利用导数研究函数的图像-曲线的绘制
大学文科数学_张国楚_函数的性质和图象

第四章导数的应用问题——洛比达法则、函数的性质和图像人若志趣不远,心不在焉,虽学无成。
——张载:《张载集》只要将数学应用于社会科学的研究之后,才能使得文明社会的发展成为可控制的现实。
——怀特海本章简介导数作为函数的变化率,在研究函数变化的性态中有着十分重要的意义,在自然科学、工程技术以及社会科学等领域中得到了广泛的应用。
本章将介绍中值定理,然后以中值定理为基础,以导数为工具,解决一类特殊极限的简便计算问题,函数的增减性、极值和最值,以及函数图像的绘制等问题。
1联结局部与整体的纽带——中值定理1.1费马定理提出问题函数在某个区间的整体性质与该区间内部某一(或某些)点的导数之间有无关系?若有,那是什么关系?(本节主要解决这个问题)学习过程1、函数极值概念设函数在点的某邻域有定义,如果对于该邻域内任意异于的值,都有,则称函数在点处取得极大值(极小值),而称为函数的极大值点(或极小值点)。
极大值和极小值统称为函数的极值,极大值点和极小值点称为函数的极值点。
比如,函数在点处取得极大值1,而在点处取得极小值-1。
通过观察不难发现,可导函数的曲线在和处的切线平行于轴。
把函数的这种性质加以概括总结就可得出费马定理。
2、费马定理及其几何意义(1)费马定理如果是函数的极值点,并且在该点可导,那么。
证明:不妨设在邻域内,于是,当,当时,.由导数的定义和极限的性质得:因此,。
(2)费马定理的几何意义函数的图象如果在相应于极值的点处有切线的话,那一定是一条水平切线。
(3)驻点(稳定点)使导数为零的点称为函数的驻点或稳定点。
想一想:驻点是否一定是极值点?回答是否定的。
如下图4.1、4.2所示,的极小值点,所以,即的驻点;而函数虽有,即的驻点,但它不是极值点。
做一做:请求函数的极值点。
此函数有驻点吗?1.2中值定理提出问题请观察图4.3,然后回答:在连续曲线弧上除端点外,是否存在一点(或一些点),使通过该点切线平行于联结端点的线段AB?回答是肯定的,我们将这一结果加以总结便可得出中值定理。
函数图像绘制技巧与分析

函数图像绘制技巧与分析函数图像是数学中常见的一种形式,它能够直观地展现函数的性质和特点。
在学习和研究函数时,绘制函数图像是一种非常重要的方法。
本文将介绍一些函数图像绘制的技巧,并对函数图像进行一些分析。
一、函数图像绘制的基本步骤绘制函数图像的基本步骤包括确定函数的定义域、确定坐标轴范围、选择合适的点进行绘制、绘制曲线、标注关键点和分析曲线的性质。
首先,确定函数的定义域是绘制函数图像的基础。
函数的定义域是指函数能够取值的范围。
例如,对于函数y = 1/x,其定义域为x ≠ 0。
在确定定义域后,我们可以确定坐标轴的范围,使得函数图像能够在坐标系中完整地展示。
其次,选择合适的点进行绘制。
为了准确地绘制函数图像,我们需要选择一些关键的点来代表函数的特点。
一般来说,选择函数的零点、极值点、拐点等作为绘制的点是比较常见的方法。
通过计算函数在这些点的取值,我们可以得到这些点的坐标,从而绘制出函数图像。
然后,绘制曲线。
通过连接选择的点,我们可以绘制出函数的曲线。
在绘制曲线时,可以使用直线段和曲线段相结合的方式,使得曲线更加平滑和自然。
接下来,标注关键点。
在绘制完曲线后,我们可以通过标注关键点的方式来更好地展示函数的性质。
例如,在函数图像上标注函数的零点、极值点等,有助于读者更加直观地理解函数的特点。
最后,分析曲线的性质。
通过观察函数图像,我们可以分析函数的增减性、奇偶性、周期性等特点。
例如,如果函数图像在某个区间上是递增的,那么我们可以得出函数在该区间上是增函数的结论。
通过对函数图像的分析,我们可以更深入地理解函数的性质。
二、函数图像绘制的技巧在绘制函数图像时,有一些技巧可以帮助我们更加准确和高效地完成任务。
首先,利用对称性。
许多函数具有对称性,例如偶函数和奇函数。
对于偶函数,其函数图像关于y轴对称;对于奇函数,其函数图像关于原点对称。
通过利用对称性,我们可以只绘制函数图像的一部分,然后通过对称性得到整个函数图像。
初等函数的求导问题双曲函数与反双曲函数的导数

切线斜率
在几何上,导数等于曲线在某一点处 的切线斜率。
导数的计算方法
链式法则
对于复合函数的导数,链式法 则是重要的计算方法,即求内 层函数的导数后再乘以外层函
数的导数。
乘积法则
两个函数的乘积的导数是两个 函数分别求导后再求和。
商的导数公式
商的导数是分子和分母分别求 导后再相减。
幂函数的导数
幂函数的导数根据指数的不同 有不同的公式,如指数为1时, 幂函数的导数为y' = nx^(n-1)
实例
求双曲函数$y = sinh(2x)$的导
数。根据求导公式,$y'
=
cosh(2x)$。
反双曲函数求导实例
反双曲函数求导公式
对于反双曲函数$y = arcsin(x)$,其 导数为$y' = frac{1}{sqrt{1 - x^2}}$。
实例
求反双曲函数$y = arcsin(frac{1}{2})$的导数。根据求导 公式,$y' = frac{1}{sqrt{1 (frac{1}{2})^2}} = frac{1}{frac{sqrt{3}}{2}} = frac{sqrt{3}}{3}$。
应用实例分析
应用实例
在物理学中,双曲函数和反双曲函数常用于描述某些物理现 象,如波动、振动等。通过求导,可以进一步研究这些现象 的变化规律和性质。
应用实例
在经济学中,反双曲函数也常用于描述某些经济现象,如投 资回报率、风险评估等。通过求导,可以进一步研究这些现 象的变化趋势和最优解。
感谢您的观看
利用导数研究函数的图像
总结词
通过求导可以绘制出函数的图像,并 了解其变化趋势。
详细描述
第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)

