多目标规划ppt
合集下载
多目标规划
![多目标规划](https://img.taocdn.com/s3/m/1a40b9d5b9f3f90f76c61b45.png)
解:
x2
A B C
x1
Eab = E pa = {B}, Ewp = AB, BC
{
}
O
T 2 2 例2 设 X = {( x1 , x2 ) ( x1 + 1) + 2 x = 4}, 求 X , 的 Eab , E pa , Ewp
2
解:
x2
Eab = φ , E pa = Ewp
= AB
{ }
第二节 多目标规划问题的解 一,向量集的极值 1 多目标规划的标准形式是
min( f1 ( x),..., f p ( x))T , p > 1, x ∈ E n g i ( x) ≥ 0 i = 1,..., m s.t. h j ( x) = 0 j = 1,..., l (2.1)
1
介绍A.M.Geoffrion于1968年提出的—种 真有效解—G-有效解.
�
min f ( x) = ( f1 ( x), f 2 ( x))T
x∈D
f1 ( x) = x1 + 2 x2 , f 2 ( x) = x1 x2 , D = ( x1 , x2 )T 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1
的有效解和弱有效解. f1 ( x) = 3 x2 1 B
{
}
R pa = Rwp = {OA, AB}
解: 1 画出 D 及 D 的像 f (D )
f1
x
f1 , f 2 联立消去 x
O 1
得
f1 = f 22 + 2 f 2
f2
1
R pa = Rwp
. .
2
.
f2
x
o
1 2
多目标规划方法讲义
![多目标规划方法讲义](https://img.taocdn.com/s3/m/2cebb49b7fd5360cbb1adb31.png)
max(min)Z f1( x1, x2,, xn )
i ( x1, x2,, xn ) gi (i 1,2,, m)
f
min j
fj
f
max j
(
j
2,3,,
k)
方法四 目标达到法 首先将多目标规划模型化为如下标准形式:
f1( X )
min
F
(
x
)
min
f2
(X
)
fk
(
X
)
1
(
(二)对于多目标规划问题,可以将其数学模型一般地描 写为如下形式:
max(min)
f1
(
X
)
Z F ( X ) max(min) f2 ( X )
max(min) fk ( X )
1( X )
g1
s.t.
(
X
)
2(X
)
G
g2
m ( X )
gm
式中: X [ x1, x2 ,, xn ]T 为决策变量向量。
∴ d+× d- =0 成立。
2、目标约束和绝对约束
引入了目标值和正、负偏差变量后,就对某一问题 有了新的限制,既目标约束。
目标约束即可对原目标函数起作用,也可对原约束起 作用。目标约束是目标规划中特有的,是软约束。
绝对约束(系统约束)是指必须严格满足的等式或 不等式约束。如线性规划中的所有约束条件都是绝对 约束,否则无可行解。所以,绝对约束是硬约束。
目标规划的图解法
一、目标规划概述
目标规划是在线性规划的基础上,为适应经济管理 中多目标决策的需要而逐步发展起来的一个分支。
(一)、目标规划与线性规划的比较
多目标规划教材(PPT 116张)
![多目标规划教材(PPT 116张)](https://img.taocdn.com/s3/m/d4a91f3452d380eb62946dec.png)
O
f2 A5 A4 A1 A3 A2 f1 A6 A7
多目标规划的解集
绝对最优解
* * 设 x* R ,如果对于 x R 均有 F x F x ,则称 x 为多目标规划问题的绝对最
*
优解。多目标规划问题的绝对最优解的全体可以记为 Rab ,其含义为:该最优解与 任意一个可行解都是可以进行比较的。下图为当 n 1, p 2 时绝对最优解的示意图。
多目标规划问题的典型实例
再由约束条件,该厂每周的生产时间为 40h,故: x1 x2 x3 40 且需要满足能耗不得超过 20t 标准煤: 0.48x1 0.65x2 0.42 x3 20 上面是对生产过程的约束,再考虑销售过程,由于数据表中给出了三种产品每周 的最大销量,故我们必须限制生产数量小于最大销量才能使得成本最低,即满足下 述约束条件:
qA1 20x1 700; qA2 25x2 800; qA3 15x3 500
同时考虑到生产时间的非负性,总结得到该问题的数学模型为:
max min s.t.
f1 x 500 x1 400 x2 600 x3 f 2 x 0.48 x1 0.65 x2 0.42 x3 x1 x2 x3 40 0.48 x1 0.65 x2 0.42 x3 20 20 x1 700 25 x2 800 15 x3 500 x1 , x2 , x3 0
多目标规划的解集
直观理解
对单目标规划来说,给定任意两个可行解 x1 , x2 R ,通过比较它们的目标函数 值 f x1 , f x2 就可以确定哪个更优。 但对于多目标规划而言, 给定任意两个可行解
f2 A5 A4 A1 A3 A2 f1 A6 A7
多目标规划的解集
绝对最优解
* * 设 x* R ,如果对于 x R 均有 F x F x ,则称 x 为多目标规划问题的绝对最
*
优解。多目标规划问题的绝对最优解的全体可以记为 Rab ,其含义为:该最优解与 任意一个可行解都是可以进行比较的。下图为当 n 1, p 2 时绝对最优解的示意图。
多目标规划问题的典型实例
再由约束条件,该厂每周的生产时间为 40h,故: x1 x2 x3 40 且需要满足能耗不得超过 20t 标准煤: 0.48x1 0.65x2 0.42 x3 20 上面是对生产过程的约束,再考虑销售过程,由于数据表中给出了三种产品每周 的最大销量,故我们必须限制生产数量小于最大销量才能使得成本最低,即满足下 述约束条件:
qA1 20x1 700; qA2 25x2 800; qA3 15x3 500
同时考虑到生产时间的非负性,总结得到该问题的数学模型为:
max min s.t.
