态功率运行范围MMC是一种通过控制每个模块的开关状态来实现电流和电压波形控制的换流器。

每个模块包含一个电容和一个半桥模块,通过控制开关的导通和截止,可以控制输出电流和电压的波形。

MMC的功率输送能力取决于电容容量、模块数量、支路阻抗等因素。

确定MMC的稳态功率运行范围是为了保证其在不同负载条件下的稳定工作。

在确定MMC的功率运行范围时,需要考虑以下几个因素:1. 温度限制:MMC模块在高功率情况下会产生较大的热量,超过一定温度会影响模块的可靠性和寿命。

需要考虑MMC的散热能力,以避免温度过高。

2. 电压限制:MMC的直流电压受到输入电压和输出电压的限制。

输入电压不应超过模块的额定电压,输出电压不应超过负载侧电压的限制。

3. 电流限制:MMC的输出电流应根据负载需求和线路容量来确定。

过大的输出电流会导致模块电流过载,影响其稳定性和寿命。

基于以上因素,我们可以采用以下方法来确定MMC的稳态功率运行范围。

二、MMC稳态功率运行范围的确定方法1. 确定模块参数:需要确定MMC的模块参数,包括每个模块的额定电压、电容容量和额定电流等。

这些参数可以通过MMC设计手册或厂家提供的数据获得。

2. 温度分析:根据MMC的模块参数和散热设计,可以进行温度分析,以确定MMC在不同负载条件下的温度分布和温度上限。

可以利用热传导模型和有限元方法进行仿真分析。

3. 电压分析:根据MMC的输入电压和输出电压要求,可以对MMC的电压进行分析。

输入电压应不超过模块的额定电压,输出电压应在负载电压限制范围内。

4. 电流分析:根据负载需求和线路容量,可以确定MMC的输出电流。

模块化多电平变换器

模块化多电平变换器

模块化多电平变换器(MMC)的脉冲宽度调制的实验和控制摘要:模块化多电平变换器(MMC)是新一代不需要变压器而实现高、中压电力转换的多级转换器中的一种。

MMC的每相是基于多个双向斩波单元的串级连接。

因此需要对每个浮动的直流电容器进行电压平衡控制。

然而,目前还没有文章涉及到通过理论和实验验证来实现电压平衡控制的明确讨论。

本文涉及两种类型的脉冲宽度调制模块化多电平转换器(PWMMMCs)来解决他们的电路配置和电压平衡控制。

平均控制和平衡控制的结合使脉冲宽度调制模块化多电平转换器(PWMMMCs)在没有任何外部电路的情况下实现电压平衡。

脉冲宽度调制模块化多电平转换器(PWMMMCs)的可行性,以及电压平衡控制的有效性,通过仿真和实验已经被证实。

关键词:电压电力转换,多级转换器,电压平衡控制一、介绍:大功率的转换器的应用需要线性频率变压器来达到加强电压或电流的额定值的目的(见参考文献【1】——【4】)。

2004年投入使用的80MW的静态同步补偿器的转换侧由18个中点箝位(NPC)式转换器组成(文献【4】),每个系列的交流双方串联相应的变压器。

线性变压器的使用不仅使转换器笨重,而且也导致当单线接地故障发生时出现直流磁通偏差(文献【5】)。

最近,许多关于电力系统和电力电子的多级转换的科学家和工程师,参与到多电平变换器为了实现无需变压器而实现中压电力转】换(文献【6】-【8】)。

两种典型的方法有:(1)多级多电平转换(DCMC) (文献【6】, 【7】);(2)飞跨电容型多电平变换器(FCMC)(文献【8】)。

三电平多级多电平转换器(DCMC)或者NPC转换器已经被投入实际使用,如果在DCMC中电平的数量超过三个,容易导致串联的直流电容内在电压的不平衡,因此两个直流电容需要一个外部电路(例如buck—boost斩波电路)(文献【11】),此外,一个箝位二极管耐压值的增长是非常有意义的,而且这种增长需要每相串联多个模块,这就造成一些困难。

《2024年模块组合多电平变换器(MMC)研究》范文

《2024年模块组合多电平变换器(MMC)研究》范文

《模块组合多电平变换器(MMC)研究》篇一一、引言随着电力电子技术的不断发展,高压大功率的电力变换系统在可再生能源并网、智能电网、大功率电机驱动等领域的应用越来越广泛。

模块组合多电平变换器(MMC)作为一种新型的高压大功率变换器拓扑结构,具有高可靠性、高效率、高灵活性等优点,成为当前电力电子领域研究的热点之一。

本文旨在探讨MMC的工作原理、控制策略以及应用现状,并对其未来的发展趋势进行展望。

二、MMC的工作原理MMC是一种基于模块化设计的多电平变换器,其基本思想是将整个变换器划分为多个子模块,每个子模块都包含一个电力半导体开关和相应的储能元件。

通过控制子模块的开关状态和投切顺序,实现多电平输出,从而获得更高的电压和功率等级。

具体而言,MMC由多个相单元组成,每个相单元包含多个子模块和一个串联的电感。

子模块通常由一个全桥或半桥电路和一个电容组成,通过控制桥臂上的开关器件,可以实现子模块的投切和电容的充放电。

在MMC中,通过控制每个相单元中子模块的投切数量和投切顺序,可以实现多电平输出,从而获得更高的电压和功率等级。

三、MMC的控制策略MMC的控制策略主要包括调制策略和环流控制策略。

调制策略是指如何将直流电源的电压转换为交流电源的多电平电压波形,通常采用最近电平调制(NLM)或特定谐波消除调制(SHEM)等方法。

环流控制策略是指如何抑制MMC中的环流,防止因环流过大而导致系统故障或损坏。

为了实现良好的控制效果,需要采用数字化控制技术对MMC进行实时监控和控制。

通常采用高性能的数字信号处理器(DSP)或现场可编程门阵列(FPGA)等设备,实现对MMC中每个子模块的开关状态进行精确控制。

此外,还需要采用适当的通信协议和控制系统网络架构,实现各个子模块之间的协调和同步。

四、MMC的应用现状MMC作为一种新型的高压大功率变换器拓扑结构,已经在可再生能源并网、智能电网、大功率电机驱动等领域得到广泛应用。

在可再生能源并网方面,MMC可以用于风力发电、太阳能发电等领域的并网逆变器,实现高效、可靠的能量转换和传输。

MMC模块化多电平换流器简介

MMC模块化多电平换流器简介

θ
dq abc
VDC controller
iq1* Imax
1: Q control 2: Vac control
Vabc*
Valve controls
vq * id iq
Q*
d/dt
PI
Rate limiter VAC droop controller
Q controller
Q
Vac*
d/dt
Q
PI
vd x1
L
id* id
+-
PI
-+ -
ed
iq iq* +PI
L

-+ +
vq
eq
© Manitoba HVDC Research Centre
|
a division of Manitoba Hydro International Ltd.
7
Modular multilevel converters
0.0150
0.0200
-VDC/2
© Manitoba HVDC Research Centre | a division of Manitoba Hydro International Ltd.
18
Modular multilevel converters
+VDC/2
: Graphs E reference 1.00 Eac MMC
[rad]
Vq
[kV]
Cos(Theta) 1.00 0.50
Va
[kV]
t [s]
0.00 -0.50 -1.00 2.520 2.540 2.560 2.580 2.600 2.620 2.640 2.660 2.680 2.700

模块化多电平(MMC)电压源型换流器工作原理

模块化多电平(MMC)电压源型换流器工作原理

模块化多电平(MMC)电压源型换流器1柔直输电的基本原理柔性直流输电系统作为直流输电的一种新技术,也同样由换流站和直流输电线路构成。

柔性直流输电功率可双向流动,两个换流站中的任一个既可以作整流站也可以作逆变站运行,其中处在送电端的工作在整流方式,处在受电端的工作在逆变方式。

为简明起见,以典型的三相两电平六脉动型换流器的柔性直流输电换流站为例,介绍柔性直流输电的基本原理。

系统结构如图2-1所示。

由图虚线划分可知,两端柔性直流输电系统可以看作为两个独立的静止无功发生器(STATCOM)通过直流线路联结的合成系统;对于交流系统而言,交流系统向柔性直流换流站提供连接节点,即换流站与交流系统是并联的。

由以上柔性直流输电系统拓扑结构特点分析可知,柔性直流输电系统具有STATCOM进行动态无功功率交换的功能,除此之外,由于两个电压源换流器(VSC)的直流侧互联,它们之间又具备了有功功率交换的能力,可以在互联系统间进行有功潮流的传输。

图2-1两端VSC-HVDC结构示意图(1-两端交流系统;2-联结变;3-交流滤波器;4-相电抗/阀电抗器;5-换流阀;6-直流电容;7-直流电缆/架空线路。

背靠背式两端VSC-HVDC不包含7)柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器/阀电抗器、联结变压器、交流滤波器、控制保护以及辅助系统(水冷系统、站用电系统)等。

电压源型换流器包括换流电路和直流电容器,实现交流电和直流电转换的换流电路由一个或多个换流桥并联(或串联)组成,目前在柔性直流工程中还未出现多个换流桥组成的组合式换流器,但组合式换流器可以达到降低开关频率,减少损耗的目的,在某些情况下也可能被采用。

电压源型换流桥可以采用多种拓扑结构,工程中常用的有三相两电平桥式结构,二极管钳位式三电平桥式结构、模块化多电平结构,还有工程中未曾应用,但研究者比较关注的二极管钳位多电平结构和飞跨电容多电平结构。

换流器中的每个桥有三个相单元,一个相单元有上下两个桥臂,每个桥臂或由一重阀(两电平)构成,或由两重阀(三电平)构成,或由多重阀(多电平)构成。

模块化多电平变换器_MMC_工作原理的分析

模块化多电平变换器_MMC_工作原理的分析

科技信息SCIENCE &TECHNOLOGY INFORMATION 2012年第5期科●0引言电力电子器件的不断发展,使得由这些器件构成的电压源转换器可以进行直流输电。

相对于传统的直流输电系统,电压源换流器型高压直流输电技术具有一系列的优点,可以实现有功和无功的快速解耦控制。

模块化多电平变换器(MMC )具有级联型变换器的特点,比较容易实现向多电平拓展,而且可以实现直流侧的“背靠背”连接,十分适用于电压源高压直流输电系统和直驱型风力发电系统。

1MMC 的拓扑结构模块化多电平变换器(MMC )的拓扑结构是一种新型的多电平变换器结构,它继承了级联式多电平变换器机构的优点,在此基础上,采用充电电容来代替独立电源,克服了难以向多电平发展的不足,同时也降低了每个开关器件所承受的应力。

从机构上来分,目前常见的模块化多电平变换器有三种:星形MMC 变换器、三角形MMC 变换器和双星形MMC 变换器结构。

由于星形和三角形结构的MMC 变换器很难拥有同一的直流端,不易构成变换器,所以我们以双星结构MMC 为例进行研究。

图1是双星形MMC 变换器的拓扑机构示意图,此种机构的MMC 变换器是由三个相同的桥臂组成,每个桥臂上下有相同结构和数目的子模块构成,中间通过两个缓冲电感相连。

子模块结构相同,都是由两个IGBT 串联后与充电电容并联。

由于这种结构都是由相同的模块组成,所以当一个子模块出现问题的时候,可以及时切除坏损模块,投入新模块,保证系统的正常运行。

同时也方便向更高电平拓展,可以通过控制子模块的数目来达到目的。

图1双星形MMC 变换器拓扑结构2MMC 变换器的工作原理多电平变换器的一般原理是由几个电平台阶合成梯形波以逼近正弦波,图1所示的为一个五电平的MMC 变换器的拓扑结构,通过控制子模块中的开关器件IGBT 可以使得子模块工作在不同的状态。

下面通过产生5电平电压的MMC 结构讲述下其具体工作过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档