第06讲利用导数研究函数的零点(方程的根)(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:判断、证明或讨论函数零点的个数高频考点二:证明唯一零点问题高频考点三:根据零点情况求参数①利用最值(极值)研究函数零点问题②利用数形结合法研究函数的零点问题③构造函数研究函数零点问题第四部分:高考真题感悟第五部分:第06讲利用导数研究函数的零点(方程的根)(精练)1、函数的零点(1)函数零点的定义:对于函数()y f x=,把使()0f x=的实数x叫做函数()y f x=的零点.(2)三个等价关系方程0)(=xf有实数根⇔函数)(xfy=的图象与x轴有交点的横坐标⇔函数)(xfy=有零点.2、函数零点的判定如果函数()y f x=在区间[,]a b上的图象是连续不断的一条曲线,并且有()()0f a f b⋅<,那么函数()y f x=在区间(,)a b内有零点,即存在(,)c a b∈,使得()0f c=,这个c也就是()0f x=的根.我们把这一结论称为函数零点存在性定理.注意:单调性+存在零点=唯一零点1.(2022·全国·高二)已知函数()f x的定义域为[]15-,,部分对应值如下表:()f x的导函数()y f x='的图象如图所示,则下列关于函数()f x的命题:① 函数()y f x=是周期函数;② 函数()f x在[]02,是减函数;③ 如果当[]1,x t∈-时,()f x的最大值是2,那么t的最大值为4;④ 当12a<<时,函数()y f x a=-有4个零点.其中真命题的个数是A.4个B.3个C.2个D.1个2.(2022·甘肃·金昌市教育科学研究所高三阶段练习(文))已知函数()2e1xf x x a=+-()a R∈有两个极值点,则实数a的取值范围为()A.1,0e⎛⎫- ⎪⎝⎭B.2,0e⎛⎫- ⎪⎝⎭C.1,e⎛⎫-+∞⎪⎝⎭D.2,e⎛⎫-+∞⎪⎝⎭3.(2022·全国·高二)若函数()3239f x x x x m =--+仅有一个零点,则实数m 的取值范围是( )A .()5,-+∞B .(,27)(5,)-∞-⋃+∞C .(,27)-∞D .(,5)(27,)-∞-⋃+∞4.(2022·甘肃武威·模拟预测(文))函数()326f x x x m =-+有三个零点,则实数m 的取值范围是( )A .(﹣4,4)B .[﹣4,4]C .(﹣∞,﹣4]∪[4,+∞)D .(﹣∞,﹣4)∪(4,+∞)5.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定高频考点一:判断、证明或讨论函数零点(根)的个数1.(2022·全国·高二)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间1(,1)e,(1,e )内均有零点 B .在区间1(,1)e,(1,e )内均无零点C .在区间1(,1)e 内有零点,在区间(1,e )内无零点D .在区间1(,1)e 内无零点,在区间(1,e )内有零点2.(2022·全国·高三专题练习(文))已知函数()()12xx e f x e=-+,其中e 为自然对数的底数, 2.7182818e =……,则()f x 的零点个数为( ) A .0B .1C .2D .33.(2022·全国·高三专题练习(理))函数()()1ln 03f x x x x =->的零点个数为( )A .0B .1C .2D .34.(2022·全国·高二课时练习)求函数3()231f x x x =-+零点的个数为( ) A .1B .2C .3D .45.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定6.(2022·江苏苏州·模拟预测)方程3269100x x x -+-=的实根个数是______ .7.(2022·全国·高三专题练习)函数()1x f x e x =-+的零点个数是__________.8.(2022·广东佛山·高二阶段练习)已知函数()()1ln 2af x x a x x=+---,其中R a ∈. (1)若()f x 存在唯一极值点,且极值为0,求a 的值; (2)若2e a <,讨论()f x 在区间2[1,e ]上的零点个数.9.(2022·新疆·乌苏市第一中学高二阶段练习(文))给定函数()()1e xf x x =+.(1)判断函数()f x 的单调性,并求出()f x 的极值; (2)求出方程()()f x a a R =∈的解的个数.高频考点二:证明唯一零点(根)问题1.(2022·山西省长治市第二中学校高二阶段练习)已知函数321()(1)3=-++f x x a x x .(1)若1a =,求()f x 的单调区间及相应区间上的单调性; (2)证明:()f x 只有一个零点.2.(2022·陕西渭南·高二期末(文))已知函数()ln x axf x x+=,R a ∈. (1)若0a =,求()f x 的最大值;(2)若01a <<,求证:()f x 有且只有一个零点.3.(2022·广西玉林·模拟预测(文))已知函数217()ln 4,()2ln 22f x x x xg x x x =-=++. (1)求函数()f x 的最小值;(2)证明:函数()()()h x f x g x =+仅有一个零点.高频考点三:根据零点(根)情况求参数①利用最值(极值)研究函数零点(根)问题1.(2022·重庆市万州第二高级中学高二阶段练习)已知函数32()34f x x ax bx =+++在1x =-时有极值0. (1)求函数()f x 的解析式;(2)记()()21g x f x k =-+,若函数()g x 有三个零点,求实数k 的取值范围.2.(2022·山东师范大学附中高二阶段练习)已知函数()21xx x f x e+-=. (1)求函数()f x 的单调区间;(2)若函数()y f x a =-(a 为常数)有3个不同的零点,求实数a 的取值范围.3.(2022·宁夏六盘山高级中学高二阶段练习(理))已知函数3()91f x ax x =-+,0a >. (1)若3a =,求函数()f x 的极值;(2)若函数()f x 恰有三个零点,求实数a 的取值范围.4.(2022·北京丰台·一模)已知函数()f x = (1)当1a =时,求曲线()y f x =的斜率为1的切线方程; (2)若函数2()()3ag x f x =-恰有两个不同的零点,求a 的取值范围.5.(2022·广西桂林·二模(理))已知函数()()()211e 2xf x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.②利用数形结合法研究函数的零点(根)问题1.(2022·宁夏·银川二中高二期末(理))已知函数ln ()xf x x= (1)填写函数()f x 的相关性质;2.(2022·四川·阆中中学高二阶段练习(文))设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.3.(2022·全国·信阳高中高三阶段练习(理))已知函数()2e xf x a x =-(R a ∈,e 为自然对数的底数).(1)若()0f x =有两个不相等的实数根,求a 的取值范围;4.(2022·四川·雅安中学高二阶段练习(文))已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.5.(2022·全国·模拟预测(理))已知函数()()2x x f x e ae a =+∈R(1)讨论()f x 的单调性;(2)设()()21x g x a x e x =-+,若方程()()g x f x =有三个不同的解,求a 的取值范围.6.(2022·四川绵阳·二模(文))已知函数()2()ln 1R f x x ax a =+-∈(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 有且只有一个零点,求实数a 的取值范围.③构造函数研究函数零点(根)问题1.(2022·江苏宿迁·高二期末)已知函数()e xf x =(e 为自然对数的底数),()sing x a x =(,22x ππ⎡⎤∈-⎢⎥⎣⎦),a R ∈.(1)若直线:l y kx =与函数()f x ,()g x 的图象都相切,求a 的值; (2)若方程()()f x g x =有两个不同的实数解,求a 的取值范围.2.(2022·重庆南开中学高二期末)已知函数()()2ln ,f x x x g x x ax b ==++.(1)若()f x 与()g x 在1x =处有相同的切线,求实数,a b 的取值;(2)若2b =时,方程()()f x g x =在()1,+∞上有两个不同的根,求实数a 的取值范围.3.(2022·四川·成都七中高三阶段练习(理))已知函数()(1)f x a x =-,()e (1)x g x bx =-,R a ∈. (1)当2b =时,函数()()y f x g x =-有两个零点,求a 的取值范围; (2)当b a =时,不等式()()f x g x >有且仅有两个整数解,求a 的取值范围.4.(2022·全国·高三阶段练习)已知函数()()11ln e f x a x x=+++,()()e x g x x a a =++∈R .(1)试讨论函数()f x 的单调性;(2)若当1≥x 时,关于x 的方程()()f x g x =有且只有一个实数解,求实数a 的取值范围.5.(2022·河南·三模(理))已知函数()()ln 1f x x =+,()e 1xg x =-.(1)判断函数()()()h x f x g x =-的零点个数;6.(2022·江苏南京·高三开学考试)已知函数()(1)x f x e a x =+-,()sin cos g x ax x x =++ (1)求函数()f x 的最值;(2)令()()()h x f x g x =-,求函数()h x 在区间(,)4π-+∞上的零点个数,并说明理由.1.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)a x x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.2.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>;②10,22a b a <<≤.3.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b ex x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)一、单选题1.(2022·江苏·南京师大附中高三开学考试)已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为( )A .1B .2C .3D .与a 有关2.(2022·浙江省浦江中学高二阶段练习)已知函数()22x f x xe x x m =---在()0,∞+上有零点,则m 的取值范围是( )A .)21ln 2,-+∞⎡⎣B .)2ln 21,--+∞⎡⎣C .)2ln 2,-+∞⎡⎣D .21ln 2,2-+∞⎡⎫⎪⎢⎣⎭3.(2022·全国·高二)函数32()2f x x x x =-++-的零点个数及分布情况为( ) A .一个零点,在1,3⎛⎫-∞- ⎪⎝⎭内B .二个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,∞+内C .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,1,03⎛⎫- ⎪⎝⎭,()1,+∞内D .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,1,()1,+∞内4.(2022·全国·高二)直线y a =与函数33y x x =-的图象有三个不同的交点,则实数a 的取值范围为( ) A .(2,2)-B .[2,2]-C .[2,)+∞D .(,2]-∞-5.(2022·全国·高二)已知函数20()210x e x f x x x x -⎧≤=⎨--+>⎩,若函数()()g x f x kx =-有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .e -B .1-C .2D .2e6.(2022·河南·襄城高中高二阶段练习(理))已知函数()2ln f x x =,()322g x x ex ax =-+,其中e 为自然对数的底数,若方程()()f x g x =存在两个不同的实根,则a 的取值范围为( ) A .2,e ⎛⎫-∞ ⎪⎝⎭B .22,e e ⎛⎫-∞+ ⎪⎝⎭C .()2,e -∞D .22,e e ⎛⎫-∞- ⎪⎝⎭7.(2022·江西·高三阶段练习(理))已知函数22()2(2)e (1)e x x f x a a x x =+-++有三个不同的零点123,,x x x ,且1230x x x <<<,则3122312222e e e x x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( )A .3B .6C .9D .368.(2022·全国·高三专题练习)已知方程|ln |2x kx =+在区间()50,e 上恰有3个不等实数根,则实数k 的取值范围是( ) A .5331,e e ⎛⎫ ⎪⎝⎭B .5331,e e ⎡⎫⎪⎢⎣⎭C .4221,e e ⎛⎫ ⎪⎝⎭D .4221,e e ⎡⎫⎪⎢⎣⎭二、填空题9.(2022·河南焦作·二模(理))函数1()e ln 1x f x a x -=--在(0,)+∞上有两个零点,则实数a 的取值范围是_______. 10.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.11.(2022·浙江·镇海中学高二期末)已知不等式21e 0x x a +-≥有且只有两个整数解,则实数a 的范围为___________.12.(2022·全国·高二)已知函数3211()(2)1()32xf x ax ax e x a R =---+∈在区间1,22⎛⎫ ⎪⎝⎭上有3个不同的极值点,则实数a的取值范围是__________. 三、解答题13.(2022·河南·栾川县第一高级中学高二阶段练习(理))已知()2()e ()x f x x a a =+∈R .(1)若2是函数()f x 的极值点,求a 的值,并判断2是()f x 的极大值点还是极小值点; (2)若关于x 的方程()2ln e x f x x =在1,22⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.参考数据:ln 20.693≈14.(2022·陕西宝鸡·二模(文))已知函数()1e x f x ax =--,a ∈R . (1)讨论函数()f x 的单调性;(2)若方程()ln f x x x =在(1,e)上有实根,求实数a 的取值范围.15.(2022·河南·沈丘县第一高级中学高二期末(文))已知函数()ln f x x =. (1)当[)1,x ∞∈+时,证明:函数()f x 的图象恒在函数()322132=-g x x x 的图象的下方; (2)讨论方程()0f x kx +=的根的个数.16.(2022·吉林·长春外国语学校高二阶段练习)若函数()32113f x x ax bx =++-,当2x =时,函数()f x 有极值13-.(1)求函数的解析式;(2)若关于x 的方程()f x k =有三个解,求实数k 的取值范围.17.(2022·浙江浙江·二模)已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.。
常用导数图像