f1 x 500 x1 400 x2 600 x3 f 2 x 0.48 x1 0.65 x2 0.42 x3 x1 x2 x3 40 0.48 x1 0.65 x2 0.42 x3 20 20 x1 700 25 x2 800 15 x3 500 x1 , x2 , x3 0
多目标规划的解集
直观理解
对单目标规划来说,给定任意两个可行解 x1 , x2 R ,通过比较它们的目标函数 值 f x1 , f x2 就可以确定哪个更优。 但对于多目标规划而言, 给定任意两个可行解
第九章目标规划——多目标线性规划
![第九章目标规划——多目标线性规划](https://img.taocdn.com/s3/m/9d9396fce2bd960591c67754.png)
第九章目标规划——多目 标线性规划
目标规划 Goal Programming(GP)
家具制造问题——王老板遇到的新问题
(1) 要求恰好达到目标值,即正、负偏差变量都要尽可能地小 min Z = f( d ++ d - )
(2) 要求不超过目标值,即允许达不到目标值,即正偏差变量 要尽可能地小
min Z = f( d +) (3) 要求超过目标值,即超过量不限,但必须是即负偏差变量要 尽可能地小
目标规划 Goal Programming(GP)
第九章
目标规划
——多目标线性规划
第九章目标规划——多目 标线性规划
目标规划 Goal Programming(GP)
目标规划问题及其数学模型
目标规划( Goal Programming )方法是Charnes和Cooper于 1961年提出的,目前已成为一种简单、实用的处理多目标决策问题 的 方法,是多目标决策中应用最为广泛的一种方法。
木工 油漆工 1 10
资源总量(小时) 11 10
求解此问题可以得到王老板的最优生产方案: 每天生产椅子 4 把,桌子 3 张,获最大利润 62 元。
第九章目标规划——多目 标线性规划
目标规划 Goal Programming(GP)
家具制造问题——王老板遇到的新问题
王老板过去一直以如何计划两种家具的生产量才能获得最大总利 润为其生产、经营的唯一目标。然而,市场经济环境下新的问题不断 出现,它迫使王老板不得不考虑…... 1. 首先,根据市场信息,椅子的销售量已有下降的趋势,故应果断 决策减少椅子的产量,其产量最好不超过桌子的产量。 2. 其次,劳动力市场上已招不到符合生产质量要求的木工了,因此 不可能考虑增加木工这种劳动力资源来增加产量,并且由于某种原因 现有木工已不可能再加班。 3. 再次,应尽可能充分利用油漆工的现有的有效工作时间,可以通 过加班使油漆工资源增加,但应考虑油漆工希望最好不加班。 4. 最后,王老板考虑最好达到并超过预计利润指标 56元。
目标规划 Goal Programming(GP)
家具制造问题——王老板遇到的新问题
(1) 要求恰好达到目标值,即正、负偏差变量都要尽可能地小 min Z = f( d ++ d - )
(2) 要求不超过目标值,即允许达不到目标值,即正偏差变量 要尽可能地小
min Z = f( d +) (3) 要求超过目标值,即超过量不限,但必须是即负偏差变量要 尽可能地小
目标规划 Goal Programming(GP)
第九章
目标规划
——多目标线性规划
第九章目标规划——多目 标线性规划
目标规划 Goal Programming(GP)
目标规划问题及其数学模型
目标规划( Goal Programming )方法是Charnes和Cooper于 1961年提出的,目前已成为一种简单、实用的处理多目标决策问题 的 方法,是多目标决策中应用最为广泛的一种方法。
木工 油漆工 1 10
资源总量(小时) 11 10
求解此问题可以得到王老板的最优生产方案: 每天生产椅子 4 把,桌子 3 张,获最大利润 62 元。
第九章目标规划——多目 标线性规划
目标规划 Goal Programming(GP)
家具制造问题——王老板遇到的新问题
王老板过去一直以如何计划两种家具的生产量才能获得最大总利 润为其生产、经营的唯一目标。然而,市场经济环境下新的问题不断 出现,它迫使王老板不得不考虑…... 1. 首先,根据市场信息,椅子的销售量已有下降的趋势,故应果断 决策减少椅子的产量,其产量最好不超过桌子的产量。 2. 其次,劳动力市场上已招不到符合生产质量要求的木工了,因此 不可能考虑增加木工这种劳动力资源来增加产量,并且由于某种原因 现有木工已不可能再加班。 3. 再次,应尽可能充分利用油漆工的现有的有效工作时间,可以通 过加班使油漆工资源增加,但应考虑油漆工希望最好不加班。 4. 最后,王老板考虑最好达到并超过预计利润指标 56元。
多目标规划(运筹学
![多目标规划(运筹学](https://img.taocdn.com/s3/m/4ff023b705a1b0717fd5360cba1aa81144318f37.png)
环境与资源管理
资源利用
多目标规划可用于资源利用优化,以最 大化资源利用效率、最小化资源浪费为 目标,同时考虑环境保护、可持续发展 等因素。
