复杂网络理论及其应用课件(2011-4-13)
复杂网络基础理论
无标度网络
定义:无标度网络是指节点的度分布遵循幂律分布的网络即少数节点拥有大量连接大部分节点 只有少数连接。
特性:无标度网络具有高度的异质性其结构可以抵抗随机攻击但容易受到定向攻击。
构建方法:无标度网络的构建通常采用优先连接机制即新节点更倾向于与已经具有大量连接的 节点相连。
应用场景:无标度网络在现实世界中广泛存在如社交网络、互联网、蛋白质相互作用网络等。
07
复杂网络的未来研究方向和挑战
跨领域交叉研究
复杂网络与计算机 科学的交叉:研究 网络算法、网络安 全和网络流量控制 等。
复杂网络与生物学 的交叉:研究生物 系统的网络结构和 功能如蛋白质相互 作用网络和基因调 控网络等。
复杂网络与物理学 的交叉:研究网络 的拓扑结构和动力 学行为如复杂系统 、自组织系统和非 线性系统等。
复杂网络的演化过程中节点和边 的动态变化会导致网络的拓扑结 构和性质发生改变。
添加标题
添加标题
添加标题
添加标题
复杂网络具有非线性和自组织的 特性能够涌现出复杂的结构和行 为。
复杂网络在现实世界中广泛存在 如社交网络、生物网络、交通网 络等。
复杂网络的特征
节点数量巨大且具有自组织、 自相似、小世界等特性
03
复杂网络的基本理论
网络拓扑结构
节点:复杂网络中的基本单元
连通性:网络中节点之间是否存 在路径
添加标题
添加标题
添加标题
添加标题
边:连接节点的线段表示节点之 间的关系
聚类系数:衡量网络中节点聚类 的程度
网络演化模型
节点增长模型:节点按照一定概 率在网络中加入形成无标度网络
节点属性演化模型:节点属性随 时间发生变化影响网络的演化
复杂网络理论及其应用
复杂网络理论及其应用随着计算机科学和信息技术的迅速发展,网络已经成为了现代社会中不可或缺的一部分。
网络连接了人们、企业和政府,承载了大量的信息和数据。
同时,网络也存在着很多的特征和问题,例如网络的节点、边、规模、结构和节点间的关系等。
为了更好地理解和解决这些问题,人们提出了复杂网络理论,该理论旨在研究复杂系统中的网络结构、动力学和功能。
复杂网络是指由众多节点和连接构成的复杂结构,其中节点可以表示任何实体,例如人、电脑、公司、生物分子等。
而连接则表示节点之间的相互依存和相互作用。
复杂网络理论研究的重点是网络的拓扑结构,也就是节点和边的连接规律,这种规律在不同的网络中体现出了不同的特征。
阶段一:复杂网络的起源复杂网络的起源可以追溯到上世纪五六十年代,当时研究网络的主要目的是了解物理和社会系统中的相互影响和相互依存关系。
最早被研究的网络通常是由简单和均质节点组成,但是在现实中,许多网络都是由复杂和异质节点组成的,例如人际关系网络、通信网络和运输网络等。
这些网络的复杂性使得传统的网络分析方法不能完全胜任网络的研究和设计工作。
阶段二:复杂网络的基本特征1998年,神经科学家Watts和社会学家Strogatz在《Nature》杂志上发表了经典的论文《小世界现象》,从而奠定了复杂网络的基础。
Watts和Strogatz提出,许多真实网络都具有一种叫做“小世界”特性的结构,即节点之间的连接路径极短,但每个节点只与相对较少的邻居节点直接相连。
这种特性不仅能够解释为何在真实的网络中,节点之间的距离要比随机网络短,同时还能够说明真实网络中存在着许多“弱联系”,这些联系虽然不那么密切,但是却非常重要以及在传染疾病、社会传播和信息扩散等方面发挥着关键作用。