常用导数图像导数在微积分中起着至关重要的作用,它描述了一个函数在某一点处的变化率。
导数的图像可以帮助我们更直观地理解函数的斜率和变化趋势。
在本文中,将介绍几种常用函数的导数图像,包括线性函数、平方函数、正弦函数和指数函数等。
线性函数首先,让我们来看一下线性函数的导数图像。
对于函数f(f)=ff+f,其中f和f是常数,其导数f′(f)=f恒为常数。
这意味着线性函数的导数图像是一条水平直线,斜率恒定为f。
图中横轴表示自变量f,纵轴表示导数f′(f)。
例如,对于f(f)=2f+3,其导数图像将是一条斜率为2的水平直线。
平方函数接下来,我们来探讨平方函数的导数图像。
考虑函数f(f)=f2,其导数f′(f)=2f。
平方函数的导数图像是一条抛物线,斜率随着f的取值而变化。
当f=0时,斜率为0,在原点处达到极小值。
随着f增大,斜率也逐渐增大。
因此,平方函数的导数图像呈现出逐渐增大的趋势。
正弦函数现在我们转向正弦函数的导数图像。
正弦函数f(f)=fff(f)的导数f′(f)=fff(f)。
正弦函数的导数图像是一个周期性变化的曲线,代表着正弦函数的斜率随着f的变化而变化。
在导数图像中,我们可以观察到正弦函数的斜率在不同的f值处出现正弦曲线的特征。
指数函数最后,我们来看一下指数函数的导数图像。
指数函数f(f)=f f的导数f′(f)=f f。
指数函数的导数图像是一条逐渐增长的曲线,斜率随着f的增大而增大。
指数函数是增长最快的函数之一,因此其导数图像呈现出急剧增长的态势。
通过以上几种函数的导数图像,我们可以更好地理解导数在函数变化中的作用。
导数图像提供了直观的信息,帮助我们分析函数的斜率和变化趋势。
深入研究导数图像有助于我们更好地掌握微积分的重要概念,为解决实际问题提供了有力的工具。
以上为常用导数图像的简要介绍,希望能够帮助读者更好地理解函数的变化规律。
以上为常用导数图像文档,供参考。
导数在实际生活中的应用

VS
最小值问题
利用导数求解函数在某区间上的最小值, 如求解成本最低、风险最小等问题。
边际成本与收益分析
边际成本
利用导数计算企业在生产过程中的边际成本,即每增加一单位产 量所增加的成本。
边际收益
利用导数计算企业在销售过程中的边际收益,即每增加一单位销售 量所增加的收益。
边际成本与收益的关系
通过比较边际成本与边际收益,确定企业的盈亏平衡点,以制定合 适的生产和销售策略。
图像处理中边缘检测技术
要点一
边缘检测
利用导数可以检测图像中的边缘信息,即图像中灰度值发 生突变的位置。这是因为在边缘处,灰度值的变化率(即 导数)往往较大。常用的边缘检测算子如Sobel算子、 Laplacian算子等都是基于导数计算的。
要点二
特征提取
通过对图像进行导数运算,可以提取出图像中的纹理、角 点等特征信息,这些信息在图像识别、目标跟踪等任务中 具有重要作用。
导数在实际生活中的应用
汇报人: 2023-12-01
• 导数基本概念与性质 • 最优化问题中的导数应用 • 运动学中的导数应用 • 图形学中的导数应用 • 工程领域中导数应用举例 • 生物医学领域中导数应用举例
01
导数基本概念与性质
导数定义及几何意义
导数定义
函数在某一点处的导数描述了函数在该点附近的变化率,即函数值随自变量变化的快慢程度。
滤波器参数优化
通过导数方法,对滤波器参数进行优化设计,以满足特定信号处理 需求。
噪声抑制能力
基于导数理论,评估滤波器的噪声抑制能力,以提高信号处理质量 。
06
生物医学领域中导数应用举例
药物代谢动力学模型建立
药物浓度变化率
大学微积分(常见问题与解答)

辅导答疑第一章微积分的基础和研究对象1. 问:如何理解微积分(大学数学)的发展历史?微积分与初等数学的主要区别是什么?答:微积分的基础是---集合、实数和极限,微积分的发展历史可追溯到17世纪,在物理力学等实际问题中出现大量的(与面积、体积、极值有关的)问题,用微积分得到了很好的解决。
到19世纪,经过无数数学家的努力,微积分的理论基础才得以奠定。
可以说,经过300多年的发展,微积分课程的基本内容已经定型,并且已经有了为数众多的优秀教材。
但是,人们仍然感到微积分的教与学都不是一件容易的事,这与微积分学科本身的历史进程有关。
微积分这座大厦是从上往下施工建造起来的。
微积分从诞生之初就显示了强大的威力,解决了许多过去认为高不可攀的困难问题,取得了辉煌的胜利,创始微积分数学的大师们着眼于发展强有力的方法,解决各式各样的问题,他们没来得及为这门学科建立起严格的理论基础。
在以后的发展中,后继者才对逻辑细节作了逐一的修补。
重建基础的细致工作当然是非常重要的,但也给后世的学习者带来了不利的影响,今日的初学者在很长一段时间内只见树木不见森林。
微积分重用极限的思想,重用连续的概念,主要是在研究函数,属于变量数学的范畴。
而初等数学研究不变的数和形,属于常量数学的范畴。
2.问:大学数学中研究的函数与初等数学研究的函数有何不同之处?答:在自然科学,工程技术甚至社会科学中,函数是被广泛应用的数学概念之一,其意义远远超过了数学范围,在数学中函数处于基础核心地位。
函数不仅是贯穿中学《代数》的一条主线,它也是《大学数学》这门课程的研究对象。
《大学数学》课程中,将在原有初等数学的基础上,对函数的概念、性质进行重点复习和深入的讨论,并采用极限为工具研究函数的各种分析性质,进而应用函数的性质去解决实际问题。
第二章微积分的直接基础-极限1.问:阿基里斯追赶乌龟的悖论到底如何解决的?答:阿基里斯追赶乌龟的悖论是一个很有趣的悖论。
如果芝诺的结论是正确的,则追赶者无论跑得多么快也追不上在前面跑的人,这显然与我们在生活中经常见到的现象相违背。
1.3导数在研究函数中的应用

1/20/2020
如果函数f(x)在开区间(a,b)上只有一个极 值点,那么这个极值点必定是最值点。
1/20/2020
※动手试试
讨论函数(f x)=4x3
4x2
x在
0,1 2
的最值情况。
1/20/2020
小结:
1、基本知识 2、基本思想
1/20/2020
(1)求函数的定义域
(2)求函数的导数
(3)令f’(x)>0以及f’(x)<0,求自变量x的取值范围,即 函1/2数0/2的020单调区间。
练习:判断下列函数的单调性
• (1)f(x)=x3+3x; • (2)f(x)=sinx-x,x∈(0,π); • (3)f(x)=2x3+3x2-24x+1; • (4)f(x)=ex-x;
x ,1 1 1,1 1 1,
f ' x
0
0
f x 单调递减 2 单调递增 2 单调递减
∴当 x 1时,f (x) 有极小值,并且极小值为2.
当
1/20/2020
x 1
时, f (x)
有极大值,并且极大值为 2.
思考:已知函数 f x ax3 bx2 2x 在 x 2, x 1处取得极值。
※典型例题
求函数f (x) 6 12x x3在3,3上的最大值与最小值.
在闭区间上求函数最值时,必须确定函数的极大值和极小值吗?
解:f ' x 12 3x2 x 3,3
令f ' x 0,解得:x 2或x 2 1、求出所有导数为0的点;
又f (2) 22,f (2) 10,f (3) 15, f (3) 3
导数的应用(第1课时)利用导数研究函数的单调性(课件)高二数学(沪教版2020选择性必修第二册)