VS
环境污染控制
多目标规划可以应用于环境污染控制,以 最小化污染排放、最大化环境质量为目标 ,同时考虑经济成本、技术可行性等因素 。
城市规划与交通管理
城市布局
发展更高级的建模语言和工具, 以简化多目标规划问题的描述和 求解过程。
求解算法
02
03
混合整数规划
研究更高效的求解算法,以处理 大规模、高维度的多目标规划问 题。
研究如何将连续变量和离散变量 有效地结合在多目标规划问题中, 以解决更广泛的优化问题。
数据驱动的多目标优化
数据驱动决策
利用大数据和机器学习技术,从大量数据中提取有用的信息,以 支持多目标决策过程。
案例二:投资组合优化
总结词
投资组合优化是多目标规划在金融领域的应 用,旨在实现投资组合的风险和回报之间的 最佳平衡。
详细描述
在投资组合优化中,投资者需要权衡风险和 回报两个目标。多目标规划方法可以帮助投 资者找到一个最优的投资组合,该组合在给 定风险水平下能够获得最大的回报,或者在 给定回报水平下能够实现最小的风险。通过 考虑多个目标,多目标规划可以帮助投资者 避免过度依赖单一目标而导致的潜在风险。
在多目标规划中,约束条件可能包括资源限制、时间限制、技术限制等,需要综合考虑各种因素来制 定合理的约束条件。
决策变量
决策变量是规划方案中需要确定的参 数,其取值范围和类型根据问题的实 际情况而定。
在多目标规划中,决策变量可能包括 投资规模、生产能力、产品种类等, 需要合理选择和定义决策变量,以便 更好地描述问题。
多目标规划课件
![多目标规划课件](https://img.taocdn.com/s3/m/a9e263b11eb91a37f0115c78.png)
min U(F(X))
X∈R
然后求解该问题,并将其最优解X*作为(VP) 的最优解。 由于构造评价函数的多种多样,也就出现 了多种不同的评价函数方法。
处理多目标规划的一些方法
1. 线性加权和法 对 重 且(要 ∑V程λPj)=中度1,的给然p以个后适目构当标造的f评1权(X价系),函数f2数(λXj≥),0…(j,=f1p(,X2,)…按,p其),
挑选出满意的方案来。这时称BC上的点为
非劣解,或有效解。
多目标规划解的概念
对于一般的多目标规划问题:
(VP)
V-min F(X)=(f1(X), f2(X),…,fp(X))T
s.t. gi(X)≤0, i=1,2,…,m
其中X=(x1,x2,…,xn)T, p≥2
设R={X| gi(X)≤0, i=1,2,…,m}
多目标规划解的性质
类似地可证明:像集F(R)的有效点一
定是弱有效点,即
E
* pa
E w* p
通过在像集F(R)上寻找有效点(或弱 有效点),就可以确定约束集合R上 的有效解(或弱有效解)。对此,有 如下的定理。
多目标规划解的性质
定理4 在像集F(R)上,若Epa*已知,则在约 束集合R上,有
X∈R
p-1
其中Rp-1=Rp-2∩{X |fp-1(X)≤fp-1*}
处理多目标规划的一些方法
此时求得最优解X*,最优值为fp*,则 X*就是多目标问题(VP)在分层序列意 义下的最优解。进一步有下列定理。
定理6 设X*是由分层序列法所得到的 最优解,则X*∈Rpa*.
处理多目标规划的一些方法
(2)若fj(Y)= fj(X*), j=1,2,…,j0-1 但fj0(Y)<fj0(X*) 2≤j0≤p 此时必有fj(Y)= fj(X*)≤fj*, j=1,2,…,j0-1 因此,Y是问题 (Pj0) min fp(X) X∈Rj0-2∩{X |fj0-1(X)≤fj0-1*} 的可行解,又由
X∈R
然后求解该问题,并将其最优解X*作为(VP) 的最优解。 由于构造评价函数的多种多样,也就出现 了多种不同的评价函数方法。
处理多目标规划的一些方法
1. 线性加权和法 对 重 且(要 ∑V程λPj)=中度1,的给然p以个后适目构当标造的f评1权(X价系),函数f2数(λXj≥),0…(j,=f1p(,X2,)…按,p其),
挑选出满意的方案来。这时称BC上的点为
非劣解,或有效解。
多目标规划解的概念
对于一般的多目标规划问题:
(VP)
V-min F(X)=(f1(X), f2(X),…,fp(X))T
s.t. gi(X)≤0, i=1,2,…,m
其中X=(x1,x2,…,xn)T, p≥2
设R={X| gi(X)≤0, i=1,2,…,m}
多目标规划解的性质
类似地可证明:像集F(R)的有效点一
定是弱有效点,即
E
* pa
E w* p
通过在像集F(R)上寻找有效点(或弱 有效点),就可以确定约束集合R上 的有效解(或弱有效解)。对此,有 如下的定理。
多目标规划解的性质
定理4 在像集F(R)上,若Epa*已知,则在约 束集合R上,有
X∈R
p-1
其中Rp-1=Rp-2∩{X |fp-1(X)≤fp-1*}
处理多目标规划的一些方法
此时求得最优解X*,最优值为fp*,则 X*就是多目标问题(VP)在分层序列意 义下的最优解。进一步有下列定理。
定理6 设X*是由分层序列法所得到的 最优解,则X*∈Rpa*.