这篇论文从观察到Watts和Strogatz是否真的是一个贝尔曼等式,随着建筑物更改其连接性贝尔曼等式将会更改的角度展开分析,通过这些实验证明了“小世界”网络在各种复杂系统中都是普遍存在的。
PPT—复杂网络.ppt
三、社区结构
整个网络是由若干个“社区"或“组’’构成的。每个社 区内部的结点间的连接相对非常紧密,但是各个社区之间 的连接相对来说却比较稀疏(网络中的顶点可以分成组, 组内连接稠密而组间连接稀疏)。我们将复杂网络的这种 结构特征称之为复杂网络的社团结构或社区结构。
社区结构是复杂网络的一个重要的特性,社区也被称为簇, 大量研究表明网络是由各种不同类型的节点构成的,一般 情况下,在不同类型的节点间存在较少的边,而在相同类 型的节点间会有较多的边。位于一个子图内的节点和边组 成一个社团。 复杂网络社区结构还有一个很重要的特性,即是它的层次特
复杂网络的统计特征
网络的聚类系数C:所有节点i的聚类系数Ci的平均值。
(0C1) C=0网络中所有节点都是孤立点 C=1网络中任意节点间都有边相连
★ 网络节点间联系的密切程度, 体现网络的凝聚力
★ 许多大规模的实际网络都具有明显的聚类效应。事实 上,在很多类型的网络(如社会关系网络)中,你的朋友同 时也是朋友的概率会随着网络规模的增加而趋向于某个非 零常数,即当N→∞时,C=O(1)。这意味着这些实际的复杂 网络并不是完全随机的,而是在某种程度上具有类似于社 会关系网络中“物以类聚,人以群分”的特性。
性现实中的网络是由一个个较小的社团组成,而这些社团又可 以包括更小的社团。发现网络中的社团结构,对于了解网络结 构,分析网络特性都具有很重要的意义。
复杂网络研究内容
1)复杂网络模型 典型的复杂网络:随机网、小世界网、无标度网等; 实际网络及其分类。
2)网络的统计量及与网络结构的相关性 度分布的定义和意义,聚集性、连通性的统计量及其实际 意义等。
节点的数目。
★ 直观上看,一个节点的度越大就意味着这个节点在
PPT—复杂网络
随机图——节点42,边118
平均度为5.62,集聚系数为0.133。
ER模型
Erdös和Rényi (ER)最早提出随机网络 模型并进行了深入研究,他们是用概率统 计方法研究随机图统计特性的创始人。
给定N个节点,没有边,以概率p用边连接 任意一对节点,用这样的方法产生一随机 网络。
ER模型
小世界实验--- 六度分离
米尔格伦的实验过程是:他计划通过人传人的送信方式来统 计人与人之间的联系。
首先把信交给志愿者A,告诉他信最终要送给收信人S。如果 他不认识S,那么就送信到某个他认识的人B手里,理由是A认 为在他的交集圈里B是最可能认识S的。但是如果B也不认识S, 那么B同样把信送到他的一个朋友C手中,……,就这样一步 步最后信终于到达S那里。这样就从A到B到C到……最后到S连 成了一个链。斯坦利•米尔格伦就是通过对这个链做了统计后 做出了六度分离的结论。
性现实中的网络是由一个个较小的社团组成,而这些社团又可 以包括更小的社团。发现网络中的社团结构,对于了解网络结 构,分析网络特性都具有很重要的意义。
复杂网络研究内容
1)复杂网络模型 典型的复杂网络:随机网、小世界网、无标度网等; 实际网络及其分类。
2)网络的统计量及与网络结构的相关性 度分布的定义和意义,聚集性、连通性的统计量及其实际 意义等。
度(degree):节点 i 的度 ki 定义为与该节点连接的其他