图 ( 1 ) 中的曲线越来越 “ 陡峭 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终大于 1 ; 图 ( 2 ) 中的曲线由 “ 陡峭 ” 变得 “ 平缓 ”, 在区间 ( 0 , 1 ) 的右半段的切线斜率小于 1 ; 图 ( 3 ) 中的曲线由 “ 平缓 ” 变得 “ 陡峭 ”, 在区间 ( 0 , 1 ) 的左半段的切线斜率小于 1 ; 图 ( 4 ) 中的曲线越来越 “ 平缓 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终小于 1. 因此 , 只有图 5-3-1 ( 1 ) 中的图像有可能表示函数 y = f( 可能成为严格递增区间与严格 递减区间的分界点 .
例4.确定函数(f x)=x2的单调区间 .
解函数在x 0处没有定义 .当x 0时,f (x)=-2x3,
方程f′( x )=0 无解 , 所以函数 f( x )没有驻点 . 但当 x >0 时 ,f′( x ) <0 ,f( x ) 单调递减 ; 当 x <0 时 ,f′( x) >0 , f( x ) 单调递增 . 可 见 , 函数 f ( x ) 的严格递增区间为 (-∞,0), 严格 递减区间为(0,+∞)
课本练习 宋老师数学精品工作室
1. 利用导数研究下列函数的单调性 , 并说明所得结果与你 之前的认识是否一致 :
宋老师数学精品工作室 2. 确定下列函数的单调区间 :
随堂检测 宋老师数学精品工作室
1、函数y=x2cos 2x的导数为( )
A.y′=2xcos 2x-x2sin 2x
B.y′=2xcos 2x-2x2sin 2x
上面我们用导数值的正负判断函数在某区间的单调性 . 但导数值还可 以进一步用以判断函数变化速度的快慢 : 导数f′( x 0 ) 是函数 f( x ) 在点 x 0 的切线的斜率 , 所以它描述了曲线 y=f( x ) 在点 x0 附近相 对于x轴的倾斜程度 : 当f′( x 0 ) >0 时 ,f′( x0 ) 越大 , 曲线 y = f ( x ) 在点 x 0 附近相对于 x 轴倾斜得越厉害 ,f( x ) 递增得 越快 ; 而当f′( x 0 ) <0 时 ,f′( x 0 ) 越小 , 曲线y = f ( x ) 在点 x0 附近相对于x轴倾斜得越厉害 , f ( x ) 递减得越快 . 综合这 两个方面 , 导数的绝对值越大 , 函数图像就越 “ 陡峭 ”, 也就是 函数值变化速度越快 .
§4-4:曲线的绘制

3 5 C( , ) 2 8
A ( 1,0)
1
1 3
o
1 3
1
x
小
用的综合考察.
结
函数图形的描绘,综合运用函数性态的研究,是导数应
y
凸的 单增
y f ( x)
凹的
最 小 值 拐 点
单减
极 大 值
最 大 值 极 小 值
a
o
b
x
请注意:点(0, 0)是曲线由凸变凹的分界点.
曲线的拐点及其求法
1.定义
连续曲线上凹凸的分界点称为曲线的拐点.
注意:拐点处的切线必在拐点处穿过曲线. 2.拐点的求法
定理 2:如果 f ( x )在( x0 , x0 )内存在二阶导数,则点 x0 , f ( x0 ) 是拐点的必要条件是 f " ( x0 ) 0 .
期性、曲线与坐标轴交点等性态的讨论,求出函数 的一阶导数 f ' ( x )和二阶导数 f " ( x );
第二步: 求出方程 f ' ( x ) 0 和 f " ( x ) 0 在函数定义域内的
全部实根, 用这些根同函数的间断点或导数不存在 的点把函数的定义域划分成几个部分区间.
第三步:确定在这些部分区间内 f ' ( x ) 和 f " ( x ) 的符号,并
曲线的凹凸如何判定? 下面先看两个图
y
y f ( x)
A
B
y
y f ( x)
B
A
o
a
b
x
o
a
f ( x ) 递增
y 0
f ( x ) 递减
b y 0
考向14 导数的概念及应用(重点)-备战2022年高考数学一轮复习考点微专题(新高考地区专用)