处理多目标规划的一些方法
(2)若fj(Y)= fj(X*), j=1,2,…,j0-1 但fj0(Y)<fj0(X*) 2≤j0≤p 此时必有fj(Y)= fj(X*)≤fj*, j=1,2,…,j0-1 因此,Y是问题 (Pj0) min fp(X) X∈Rj0-2∩{X |fj0-1(X)≤fj0-1*} 的可行解,又由
《多目标规划模型》课件
![《多目标规划模型》课件](https://img.taocdn.com/s3/m/291e8b5bcd7931b765ce0508763231126edb77e0.png)
02
权重法的主要步骤包括确定权重、构造加权目标函数、求解加权目标函数,最 后得到最优解。
03
权重法的优点是简单易行,适用于目标数量较少的情况。但缺点是主观性强, 依赖于决策者的经验和判断。
约束法
1
约束法是通过引入约束条件,将多目标问题转化 为单目标问题,然后求解单目标问题得到最优解 。
2
约束法的主要步骤包括确定约束条件、构造约束 下的目标函数、求解约束下的目标函数,最后得 到最优解。
多目标规划模型
目录
• 多目标规划模型概述 • 多目标规划模型的建立 • 多目标规划模型的求解方法 • 多目标规划模型的应用案例 • 多目标规划模型的未来发展与挑战
01 多目标规划模型概述
定义与特点
定义
多目标规划模型是一种数学优化方法 ,用于解决具有多个相互冲突的目标 的问题。
特点
多目标规划模型能够权衡和折衷多个 目标之间的矛盾,寻求满足所有目标 的最佳解决方案。
02 多目标规划模型的建立
确定目标函数
01
目标函数是描述系统或决策问题的期望结果的数学表达 式。
02
在多目标规划中,目标函数通常包含多个目标,每个目 标对应一个数学表达式。
03
目标函数的确定需要考虑问题的实际背景和决策者的偏 好。
确定约束条件
01 约束条件是限制决策变量取值范围的限制条件。 02 在多目标规划中,约束条件可以分为等式约束和
谢谢聆听
模型在大数据和人工智能时代的应用前景
要点一
总结词
要点二
详细描述
随着大数据和人工智能技术的快速发展,多目标规划模型 在许多领域的应用前景广阔。
大数据时代带来了海量的数据和复杂的问题,这为多目标 规划模型提供了广阔的应用场景。例如,在金融领域,多 目标规划可以用于资产配置和风险管理;在能源领域,多 目标规划可以用于能源系统优化和碳排放管理。同时,随 着人工智能技术的不断发展,多目标规划模型有望与机器 学习、深度学习等算法相结合,共同推动相关领域的发展 。
多目标规划-精品
![多目标规划-精品](https://img.taocdn.com/s3/m/e4c5514014791711cd79172b.png)
步骤:
主要目标 f1x的最优集合为 R 1 ,再在集合 R 1
内求次重要目标 f2x的最优解,设此时的最优
解集合为 R 2 ,如此继续进行,直到求出最后一
个目标函数的最优解。
第一步 第二步 第 p步
m x R 0 fi1n xf1x1
m x R 1 fi2n xf2x2
假定要求 p个目标 f1x,f2x, ,fpx的最优值,约束
条件为 xR。如果其中一个目标比较关键,如 f1x希望
它取极小值,使其他目标满足一定条件,如使
fifixfi i 2,,p
而把问题转化为单目标规划问题
mifn1x
x R'
R f 1 f i x f i , i 2 , ,p , x R
例子:
橡胶配方问题
一个橡胶由 n种成分组成,用 xx1,x2, xnT
来表示一个橡胶配方。对于每一个配方往往同
时硬需 度要f2 考x,察伸多长个指f3 标x,。变例形如橡f4 胶x的等强,力假设f1共x有,m
个指标,则对两个不同方案,就要同时比较个 指标,才能获得尽可能好的橡胶配方。
求最小时,可以p 给每个目标相应的权系
数i 0,且 i 1,构成新的目标函数 i1 p Fxi fix i1 然后使这个新的目标函数取极小值。
这里的权系数大小根据每个目标函数的相 对重要性来确定。
3.平方和加权法
首先确定各个目标 fi x的希望目标值 f i *,
x m Rp1ifp nxfpxp
式中:
R R0
R i x im fix i ,x n R i 1
最后所求出的 x p为最优解。
运筹学多目标规划演示文稿
![运筹学多目标规划演示文稿](https://img.taocdn.com/s3/m/f9ea9333b80d6c85ec3a87c24028915f804d84af.png)
1, 投资第i个项目 0,不投资第i个项目
约束条件: n
i1
ai xi
A
xi 0或1(i 1,, n)
第十页,共57页。
§2 多目标规划模型及其解的概念
目标函数:何为最佳的经济效益?