节点的数目。
★ 直观上看,一个节点的度越大就意味着这个节点在
某种意义上越“重要”(“能力大”)。
网络的平均度:网络中所有节点的度和的平均值
dv
vV G
,记作<k>。
p
度分布函数p(k):随机选定节点的度恰好为k的概率
复杂网络ppt课件
介数(Betweenness)
★点介数:网络中通过该节点的最短路径的条数 ★ 边介数:网络中通过该边的最短路径的条数 ★反映了节点或边的作用和影响力。如果一对节点间共有B条不 同的最短路径,其中有b条经过节点i,那么节点i对这对节点的 介数的贡献为b/B。把节点i对所有节点对的贡献累加起来再除以 节点对总数,就可得到节点i的介数。类似的,边的介数定义为 所有节点对的最短路径中经过该边的数量比例。
复杂网络应用
电力系统复杂网络的应用:
电力系统复杂网络受到随意攻击
细胞复杂网络的应用:
肺部细胞形成一个复杂网络
因特网复杂网络的应用:
因特网形成的复杂网络
交通运输复杂网络的应用:
航
空
道
网
路
交
通 网
城 市
公
共
交
通
网
复杂网络的统计特征
u 度(degree):节点 i 的度 ki 定义为与该节点连接的其 他节点的数目。
复杂网络的研究历史:
哥尼斯堡七桥——>随机图论——>小世界和无标度网络
v 自组织:如果一个系统靠外部指令而形成组织,就是他组 织;如果不存在外部指令,系统按照相互默契的某种规则, 各尽其责而又协调地自动地形成有序结构,就是自组织。
自相似:一种形状的每一部分在几何上相似于整体,一般对分形而言。
吸引子:相空间(可以表示出一个系统所有可能状态的空间)中稳 定的不动点集。
5)复杂网络的复杂结构 社团结构、层次结构、节点分类结构等。
6)网络控制 关键节点控制、主参数控制和控制的稳定性和有效性。
7)复杂网络建模 机理建模、数据建模和实际系统的复杂网络正向与逆向建模。
8)复杂逻辑网络 逻辑与高阶逻辑定义、分类、判定算法,高阶逻辑的实际 意义等等。
复杂网络(度相关性与社团结构)PPT课件
.
10
knn (k) 与条件概率和联合概率之间具有如下关系:
knn
kmax
(k)
k 'Pc (k ' | k)
k' kmin
1 qk
kmax
k
'
e k
k
'
k' kmin
如果 knn (k) 是k的增函数,那么就意味着平均而言,度大的 节点倾向于与度大的节点连接,从而表明网络是同配的;反之,
任一条边与某个节点相连的概率与该节点的度成正比,度不相关网
络的条件概率为
Pn
(k
'
|
k
)
Pn
(k)
k 'P(k ' ) k
.
.
9
判断度相关性的更为简洁的方法:计算度为k的节点的邻居节 点的平均度,也称度为k的节点的余平均度,记为 knn (k).
假设节点i的 ki 个邻居节点的度为 kij , j 1,2,...,ki. 我们可以计算节
点i 的余平均度,即节点i的 ki 个邻居节点的平均度 knn i 如下:
1
knn i ki
ki
ki j .
j 1
(egP124图4-4)
假设网络中度为k的节点为 v1, v2,..., vik , 那么度为k的节点的余平 均度可计算如下:
1 ik
knn (k ) ik
k nn vi
显然度分布中已经包含了平均度的信息 k kP(k). k 0 具有相同度分布的两个网络可能具有非常不同的其他性质或行为。eg:P121 为进一步刻画网络的拓扑结构,考虑包含更多结构信息的高阶拓扑特性。
.