考向14 导数的概念及应用1.(2021·全国高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<【答案】D 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果; 解法二:画出曲线xy e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.【详解】在曲线xy e =上任取一点(),tP t e,对函数xy e=求导得e xy '=,所以,曲线xy e =在点P 处的切线方程为()tty e e x t -=-,即()1tty e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1tf t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减, 所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选:D.解法二:画出函数曲线xy e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D. 【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法. 2.(2021·北京高考真题)已知函数()232xf x x a-=+. (1)若0a =,求()y f x =在()()1,1f 处切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值.【答案】(1)450x y +-=;(2)函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-,最大值为1,最小值为14-. 【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)由()10f '-=可求得实数a 的值,然后利用导数分析函数()f x 的单调性与极值,由此可得出结果. 【详解】(1)当0a =时,()232xf x x -=,则()()323x f x x-'=,()11f ∴=,()14f '=-, 此时,曲线()y f x =在点()()1,1f 处的切线方程为()141y x -=--,即450x y +-=; (2)因为()232xf x x a -=+,则()()()()()()222222223223x a x x x x a f x xa xa -+----'==++,由题意可得()()()224101a f a -'-==+,解得4a =,故()2324x f x x -=+,()()()()222144x x f x x +-'=+,列表如下:()f x增 极大值 减 极小值 增所以,函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-. 当32x <时,()0f x >;当32x >时,()0f x <.所以,()()max 11f x f =-=,()()min 144f x f ==-.1.求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元2.利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线y =f(x)“在”点P(x 0,y 0)处的切线与“过”点P(x 0,y 0)的切线的区别:曲线y =f(x)在点P(x 0,y 0)处的切线是指点P 为切点,若切线斜率存在,切线斜率为k =f′(x 0),是唯一的一条切线;曲线y =f(x)过点P(x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.4.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.1.导数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx =lim Δx →0 f x 0+Δx -f x 0Δx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f x 0+Δx -f x 0Δx.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数.简称导数,记作f ′(x )或y ′. 2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率, 相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,α≠0)f ′(x )=αx α-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x4.导数的运算法则 若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0); [cf (x )]′=cf ′(x ). 【知识拓展】复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.(2021·河南南阳市·高二其他模拟(理))已知函数2()62f x x x =-+,且()02f x '=,则0x =( ) A .2B .22C .32D .422.(2021·千阳县中学高三二模(理))已知21()(21)x f x x x e =++,21()[()]f x f x '=,32()[()]f x f x '=,…,1()[()]n n f x f x +'=,*n N ∈.设2()()x n n n n f x a x b x c e =++,则100c =( )A .9903B .9902C .9901D .99003.(2021·全国高三其他模拟(文))曲线()1f x x b x=++在点()(),a f a 处的切线经过坐标原点,则ab =___________.4.(2021·新沂市第一中学高三其他模拟)已知函数2()ln f x a x bx =+的图象在点(1,1)P 处的切线与直线10x y -+=垂直,则a 的值为___________1.(2021·河南新乡市·高三三模(文))已知函数()4f x x ax =+,若()()2lim =12x f x f x x→--△△△△,则a =( )A .36B .12C .4D .22.(2021·千阳县中学高三其他模拟(理))已知函数()f x 的定义域为()0,∞+,且满足:(1)()0f x >,(2)()()()23f x xf x f x ''<<,则(1)(2)f f 的取值范围是( ) A .()10,e-B .3(,)e -+∞C .31,()e e --D .3(,)e e -3.(2021·全国高三月考(文))拉格朗日中值定理又称拉氏定理,是微积分学中的基本定理之一,它反映了函数在闭区间上的整体平均变化率与区间某点的局部变化率的关系,其具体内容如下:若()f x 在[],a b 上满足以下条件:①在[],a b 上图象连续,②在(),a b 内导数存在,则在(),a b 内至少存在一点c ,使得()()()()f b f a f c b a '-=-(()f x '为()f x 的导函数).则函数()1e x f x x -=在[]0,1上这样的c 点的个数为( ) A .1B .2C .3D .44.(2021·云南红河哈尼族彝族自治州·高三三模(文))丹麦数学家琴生是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.定义:函数()f x 在(),a b 上的导函数为()f x ',()f x '在(),a b 上的导函数为()f x '',若在(),a b 上()0f x ''<恒成立,则称函数()f x 在(),a b 上的“严格凸函数”,称区间(),a b 为函数()f x 的“严格凸区间”.则下列正确命题的序号为______.①函数()3232x x f x -++=在()1,+∞上为“严格凸函数”;②函数()ln x f x x =的“严格凸区间”为320,e ⎛⎫ ⎪⎝⎭;③函数()22xm f x e x =-在()1,4为“严格凸函数”,则m 的取值范围为[),e +∞. 5.(2021·江苏高二专题练习)设函数()e x f x x a -=,若()21e2f '=,则a =______. 6.(2021·合肥市第六中学高三其他模拟(理))已知()f x 为奇函数,当0x <时,()1xf x e -=+,则曲线()y f x =在点()()1,1f 处的切线方程是___________.7.(2021·河北饶阳中学高三其他模拟)曲线()31()e x f x x mx -=-在点(1(1))f ,处的切线与直线410x y --=垂直,则该切线的方程为__________.8.(2021·吉林松原市·高三月考)已知,0x y ∈≠R ,则()221()2x x y y++-最小值为___________. 9.(2021·广东佛山市·高三其他模拟)已知函数21()ln 2f x x x x =++,则()f x 所有的切线中斜率最小的切线方程为_________.10.(2021·全国高三其他模拟)函数()xf x e x =+在(0,(0))f 处的切线与坐标轴围成的图形面积为___________.11.(2021·全国高三其他模拟(文))已知函数()()2,xf x ae x b a b R =-+∈在1x =处的切线方程为()210e x y --+=,则()ln 2f '=___.12.(2021·四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.1.(2013·全国高考真题(文))已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-2.(2020·全国高考真题(理))若直线l 与曲线y x 和x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +123.(2019·全国高考真题(理))已知曲线e ln xy a x x =+在点()1,ae 处的切线方程为2y x b =+,则 A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-4.(2016·四川高考真题(文))设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)5.(2021·全国高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______.6.(2021·全国高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________. 7.(2019·江苏高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____.8.(2019·江苏高考真题)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.9.(2017·天津高考真题(文))已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为________ .10.(2021·全国高考真题(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.1.【答案】B 【分析】依题意求出函数的导函数,再解方程即可; 【详解】解:由题意可得()622f x x '=-+,因为()006222f x x '=-+=,所以022x = 故选:B 2.【答案】C【分析】求出前几项的导数,计算数列{}n c ,找到规律,代入数值计算. 【详解】解:因为21()(21)xf x x x e =++,()221()[()]43x f x f x x x e '∴==++, ()232()[()]67x f x f x x x e '==++, ()243()[()]813x f x f x x x e '==++,数列{}n c 为1,3,7,13,,每一项为上一项的常数与上一项的一次项的系数之和,即12n n c c n -=+,且11c =,所以()2124211n c n n n =++++-=-+,则1009901c =. 故选:C. 【点睛】思路点睛:本题考查数列的应用:计算前几项的导数,发现每一项的常数都为上一项的常数与上一项中一次项的系数的和,写出递推关系式,然后求得通项公式,代入计算. 3.【答案】2- 【分析】利用导数的几何意义即可求解. 【详解】由()1f x x b x =++,则()211f x x '=-, 所以()211f a a'=-,所以()()()22011110f a f a b f a a a a a a-'=-===++-, 化简整理可得2ab =-. 故答案为:2-4.【答案】3- 【分析】根据点P在函数的图象上,求得b的值,得到2()ln f x a x x =+,利用导数的几何意义和直线垂直的条件求得3a =-. 【详解】由已知可得(1,1)P 在函数()f x 的图象上,所以(1)1f =,即2ln111a b +⨯=,解得1b =,所以2()ln f x a x x =+,故()2af x x x'=+.则函数()f x 的图象在点(1,1)P 处的切线的斜率(1)2k f a '==+,因为切线与直线10x y -+=垂直,所以21a +=-, 即3a =-. 故答案为:3-.1.【答案】C 【分析】根据函数()f x 在0x 处的导数的定义将()()2limx f x f x x→--△△△△变形为()()()023lim303x f x f x f x→--'=△△△△即可求解.【详解】解:根据题意,()4f x x ax =+,则()34f x x a '=+,则()0f a '=,若()()2lim=12x f x f x x→--△△△△,则()()()()()022lim=3lim30123x x f x f x f x f x f xx→→----'==△△△△△△△△,则有312a =,即4a =,故选:C . 2.【答案】C 【分析】根据题意构造函数2()()x f x g x e=与213()()x f x h x e=,利用二者的单调性即可得到结果.【详解】222222()()2()()2()()()0()x xxx xf x f x e xf x e f x xf xg x g x e e e '''--=⇒==<,∴()g x 在()0,∞+上单调递减,34(1)(2)(1)(1)(2)(2)f f fg g e e e f ->⇒>⇒>, ()()()()()()()222221133121133322330x x x x x f x e xf x e f x xf x f x h x h x e e e --=⇒==>⎛'⎪'⎫ ⎝⎭' ∴()h x 在(0,)+∞上单调递增,11433(1)(2)(1)(1)(2)(2)f f f h h e f ee-<⇒<⇒<. 故选:C 【点睛】方法点睛:本题主要考查利用导数研究函数的单调性,需要构造函数,一般:(1)条件含有()()f x f x '+,就构造()()xg x e f x =,(2)若()()f x f x -',就构造()()x f x g x e=,(3)()()2f x f x +',就构造()()2x g x e f x =,(4)()()2f x f x -'就构造()()2xf xg x e=,等便于给出导数时联想构造函数. 3.【答案】A 【分析】用已知定义得到存在点[0c ∈,1],使得(1)(0)()110f f f c -'==-,转化为研究函数数1c y e -=和11y c=+图象的交点个数,作出函数图象即可得到答案. 【详解】函数1()x f x xe-=,则1()(1)x f x x e-'=+,由题意可知,存在点[0c ∈,1],使得(1)(0)()110f f f c -'==-,即1(1)1c c e -+=,所以111c ec-=+,[0c ∈,1], 作出函数1c y e -=和11y c=+的图象,如图所示,由图象可知,函数1c y e -=和11y c=+的图象只有一个交点, 所以111c ec-=+,[0c ∈,1]只有一个解,即函数1()x f x xe -=在[0,1]上c 点的个数为1个. 故选:A 4.【答案】①② 【分析】根据题干中给出的定义逐项检验后可得正确的选项. 【详解】()3232x x f x -++=的导函数()236f x x x '=-+,()66f x x ''=-+,故()0f x ''<在()1,+∞上恒成立, 所以函数()3232x x f x -++=在()1,+∞上为“严格凸函数”,所以①正确;()ln x f x x =的导函数()21ln x f x x -'=,()32ln 3x f x x-''=, 由()0f x ''<可得2ln 30x -<,解得320,x e ⎛⎫∈ ⎪⎝⎭,所以函数()ln xf x x =的“严格凸区间”为320,e ⎛⎫ ⎪⎝⎭,所以②正确;()22x m f x e x =-的导函数()x f x e mx '=-,()x f x e m ''=-, 因为()f x 为()1,4上的“严格凸函数”,故()0f x ''<在()1,4上恒成立, 所以0x e m -<在()1,4上恒成立,即x m e >在()1,4上恒成立, 故4m e ≥,所以③不正确. 所以正确命题为:①②. 故答案为:①②. 5.【答案】2 【分析】 先对()ex f x x a-=求导,将2x =代入()f x '即可求解. 【详解】 由()e x f x x a -=可得,()e 1x a f x x -+'=,所以()22e 211ea f '-+==,解得2a =. 故答案为:2. 【点睛】本题主要考查导数的运算,属于基础题. 6.【答案】10ex y ++= 【分析】由条件求得当0x >时的函数解析式,求导,通过导数几何意义求得在点()()1,1f 处的切线方程. 【详解】由题知,当0x >时,()1()xf x e f x -=+=-,即()1xf x e =--则()xf x e '=-,()1f e '=-,又()11f e =--则在点()()1,1f 的切线方程为:(1)(1)y e e x ---=--, 即10ex y ++= 故答案为:10ex y ++=7.【答案】410x y +-= 【分析】根据导数的几何意义,先求切线斜率142k m =-,而直线410x y --=的斜率214k =,根据两条直线垂直则121k k =-,代入即可得解. 【详解】由题意得()321()3e x f x x x mx m ---'=+,则(1)42f m '=-,所以切线的斜率142k m =-.直线410x y --=的斜率214k =. 因为两直线相互垂直,所以121(42)14k k m =-=-,解得4m =,则1(1)4k f '==-.所以()31()4e x f x x x -=-,则(1)3f =-,故该切线的方程为34(1)y x +=--,即410x y +-=. 故答案为:410x y +-= 8.【答案】4 【分析】 将()221()2x x y y ++-看作两点(,)A x x ,1(,2)B y y-之间距离的平方,然后根据几何意义进行求解即可. 【详解】()221()2x x y y ++-看作两点(,)A x x ,1(,2)B y y-之间距离的平方,点A 在直线y x =上,点B 在曲线2,0y x x=-≠上,222()y x x ''=-=,令221x =,解得x =(B ,所以||2AB ≥=,2||4AB ∴≥,即()221()2x x y y ++-最小值为4. 故答案为:4.9.【答案】332y x =- 【分析】求得函数导数,由基本不等关系求得导数的最小值,即函数()f x 所有切线中斜率最小值,进而求得切线方程. 【详解】 由1()1f x x x'=++,0x >,则1()113f x x x '=++≥+=,1x =时等号成立, 则函数()f x 所有切线中斜率最小为3,且过点3(1,)2, 则切线方程为332y x =- 故答案为:332y x =- 10.【答案】14【分析】根据导数的几何意义可求得切线方程,进而确定与坐标轴的交点坐标,从而求得面积. 【详解】切点(0,1),()e 1,2xf x k =+=', 切线:12y x -=,即21y x =+, 与y 轴交点(0,1),与x 轴交点1,02⎛⎫-⎪⎝⎭, 故1111224S =⨯⨯=, 故答案为:14. 11.【答案】0 【分析】根据导数的几何意义可知()12f e '=-,又()()1,1f 在切线上,可解得,a b 的值,进而可求()ln 2f '的值.【详解】由()2xf x ae x b =-+,得()2xf x ae '=-,()12f ae '∴=-,()12f ae b =-+,又切线方程为:()210e x y --+=,即()21y e x =-+,故22221ae e ae b e -=-⎧⎨-+=-+⎩,解得1a b ==,故()21xf x e x =-+,()2xf x e '=-,即()ln2ln 220f e '=-=,故答案为:0.12.【答案】(1)2a =;(2)证明见解析. 【分析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0x f x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e -=-+,()ln xh x x=,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x ee-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号).又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.1.【答案】D 【分析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解. 【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D 【点睛】本题考查了不等式恒成立求出参数取值范围,考查了数形结合的思想,属于中档题. 2.【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D. 【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 3.【答案】D 【分析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b .【详解】详解:ln 1,xy ae x '=++1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D . 【点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 4.【答案】A 【详解】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为221111112222111121211,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围. 5.【答案】0,1 【分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N =,化简即可得解.【详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1xA x e -和点()22,1xB x e -,12,x xAM BN k e k e =-=,所以12121,0xx e ex x -⋅=-+=,所以()()111111,0:,11xxxxe e x x e AM e y M x -+=---+,所以1x AM ==,同理2B x N =,所以()10,1x e NAM B ===∈=. 故答案为:0,1 【点睛】 关键点点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 6.【答案】520x y -+= 【分析】先验证点在曲线上,再求导,代入切线方程公式即可. 【详解】由题,当1x =-时,3y =-,故点在曲线上. 求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=. 故答案为:520x y -+=. 7.【答案】(e, 1). 【分析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标. 【详解】设点()00,A x y ,则00ln y x =.又1y x'=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =, 故点A 的坐标为(),1A e . 【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点. 8.【答案】4. 【分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离 【详解】当直线0x y +=平移到与曲线4y x x=+相切位置时,切点Q 即为点P 到直线0x y +=的距离最小. 由2411y x '=-=-,得)x =,y =即切点Q ,则切点Q 到直线0x y +=4=,故答案为4. 【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题. 9.【答案】1 【详解】函数f (x )=ax −ln x ,可得()1'f x a x=-,切线的斜率为:()'11k f a ==-, 切点坐标(1,a ),切线方程l 为:y −a =(a −1)(x −1),l 在y 轴上的截距为:a +(a −1)(−1)=1.故答案为1.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.10.【答案】(1)2p =;(2) 【分析】(1)根据圆的几何性质可得出关于p 的等式,即可解出p 的值;(2)设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求出直线PA 、PB ,进一步可求得直线AB 的方程,将直线AB 的方程与抛物线的方程联立,求出AB 以及点P 到直线AB 的距离,利用三角形的面积公式结合二次函数的基本性质可求得PAB △面积的最大值. 【详解】(1)抛物线C 的焦点为0,2p F ⎛⎫⎪⎝⎭,42p FM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x x y y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB ===,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.。
(典型题)高中数学高中数学选修2-2第三章《导数应用》测试卷(含答案解析)