(1)收益最大:
n
max f1 ( x1 ,, xn ) bi xi i 1
(2)投资最少:
n
min f2 ( x1 ,, xn ) ai xi i 1
运筹学多目标规划演示文稿
第一页,共57页。
运筹学多目标规划
第二页,共57页。
§1 多目标决策简介
一、多目标决策问题实例
• 干部评估-德、才兼备
• 教师晋升-教学、科研、论文等
• 购买冰箱-价格、质量、耗电、品牌等 • 球员选择-技术、体能、经验、心理
• 找对象-容貌、学历、气质、家庭状况
第三页,共57页。
三、多目标决策与单目标决策区别
• 点评价与向量评价
单目标: 方案dj ←评价值f(dj) 多目标:方案dj←评价向量(f1(dj),f2(dj)…,fp(dj))
• 全序与半序: 方案di与dj之间
单目标问题: di<dj ; di=dj ; di>dj 多目标问题:除了这三种情况之外,还有一种情况
先引进一些记号,记
F1
(
f11,……,f
1 p
)
Ep
F2
(
f12,……,f
2 p
)
Ep
(1)" ":F 1 F 2意味着向量F 1的每个分量都要严格的小于向
量F
2对应的分量。即对于i
1,……,p,均有f
1 i
多目标规划模型很好ppt课件
![多目标规划模型很好ppt课件](https://img.taocdn.com/s3/m/d36eb7a905a1b0717fd5360cba1aa81144318f8b.png)
1
例题1 某工厂在一个计划期内生产甲、乙两种产品,各产品 都要消耗A,B,C三种不同的资源。每件产品对资源的单位 消耗、各种资源的限量以及各产品的单位价格、单位利润和 所造成的单位污染如下表。假定产品能全部销售出去,问每 期怎样安排生产,才能使利润和产值都最大,且造成的污染 最小?
甲
资源A单位消耗
max( f3 ( X )) 3x1 2x2
9x1 4x2 240 4x1 5x2 200 3x1 10x2 300 x1, x2 0
望达到的目标值转化为约束条件。 经研究,工厂认为总产值至少应 达到20000个单位,而污染控制 在90个单位以下,即
f2 (X ) 400x1 600x2 20000
f3 (X ) 3x1 2x2 90
由主要目标法化为单目标问题max f1( X ) 70x1 120x2
用单纯形法求得其最优解为
x1 12.5, x2 26.25, f1(x) 4025, f2 (x) 20750, f3 (x) 90
400x1 600x2 20000 3x1 2x2 90 9x1 4x2 240 4x1 5x2 200 3x1 10x2 300 x1, x2 0
aij
f1
f2
f3
f4
f5
f6
A1
1
1
67
50.5 34
50.5
A2
100
100
1
100
1
1
A3
1
42.25 100
1
67
100
A4
40.6 25.75 67
25.75 100
1
设权系数向量为W=(0.2,0.1,0.1,0.1,0.2,0.3), 则
《多目标优化》课件
![《多目标优化》课件](https://img.taocdn.com/s3/m/d6330c7b5b8102d276a20029bd64783e09127dcf.png)
多目标优化算法分类
01
基于排序的方法
通过将多目标问题转化为单目标问题,寻求一个排序方案,以解决多目
标优化问题。常见的算法包括非支配排序遗传算法(NSGA-II)和快速
非支配排序遗传算法(FAST-NSGA-II)等。
02
基于分解的方法
将多目标问题分解为多个单目标子问题,分别求解子问题,再通过聚合
子问题的解得到原问题的解。常见的算法包括优先级规则法、权重和法
降温系数
降温系数决定了算法的降温速度,较 大的降温系数可能导致算法早熟,而 较小的降温系数则可能导致算法收敛 速度慢。
随机游走策略
随机游走策略决定了新解的产生方式 ,对于多目标优化问题,需要采用合 适的Pareto占优关系和支配关系来指 导新解的产生。
05
多目标优化应用案例
案例一:电力系统的多目标优化
多目标优化
同时考虑多个目标函数,寻求在各目标之间取得 平衡的最优解。
算法流程
非支配排序
对种群中的个体进行非支配排 序,形成一系列的层级。
交叉和变异操作
通过交叉和变异产生新的个体 ,丰富种群的多样性。
初始化种群
随机生成一定数量的初始解作 为种群。
选择操作
根据个体的非支配层级和拥挤 度等信息,选择优秀的个体进 行交叉和变异操作。
等。
03
基于群智能的方法
利用群智能算法的并行性和全局搜索能力,寻找多目标优化问题的满意
解集。常见的算法包括粒子群优化算法、蚁群优化算法等。
02
非支配排序遗传算法(NSGA-II)
算法原理
遗传算法
基于生物进化原理,通过选择、交叉、变异等操 作,不断优化解的适应度。
非支配排序
3多目标规划(M)
![3多目标规划(M)](https://img.taocdn.com/s3/m/e48c300a59eef8c75ebfb300.png)
决策变量
xi=1 ~选修课号i 的 课程(xi=0 ~不选)
目标函数 选修课程总数最少
Min Z xi
i 1
9
约束条件
最少2门数学课, 3门运筹学课, 2门计算机课。
x1 x2 x3 x4 x5 2
x3 x5 x6 x8 x9 3
x4 x6 x7 x9 2
例 选课策略
课号
1 2 3 4 5 6 7 8 9
课名
微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计4 3 2 2 3
所属类别
数学 数学 数学;运筹学 数学;计算机 数学;运筹学 计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