复杂网络理论和应用研究-PPT课件
k C N
网络(图)的基本概念
7
2
5
2
5 1 3 7
5
3
1 5
网络(图)的基本概念
节点1到7之间的最短路13,平均路径长度5.47,
平均度为3.4,集群系数为0.48。
3、规则图和随机图
规则图的特征 如果系统中节点及其与边的关系是固定的, 每个节点都有相同的度数,就可以用规 则图来表示这个系统。 随机图的特征 如果系统中节点及其与边的关系不确定, 就只能用随机图来表示这个系统。
因特网是一个复杂网络。(本图绘制于2019年 2月6日,描绘了从某一测试站点到其他约10万 个站点的最短连结路径。图中以相同的颜色来 表示相类似的站点。Nature 2000)
1 引论
复杂网络具有如下5个特征:
•
网络的大规模性和行为的统计性:网络节点数可以有成百上千万, 甚至更多,超大规模网络的行为具有统计特性。 节点动力学行为的复杂性: 各个节点本身可以是各非线性系统 (可以有离散的和连续微分方程描述), 具有分岔和混沌等非 线性动力学行为。 网络连接的稀疏性:一个有N个节点的具有全局耦合结构的网络 的连接数目为O(N ^2),而实际大型网络的连接数目通常为 O(N)。 连接结构的复杂性: 网络连接结构既非完全规则也非完全随机, 但却具有其内在的自组织规律。 网络的时空演化的复杂性: 复杂网络具有空间和时间的演化复 杂性, 展示出丰富的复杂行为,特别是网络节点之间的不同类型 的同步化运动。
b
d
e
网络(图)的基本概念
节点的度分布是指网络(图)中 ) 度为 k 的节点的概率 p ( k随节点 度 的变化规律。 k
网络(图)的基本概念
复杂网络的理论及应用
复杂网络的理论及应用随着科技的不断发展,人们的生活和社会组织方式也在不断变化。
在这个过程中,网络的作用越来越显著。
复杂网络作为网络科学的一支重要学科,研究的是网络的结构和性质。
通过探究网络中节点的联系及其交互关系,为许多实际问题提供了解决思路。
1. 复杂网络的理论复杂网络学理论基础主要有三个方面:图论、随机过程、统计物理学。
图论是复杂网络学理论的基础,它将复杂网络看作由节点和边构成的图。
随机过程是强大的工具,它可以描述复杂网络的动态演化。
统计物理学则为复杂网络提供了相当严密的理论基础,将网络中的节点当作对象,基于概率论和热力学的基本假设,研究网络的各种性质。
在以上基础上,复杂网络的理论发展主要包括以下几个方面:1.1. 网络的基本属性网络的基本属性包括:度数分布、聚类系数和平均路径长度。
其中,度数分布指的是每个节点拥有的链接数,而聚类系数和平均路径长度则分别描述了节点间的紧密程度和短距离程度。
1.2. 小世界效应小世界网络是指网络具有高聚类系数和短路径长度的共同特点。
研究表明,许多真实网络都具有小世界特性,表现为较高的聚集指数和较短的平均路径长度。
这种现象被称为小世界效应。
1.3. 无标度网络与节点重要性无标度网络是指网络中节点度数分布呈幂律分布。
具有该特性的网络具有重要的节点。
研究表明,少数节点在网络中的重要性远高于其他节点,这些节点被称为“关键节点”。
识别和保护这些关键节点对于网络的稳定性和鲁棒性至关重要。
1.4. 阻尼振荡阻尼振荡是复杂网络中的一种现象,它可以描述节点之间的同步现象。
研究表明,网络的结构和同步现象密切相关,不同的结构会导致不同的同步行为。
2. 复杂网络的应用复杂网络的应用广泛,尤其在社会学、生物学等领域中有着非常重要的地位。
下面分别介绍常见的应用领域。
2.1. 社交网络社交网络指的是人与人之间的联系网络。
研究表明,社交网络中的节点和联系具有很多特性,比如关闭性、传染性等。
基于这些特性,社交网络可以应用于疾病的传播、信息的传递等领域。
复杂网络理论及应用
复杂网络理论及应用第一章:引言随着信息时代的发展,网络已经成为了人们生活和工作中必不可少的一部分。
然而,现实中的网络往往非常复杂,网络中大量的节点和链接呈现出很多不确定性和关联性,这给网络的研究和应用带来了很大的挑战。
复杂网络理论的出现和发展,使得人们更好地理解和分析网络中的复杂性,也为人们在社交网络、交通网络、生物网络等各个领域中的应用提供了新的方法和工具。
第二章:复杂网络理论概述复杂网络理论是指研究具有多个节点和链接,节点之间存在各种关系和随机事件的网络的一门交叉学科。
它主要包含以下几个部分:1.网络结构与拓扑学网络的结构和拓扑学是复杂网络理论的核心内容之一。
它研究的是各种网络从节点和边的角度来描述网络的特征,例如:节点数量、节点类型、节点与节点之间的联系、边的权重等。
2.网络动力学与控制网络动力学是指通过不同的参数来描述网络的动态特性与行为。
控制理论则关注如何对网络进行管理和控制,使得网络系统得以拥有更优的性能和效率。
3.网络演化与性质网络演化理论研究网络随着时间推进过程中,各节点之间的关系、其行为特征演化和变化的规律,通过对网络结构和动力学的同时研究,帮助人们了解怎样构建更加极具鲁棒性的网络结构。
第三章:复杂网络的应用目前,复杂网络模型在社交、生物、金融、交通等领域已经被广泛地应用,以下列举几种典型例子。
1.社交网络的研究社交网络是现代社会中一个重要的网络形态,它在网络研究领域中拥有着重要的地位。