一、选择题1.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( )A .()1,+∞B .[)3,+∞C .(],1-∞D .(],3-∞2.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( )A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞3.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞D .()8,+∞4.若曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e5.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .6.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞7.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B 3C 3D .r8.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃9.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e) 10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .1212.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln2+ D .ln21-二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫= ⎪⎝⎭()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.15.已知函数()211020x e x x x ef x lnx x x⎧--+≤⎪⎪=⎨⎪⎪⎩,,>,若方程f (x )﹣m =0恰有两个实根,则实数m 的取值范围是_____.16.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .17.函数()()21xf x x =-的最小值是______.18.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.19.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;22.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为 (米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升). (1)求y 关于v 的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v 取什么值时,总用氧量最少. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.设函数21()2x f x x e =. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.25.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计? 26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.2.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x=-,则()()21ln ln x g x x -=′, 令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减, ∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 3.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-, 故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.4.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由xy e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>. ∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.5.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.6.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立, 即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.7.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=,得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.8.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.9.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】 由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x=有两个交点, 又由()312ln xg x x-'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.12.A解析:A【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论.【详解】设函数()()()2ln 0=-=->y f x g x x x x , ()212120-'∴=-=>x y x x x x, 令0y '<,0x,02∴<<x,函数在2⎛⎫ ⎪⎝⎭上为单调减函数; 令0y '>,0x,∴>x,函数在⎫+∞⎪⎪⎝⎭上为单调增函数.2x ∴=时,函数取得极小值,也是最小值为111ln ln 22222-=+. 故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+.故选:A.【点睛】本题主要考查利用导数研究函数的最值,属于中档题.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m > 【分析】 转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果.【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点,当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m >【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x'-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()6sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.15.【分析】通过求导得出分段函数各段上的单调性从而画出图像若要方程f (x )﹣m=0恰有两个实根只需y=m 与y=f (x )恰有两个交点即可从而得出的取值范围【详解】(1)x≤0时f′(x )=ex ﹣x ﹣1易知解析:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭, 【分析】通过求导,得出分段函数各段上的单调性,从而画出图像.若要方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点即可,从而得出m 的取值范围.【详解】(1)x ≤0时,f ′(x )=e x ﹣x ﹣1,易知f ′(0)=0,而f ″(x )=e x ﹣1<0,所以f ′(x )在(﹣∞,0]上递减,故f ′(x )≥f ′(0)=0,故f (x )在(﹣∞,0]上递增, 且f (x )≤f (0)11e=+,当x →﹣∞时,f (x )→﹣∞. (2)x >0时,()21'lnx f x x-=,令f ′(x )>0,得0<x <e ;f ′(x )<0得x >e ; 故f (x )在(0,e )上递增,在(e ,+∞)递减, 故x >0时,()1()max f x f e e==;x →0时,f (x )→﹣∞;x →+∞时,f (x )→0. 由题意,若方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y =m 在图示①,②位置时,与y =f (x )有两个交点,所以m 的范围是:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 故答案为:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 【点睛】本题考查了方程根的问题转化为函数图像交点问题,以及利用导数求函数单调性.考查了转化思想和数形结合,属于中档题.16.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可.【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为22GE x = cm , 因为302x AE AH -== cm ,2A π∠=,所以包装盒的底面边长为2=(30)2HE x - cm , 所以包装盒的体积为232222()[(30)](60900)224V x x x x x x =-⋅=-+,030x <<, 则22()(3120900)4V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.17.【分析】对求导利用导数即可求得函数单调性和最小值【详解】因为故可得令解得;故当时单调递减;当时单调递增;当时单调递减且当趋近于1时趋近于正无穷;当趋近于正无穷时趋近于零函数图像如下所示:故的最小值为解析:14- 【分析】对()f x 求导,利用导数即可求得函数单调性和最小值,【详解】因为()()21xf xx=-,故可得()()311xf xx---'=,令()0f x'=,解得1x=-;故当(),1x∈-∞-时,()f x单调递减;当()1,1x∈-时,()f x单调递增;当()1,x∈+∞时,()f x单调递减.且()114f-=-,当x趋近于1时()f x趋近于正无穷;当x趋近于正无穷时,()f x趋近于零.函数图像如下所示:故()f x的最小值为14-.故答案为:14-.【点睛】本题考查利用导数研究函数的最值,属综合基础题.18.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln,0()log,0xxf x xx x+⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m的取值范围.【详解】当0x >时,2ln ()x f x x'=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →; 作出函数21ln ,0()log ,0x x f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<; 故答案为:1(0,)2.【点睛】 本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.19.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x +=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】 ()1ln 2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-. ∴ln 1x a x+=在0x >时有两个根,令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==- 当01x <<时,'()0g x >,当1x >时,'()0g x <, ∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<.【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导 解析:18a ≥ 【分析】依题意可得()210a f x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210a f x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x = 所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题. 三、解答题21.(1)答案见解析;(2)[)1,+∞.【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果.【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x a h x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>; ()h x ∴在(上单调递减,在)+∞上单调递增. (2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2a t x x x '=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200a x x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max 21x x-+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】 关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22.(1)见解析;(2)若c<3102,则当v =3102时,总用氧量最少;若c≥3102,则当v =c 时,总用氧量最少.【分析】(1)结合题意可得y 关于v 的函数关系式.(2)由(1)中的函数关系,求导后得到当0<v<3102时,函数单调递减;当v>3102时,函数单调递增.然后再根据c 的取值情况得到所求的速度. 【详解】(1)由题意,下潜用时 (单位时间),用氧量为×=+ (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时= (单位时间),用氧量为×1.5= (升), 因此总用氧量232409,(0)50v y v v=++>. (2)由(1)得232409,(0)50v y v v=++>, ∴y′=-=,令y′=0得v =32当0<v<3102y′<0,函数单调递减;当v>32y′>0,函数单调递增.①若c<32 ,则函数在(c ,32上单调递减,在(310215)上单调递增, ∴ 当v =32②若c≥32,则y 在[c ,15]上单调递增,∴ 当v =c 时,总用氧量最少.【点睛】(1)在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.(2)用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)(,2)(0,)()f x -∞-+∞和为的增区间,(2,0)()f x -为的减区间.(2)m <0 .【详解】解:(1)21()(2)22xxx e f x xe x e x x '=+=+ 令(2)0,02,(,2)(0,)()2xe x x x xf x +>><-∴-∞-+∞或和为的增区间, (2)0,20,(2,0)()2xe x x xf x +<-<<∴-为的减区间. (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min ()f x >m, 令:21()(2)022xxx e f x xe x e x x =+'=+= ∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点2222(2),(2)2,(0)0,()[0,2]f f e f f x e e-===∴∈, ∴m <0 25.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+- 因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题. 26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,.【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x ≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122m x x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解.【详解】(1)()f x 的定义域为(0,)+∞,∵()f x 在(0,)+∞上单调递增, ∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=, ∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122m x x +=,121x x ⋅=, ∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+ ()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+- 2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x ---+--=-+='=<, ∴()g x 在1,12⎛⎫ ⎪⎝⎭上为减函数, 又1111544ln 4ln 22424g ⎛⎫=-+=- ⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。
导数的应用曲线的弧长与曲率计算

