计算方法 最佳一致逼近多项式-切比雪夫多项式

合集下载

计算方法最佳一致逼近多项式切比雪夫多项式

计算方法最佳一致逼近多项式切比雪夫多项式
计算方法最佳一致逼近 多项式切比雪夫多项式
路漫漫其修远兮, 吾将上下而求索
2020年4月11日星期六
内容
1. 函数逼近的基本概念 2. 切比雪夫多项式 3. 最佳一致逼近多项式 4. 切比雪夫多项式在函数逼近中的应用 5. 利用切比雪夫多项式的0点构造最佳逼近多
项式的例子
路漫漫其修远兮, 吾将上下而求索
y
y=L (x)
路漫漫其修远兮, 吾将上下而求索
一致逼近的几何意义
x Home
切比雪夫多项式
路漫漫其修远兮, 吾将上下而求索
切比雪夫(Chebyshev)多项式
• 切比雪夫多项式在逼近理论中有重要的应用 • 。切比雪夫多项式的0点可以用于构造具有最佳
一致逼近性质的插值多项式。
切比雪夫多项式的(简单)定义:
三、切比雪夫多项式在函数逼近中的应用
希望构造最高次幂xn 系数为1 的多项式:
路漫漫其修远兮, 吾将上下而求索

三、切比雪夫多项式在函数逼近中的应用
证明比较复杂,省略。
路漫漫其修远兮, 吾将上下而求索
这个定理的 结论非常重要
怎样才能使得拉格朗日插值多项式成为最佳逼近 ?

偏差估计
路漫漫其修远兮, 吾将上下而求索
吾将上下而求索
(5)切比雪夫多项式的极值点 …
路漫漫其修远兮, 吾将上下而求索

1
T2(x )
T1(x
)
-1
1
T3(x ) 路漫漫其修远兮,
吾将上下而求索
T4(x )
-1
T3(x)有3个0值点,4个极值点
总结: Tn(x)具有很好的性质。
y
x
Tn(x)是n阶多项式,具有n个0点,n+1个极值点;有 界[-1, 1]; T1(x), T3(x),…只含x的奇次项,是奇函数

数学实验“Chebyshev多项式最佳一致逼近,最佳平方逼近”实验报告(内含matlab程序)

数学实验“Chebyshev多项式最佳一致逼近,最佳平方逼近”实验报告(内含matlab程序)
c(2)=2*int(subs(y,findsym(sym(y)),sym('t'))*T(2)/sqrt(1-t^2),t,-1,1)/pi;
f=c(1)+c(2)*t;
fori=3:k+1
T(i)=2*t*T(i-1)-T(i-2);
c(i)=2*int(subs(y,findsym(sym(y)),sym('t'))*T(i)/sqrt(1-t^2),t,-1,1)/pi;
实验内容
Chebyshev多项式最佳一致逼近,最佳平方逼近
成绩
教师
实验十八实验报告
一、实验名称:Chebyshev多项式最佳一致逼近,最佳平方逼近。
二、实验目的:进一步熟悉Chebyshev多项式最佳一致逼近,最佳平方逼近。
三、实验要求:运用Matlab/C/C++/Java/Maple/Mathematica等其中一种语言完成程序设计。
四、实验原理:
1.Chebyshev多项式最佳一致逼近:
当一个连续函数定义在区间 上时,它可以展开成切比雪夫级数。即:
其中 为 次切比雪夫多项式,具体表达式可通过递推得出:
它们之间满足如下正交关系:
在实际应用中,可根据所需的精度来截取有限项数。切比雪夫级数中的系数由下式决定:
2.最佳平方逼近:
求定义在区间 上的已知函数最佳平方逼近多项式的算法如下。
f2=power(a,n+1);
C(i,n+1)=(f1-f2)/(n+i);
end
coff=C\d;
设已知函数 的最佳平方逼近多项式为 ,由最佳平方逼近的定义有:
其中
形成多项式 系数的求解方程组

最佳一致逼近多项式3.3

最佳一致逼近多项式3.3

定理说明任意连续函数都可以用多项式来近似 3.3.1 基本概念及其理论
Bn ( f , x) =
f ( x) −
* pn ( x)

=
max a≤ x≤b
f
n k =0* ( x ) − p n ( x ) n= kmin f n − k ( x) )− p k ( x ) = k xp n ((x1∈ Pn x )
f ( x) − pn ( x)
pn(x) 在[a,b]上的偏差。 为 f (x) 与 是点到集合的距离
p n ∈Pn pn ∈P a ≤ x ≤b
E n = inf {∆( f , pn )} = inf max f ( x ) − pn ( x )
称为f (x)在 [a, b]上与 Pn 的偏差。 定义2
f ( x 0 ) − p n ( x 0 ) = ∆ ( f , pn ) = f ( x ) − pn ( x )
称 x 0为 p n ( x )的偏差点 .

f ( x 0 ) − pn ( x 0 ) = − E n
f ( x 0 ) − pn ( x 0 ) = E n
负偏差点 正偏差点
正负偏差点有多少? 有什么特点?
−1≤ x ≤1
p2 ( x ) − 3ax 4+3bx3+ c 2 3 = ( x) = 2 x x= x − x
3
⇓ 3次多项式!
(1 − a ) 2 ( 2 − b ) (1 + c ) max f ( x ) − p2 ( x ) = 2 max x + x + x− −1≤ x ≤1 −1≤ x ≤1 2 2 2
是两点之间的距离
∆( f , p n ) ≥ 0

计算方法 最佳一致逼近多项式-切比雪夫多项式

计算方法 最佳一致逼近多项式-切比雪夫多项式

x, Tn1(x).
(2.11)
Tn(x)的最高次幂x n的系数为2 n1, (n 1).
证明:记θ arccosx, 则
Tn1 (x) cos[(n 1)θ] cos[(nθ θ)] cos(nθ)cosθ sin(nθ)sinθ
cos(n 1)θ cos(nθ)cos θ sin(nθ)sin θ
多项式,且 max | f(x)
-1 x 1
Ln(x)
|
1 2n(n 1)!
||
f (n 1) (x)
||
证明:
max
-1 x 1
|
f(x)
Ln(x)
|
(n
1 1)!
||
f(n1)(x)
||||
(x
x0 )(x
x1)… (x
xn)
||
(n
1 1)!
||
f (n 1) (x)
||||
1 2n
Tn1(x)
0,1,2,… , n)
轮流取得最大值1和最小值 1,{xk }称为交错点组。
- 1 x4
x 3
x2 0
x 1
x0 1
证: 将xk
cos
kπ n
,
(k
1,2,… , n)
代入Tn(x)的表达式,得到
Tn(x)
cos[narccos(cos
kπ )] n
cos[kπ]
(1)k
1
T2(x) T1(x)
最佳一致逼近多项式的存在性定理
定理 4 若f(x) C[a, b], 则必存在pn* (x) Hn ,
使得
|| f pn* || En
证明:设n次多项式

第六章 正交多项式和最佳一致逼近

第六章 正交多项式和最佳一致逼近

§1 正交多项式 一、正交函数系的概念
考虑函数系
1,cosx,sinx,cos2x,sin2x,…,connx,sinnx,… 此函数系中任何两个不同函数的乘积在区间[- , ] 上的积分都等于0 ! 我们称这个函数中任何两个函数在[- , ]上是正交 的,并且称这个函数系为一个正交函数系。
College of Science
计算方法与数值计算
函数逼近问题的一般提法: 对于函数类A(如连续函数类)中给定的函数f (x),要求在另 一类较简单的且便于计算的函数类B(如多项式、三角函数类等)
中寻找一个函数p (x),使p (x)与f (x)之差在某种度量意义下最小。
最常用的度量标准为:一致逼近、 平方逼近
上海理工大学理学院
University of Shanghai for Science and Technology
College of Science
计算方法与数值计算
特别地,当Ak 1时,则称该函数系为标准正交函数系。 若定义 4中的函数系为多项式函数系,则称为以 (x) 为权的在[a, b]上的正交多项式系。并称pn(x)是[a, b]上
(4) 对任意实数k,(kf, g) = k (f, g )。
上海理工大学理学院
University of Shanghai for Science and Technology
College of Science
计算方法与数值计算
3.正交
定义3 设 f (x),g(x) C [a, b] 若
( f , g ) ( x) f ( x) g ( x)dx 0
带权 (x)的n次正交多项式。
上海理工大学理学院
University of Shanghai for Science and Technology

数学“Chebyshev多项式最佳一致逼近,最佳平方逼近”分析研究方案(内含matlab程序)

数学“Chebyshev多项式最佳一致逼近,最佳平方逼近”分析研究方案(内含matlab程序)