通过对社交网络上的拓扑结构和节点之间的关系进行分析,可以对人际关系、社会心理等问题进行深入的研究。
2.生物网络的研究生物网络是指人体内部所有生物组织、器官之间的连接关系构成的网络。
对于生物网络的理解可以帮助我们更好地掌握人体生理机制,为药物设计和疾病诊断带来便利。
3.交通网络的研究随着城市的发展和人口的增长,交通网络日渐复杂。
通过对交通网络的建模和优化,研究人员可以更好地理解城市交通状况,为交通疏通和交通流优化提供更好的方案。
复杂网络理论和应用研究PPT课件
早期网络模型-ER模型
Erdös和Rényi (ER)最早提出随机网 络模型并对模型进行了深入研究,他们 是用概率统计方法研究随机图统计特性 的创始人。
在模型开始阶段给定N个节点,没有边, 以概率p用边连接任意一对节点,用这样 的方法产生一随机网络。
~ 1.5 Poisson distribution
小世界模型
为了描述从一个局部有序系统到一个随机 网络的转移过程,Watts和 Strogatz (WS)提出了一个新模型,通常称为小 世界网络模型。
WS模型始于一具有N个节点的一维网络, 网络的节点与其最近的邻接点和次邻接点 相连接,然后每条边以概率p重新连接。 约束条件为节点间无重边,无自环。
成的一张图。
中国教科网
中国教科网拓扑结构
网络(图)的基本概念
• 关联与邻接 • 度、平均度 • 节点的度分布 • 最短路径与平均路径长度 • 群系数
网络(图)的基本概念
a
b
c
d
e
网络(图)的基本概念
节点的度分布是指网络(图)中 度为 k的节点的概率 p(k随) 节点
度 的变k化规律。
网络(图)的基本概念
规则图的特征
平均度为3
随机图的特征
节点确定,但边以概率 p任意连
接。 节点不确定,点边关系也不确定。
随机图——节点19,边43
平均度为2.42,集群系数为0.13。
随机图——节点42,边118
平均度为5.62,集群系数为0.133。
4. 复杂网络的演化模型
复杂网络是大量互联的节点的集合,节点 是信息的载体,比如互联网,万维网,以 及各种通信网、食物网、生物神经网、电 力网、社会经济网、科学家合作网等。
《复杂网络简介》课件
100%
小世界网络
指网络中节点间的平均距离很短 ,即信息在网络中传播的速度很 快。
80%
随机网络
节点和边的出现是随机过程的结 果,网络结构相对均匀。
03
复杂网络的演化
网络演化的基本规律
自相似性
复杂网络在演化过程中表现出 自相似性,即在不同尺度上网 络的结构和性质具有相似性。
无标度性
复杂网络中节点的度分布遵循 幂律分布,即少数节点拥有大 量连接,而大多数节点只有少 数连接。
小世界效应
复杂网络中的节点平均距离较 小,信息在网络中传播迅速。
网络演化的机制
01
02
03
增长
随着时间的推移,网络中 的节点数量不断增加,新 的节点通过与已有节点建 立连接加入网络。
优先连接
新加入的节点更倾向于与 已有节点中连接数较多的 节点建立连接,从而形成 层次结构。
自组织
网络中的节点通过局部规 则和相互作用,在演化过 程中形成复杂的结构和模 式。
复杂网络的重要性
揭示现实世界中复杂系统的内在规律和机制
复杂网络是描述现实世界中复杂系统的重要工具,可以帮助我们 揭示系统内在的规律和机制。
促进跨学科研究
复杂网络涉及多个学科领域,如数学、物理、计算机科学、社会 学等,通过复杂网络的研究可以促进跨学科的合作与交流。
复杂网络的应用领域
01
02
03
04
网络控制的基本概念
1 2
状态反馈控制
通过测量节点的状态,并利用状态反馈控制方法 调整节点的输入,实现网络的控制。
输出反馈控制
通过测量节点的输出,并利用输出反馈控制方法 调整节点的输入,实现网络的控制。
3
复杂网络概述 ppt课件
小世界实验--- Bacon数
在网上有一个网页。网站的数据库里总共存有有783940个世界 各地的演员的信息以及231,088部电影信息。
通过简单地输入演员名字就可以知道这个演员的 bacon 数。目 前比如输入Stephen Chow(周星驰)就可以得到这样的结果: 周星驰在 1991 年的《豪门夜宴 (Haomen yeyan)》 中与洪金宝 (Sammo Hung Kam-Bo) 合作;而洪金宝又在李小龙的最后一部 电影,即 1978 年的《死亡的游戏 ( Game of Death )》 中与 Colleen Camp 合作; Colleen Camp 在去年的电影《Trapped》 中与Kevin Bacon 合作。这样周星驰的Bacon数为3。 对78万个演员所做的统计:演员的最大Bacon数仅仅为8,平均 Bacon数仅为2.948。
ppt课件 6小世界实验--- Bac Nhomakorabean数
截止到几天前,世界电影史上共产生了大约 23万 部电影,78多万名电影演员(参见互联网电影库 ). Kavin Bacon在许多部电影中饰演小角色。 几 年 前 ,Virginia 大 学 的 计 算 机 专 家 Brett Tjaden 设计了一个游戏,他声称电影演员 Kevin Bacon是电影界的中心。 在游戏里定义了一个所谓的 Bacon 数:随便想一 个演员,如果他(她)和 Kavin Bacon 一起演过 电影,那么他(她)的 Bacon 数就为 1 ;如果他 (她)没有和Bacon演过电影,但是和Bacon数为 1 的演员一起演过电影,那么他的 Bacon 数就为 2 ; 依此类推。 发现: 在曾经参演的美国电影演员中,没有一个 人的Bacon数超过4。