导数的应用曲线的弧长与曲率计算导数的应用——曲线的弧长与曲率计算曲线是几何学中的重要概念,我们在日常生活中经常会遇到各种各样的曲线形状。
在数学中,对于曲线的研究和计算也有很多有趣的应用。
其中,导数的应用可以帮助我们计算曲线的弧长和曲率,进一步深化我们对曲线性质的理解。
本文将介绍导数在曲线的弧长和曲率计算中的具体应用。
一、曲线的弧长计算在数学中,曲线的弧长是指曲线上两点之间的实际距离。
我们可以通过导数来计算曲线的弧长。
假设有一条平面曲线y=f(x),我们希望计算曲线上从点A(x=a,y=f(a))到点B(x=b, y=f(b))的弧长。
首先,将曲线分割成无穷小的线段,假设一个无穷小线段的长度为ds。
根据勾股定理,该线段的长度可以表示为:ds = √(dx² + dy²)由导数的定义可知,dy/dx为曲线在某一点的斜率。
由此得到dy=dy/dx*dx。
将dy代入上式中,得到:ds = √(1+(dy/dx)²)*dx对上述表达式进行积分运算,就可以得到整个曲线上从A点到B点的弧长L的计算公式:L = ∫[a,b]√(1+(dy/dx)²)dx通过上述公式,我们可以使用导数来计算曲线上任意两点之间的弧长。
二、曲线的曲率计算曲率是指曲线在某一点上的弯曲程度,可以反映曲线的灵活性和形状。
我们可以通过导数来计算曲线的曲率。
假设有一条平面曲线y=f(x),我们希望计算曲线在点P(x, y)处的曲率。
曲率的计算公式为:κ = |dy/dx|/√(1+(dy/dx)²)³其中,|dy/dx|表示曲线在该点的斜率的绝对值。
曲率计算的实际应用场景非常广泛。
例如,在道路设计中需要考虑道路的弯曲程度,通过曲线的曲率计算可以帮助工程师设计出更符合交通规范和行车安全的道路。
通过导数的应用,我们可以结合曲线的弧长和曲率计算,更深入地研究和理解曲线的各种性质。
总结:在数学中,导数的应用可以帮助我们计算曲线的弧长和曲率,进一步深化对曲线性质的理解。
高中数学导数经典题型解题技巧(运用方法)

高中数学导数经典题型解题技巧(运用方法)高中数学导数及其应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中·期末还是会考·高考,都是高中数学的必考内容之一.因此,针对这两各部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们有更多·更好·更快的方法解决高中数学问题。
好了,下面就来讲解常用逻辑用语的经典解题技巧。
第一·认识导数概念和几何意义1.导数概念及其几何意义(1)了解导数概念的实际背景。
(2)理解导数的几何意义。
2.导数的运算(1)能根据导数定义求函数231(),,,,,y C C y x y x y x y y x======为常数的导数。
(2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
(3)能求简单的复合函数(仅限于形如()f ax b +的复合函数)的导数。
3.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。
4.生活中的优化问题会利用导数解决某些实际问题5.定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。
(2)了解微积分基本定理的含义。
总结:先搞清楚导数概念以及几何意义,才能更好地运用其解题技巧!第二·导数运用和解题方法一、利用导数研究曲线的切线考情聚焦:1.利用导数研究曲线()的切线是导数的重要应y f x用,为近几年各省市高考命题的热点.2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。
解题技巧:1.导数的几何意义函数()y f x =在0x 处的导数()f x '的几何意义是:曲线()y f x =在点00(,())P x f x 处的切线的斜率(瞬时速度就是位移函数()s t 对时间t 的导数).2.求曲线切线方程的步骤:(1)求出函数()y f x =在点0x x =的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率;(2)在已知切点坐标00(,())P x f x 和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
导数的应用曲率与曲线的拟合

导数的应用曲率与曲线的拟合导数的应用:曲率与曲线的拟合曲率是描述曲线弯曲程度的一个重要概念。
在数学中,我们可以通过导数的概念来计算曲线的曲率,并且利用曲线的曲率来进行曲线的拟合。
一、曲线的曲率与导数的关系曲线的曲率可以通过曲线上一点处的切线来描述。
在给定点处,曲线的曲率越大,说明曲线的弯曲程度越大;反之,曲线的曲率越小,说明曲线的弯曲程度越小。
而导数可以描述曲线在给定点的斜率。
我们可以将曲线的导数看作切线的斜率。
在给定点处的导数越大,说明曲线在该点的弯曲程度越大;反之,导数越小,说明曲线在该点的弯曲程度越小。
所以,我们可以通过导数的大小来判断曲线的曲率。
具体来说,曲线的曲率等于导数的绝对值除以曲线的切线长度。
这个关系式可以用以下公式表示:曲率 = |f''(x)| / [1 + (f'(x))^2]^(3/2)其中,f'(x)和f''(x)分别表示曲线f(x)的一阶导数和二阶导数。
二、曲线的拟合曲线的拟合是指通过给定数据点,寻找一个函数曲线来逼近这些数据点的过程。
导数与曲线的拟合有着密切的关系。
在实际问题中,我们可能会遇到一组数据点,想要找到一个函数曲线来拟合这些数据,以得到更好的预测和分析结果。
而导数可以帮助我们找到一个更好的拟合函数。
首先,我们可以利用导数的概念来求取数据点的斜率。
通过计算数据点处的导数,我们可以得到一组斜率值。
而这些斜率值可以用来帮助我们确定最佳的曲线。
其次,我们还可以利用导数的概念来评估拟合函数的优劣。
通过计算拟合函数在数据点处的导数,我们可以得到一个与实际观测值相对应的斜率曲线。
如果拟合函数的导数与实际观测值的斜率曲线接近,那么拟合函数就可以较好地拟合数据。
最后,导数还可以帮助我们调整拟合函数的参数。
通过对拟合函数的导数进行最优化处理,我们可以找到最佳的拟合参数,从而得到一个更准确的拟合函数。
综上所述,导数在曲线的拟合中起着重要的作用。
高考数学复习考点知识专题讲解课件第19讲 利用导数研究函数的零点

f(0)=0,所以函数f(x)只有一个零点.
②若a>0,令f'(x)=0,则x=ln a,由f'(x)>0,可得x>ln a,此时函数f(x)在(ln a,+∞)上单调递增,由
f'(x)<0,可得x<ln a,此时函数f(x)在(-∞,ln a)上单调递减,所以f(x)min=f(ln a)=a-1-aln a,
需要先结合单调性,确定分类讨论的标准,再利用函数零点存在定理,在每个单
调区间内取值证明f(a)·
f(b)<0.
提示一:已知函数有零点求参数范围常用的方法有(1)分离参数法,一般命
题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离
出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关
在定理求解,另一种是化原函数为两个函数,利用两个函数图像的交点来求解.
课堂考点探究
变式题
x
已知函数f(x)=e -ax+sin
x-1.
(1)当a=2时,讨论函数f(x)的单调性;
解: 当a=2时,f(x)=ex-2x+sin x-1(x∈R),则f'(x)=ex-2+cos x,设h(x)=f'(x)=ex-2+cosx,
课堂考点探究
探究点三
可化为函数零点的函数问题
例4 已知函数f(x)=x·cos x.
(1)当x∈(0,π)时,求证:f(x)<sin x;
[思路点拨]令g(x)=f(x)-sin x,利用导数研究函数的单调性,即可得证;
证明: 令g(x)=f(x)-sin x=x·cos x-sin x,则g'(x)=cos x-x·sin x-cos x=-x·sin x,当x∈
运用导数探究曲线的切线问题

运用导数探究曲线的切线问题曲线的切线反映了曲线的变化情况,体现了微积分中重要的思想方法——以直代曲。
因此,利用导数求解曲线的问题,几乎是新课程高考每年必考的内容。
在这类问题中,导数所肩负的任务是求切线的斜率,这类问题的核心部分是考查函数的思想方法和解析几何的基本思想方法,真正体现出函数、导数既是研究的对象又是研究的工具。
【注意】(1)过某一点的切线,则该点不一定为切点;(2)直线与曲线相切,并不一定只有一个公共点,当曲线是二次曲线时,由解析几何知,直线与曲线相切,有且只有一个公共点,即切点;(3)导数不存在,切线也不一定不存在,只能说切线的斜率不存在。
求曲线的切线方程有以下几种常见的类型:类型一:已知切点,求曲线在此处的切线方程类型二:求过某点的切线方程求过某点的切线时,无论此点是否在曲线上,都应先设切点,再求切点,即用待定切点法.类型三:两曲线的公切线问题【点睛】本题主要考查导数的几何意义、导数与函数的单调性以及函数的极值与最值,考查学生的逻辑推理能力与数学运算能力,考查的核心素养是逻辑推理、直观想象、数学运算,是难题.类型四:切线的应用在导数题目特别是在求参数取值范围时,往往作为邻界线使用。
【点睛】本题考查函数解析式的求法、函数的图像、方程的解与函数图像的关系,需要结合基本运算能力,推理能力,数形结合思想,转化与化归思想,对考生核心的数学素养要求较高.【点睛】本小题主要考查利用导数研究函数的零点,考查化归与转化的数学思想方法,考查数形结合的数学思想方法.【点睛】本题考查函数与方程的零点,考查数形结合思想,考查切线方程,准确转化题意是关键,是中档题,注意临界位置的开闭,是易错题。
【点睛】本题主要考查函数极值的应用,利用数形结合以及参数分离法进行转化,求函数的导数研究函数的单调性极值,利用数形结合是解决本题的关键.。
函数的导数与曲线的拐点分析