西京学院数学软件实验任务书实验十八实验报告一、实验名称:Chebyshev 多项式最佳一致逼近,最佳平方逼近. 二、实验目地:进一步熟悉Chebyshev 多项式最佳一致逼近,最佳平方逼近.实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计.四、实验原理:1.Chebyshev 多项式最佳一致逼近:当一个连续函数定义在区间[1,1]-上时,它可以展开成切比雪夫级数.即:0()()n n n f x f T x ∞==∑其中()n T x 为n 次切比雪夫多项式,具体表达式可通过递推得出:0111()1,(),()2()()n n n T x T x x T x xT x T x +-===-它们之间满足如下正交关系:10 n mn=m 02n=m=0ππ-≠⎧⎪⎪=≠⎨⎪⎪⎩⎰ 在实际应用中,可根据所需地精度来截取有限项数.切比雪夫级数中地系数由下式决定:10112n f f ππ--==⎰⎰2.最佳平方逼近:求定义在区间01[,]t t 上地已知函数最佳平方逼近多项式地算法如下.设已知函数()f x 地最佳平方逼近多项式为01()n n p x a a x a x =+++,由最佳平方逼近地定义有:01(,,,)0(0,1,2,,)n iF a a a i n a ∂==∂其中120101(,,,)(())t n n n t F a a a f x a a x a x dx =----⎰形成多项式()p x 系数地求解方程组Ca D =其中121122211212bbb bn na a a a bb b b n n aaa ab b b b n n n n a a a abbb bn n n naaa a dx xdxx dxx dx xdx x dx x dx x dx C x dx x dx x dx x dx x dx x dx x dx x dx -+---+-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1()()()()b a b a b n a b n a f x dx f x xdx D f x x dx f x x dx -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰五、实验内容:%Chebyshev 多项式最佳一致逼近function f=Chebyshev(y,k,x0)syms t ;T(1:k+1)=t; T(1)=1; T(2)=t;c(1:k+1)=0.0;c(1)=int(subs(y,findsym(sym(y)),sym('t'))*T(1)/sqrt(1-t^2),t,-1,1)/pi;c(2)=2*int(subs(y,findsym(sym(y)),sym('t'))*T(2)/sqrt(1-t^2),t,-1,1)/pi;f=c(1)+c(2)*t; for i=3:k+1T(i)=2*t*T(i-1)-T(i-2);c(i)=2*int(subs(y,findsym(sym(y)),sym('t'))*T(i)/sqrt(1-t^2),t,-1,1)/pi; f=f+c(i)*T(i); f=vpa(f,6); if (i==k+1) if (nargin==3)f=subs(f,'t',x0);elsef=vpa(f,6);endendEnd%最佳平方逼近function coff=ZJPF(func,n,a,b)C=zeros(n+1,n+1);var=findsym(sym(func));func=func/var;for i=1:n+1C(1:i)=(power(b,i)-power(a,i))/i;func=func*var;d(i,1)=int(sym(func),var,a,b);endfor i=2:n+1C(i,1:n)=C(i-1,2:n+1);f1=power(b,n+1);f2=power(a,n+1);C(i,n+1)=(f1-f2)/(n+i);endcoff=C\d;版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.5PCzV。

切比雪夫多项式 [Chebyshev polynomial]

切比雪夫多项式 [Chebyshev polynomial]
切比雪夫多项式
维基百科,自由的百科全书
切比雪夫多项式是与棣莫弗定理有关,以递归方式定义的一系列正交多项式序列。 通 常,第一类切比雪夫多项式以符号Tn表示, 第二类切比雪夫多项式用Un表示。切比雪 夫多项式 Tn 或 Un 代表 n 阶多项式。
切比雪夫多项式在逼近理论中有重要的应用。这是因为第一类切比雪夫多项式的根(被 称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低龙格现 象,并且提供多项式在连续函数的最佳一致逼近。
上绝对值的最大值最小的多项式。 其绝对值的最大值为
, 分别在 、 及 的其他
个极值点上达到 。
两类切比雪夫多项式间的关系
两类切比雪夫多项式间还有如下关系:
切比雪夫多项式是超球多项式或盖根堡多项式的特例, 后者是雅可比多项式的特例. 切比雪夫多项式导数形式的递推关系可以由下面的关系式推出:
例子
前几个第一类切比雪夫多项式是
示成
的幂 。
用显式来表示
尽管能经常碰到上面的表达式,但如果借助于复函数cos(z), cosh(z)以及他们的反函数, 则有
类似,第二类切比雪夫多项式满足
以佩尔方程定义
切比雪夫多项式可被定义为佩尔方程 在多项式环R[x] 上的解(e.g., 见 Demeyer (2007) (http://cage.ugent.be/~jdemeyer/phd.pdf), p.70). 因此它们的表达式可通过解佩尔方程而得出:
前几个第二类切比雪夫多项式是
前六个第一类切比雪夫多项 式的图像,其中-1¼<x<1¼, -1¼<y<1¼; 按颜色依次是 T0, T1, T2, T3, T4 T5.
第一类切比雪夫多项式前几阶导数是

高中数学竞赛切比雪夫(Chebyshev)多项式知识整理-教学文档

高中数学竞赛切比雪夫(Chebyshev)多项式知识整理-教学文档

方法一:余弦倍角公式是由余弦的幂整系数线性组合来表示倍角的余弦.这样就产生余弦的n 倍角能否用余弦的幂次的整系数线性组合表示等问题.通过研究,发现cos n α都是关于2cos α的首项系数为1的、次数等于α的倍数的、系数符号正负相间的整系数多项式,还进一步得到cos n α的一些性质.应用此性质,可以得到一些求和公式及解决许多数学问题.进一步研究,发现此多项式可以转化为切比雪夫多项式.在初等数学中,三角函数是一个十分有用的工具,余弦cos n α是众所周知的偶函数,它的倍角公式如:2cos 22cos 1αα=- ,(1)3cos34cos 3cos ααα=-. (2)它们都是由余弦cos α的幂整系数线性组合来表倍角的余弦.这样就自然产生了余弦的n 倍角能否用余弦cos α的幂次的整系数线性组合表示问题,稍作计算可以得42cos 48cos 8cos 1ααα=-+ ,(3)53cos516cos 20cos 5cos αααα=-+ .(4)观察公式(1—4),可以发现.如果公式两端同乘以2,则公式右边都是关于2cos α的首系数为1的、次数等于公式左边α的倍数的、系数符号正负相间的整系数多项式.由此猜测2cos n α也具有这一性质,下面用数学归纳法加以证明.猜想2,02cos (1)(2cos )m n m n m m n a αα-==-∑,(;n N m N +∈∈) (5)(5)式可改写为:n/312112cos (2cos )(1)(2cos )ent n mm n m n m m n n C mααα----==+-∑ ,(9) (9)式称为n 倍角余弦公式.12424cos 2(cos )(cos )(cos )n n n n n n n αααααα-----=-++…,其中i α为正整数. 因为余弦cos α在[]0,απ∈上单调,对应值为1降到1-,即cos α[]1,1∈-,[]0,απ∈ .因此存在反函数,若令cos x α=,则arccos x α=,[]1,1x ∈-,[]0,απ∈.因此,在余弦n 倍角公式中令arccos x α=,[]0,απ∈,[]1,1x ∈-,则倍角公式为于是cos(arccos )n x 首项系数为12n -的多项式,各项系数是整数,符号依次变化,x 的幂依次递减2次,若递减到最后,幂次为负,则该项取零.若记cos(arccos )n x =()n T x ,则()n T x 满足,12()2()()n n n T x xT x T x --=-,()n T x 称为切比雪夫多项式.从递推关系可以得到:第一类切比雪夫多项式有许多良好的性质,例如:1.(cos )cos(),,n T n R n N θθθ=∈∈.(分析:令cos x θ=,arccos x θ=) 2.()(1)()n n n T x T x -=-,,x C n N ∈∈.这表明()n T x 当n 为奇(偶)数时是奇(偶)函数.3.()1,,1n T x x R x ≤∈≤.4.21(0)0m T +=,2(0)(1),m m T m N =-∈.5.函数列{}()n T x 的生成函数为(分析:生成函数又叫母函数,在数学中,某个序列的母函数是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息.使用母函数解决问题的方法称为母函数方法.母函数的思想就是把离散数列和幂级数一一对应起来,把离散数列间的相互结合关系对应成为幂级数间的运算关系,最后由幂级数形式来确定离散数列的构造.母函数是解决组合计数问题的有效工具之一,其思想方法是把组合问题的加法法则和幂级数的乘幂的相加对应起来.)6.函数列{}()n T x 满足2阶递推关系(分析:由三角恒等式cos(1)cos(1)2cos cos n n n θθθθ++-=)最小偏差切比雪夫在1857年提出这样一个问题:在最高项系数为1的n 次多项式中,寻求在区间[]1,1-上与零的偏差最小的多项式.换句话说,就是寻求[]1,1n x C ∈-在1n H -中的最佳一致逼近多项式1()n P x *-,这里定理 在区间[]1,1-上所有最高项系数为1的多项式中,与零的偏差最小,其偏差为112n -. ()n U x 称为第n 个第二类切比雪夫多项式,前7个第二类切比雪夫多项式为: 第二类切比雪夫多项式也有许多良好的性质,例如:1.()(1)(),,n n n U x U x x C n N -=-∈∈.即当以为奇(偶)数时是奇(偶)函数. 2.21(0)0m U +=,2(0)(1)m m U =-,(1)1n U n =+,(1)(1)(1)n n U n -=-+,m N ∈.3.函数列{}()n U x 的生成函数为4.()1,,1n U x n x R x ≤+∈≤.5.函数列{}()n U x 满足2阶递推关系两类切比雪夫多项式的关系定理1设()n T x 和()n U x 分别为第一类和第二类切比雪夫多项式,0n ≥为整数,则证明 由两类切比雪夫多项式的定义得而则比较式在子两边n t 项的系数,即有4切比雪夫多项式的应用4.1切比雪夫多项式插值切比雪夫多项式在逼近理论中有重要的应用.这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值.相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近. 切比雪夫多项式插值法:定理:设01,,x x …,n x 为区间[],a b 上1n +个互不相同的点,[]1(),n f x C a b +∈,则对任何[],x a b ∈,存在[]01,,,x n x x x ξ∈,使得拉格朗日插值余()()()n R x f x L x =-,满足其中插值多项式的余项极小化:要使拉格朗日插值多项式()n L x 尽量逼近()f x ,就要使余项()n R x 尽量小.在 ()n R x 中,()f x 是固定的,而 x ξ又是未知数,所以要减小()n R x ,只有恰当选择节点集,使得在插值区间内余项的最大值为极小值.为了应用切比雪夫多项式,首先应将插值区间[],a b ,通过简单变换归一化到区间[−1,1],做变换()12k k z b a x b a =-++⎡⎤⎣⎦ 所以插值节点应取为()121cos 222k k z b a b a n π+⎡⎤=-++⎢⎥+⎣⎦. 其中0,1,2,,1k n =-,所以下面我们只需要讨论区间[−1,1]上的函数的切比雪夫插值法: 当取定第一类切比雪夫点21cos ,0,1,2,,22k k x k n n π+==+后,令()1111max n n x M f x ++-≤≤=,则有()()11max 1max (1)!2(1)!n n n n x R x M M n n ++=≤++∏,故切比雪夫插值法可以使得余项的最大值极小化,得到较佳逼近多项式.。

Chebyshev定理在求最佳一致逼近多项式中的应用

Chebyshev定理在求最佳一致逼近多项式中的应用

把满 足上式 的那些 的值统 称 为偏差 点 , 且依 △ ( ) 的
符号 的 正 、 负不 同成为 正偏 差点或 负偏 差点 .
2 最佳 一 致逼近 多项 式 的充分 必 要条件
设 ) E , b 】 , P ( ) 为一个次数不超过 凡的最佳

m 积 : ) 一 尺 ( ) [ = m a x ) 一 ( ( ) + Q ( ) ) l
c c , ( ) =

m a x

( ) . _ ( ) ,
解 由题意, 所求最佳逼近多项式P , ) 应满足 ma x


( ) l = - _ m I — a x J ( ) l = ,
1 《 《 1
且点 = c 0 s 叮 r ( k = 0 , l , …, n ) 是 ( ) 的切E 匕 雪夫交错

+1 5 6 8 x- 2 52 x +1 3 x.
切比雪 夫定理是 否可 推广 到求任意次数 的最佳一致逼 近多项 式?为 了回答这个问题 , 我们首先看以下例题.
证 明 由 于

例 1 求
次 逼 近 多项 式 .
) = 2 x 帆‘ + 一 1在 [ 一 1 , 1 ]  ̄¥ J / l t t  ̄ 2



( 戈 ) = 5 1 2 x一 1 2 8 0 x+ 1 1 2 0 x+ 1 7 6 x+ 5 0 x一 1 ,
1 1 9 7 5 3
7 = , ( ) = = 1 0 2 4 x一 2 8 1 6 x + 2 8 1 6 x 一 7 8 4 x + 1 0 8 x 一 1 I x ,

最佳一致逼近多项式

最佳一致逼近多项式

§3最佳一致逼近多项式2-1 最佳一致逼近多项式的存在性切比雪夫从另一观点研究一致逼近问题,他不让多项式次数n 趋于无穷,而是固定n ,记次数小于等于n 的多项式集合为n H ,显然],[b a C H n ⊂。

记{1,,,}n n H span x x =L , n x x ,,,1L 是],[b a 上一组线性无关的函数组,是n H 中的一组基。

n H 中的元素)(x P n 可表示为01()n n n P x a a x a x =+++L ,其中n a a a ,,,10L 为任意实数。

要在n H 中求)(*x P n 逼近],[)(b a C x f ∈,使其误差)()(max min )()(max *x P x f x P x f n bx a H P n b x a n n −=−≤≤∈≤≤ 这就是通常所谓最佳一致逼近或切比雪夫逼近问题。

为了说明这一概念,先给出以下定义。

定义1 ],[)(,)(b a C x f H x P n n ∈∈,称)()(max ),(x P x f P f P f n bx a nn −=−=∆≤≤∞ 为)(x f 与)(x P n 在],[b a 上的偏差。

显然),(,0),(n n P f P f ∆≥∆的全体组成一个集合,记为)},({n P f ∆,它有下界0。

若记集合的下确界为,)()(max inf )},({inf x P x f P f E n b x a H P n H P n n n n n −=∆=≤≤∈∈ 则称之为)(x f 在],[b a 上最小偏差。

定义2 假定],[)(b a C x f ∈,若存在n n H x P ∈)(*,n n E P f =∆),(*, 则称)(*x P n 是)(x f 在],[b a 上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。

注意,定义并未说明最佳逼近多项式是否存在,但可证明下面的存在定理。

第3章 函数逼近1 (最佳一致逼近)

第3章 函数逼近1 (最佳一致逼近)
v4
上求切比雪夫交错组 在[ 1, 1]上求切比雪夫交错组 t1, …, tn+1 } 。 上求切比雪夫交错组{
最佳一致逼近多项式
目标: 目标:
要在H n中求Pn ( x )逼近f ( x ) ∈ C [a , b], 使其误差 || f ( x ) Pn ( x ) ||∞ = inf || f ( x ) Pn ( x ) ||∞
定理 3.3 的最佳逼近多项式,则 若P ( x ) ∈ H n 是 f ( x ) ∈ C [a , b] 的最佳逼近多项式 则P ( x ) 同时存在正、负偏差点. 同时存在正、负偏差点 证明:用反证法,设只有正偏差点。 证明:用反证法,设只有正偏差点。 设 || Pn y || ∞ = max ] | Pn ( x ) y ( x ) | = E n x∈[ a , b 而对于所有的 x∈[a, b] 都有 Pn ( x ) y ( x ) > E n ∈
-En≤pn*(x)-f(x)≤ En, -En≤qn(x)-f(x)≤ En (x)(x)所以- ≤(p 所以-En≤(pn*(x)+qn(x))/2 -f(x)≤En * 这说明 pn ( x) + qn ( x) pn ( x) = 2 也是对函数f(x)∈C a,b]的最佳一致逼近元. f(x)∈C[ 也是对函数f(x)∈C[a,b]的最佳一致逼近元. 现设误差曲线函数pn(x)-f(x)在区间[a,b] 在区间[ 现设误差曲线函数 (x)-f(x)在区间 a,b] 上的一个交错点组为{x 上的一个交错点组为{x1, x2,…, xn+2} ,为此 , En=|f(xk)-pn(xk)| =1/2|(f(xk)-pn*(xk))+(f(xk)-qn(xk))|.

数值分析切比雪夫多项式

数值分析切比雪夫多项式

(2k 1)
xk cos( 22 )
( k = 0, 1, 2, ···, 10)
11/18
令, P11(x) = (x – x0)(x – x1)···(x – x10) Q11(x) = (x – t0)(x – t1)···(x – t10)
则有
max
1 x1
|
P11( x)
|
max
1 x1
a22= - 1/3 a21=0
所以,
2(x)
x2
1 3
5/18
切比雪夫多项式:
T0(x)=1, T1(x)= cos = x, T2(x)=cos2 ······
1.递推公式:Tn(x)=cos(n),·········
由 cos(n+1)=2 cos cos(n) – cos(n-1) 得
Tn+1(x) = 2 x Tn(x) – Tn-1(x) (n ≥ 1) 所以, T0(x)=1, T1(x)=x, T2(x)=2x2 – 1 , ···········
88 135
17/18
最佳平方逼近:
P( x) 7 88 ( x 5) 9 135 8
f (x) x
P( x) 7 88 ( x 5) 9 135 8
18/18
0 cos m cos nd 0
所以,切比雪夫多项式在[– 1 , 1]上带权
( x) 1 正交
1 x2
9/18
3.切比雪夫多项式零点
T1=cos=x
n阶Chebyshev多项式: Tn=cos(n),
或, Tn( x ) = cos(n arccos x )
取 narccos x (2k 1) (k=0,1,···,n-1 )

切比雪夫多项式 [Chebyshev polynomial]

切比雪夫多项式 [Chebyshev polynomial]
Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。 维基媒体基金会是在美国佛罗里达州登记的501(c)(3)免税、非营利、慈善机构。
类似地, Un 的n个根分别是:
参看
◾ 切比雪夫节点 ◾ 切比雪夫滤波器
参考
◾ M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Chapter 22. New York: Dover, 1972.
定义
第一类切比雪夫多项式由以下递推关系确定
也可以用母函数表示 第二类切比雪夫多项式由以下递推关系给出
此时母函数为
从三角函数定义
第一类切比雪夫多项式由以下三角恒等式确定
其中 n = 0, 1, 2, 3, .... .
是关于
的 n次多项式,这个事实可以这么看:
是:
的实部(参见棣莫弗公式),而
从左边二项展开式可以看出实部中出现含 的项中, 都是偶数次的,从而可以表
其正交化后形成的随机变量是 Wigner 半圆分布).
基本性质
对每个非负整数 ,和 Nhomakorabea都为 次多项式。 并且当 为偶(奇)数时,它们
是关于 的偶(奇)函数, 在写成关于 的多项式时只有偶(奇)次项。
时, 的最高次项系数为

时系数为 。
最小零偏差

,在所有最高次项系数为1的 次多项式中 ,
对零的偏差最
小,即它是使得 在
在微分方程的研究中,切比雪夫提出切比雪夫微分方程

最佳一致逼近多项式

最佳一致逼近多项式

( f , p n ) E n,
*
( 3 .3 ) 或
则称 p n ( x ) 是 f ( x ) 在 [ a , b ]上的 n 次 最佳一致逼近多项式 最小偏差逼近多项式 ,简称 最佳逼近多项式
*
*
.
定理 2 若 f ( x ) C [ a , b ],
*
则总存在 p n ( x ) H n , 使得 。
证明:令 ( x ) | P ( x ) f ( x ) |, 则 ( x ) 连续,因而可以达到最 即存在 x 0 , 使得 ( x 0 ) max ( x ) || P ( x ) f ( x ) || 。
a xb
大值,
这说明 x 0 是 P ( x ) 的一个偏差点,不妨设 由于 P ( x ) 是最佳逼近多项式,则
三、最佳一致逼近多项式
1.零次最佳一致逼近多项式 对于n=0的P0(x)有: P0(x) =(M+m)/2 其中M、m分别为f (x) 的最大值和最小值。 ∵f(x)C[a,b],由闭区间上连续函数性质;在[a,b]上存在两点x1,x2 使f (x1)=M, f (x2)=m, 即:x1,x2为偏差点(负,正)使:
axb
f (x)
n
(x)
即在H中 (x)与f(x)之差的绝对值的最大值是最小的,H中 任一ψ (x)与f(x)之差的绝对值都比它大,这样的 (x)为 f(x)在H中的最佳一致逼近函数。
定义1
设 f ( x ) C [ a , b ],
pn ( x ) H n , 称
a xb
逼近多项式
推论2 设f(x)C[a,b],则f(x)在Hn中的最佳一致逼近多项 式Pn(x),就是f (x)在[a,b]上的某个n次Lagrange插 值多项式。 证明∵Pn(x)有n+2个偏差点,亦即使f (x) -Pn (x)在[a,b]上至少 有n+2个点交替换正负号,亦就是说f(x) Pn(x)=0在[a,b]上有n+1 个根存在n+1个点:a x0<…< xn b使f (xi) Pn (xi)=0 即:f (xi)=Pn(xi) (i =0,1,2,…,n) , 所以,以此作为插值条件可得 到Pn(x),因此,Pn(x)就是以x0,x1,…,xn为插值节点的n次值多项 式。 切比雪夫定理不仅给出了最佳一致逼近多项式的特征, 并从理论上给出了寻找最佳一致逼近多项式的方法:

【免费下载】切比雪夫多项式 详细 Chebyshev polynomials

【免费下载】切比雪夫多项式 详细 Chebyshev polynomials

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

计算方法最佳一致逼近多项式-切比雪夫多项式专题培训课件

计算方法最佳一致逼近多项式-切比雪夫多项式专题培训课件
T n(x)的最 n的 高 系 次 n 数 1,幂 (n 为 x 1.2 ) 证明: a记 rcθ c则 osx, T n1(x )cos [1 (n )θ c ]os[(θn)θ]
cos(nθθs )c in o(snθθ )si
co s1 () n θ cos(θ n s θi) nc(o θ n
Tn(x)在 1,[1]上有的 n个 零不 点同 xk co(s22k 1 n)π , (k1,2 …,,n)
证:将xk

cos(2k 1)π, 2n
(k

1,2,…, n)
代入Tn(x)的表达式,得到
Tn(x)
cos[narccso(cos(2k 1)π)] 2n

cos[(2k 1)π] 2
计算方法最佳一致
逼近多项式-切比 雪夫多项式
内容
1. 函数逼近的基本概念 2. 切比雪夫多项式 3. 最佳一致逼近多项式 4. 切比雪夫多项式在函数逼近中的应用 5. 利用切比雪夫多项式的0点构造最佳逼近多
项式的例子
函数逼近的基本概念
第3章 函数逼近与曲线拟合
§1 函数逼近的基本概念
一、函数逼近与函数空间
实际应用需要使用简单函数逼近已知复杂函数。
函数逼近问题: 对于函数类A中给定函的数
f(x),要求在另一类较简单便的于计算的函
数类
BA
B
A
中找一个函数p(,x使) p(x)与f(x的) 误差在某
种度量意义下达到最. 小
定1 理(Weaisesrf)s(若 tx rC ) [b a],则 ,ε0, 多项式 使p得 (x),
得知:情况a)如 为果 奇n数,则n2(xT)只含n的偶, 次方 Tn1(x)只含x的偶方 数, 次从而左n端 1(xT)只含x的偶; 次 情况b)如果n为,偶则数2xn(Tx)只含x的奇, 次Tn方 1(x) 只含x的奇次方,左从端而 nT1(x)只含x的奇次方
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


max
a x b
|
f(x)

p(x)
|
可以证明存在唯一的(a*0 , a1* , … , an* ), 使得
(a*0 , a1* , … , an* )

min{max
pHn a x b
|
f(x)

p(x)
|}.
Home
切比雪夫多项式在函数逼 近中的应用
三、切比雪夫多项式在函数逼近中的应用
多项式,且 max | f(x)
-1 x 1
Ln(x)
|
1 2n(n 1)!
||
f (n 1) (x)
||
证明:
max
-1 x 1
|
f(x)

Ln(x)
|
(n
1 1)!
||
f(n1)(x)
||||
(x

x0 )(x

x1) … (x

xn)
||

(n
1 1)!

(1)k
1
T2(x) T1(x)
-1
1
T3(x) T4(x)
-1
T3(x)有3个0值点,4个极值点
总结: Tn(x)具有很好的性质。
y
x
Tn(x)是n阶多项式,具有n个0点,n+1个极值点;有 界[-1, 1]; T1(x), T3(x),…只含x的奇次项,是奇函数,
T2(x), T4(x),…只含x的偶次项,是偶函数。 Home
π cos(mθ)cos (nθ)dθ π 0
(3)奇偶性
Tn(x)当n为奇数时为奇函数,且只含x的奇次幂; 当n为偶数时为偶函数,且只含x的偶次幂.
利用数学归纳法证明: 1)当n 0和n 1时,T0(x) 1x0, T1(x) x,结论成立。
2)假设当n 2为奇(偶)数时,T n(x)只含x的奇(偶 )次方,
xk

cos
(2k - 1)π 2(n 1)
,
k
1, … , n, n 1
此时, Ln(x)具有近似最佳一 致逼近的性质。
定理7 设f(x) Cn1[1,1],Ln(x)为插值多项式,
其插值节点x0 , x1,..., xn取为切比雪夫多项式Tn1
的0 点,则Ln (x)是f(x)在[-1 , 1 ]上的最佳一致逼近
最佳一致逼近多项式的存在性定理
定理 4 若f(x) C[a, b], 则必存在pn* (x) Hn ,
使得
|| f pn* || En
证明:设n次多项式
p(x) a0 a1x a2x2 … anxn
并记
p(x)的系数{an}
(a0 , a1, …
, an )
TT0n(x1()x)
1, T1(x) 2xTn(x)

x, Tn1(x).
(2.11)
Tn(x)的最高次幂x n的系数为2 n1, (n 1).
证明:记θ arccosx, 则
Tn1 (x) cos[(n 1)θ] cos[(nθ θ)] cos(nθ)cosθ sin(nθ)sinθ
22
22
22
22
xk

cos (2k 1)π , (k 22
1,2,… ,11)
接近-1和1的地方越密。过这些0点作平行于y轴的直
线,这些直线与上半单位元的交点形成了一个关于圆
弧的等距的点的集合。
(5)切比雪夫多项式的极值点
Tn(x)在[1,1]上有n 1个不同的极值点
x k

cos kπ , (k n

π,
m n 0.
(2.12)
证:令x cosθ,则
1
1
1
1
x2
Tm(x)Tn(x)dx

0 cos(mθ)cos(nθ)dcosθ
π
1 cos2θ
π cos(mθ)cos(nθ)dθ 0
根据积化和差公式:
cos(mθ)cos(nθ)