复杂网络基础理论(ppt)
IP
朋
地
友
址 网
关系
网
数理统计基础
概率论基础 数理统计基础 统计假设及检验 一元线性回归分析
图论的基本概念
图的基本概念 图的路和连通性 图的基本运算 树与生成树 图的矩阵表示
复杂网络的研究内容和意义
研究的主要内容包括:网络的几何性质,网络 的形成机制,网络演化的统计规律,网络上的模 型性质,网络的结构稳定性,网络的演化动力学 机制等。
间的距离dij和从节点vj到vi之间的距离dji是不同的。距离dij 定义为从节点vi出发沿着同一方向到达节点vj所要经历的弧的 最少数目,而它的倒数1/dij称为从节点vi到节点vj的效率, 记为εij。
有向连通简单网络的平均距离L
因为效率可以用来描述非连通网络,所以可以定义有向网 络的效率LC为
介数
介数 节点的介数Bi定义为
式中,Njl表示从节点vj到vl的最短路径条数,Njl(i)表示 从节点vj到vl的最短路径经过节点vi的条数。 边的介数Bij定义为
式中,Nlm表示从节点vl到vm的最短路径条数,Nlm(eij )表示从节点vl到vm的最短路径经过边eij(方向相同)的 条数。
加权网络的静态特征
核度 一个图的k-核是指反复去掉度值小于k的节点及其连线后
,所剩余的子图,该子图的节点数就是该核的大小。 节点核度的最大值叫做网络的核度。 节点的核度可以说明节点在核中的深度,核度的最大值自然
就对应着网络结构中最中心的位置。
度中心性
度中心性分为节点度中心性和网络度中心性。 节点vi的度中心性CD(vi)定义为
网络G的度中心性CD定义为
介数中心性
介数中心性分为节点介数中心性和网络介数中心性。 节点vi的介数中心性CB(vi)定义为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Complex network and its applications高忠科Apr 13, 2011Outline社团结构及其探寻算法4复杂系统与复杂网络1描述复杂网络基本统计量2小世界和无标度网络模型35复杂网络应用举例7关于复杂性关于复杂性我们所关心的问题:大量个体(更典型的是具有适应性的主体)所组成的复杂系统,在没有中心控制、非完全信息、仅仅存在局域相互作用的条件下,通过个体之间的非线性相互作用,可以在宏观层次上涌现出一定的结构和功能。
相互作用与复杂性Internet全局相互作用晶格扩散平均场什么是复杂网络?1复杂网络是对复杂系统的抽象和描述方式,任何包含大量组成单元(或子系统)的复杂系统,当把构成单元抽象成节点、单元之间的相互关系抽象为边时,都可以当作复杂网络来研究。
1复杂网络是研究复杂系统的一种角度和方法,它关注系统中个体相互关联作用的拓扑结构,是理解复杂系统性质和功能的基础。
什么是复杂网络?1Watts DJ and Strogatz SH, Nature393, 440 (1998)Citation: 4911 (Small-world network)Barabási AL and Albert R, Science286, 509 (1999)Citation: 5474(Scale-free network)1复杂网络为研究复杂系统提供了一个全新的视角,对理解真实系统的复杂行为起着重要的作用。
1复杂网络研究的兴起,广泛应用于社会学,物理统计学,经济学,控制学,工程学,生物医学等多个跨学科研究领域。
Emergence of a networked lifeAtomMoleculeCellTissueOrgans OrganismsCommunities为什么研究复杂网络?1复杂系统不能够用分析的方法去研究,必须考虑个体之间的关联和作用;1理解复杂系统的行为应该从理解系统相互作用网络的拓扑结构开始;1网络拓扑结构的信息是构建系统模型、研究系统性质和功能的基础。
为什么研究复杂网络?1复杂网络是构成复杂系统的基本框架( backbone ),每一个复杂系统都可以看作是单元或个体之间的相互作用网络;1复杂网络在刻画复杂性方面的重要性是由于结构和功能之间是相互影响的。