主办方在会议开始前对所有参会的100位代表 旅游意向进行了调查,充分考虑这些代表的意愿, 为主办方设计代表们合适的旅游路线,使他们在会 议结束后的10天时间内花最少的钱游尽可能多的地 方。 目标一:宾客参观意愿满意度尽可能高 目标二:宾客所花费用尽可能少 目标三:宾客游尽可能多的景点
转化为单目标的具体方法介绍:
Min {Z , W }
最优解如上,6门课 程,总学分21 。 最优解显然是选修所 有9门课程 。
多目标优化的处理方法:化成单目标优化。
多目标规划
• 在课程最少的前提下 以学分最多为目标。
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3
1. 主要目标法 在多目标优化问题中,根据问题的实际 情况,确定一个目标为主要目标,而把其余目 标作为次要目标,并且根据决策者的经验,选 取一定的界限值。这样就可以把次要目标也作 为约束来处理,于是就将原多目标问题转化为 在新的约束下,求主要目标的单目标优化问题。
多目标规划模型概述ppt
![多目标规划模型概述ppt](https://img.taocdn.com/s3/m/bffba2dc71fe910ef12df8f4.png)
hj(X)0
X(x1,x2,...x.n), 为决策变量
如对于求极大(max)型,其各种解定义如下: 绝对最优解:若对于任意的X,都有F(X*)≥F(X) 有效解:若不存在X,使得F(X*)≤ F(X)
弱有效解:若不存在X,使得F(X*)<F(X)
2、多目标优选问题的模型结构
可用效用函数来表示。设方案的效用是目标属性
4 3
x1 x1
5x2 10 x
200 2 300
x 1 , x 2 0
望达到的目标值转化为约束条件。 经研究,工厂认为总产值至少应 达到20000个单位,而污染控制 在90个单位以下,即
f2(X)40x0160x02 20000
f3(X)3x12x2 90
由主要目标法化为单目标问题
max f 1 ( X ) 70 x 1 120 x 2
的函数:
U (x)U (f1,f2,..f.p),
并设
aij fi(xj )
且各个方案的效用函数分别为
U (xj)U (a1j,a2j,.a .p .)j,
则多目标优选模型的结构可表示如下:
ord(U X)(U(X1)U , (X2),..U ..(,Xp))T s.t. gi(X)0
hj(X)0
多目标决策问题中的方案即为决策变量,也称为多目 标问题的解。备选方案即决策问题的可行解。在多目标决 策中,有些问题的方案是有限的,有些问题 的方案是无限 的。方案有其特征或特性,称之为属性。
1、多目标规划问题的模型结构
opt(FX)(f1(X),f2(X),...f.p,(X))T s.t. gi(X)0
解:问题的多目标模型如下
max f 1 ( X ) 70 x 1 120 x 2 max f 2 ( X ) 400 x 1 600 x 2
X(x1,x2,...x.n), 为决策变量
如对于求极大(max)型,其各种解定义如下: 绝对最优解:若对于任意的X,都有F(X*)≥F(X) 有效解:若不存在X,使得F(X*)≤ F(X)
弱有效解:若不存在X,使得F(X*)<F(X)
2、多目标优选问题的模型结构
可用效用函数来表示。设方案的效用是目标属性
4 3
x1 x1
5x2 10 x
200 2 300
x 1 , x 2 0
望达到的目标值转化为约束条件。 经研究,工厂认为总产值至少应 达到20000个单位,而污染控制 在90个单位以下,即
f2(X)40x0160x02 20000
f3(X)3x12x2 90
由主要目标法化为单目标问题
max f 1 ( X ) 70 x 1 120 x 2
的函数:
U (x)U (f1,f2,..f.p),
并设
aij fi(xj )
且各个方案的效用函数分别为
U (xj)U (a1j,a2j,.a .p .)j,
则多目标优选模型的结构可表示如下:
ord(U X)(U(X1)U , (X2),..U ..(,Xp))T s.t. gi(X)0
hj(X)0
多目标决策问题中的方案即为决策变量,也称为多目 标问题的解。备选方案即决策问题的可行解。在多目标决 策中,有些问题的方案是有限的,有些问题 的方案是无限 的。方案有其特征或特性,称之为属性。
1、多目标规划问题的模型结构
opt(FX)(f1(X),f2(X),...f.p,(X))T s.t. gi(X)0
解:问题的多目标模型如下
max f 1 ( X ) 70 x 1 120 x 2 max f 2 ( X ) 400 x 1 600 x 2
《多目标规划》课件
![《多目标规划》课件](https://img.taocdn.com/s3/m/6904e407777f5acfa1c7aa00b52acfc789eb9f0d.png)
约束条件
01
约束条件是限制决策变量取值范围的限制条件,通常表示为决 策变量的不等式或等式。
02
在多目标规划中,约束条件可能包括资源限制、技术限制、经
济限制等。
约束条件的处理需要考虑其对目标函数的综合影响,以确定最
03
优解的范围。
决策变量
01 决策变量是规划问题中需要确定的未知数,通常 表示为数学符号或参数。
多目标规划的算法改进与优化
混合整数多目标规划算法
结合整数规划和多目标规划的优点,解决具有离散变量的 多目标优化问题。
进化算法
借鉴生物进化原理,通过种群进化、基因突变等方式寻找 多目标优化问题的Pareto最优解。
梯度下降法
利用目标函数的梯度信息,快速找到局部最优解,提高多 目标规划的求解效率。
多目标规划在实际问题中的应用前景
特点
多目标遗传算法能够处理多个相互冲突的目标函数,提供一组非劣解集供决策者选择。 它具有较强的全局搜索能力和鲁棒性,适用于复杂的多目标优化问题。
注意事项
多目标遗传算法需要合理设置遗传参数和选择策略,以确保求解的有效性和准确性。
04