1 [cos(m 2

0,1,2,… , n)
轮流取得最大值1和最小值 1,{xk }称为交错点组。
- 1 x4
x 3
x2 0
x 1
x0 1
证: 将xk

cos
kπ n
,
(k
1,2,… , n)
代入Tn(x)的表达式,得到
Tn(x)

cos[narccos(cos
kπ )] n

cos[kπ]

cos[(2k
1)π] 2

0 (k

1,2,… , n)
图为T11(x)的零点,一共有11个
x11 x10 x 9 x 8
cosπ
cos 15π 22
x7
cos 13π 22
x6
cos π 2
x5
cos 9π 22
x4 x3 x2 x1
co s 7 π co s 5 π cos 3π cos π
(4)切比雪夫多项式的零点
Tn(x)在[1,1]上有n个不同的零点
xk

cos (2k 1)π , 2n
(k
1,2,… , n)
证:将xk

cos (2k 1)π , (k 2n
1,2,… , n)
代入Tn(x)的表达式,得到
Tn(x)

cos[narccos(cos (2k 1)π)] 2n
最佳一致逼近多项式
§3 最佳一致逼近多项式
一、基本概念及其理论
不超过n次的实系 数多项式的全体
本节讨论f(x) C[a, b], 求多项式pn* (x) Hn , 使得误差
||
f(x)

pn* (x)
||
min
pn Hn
||
f(x)

pn(x)
||
此即所谓最佳一致逼近 或切比雪夫逼近问题 。
b. Bernstan多项式
lim
n
Bn(f,
x)

f(x)
收敛到f(x)较慢, 不常用。
在[0,1]上一致成立。该证明于1912年给出。
ε的数值
y
y=L (x)
一致逼近的几何意义
x Home
切比雪夫多项式
切比雪夫(Chebyshev)多项式
• 切比雪夫多项式在逼近理论中有重要的应用。 • 切比雪夫多项式的0点可以用于构造具有最佳

x1) … (x

xn )
|
取极小值, 只需令:
(x x0 )(x x1) … (x xn)
1 2n
Tn1(x),
最佳一致 逼近0的 多项式
而上式成立的充分必要条件是x0, x1,…xn是切比雪夫 多项式的0点。
将Lagrange插值多项式Ln(x)的节点取为Tn1(x) 的0点 :
| f(x) p(x) | ε, 对于一切a x b成立
证明:伯恩斯坦的构造性证明:Bernstein多项式
Bn(f, x)

k
n 0
f

k n
Pk
(x)
(1.3)
其中Pk (x)


n k
xk
(1

a. 定理1具有重要
x)nk , 使得 的理论意义;
一致逼近性质的插值多项式。
切比雪夫多项式的(简单)定义: 表达式:对 1 x 1
Tn(x) cos(narccosx), n 0,1,2,… 称为切比雪夫多项式。 由三角表达式定 (2.10)
义的多项式
切比雪夫多项式的表达式
若令x cosθ,则 Tn(x) cos(nθ), 0 θ π.
计算方法 (Numerical Analysis)
第4次 最佳一致逼近多项式
内容
1. 函数逼近的基本概念 2. 切比雪夫多项式 3. 最佳一致逼近多项式 4. 切比雪夫多项式在函数逼近中的应用 5. 利用切比雪夫多项式的0点构造最佳逼近多
项式的例子
函数逼近的基本概念
第3章 函数逼近与曲线拟合
§1 函数逼近的基本概念
切比雪夫多项式的前几项:
T0(x) cos(0) 1 T1(x) cos(arccosx) x T2(x) cos(2arccosx) 2x2 1 T3(x) cos(3arccosx) 4x3 3x
课堂练习:推出T4(x)
切比雪夫多项式的性质
(1)基本递推关系
Hn
C[a, b]
目的:求一个能够按照绝对值逼近f(x)的最佳 n次多项式
偏差的定义
确定的
定义7 设f(x) C[a, b], pn(x) Hn , 称 Pn(x)
Δ(f, pn )
||
f

pn
||
max
a x b
|
f(x) pn(x)
| (3.1)
是f(x)与pn(x)在[a, b]上的偏差。
En

inf
pn Hn

(f,
pn
)}
对所有的 Pn(x)ϵHn

inf max
pn Hn a x b
|
ቤተ መጻሕፍቲ ባይዱ
f(x) pn(x)
|
(3.2)
称为f(x)在[a, b]上的最小偏差。
定义8 设f(x) C[a, b], 若存在pn* (x) Hn , 使得
相关文档
最新文档