Examples of Complex NetworksThe worldwide air transportation network: a real socio-economic networkGuimera, Mossa, Turtschi, Amaral, PNAS(2005)The protein interactome of yeast: a real biochemical networkJeong, Mason, Barabasi, Oltvai, Nature(2001)生命金字塔不同领域的复杂网络1社会网:演员合作网,友谊网,科研合作网,Email网1生物网:食物链网,神经网,新陈代谢网,蛋白质网,基因调控网络1信息网络:WWW,专利使用,论文引用,计算机共享1技术网络:电力网,Internet,电话线路网1交通运输网:航线网,铁路网,自然河流网1时间序列信号复杂网络:流型复杂网络,脑功能网络,金融网络等网络研究的历史11736,欧拉:哥尼斯堡七桥11950,Erdos, Renyi: 随机图论11998,Strogatz, Barabasi: 小世界和无标度网络为什么现在才开始研究复杂网络?1计算机技术的发展:h 使我们拥有各种网络的数据库,并有可能对大规模的网络进行实证研究1普适性的发现:h 许多实际网络具有相同的定性性质h 且已有的理论不能描述和解释1理论研究的发展h 小世界网络(Small World Network), 无标度网络(Scale-free Network)h 统计物理学的研究手段复杂网络研究所关心的问题How to investigate Complex Networks ?1如何定量刻画复杂网络?h 网络结构的描述及其性质1网络是如何发展成现在这种结构的?h 网络演化模型1网络特定结构的后果是什么?h 网络结构的鲁棒性h 网络上的动力学行为和过程Outline社团结构及其探寻算法4复杂系统与复杂网络1描述复杂网络基本统计量2小世界和无标度网络模型35复杂网络应用举例7Describing a network formally1N nodes and E edges,1where E ≤N (N -1)/21N = 7, E = 9Note: In graph theory language this graph is of order 7 and size 9.Directed networksMore edges: E≤N(N-1)Much more complex topology.Adjacency matrixThe most convenient way of describing a network is the adjacency matrix a ij.A link between node i to node j is recorded by a ‘1’in the i th row and the j th column.Adjacency matrixUndirected networks havea symmetric adjacency matrix a ij.Directed networks in generalhave asymmetric a ij.Weighted networksIn a weighted network a real number is attached to each edge, so that we obtain a real adjacency matrix, usually denoted as w ij.DegreeIn an undirected network the degree k i of a node i is the number of nodes i is connected to:k i= Σj a ij= Σj a jiHere k1= 2, k2= 4, k3= 1, k4= 3 and k5= 2.In-degree and out-degreeIn a directed network the in-degree k i(in)of a node i is the number of directed edges pointing to node i:k i(in)= Σj a jiwhile the out-degree k i(out)of a node i is the number of directed edges pointing from node i:k i(out)= Σj a ijIn-degree and out-degreeThus, in a directed network, nodes can be highly connected, yet also isolated (e.g. in terms of sending or receiving information.)In-degree and out-degreeCitationsThe network of scientific citations provide examples illustrating two extremes:High in-degree and low out-degree:much-cited research articleLow in-degree and high out-degree:Book or review articleStrengthIn a weighted, undirected network the strength is the sum of the weights for the edges connecting to a node:s i= Σj w ij= Σj w jiHence s1= 4,s2= 18,s3= 2,s4= 13 and s5= 15.Shortest path lengthThe distance between two nodes i and j is the shortest path connecting the two nodes.i jd ij= 4i jAverage shortest path length:DiameterThe diameter of a network is the largest distance in the network -in other words it is the maximum shortest path connecting any two nodes.D= 2 D= 1Note: Fully connected networks (like the one on the right) have diameter D = 1.Clustering coefficientThe clustering coefficient measures how densely connected the neighborhood of a node is.It does this by counting the number of triangles of which a given node i is a part of, and dividing this value by the number of edge pairs.Often the clustering coefficient is averaged over the entire network: Where N is the number of nodes.BetweennessThe communication of two non-adjacent nodes, say j and k, depends on the nodes belonging to the paths connecting j and k. Consequently, a measure of the relevance of a given node can be obtained by counting the number of geodesics going through it, and defining the so-called node betweenness, defined as:where nis the number of shortest paths connecting j and k, while jk(i) is the number of shortest paths connectingj and k and passing njkthrough i.Standard measures of node centralityAssortativityAssortativity describes the correlation between the degree of a node and the degree of its neighbors.Networks in which highly connected nodes are linked to other nodes with a high degree are termed assortative. Such networks include social networks.Networks in which highly connected nodes are only linked to nodes with a low degree are termed disassortative. Such networks include the World Wide Web and biological networks.Assortativity CoefficientOne way of measuring assortativity is to determine the Pearson correlation coefficient between the degrees of pairs of connected nodes. This is termed the associativity coefficient r :r = (1/σq ) Σjk jk (e jk -q j q k )and lies between -1 (disassortative) and 1 (assortative).Some values for real networks:Physics coauthorship: 0.363Company directors: 0.276Internet: -0.189Marine food web: -0.247Degree distributionOutline社团结构及其探寻算法4复杂系统与复杂网络1描述复杂网络基本统计量2小世界和无标度网络模型35复杂网络应用举例7规则网络1规则网络是指平移对称性晶格,任何一个格点的近邻数目都相同。