函数的导数与曲线的拐点分析函数的导数与曲线的拐点分析是微积分中重要的概念,它们帮助我们理解函数曲线的特性和趋势。
在本文中,我们将深入探讨函数的导数和曲线的拐点,以及它们之间的关系。
一、函数的导数函数的导数是描述函数变化率的概念。
对于一个函数f(x),其导数f'(x)可以通过极限的方式来定义,即:f'(x) = lim(h->0) [f(x+h) - f(x)] / h函数的导数可以理解为函数在某一点的瞬时变化率。
对于连续可导的函数而言,导数表示了其在不同点的变化趋势。
在函数的导数中,我们常常使用一阶导数和二阶导数来分析函数的特性。
二、一阶导数一阶导数即函数的导数,它描述了函数曲线的变化趋势。
根据导数的定义,我们可以利用一阶导数来判断函数曲线在某一点的升降性。
若一阶导数大于零,则函数在该点上升;若一阶导数小于零,则函数在该点下降。
通过观察一阶导数的变化情况,我们可以找到函数曲线的最值点,即一阶导数为零的点。
这些点对应着函数曲线的极值,可以帮助我们分析函数的凹凸性。
三、二阶导数二阶导数是一阶导数的导数,它描述了函数曲线的变化趋势的变化趋势。
二阶导数可以帮助我们判断函数曲线的凹凸性和拐点。
如果二阶导数大于零,则函数曲线是凹的;如果二阶导数小于零,则函数曲线是凸的。
通过观察二阶导数的变化情况,我们可以找到函数曲线的拐点,即二阶导数为零的点。
四、函数的导数和曲线的拐点之间存在密切的关系。
通过函数的导数,我们可以找到函数曲线的升降性和极值点;通过二阶导数,我们可以找到函数曲线的凹凸性和拐点。
当一阶导数为零的点也是二阶导数为零的点时,该点就是函数曲线的拐点。
在拐点处,函数曲线由凹转为凸或由凸转为凹,这是函数曲线的变化趋势发生了明显的改变。
通过对函数的导数和二阶导数的分析,我们可以综合判断函数曲线的特性和趋势。
注意,需结合具体函数进行分析,因为不同函数的导数和二阶导数的变化情况不尽相同。
五、总结函数的导数与曲线的拐点分析是微积分中重要的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可见讲课开始后第13分钟时小学生兴趣 最大.在此时刻之前学习兴趣递增,在此时 刻之后学习兴趣递减.
学习兴 趣增加
学习兴 趣最大
学习兴 趣减少
t 13
知识回顾 Knowledge
Review
祝您成功!
提示与分析:
先建立目标函数,然后再用求最值的方法
求出未知量.
解 (1)由C( x) 25000 200x x2 ,得 40
平均成本C( x) ( 25000 200 x )
x
40
因而 dC dx
25000 x2
1 40
,
令 dC dx
0, 得
舍去
x 1000或 x 1000.
唯一驻点
3)
2,
2( x 2)( x 3)
lim[
2x]
x
x1
2( x 2)( x 3) 2x( x 1)
lim
x
x1
通分
lim 4x 12 4, x x 1
y 2x 4是曲线的一条斜渐近线.
f ( x) 2( x 2)( x 3)的两条渐近线如图 x1
2、利用导数绘制函数的图像 图形描绘的步骤:
(1) 确定函数的定义域; (2) 考察函数的对称性、周期性; (3) 求函数的间断点、驻点、不可导点,把定 义域分成若干个子区间; (4) 列表讨论函数在各个子区间内的增减性、 凹凸性,判断极值点和拐点;
(5) 确定曲线的渐近线; (6) 求曲线上的一些辅助点,比如与坐标 轴的交点; (7) 根据以上讨论,从左到右,把曲线上 的特殊点用平滑曲线连接起来,完成作图.
凸 弧
分界 点
二、利用导数绘制函数的图像
1、曲线的渐近线
定义 当曲线 y f ( x) 上的一动点 P沿着曲
线移向无穷点时, 如果点 P 到某定直线L的距离
趋向于零, 那么直线 L 的渐近线 水平渐近线
斜渐近线
铅直渐近线(垂直于 x 轴的渐近线)
渐近线.
例如 y
1
有两条铅直渐近线
( x 2)( x 3)
x 2, x 3.
两条铅 直渐近 线
y arctan x有两条水平渐近线
π
π
y , y .
2
2
斜渐近线
如果 lim [ f ( x) (ax b)] 0 x
或
lim [ f ( x) (ax b)] 0 (a, b 为常数)
( 2 , ) 2
凹
y 1
2
o
2
2
x
2
三、应用举例
例4 已知某厂生产x件产品的成本为 C( x) 25000 200 x x2 (元),问: 40
(1)若使平均成本最小,应该生产多少件产品? (2)若产品以每件500元售出,要使利润最大, 应该生产多少件产品?
这是一道关于最大、最小值的应用题.
f ( x) 0
o
f ( x)的图像为凹弧
切线的斜率 越来越大
y f (x)
x
观察右图:
当x从小变大时,
y
f ( x)从大变小.
切线的斜率越 来越小
f ( x)单调减少 f ( x) 0
y f (x)
o
x
f ( x)的图像为凸弧
二阶导数为正,曲线开口向上,是凹弧; 二阶导数为负,曲线开口向下,是凸弧;二
阶导数为零,且两侧异号,是拐点.
例1 判断曲线 y x3 的凹凸性.
解 y 3x2 , y 6x, D : (, ). 当x 0时, y 0, 曲线 在(, 0]为凸的;
当x 0时,y 0, 曲线 在[0, )为凹的. 注意到点(0, 0)是曲线由凸变凹的分界点.
拐点
凹 弧
y x3
如果 lim f ( x) 或 lim f ( x) 那
x x0
x x0
么x x0 就是 y f ( x) 的一条铅直渐近线.
水平渐近线(平行于 x 轴的渐近线)
如果 lim f ( x) b 或 lim f ( x) b (b 为
x
x
常数)那么 y b 就是 y f ( x)的一条水平
故生产1000件产品可使平均成本最小.
(2)利润函数L( x) 500x (25000 200x x2 )
40
总收入
成本
由
dL dx
300
x 20
0
得
x 6000,
唯一驻点
故生产6000件产品,可使利润最大.
例5 心理学研究表明,小学生对概念的接受 能力G(即学习兴趣、注意力、理解力的某种 量度)随时间t的变化规律为
但 lim[ f ( x) ax] 不存在, x
可以断定 y f ( x) 不存在斜渐近线.
例2 求曲线f ( x) 2( x 2)( x 3)的渐近线. x 1
提示与分析: 铅直渐近线 定义域不存在的点
曲线的渐近线
自变量趋向无穷远
水平渐近线 处,函数的极限
斜渐近线 斜渐近线与水平渐近
线不会同时出现
x
那么 y ax b 就是 y f ( x)的一条斜渐近线.
斜渐近线求法:
f (x)
lim
a, lim[ f ( x) ax] b.
x x
x
y ax b 即为曲线 y f ( x)的一条斜渐近线.
注意:如果 lim f ( x) 不存在, x x
或 lim f ( x) a 存在, x x
解 函数的定义域为D : (,1) (1, ),
2( x 2)( x 3)
lim f ( x) lim
,
x 1
x 1
x1
2( x 2)( x 3)
lim f ( x) lim
.
x 1
x 1
x1
x 1是曲线的铅直渐近线.
又
lim
x
f
(x) x
lim
x
2( x
x
2)( x ( x 1)
第四节
利用导数研究函数的图像
—曲线的绘制
主要内容: 一、函数的凸凹性 二、利用导数绘制函数的图像
在研究函数特性时往往需要 知道函数的直观图形,利用函 数的一阶、二阶导数可以绘制 出函数的较精细的图形.本节将 研究这个问题.
一、曲线弯曲方向—凹凸性
观察右图:
当x从小变大时,
y
f ( x)也从小变大. f ( x)单调增加
2
2
(x) 2xex2 ,(x) 2ex2 4x2ex2 2ex2 (2x2 1).
lim( x) lim e x2 0, 得水平渐近线 y 0.
x
x
列表确定单调区间、凹凸区间及极值、拐点.
x0
( x) 0 ( x) 2
(0, 2 ) 2
( x) 极大值
1
凸
2 2
0
拐点 21 (,) 2e
G(t) 0.1t 2 2.6t 43 t [0, 30].
问t为何值时学生学习兴趣增加或减退?何时
学习兴趣最大?
函数的增减性
最值问题
解 G(t) 0.2t 2.6 0.2(t 13), 由G(t) 0,得t 13. 唯一驻点
所以x 13是G(t)的最大值.
当t 13时,G(t) 0,G(t)单调增加;
例3 作函数 ( x) e x2的图形.
解 定义域为D : (, ), 函数为偶函数,
只需做(0, )的函数图像,
( x) (ex2 ) 2xex2 , 复合函数求导
( x) (2xe x2 ) 2e x2 4x2e x2 .
令 ( x) 0,得驻点 x 0,
令 ( x) 0,得特殊点x 2 , x 2 .