多目标规划案例分析
生产计划优化案例
总结词
生产计划优化案例主要展示多目标规划在生产计划方面的应 用,通过合理安排生产计划,降低成本并提高生产效率。
《多目标规划》课件
• 多目标规划概述 • 多目标规划的基本概念 • 多目标规划的常用方法 • 多目标规划案例分析 • 多目标规划的未来发展与展望
目录
01
多目标规划概述
定义与特点
定义
多目标规划是一种决策方法,旨在同 时优化多个目标函数,并考虑多个约 束条件。
特点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多目标规划问题的典型实例
例1 木梁设计问题
用直径为 1(单位长)的圆木制成截面为矩形的梁。为使重量最轻面强度最大, 问截面的宽和高应取何尺寸? 假设矩形截面的宽和高分别为 x1 和 x2 ,那么根据几何知识可得:
2 x12 + x2 = 1
且此时木梁的截面面积为 x x 。同时根据材料力规划的解集
绝对最优解
* * 设 x* ∈ R ,如果对于 ∀x ∈ R 均有 F ( x ) ≤ F ( x ) ,则称 x 为多目标规划问题的绝对最
*
优解。多目标规划问题的绝对最优解的全体可以记为 Rab ,其含义为:该最优解与 任意一个可行解都是可以进行比较的。下图为当 n = 1, p = 2 时绝对最优解的示意图。
以显然 A2 比 A3 好。 对于方案 A1 和 A2 ,由于无法确定其优劣, 而且又没有比它们更好的其他方案,所 以它们就被称之为多目标规划问题的有效解 有效解 (或者非劣解) ,其余方案都称为劣解。所有 非劣解构成的集合称为非劣解集 非劣解集。 非劣解集
O
f2 A5 A4 A1 A3 A2 f1 A6 A7
x2 L xn ] ; F ( x ) = f1 ( x )
T
f2 ( x ) L
f p ( x ) , p ≥ 2
对向量形式的 p 个目标函数求最小,且目标函数 F ( x ) 和约束函数 gi ( x ) 、hi ( x ) 可以 是线性函数也可以是非线性函数。
令 R = {x | gi ( x ) ≤ 0, i = 1, 2,..., m} ,则称 R 为问题的可行域,V-min F ( x ) 指的是
多目标规划问题的典型实例
例2 工厂采购问题
某工厂需要采购某种生产原料,该原料市场上有 A 和 B 两种,单价分别为 2 元/kg 和 1.5 元/kg。现要求所花的总费用不超过 300 元,购得的原料总重量不少于 120kg,其中 A 原料不得少于 60kg。间如何确定最佳采购方案,花最少的钱,采 购最多数量的原料。 设 A、B 两种原料分别采购 x1 、 x2 kg,那么总的花费为: f1 ( x ) = 2 x1 + 1.5 x2 购得的原料总量为: f 2 ( x ) = x1 + x2 那么我们求解的目标即是使得花最少的钱买最多的原料,即最小化 f ( x ) 的同时
第八章 多目标规划
概述
什么是多目标规划问题
在前面所述的最优化问题,无论是线性规划、整数规划还是非线性规划,其目 标函数都只有一个。但在实际问题中,衡量一个设计方案的好坏往往不止一个 标准,常常要考虑多个目标。例如研究生产过程时,人们既要提高生产效率, 同时还要考虑产品质量,又要考虑成本以降低生产费用,可能还希望生产过程 中的环保问题,即废渣、废水、废气造成的污染小。在设计导弹的过程中,既 要射程远,又要燃料省,还要重量轻且打击精度高。在进行投资决策时,既希 望回报高的同时又希望降低投资风险,如此等等。这就向我们提出了一个多指 标最优化问题。我们把在这样的背景下建立起来的最优化称之为多目标规划问 题。
多目标规划问题的典型实例
假设该厂每周生产三种产品的小时数分别为 x1 , x2 , x3 ,则我们根据各种产品的单位 利润得到其总利润 f1 ( x ) 为:
f1 ( x ) = 500 x1 + 400 x2 + 600 x3
根据各个产品的生产效率,可得生产 A1、A2 和 A3 的生产数量分别为:
f1 ( x ) = 500 x1 + 400 x2 + 600 x3
多目标规划问题的数学模型
上述问题可以归结为标准形式:
V-min F ( x ) gi ( x ) ≥ 0 (i = 1,2,..., m) s.t. hi ( x ) = 0 (i = 1,2,..., l )
其中: x = [ x1
1
需添加对 x 的非负约束即可。
2
综合以上分析,得到最优化数学模型如下:
min f1 ( x ) = 2 x1 + 1.5 x2 max f 2 ( x ) = x1 + x2 x1 + x2 ≥ 120 2 x1 + 1.5 x2 ≤ 300 x1 ≥ 60 x2 ≥ 0
* i p
* ab
p
* * (2) Re ⊆ Rwe ⊆ R
* * (3) Ri ⊆ Rwe (i = 1, 2,..., p)
* * (4) Rab ⊆ Re
* * * (5) 若 R ≠ ∅ ,则 ∪ R = R , ∩ Ri = Re = Rab i =1 i =1
* ab
p
* i
* we
p
* * (6) 若 F ( x ) 中每个 fi ( x ) 都是严格凸函数, R 是凸集,则 Re = Rwe
* 有效解的集合 Re = [ a, b]
*
设 x* ∈ R ,如果不存在 x ∈ R 使得 F ( x ) < F ( x ) 成立,则称 x 为多目标规划问题的
*
*
弱有效解。多目标规划问题的弱有效解的全体记作 Rwe ,弱有效解的含义是:在所有 的可行解中找不到比它严格好的可行解。当 n = 1, p = 2 时弱有效解的直观几何意义
qA1 = 20 x1 ≤ 700; q A2 = 25 x2 ≤ 800; q A3 = 15 x3 ≤ 500
同时考虑到生产时间的非负性,总结得到该问题的数学模型为:
max min s.t.
f 2 ( x ) = 0.48 x1 + 0.65 x2 + 0.42 x3 x1 + x2 + x3 ≤ 40 0.48 x1 + 0.65 x2 + 0.42 x3 ≤ 20 20 x1 ≤ 700 25 x2 ≤ 800 15 x3 ≤ 500 x1 , x2 , x3 ≥ 0
关系,既无大于等于关系,也无小于等于关系。 例如我们首先直观的看一个多目标规划的图解实例。假设问题的目标为求函数
f1 和 f 2 的极小值如图所示。 就方案 A1 和 A2 来说, 有:f1 ( A1 ) < f1 ( A2 ) 且 f 2 ( A1 ) > f 2 ( A2 ) , 故无法确定优劣。而对于方案 A2 和 A3 而言,有: f1 ( A2 ) < f1 ( A3 ) 且 f 2 ( A2 ) < f 2 ( A3 ) ;所
多目标规划的解集
直观理解
对单目标规划来说,给定任意两个可行解 x1 , x2 ∈ R ,通过比较它们的目标函数 值 f ( x1 ) , f ( x 2 ) 就可以确定哪个更优。 但对于多目标规划而言, 给定任意两个可行解
x1 , x 2 ∈ R ,因为目标函数 F ( x1 ) , F ( x2 ) 均为向量,故可能不存在 F ( x1 ) , F ( x2 ) 之间的大小
f ( x)
f1 ( x )
f ( x)
f 2 ( x ) f1 ( x )
f2 ( x )
* Rab = [ a, b ]
O
x* (a)
x
O
a b (b)
x
多目标规划问题的的绝对最优解一般情况下是不存在的。事实上,如果把多目标 规划中的每个目标函数看成是单目标规划问题的目标函数,即我们分别考虑 p 个单 目标规划问题: min f i ( x ) , x ∈ R, i = 1, 2,..., n ,那么这 p 个单目标规划问题的公共最优 解才是多目标规划问题的的绝对最优解。如果这 p 个单目标规划问题没有公共的最 优解,则多目标规划问题就没有绝对最优解。
1 2
量 1 x x ,故若要使得重量最轻,实际上目标即为横截面积最小,又要强度最大,故目
6
2 1 2
标为截面矩量最大,于是容易列出如下数学模型:
min max
f1 ( x ) = x1 x2 1 2 f 2 ( x ) = x1 x2 6 2 x12 + x2 = 1 x1 , x2 ≥ 0
多目标规划问题域线性规划和非线性规划问题的主要区别就在于, 它所追求的 目标不止一个,而是多个。
多目标规划问题的数学模型
目标规范化
由于许多实际问题中,各个目标的量纲一般都是不同的,所以有必要将每个目标 事先进行规范化,例如,对第 j 个带量纲的目标 Fj ( x ) ,我们可令:
f j (x) =
多目标规划问题的发展
多目标规划法(Goal Programming,简称GP)也是最优化理论和方法中的一个 重要分支,它是在线性规划的基础上,为解决多目标决策问题而发展起来的一 种数学方法。其概念和数学模型是由A.Charnes和W.W.Cooper在1961年提出的, 经过Ijiri,Sang.M.Lee等人的改进,并逐步发展和成熟,它在经济管理与规划、 人力资源管理、政府管理、大型工程的最优化等重要问题上都有广泛的应用。
多目标规划问题的典型实例
例3 生产计划问题
某工厂生产 A1、 2 和 A3 三种产品以满足市场的需要, A 该厂每周生产的时间为 40h, 且规定每周的能耗都不得超过 20t 标准煤,其数据表如表 8-1 所示。现在的问题时, 每周生产三种产品各多少小时,才能使得该厂的利润最多,而能源消耗最少? 产品生产销售数据表 产品 生产效率 (m/h) A1 A2 A3 20 25 15 利润 (元/m) 500 400 600 最大销量 (m/周) 700 800 500 能耗 (t/1000m) 24 26 28
1
极大化 f ( x ) 。
2
多目标规划问题的典型实例
同时要满足所花的总费用不得超过 300 元,原料的总重量不得少于 120kg,A 原料 不得少于 60kg,于是得到约束条件如下: