数字电路 时序逻辑电路
数字电子技术基础第五章时序逻辑电路PPT课件
减小功耗
优化电路结构,降低电路的 功耗,减少能源浪费。
提高可靠性
通过优化设计,提高电路的 可靠性和稳定性,降低故障 发生的概率。
提高性能
优化电路结构,提高电路的 响应速度和性能,满足设计 要求。
05 时序逻辑电路的实现技术
基于中小规模集成电路的时序逻辑电路实现技术
概述
中小规模集成电路是将多个晶体管集成在一块芯片上,实现时序逻辑功能。
冒险现象
由于竞争现象的存在,时序逻辑电路 的输出可能会产生短暂的不确定状态, 这种现象称为冒险现象。
04 时序逻辑电路的设计方法
同步时序逻辑电路的设计方法
建立原始状态图
根据设计要求,确定系统的输入和输出变量,并使用状 态图表示系统的状态转换关系。
逻辑方程组
根据状态图和状态编码,列出逻辑方程组,包括状态转 移方程、输出方程和时钟方程。
分类
根据触发器的不同,时序逻辑电 路可分为同步时序电路和异步时 序电路;根据电路结构,可分为 摩尔型和米立型。
时序逻辑电路的功能与特点
功能
实现数据的存储、记忆、计数、分频 等功能。
特点
具有记忆功能、输出状态不仅与当前 输入有关还与之前状态有关、具有时 钟信号控制等。
时序逻辑电路的应用场景
01
02
数字电子技术基础第五章时序逻辑 电路ppt课件
目 录
• 时序逻辑电路概述 • 时序逻辑电路的基本电路的实现技术 • 时序逻辑电路的应用实例
01 时序逻辑电路概述
时序逻辑电路的定义与分类
定义
时序逻辑电路是一种具有记忆功 能的电路,其输出不仅取决于当 前的输入,还与之前的输入状态 有关。
03
数字钟
利用时序逻辑电路实现时 间的计数和显示。
电路基础原理数字电路中的组合逻辑与时序逻辑
电路基础原理数字电路中的组合逻辑与时序逻辑数字电路作为电子电路中的重要分支,涉及到了很多基础原理和概念,其中包括组合逻辑和时序逻辑。
这两者在数字电路的设计和实现中起着重要的作用。
在本文中,我们将探索数字电路中的组合逻辑和时序逻辑的基本原理和应用。
一、组合逻辑组合逻辑是指数字电路的输出只依赖于输入的当前状态,而不依赖于输入的之前的历史状态。
组合逻辑电路一般由逻辑门构成,包括与门、或门、非门等。
逻辑门可以根据输入的逻辑状态产生相应的输出。
组合逻辑的设计和实现中,最常见的是使用布尔代数进行逻辑分析和运算。
布尔代数使用逻辑运算符号来表示逻辑关系,如与(AND)、或(OR)、非(NOT)等。
通过对输入信号进行布尔运算,可以得到输出信号的逻辑关系。
组合逻辑电路的设计离不开真值表和卡诺图的运用。
这些工具可以帮助我们实现更高效的电路设计和优化。
组合逻辑的应用非常广泛,比如在计算机的内部电路和逻辑运算中,组合逻辑起到了至关重要的作用。
另外,在数字电子系统中,还有很多设备和模块都是通过组合逻辑来实现控制和数据处理的功能。
二、时序逻辑时序逻辑是指数字电路的输出不仅仅依赖于输入的当前状态,还可能受到输入的历史状态的影响。
时序逻辑电路一般由触发器、计数器、状态机等构成。
触发器是时序逻辑电路的基本单元,可以用来存储和传递信号。
时序逻辑电路的设计和实现中,需要考虑时序关系和时钟信号的影响。
时钟信号被认为是时序逻辑电路中最关键的信号,它用来同步和控制时序逻辑电路的运行。
通过时序逻辑的设计,可以实现更复杂的逻辑功能,如数据存储、状态切换和时序控制等。
时序逻辑的应用广泛存在于数字系统中,比如在计算机的控制和时序同步等方面。
此外,时序逻辑还被广泛应用于通信领域、嵌入式系统和数字信号处理中。
三、组合逻辑和时序逻辑的联系与区别组合逻辑和时序逻辑都是数字电路中重要的概念和技术,它们相互依存,共同构成了数字电路的基础。
组合逻辑是由逻辑门构成的,输出只依赖于当前输入的状态;而时序逻辑则以触发器为基础,能够存储和传递信号,输出受到原始输入和历史输入的共同影响。
数字电路与逻辑设计第5章时序逻辑电路
(b) 74194构成扭环形计数器
Q and A Q :电路是否具备自启动特性?请检验。
77
➢ 检验扭环形计数器的自启动特性
模值M=2n=2×4=8 状态利用率稍高;环 形计数器和扭环形计 数器都具有移存型的 状态变化规律,但它 们都不具有自启动性
10
分析工具 常见电路
状态转移真值表 状态方程 状态转移图 时序图
数码寄存器 移位寄存器 同步计数器 异步计数器
11
5.2.1 时序逻辑电路的分析步骤
12
例1:分析图示时序逻辑电路
解 ➢ 1. 写激励方程:
13
➢ 2. 写状态方程和输出方程:
根据JK触发器特性方程:Qn1 J Qn K Qn
LD
置入控制输入
CP
时钟输入
CR
异步清0输入
CTT ,CTP 计数控制输入
输出端子
Q0~Q3 数据输出
CO
进位输出
CO
Q3n
Q
n 2
Q1n
Q0n
26
➢ 功能表:
27
2.十进制同步计数器(异步清除)74160
➢ 逻辑符号: ➢ 功能表:
CO Q3n Q0n
28
3.4位二进制同步计数器(同步清除)74163
51
1.二-五-十进制异步计数器7490
52
CT7490: 2-5-10进制异步计数器
4个触发器(CP1独立触发FF0实现二分频,
CP2独立触发FF1、FF2、FF3构成的五分频计数器)
异步清0输入 R01、 R02
异步置9输入 S91、S92
可实现 8421BCD 和 5421BCD计数
时序逻辑电路
时序逻辑电路时序逻辑电路是一种在电子数字电路领域中应用广泛的重要概念,它主要用于解决电路中的时序问题,如时钟同步问题、时序逻辑分析等。
本文将详细介绍时序逻辑电路的基础概念、工作原理以及应用。
一、时序逻辑电路的基础概念1、时序逻辑和组合逻辑的区别组合逻辑电路是一类基于组合逻辑门的电路,其输出仅取决于输入信号的当前状态,不受先前的输入状态所影响。
而时序逻辑电路的输出则受到先前输入信号状态的影响。
2、时序逻辑电路的组成时序逻辑电路通常由时钟、触发器、寄存器等组成。
时钟信号被用于同步电路中的各个部分,触发器将输入信号存储在内部状态中,并在时钟信号的作用下用来更新输出状态。
寄存器则是一种特殊类型的触发器,它能够存储多个位的数据。
3、时序逻辑电路的分类根据时序逻辑电路的时序模型,可将其分为同步和异步电路。
同步电路按照时钟信号的周期性工作,这意味着电路通过提供时钟信号来同步所有操作,而操作仅在时钟上升沿或下降沿时才能发生。
异步电路不同,它不依赖时钟信号或时钟信号的上升和下降沿,所以在一次操作完成之前,下一次操作可能已经开始了。
二、时序逻辑电路的工作原理时序逻辑电路的主要工作原理基于触发器的行为和时钟电路的同步机制。
在时序逻辑电路中使用了一些触发器来存储电路状态,待时钟信号到达时更新输出。
时钟信号提供了同步的机制,确保电路中所有部分在时钟信号到达时同时工作。
触发器的基本工作原理是将输入信号存储到内部状态中,并在时钟信号的作用下,用来更新输出状态。
时钟信号的边沿触发触发器,即在上升沿或下降沿时触发触发器状态的更新。
这意味着在更新之前,电路的状态保持不变。
三、时序逻辑电路的应用1、时序电路在计算机系统中的应用时序逻辑电路在计算机系统中有着广泛的应用。
例如,计算机中的时钟信号可用来同步处理器、主存储器和其他外设间的工作。
此外,电路中的寄存器和触发器也被用于存储和更新信息,这些信息可以是计算机程序中的指令、运算结果或其他数据。
什么是数字电路有哪些常见的数字电路
什么是数字电路有哪些常见的数字电路数字电路是由数字信号来控制和处理信息的电子电路。
它主要以离散的时间和离散的状态为基础,使用逻辑门和存储器元件等构建,实现逻辑计算、数据存储、信号转换等功能。
数字电路在现代电子技术中具有广泛的应用,其常见的类型包括组合逻辑电路、时序逻辑电路、存储器电路和通信电路等。
一、组合逻辑电路组合逻辑电路是一种将多个逻辑门按照特定的连接方式组合而成的电路。
它的输出信号仅取决于当前输入信号的状态,与之前的输入状态无关。
在组合逻辑电路中,常见的逻辑门有与门、或门、非门、异或门等。
这些逻辑门可以根据不同的连接方式构成多种功能的组合逻辑电路,例如加法器、减法器、比较器等。
二、时序逻辑电路时序逻辑电路是一种能够根据时钟信号和输入信号的状态变化而改变输出信号的电路。
它与组合逻辑电路相比,具有了记忆功能,可用于实现带有时序要求的各种功能。
时序逻辑电路中常见的元件是触发器和计数器。
触发器能够在时钟信号的作用下存储和改变其输入信号的状态;计数器能够根据时钟信号进行加、减或清零操作,用于计数和控制信号的生成。
三、存储器电路存储器电路是一种能够存储和读取数据的电路。
在数字电路中,存储器通常分为随机存取存储器(RAM)和只读存储器(ROM)两种类型。
RAM具有可读写的特性,能够存储和读取任意数据,常用于计算机内存等;而ROM一般是只读的,其存储内容在制造过程中被固化,用于存储程序或常量数据等。
四、通信电路通信电路指用于传输和接收数字信号的电路。
数字信号可以通过调制技术将其转换成模拟信号进行传输,也可以通过解调技术将模拟信号转换成数字信号进行接收和处理。
在通信电路中,常见的数字电路包括编码器、解码器、调制解调器等,它们能够将信息进行编码、压缩、调制和解码等操作,实现高效的数据传输和通信连接。
总结:数字电路是由离散的时间和状态来处理和控制信息的电子电路。
常见的数字电路类型包括组合逻辑电路、时序逻辑电路、存储器电路和通信电路。
数字电路时序逻辑路的启动方程、状态方程、和输出方程。
数字电路时序逻辑路的启动方程、状态方程、和输出方程。
数字电路时序逻辑路的启动方程、状态方程和输出方程是数字电路设计中的重要概念。
它们描述了时序逻辑电路的行为和功能。
在本文中,我们将详细介绍这三个方程的概念以及它们在数字电路设计中的作用。
一、启动方程(Startup Equation)数字电路的启动方程描述了电路在初始状态时的行为。
这是指在电路通电时,各个组件的初始状态以及它们的相互作用。
启动方程用于描述电路启动时的输入信号和电路的输出响应。
它是设计者了解和分析电路行为的基础。
在启动方程中,通常包括各个输入信号的初值以及它们对输出的影响。
通过研究启动方程,可以了解电路的稳态行为以及电路启动之后的响应时间。
二、状态方程(State Equation)状态方程用于描述数字电路中的状态变化。
它是一种差分方程,表示当前时刻电路的状态与上一时刻电路状态之间的关系。
状态方程可以用来描述电路的状态转换、状态稳定以及状态变化的过程。
在状态方程中,常用的表示符号是X(n+1) = F(X(n), D(n)),其中X(n)表示上一时刻的电路状态,X(n+1)表示当前时刻的电路状态,D(n)表示当前时刻的输入信号。
F是一个确定性的逻辑函数,它描述了电路状态的更新规则。
通过求解状态方程,可以得到电路的稳态解,即电路达到稳定状态时的各个组件的状态。
状态方程是数字电路设计中的重要工具,可以用于分析电路的稳态行为以及电路的状态变化。
三、输出方程(Output Equation)输出方程用于描述数字电路的输出信号与输入信号之间的关系。
它是一种逻辑函数,表示输出信号如何根据输入信号的不同取值而变化。
在输出方程中,常用的表示符号是Y = G(X(n)),其中Y表示输出信号,X(n)表示当前时刻的电路状态。
G是一个逻辑函数,它描述了输出信号如何与输入信号相关联。
通过输出方程,可以得到电路的输出信号与输入信号之间的关系。
输出方程是数字电路设计中的关键部分,它决定了电路的功能和行为。
数电第六章时序逻辑电路
• 根据简化的状态转换图,对状态进行编码,画出编码形式 的状态图或状态表
• 选择触发器的类型和个数 • 求电路的输出方程及各触发器的驱动方程 • 画逻辑电路图,并检查电路的自启动能力 EWB
典型时序逻辑集成电路
• 寄存器和移位寄存器 – 寄存器 – 移位寄存器 –集成移位寄存器及其应用 • 计数器 – 计数器的定义和分类 – 常用集成计数器 • 74LVC161 • 74HC/HCT390 • 74HC/HCT4017 – 应用 • 计数器的级联 • 组成任意进制计数器 • 组成分频器 • 组成序列信号发生器和脉冲分配器
– 各触发器的特性方程组:Q n1 J Q n KQ n CP
2. 将驱动方程组代入相应触发器的特性方程,求出各触发器 的次态方程,即时序电路的状态方程组
n n FF0:Q0 1 Q 0 CP n n n FF1:Q1 1 A Q0 Q1 CP
同步时序逻辑电路分析举例(例6.2.2C)
分析时序逻辑电路的一般步骤
• 根据给定的时序电路图写方程式 – 各触发器的时钟信号CP的逻辑表达式(同步、异步之分) – 时序电路的输出方程组 – 各触发器的驱动(激励)方程组 • 将驱动方程组代入相应触发器的特性方程,求出各触发器 的次态方程,即时序电路的状态方程组 • 根据状态方程组和输出方程组,列出该时序电路的状态 表,画状态图或时序图 • 判断、总结该时序电路的逻辑功能
• 电路中存在反馈
驱动方程、激励方程: E F2 ( I , Q )
状态方程 : Q n1 F3 ( E , Q n ) • 电路状态由当前输入信号和前一时刻的状态共同决定
• 分为同步时序电路和异步时序电路两大类
什么是组合逻辑电路?
数字电子时序电路
Y
2.试分析如图所示时序逻辑电路的功能并检查电路能否自启动。
Q1 FF 1 1J C1 1K 1 Q0 FF 0 1J ┌ ┌ C1 1K 1 CP
=1 Z &
┌ ┌
=1
=1
X
(1)写输出方程
n Z ( X Q1n ) Q0
(2)写驱动方程
000
/1 /1
/0
001
/0
010
/0
011
/0
Q3Q2Q1
/Y
3
111
4 5 6 7
110
/0 101
/0
100
6) 时序图
CP Q1 Q2 Q3 1 2
7、分析电路的功能
t
0 0 t
1 0
1 0
t
t t
随CP的输入,电路循 环输出七个稳定状态, 所以是七进制计数器。 Y端的输出是此七进制 计数器的进位脉冲。
Q1n+1 = J1Q1+K1Q1 =Q3Q2 Q1 =(Q3+Q2 ) Q1 3) 状态方程 Q2n+1 = J2Q2+K2Q2 =Q2Q1+Q3Q2Q1 Q3n+1 = J3Q3+K3Q3 =Q3Q2Q1+Q3Q2
4)状态转换表
CP的顺序 Q3 Q2 Q1 Y 0 0 0 0 0 0 1 0 已知:
所以该电路是一个可控3进制计数器。当X=0时,作加法计数, Z=1是进位信号;当X=1时,作减法计数,Z=1是借位信号。
(8)检查电路的自启动情况 从状态表或状态图中可以看出,若电路的现态为有效循 环以外的状态11,则随着时钟的输入,电路的次态为00, 能自动进入主循环。所以,该电路可以自启动。
数字电子技术时序逻辑电路PPT
写驱动方程: J 0 K 0 1
J1 J2
Q3 K2
1
K1
1
J 3 Q1Q2
K3 1
写状态方程:
Q0n1 QQ1n2n11
n
Q0
Q3
n
Q2
n
Q1
(CP0 下降沿动作) (Q0 下降沿动作) (Q1下降沿动作)
Q3n 1
Q1Q2
画时序图: 该电路能够自启动。
5.1.2 异步时序逻辑电路的分析方法
异步时序电路的分析步骤:
① 写时钟方程; ② 写驱动方程; ③ 写状态方程; ④ 写输出方程。
[例5-2]试分析图示时序逻辑电路的逻辑功能,列出状态转换 表,并画出状态转换图。
解:图5-7所示电路为1个异步摩尔型时序逻辑电路。 写时钟方程:
Q3n(Q0
下降沿动作)
列状态转换表:
画状态转换图:
5.2 若干常用的时序逻辑电路 5.2.1寄存器
1. 基本寄存器
图5-2 双2位寄存器74LS75的逻辑图
图5-2所示为双2位寄存器74LS75的逻辑图。当 CPA = 1时,
送到数据输入端的数据被存入寄存器,当CPA =0时,存入
寄存器的数据将保持不变。
2n-1 M 2n
然后给电路的每一种状态分配与之对应的触发器状态组合。
4)确定触发器的类型,并求出电路的状态方程、驱动方程 和输出方程。 确定触发器类型后,可根据实际的状态转换图求出电路的状 态方程和输出方程,进而求出电路的驱动方程。
5)根据得到的驱动方程和输出方程,画出相应的逻辑图。
6) 判断所设计的电路能否自启动。
1.同步计数器 1)同步二进制计数器
数字集成电路(时序逻辑电路)
目录
• 引言 • 时序逻辑电路的基本概念 • 数字集成电路的组成 • 时序逻辑电路的分析方法
目录
• 引言 • 时序逻辑电路的基本概念 • 数字集成电路的组成 • 时序逻辑电路的分析方法
目录
• 时序逻辑电路的设计方法 • 时序逻辑电路的应用 • 时序逻辑电路的发展趋势和挑战
逻辑门
01
逻辑门是数字集成电路的基本组成单元,用于实现逻辑运算(如AND、 OR、NOT等)。
02
常见的逻辑门有TTL(Transistor-Transistor Logic)和CMOS (Complementary Metal-Oxide Semiconductor)等类型。
03
逻辑门通常由晶体管组成,通过不同的组合和连接方式实现各种逻辑 功能。
目录
• 时序逻辑电路的设计方法 • 时序逻辑电路的应用 • 时序逻辑电路的发展趋势和挑战
01
引言
01
引言
主题简介
数字集成电路
数字集成电路是利用半导体技术将逻 辑门、触发器等数字逻辑单元集成在 一块衬底上,实现数字信号处理功能 的集成电路。
时序逻辑电路
时序逻辑电路是一种具有记忆功能的 电路,其输出不仅取决于当前的输入 ,还与电路的先前状态有关。常见的 时序逻辑电路有寄存器、计数器等。
时序图
通过图形方式表示时序逻辑电路的输入和输出随时间变化的规律,能够直观地展 示电路的工作过程。
逻辑方程和时序图
逻辑方程
描述时序逻辑电路输入和输出关系的数学表达式,通常由触发器的状态方程和输 出方程组成。
时序图
通过图形方式表示时序逻辑电路的输入和输出随时间变化的规律,能够直观地展 示电路的工作过程。
数字电路与逻辑设计第5章时序逻辑电路
图5-1时序逻辑电路的组成框图
根据图5-1,可以列出以下3个逻辑 方程组:
(5-1) (5-2) (5-3)
其中,式(5-1)称为输出方程,式 (5-2)称为驱动方程(或激励方程), 式(5-3)称为状态方程。
qn1,qn2,…,qnj表示存储电路每个触发 器的初态,qn+11,qn+12,…,qn+1j表示存 储电路每个触发器的次态。
表5-2 74LS175的状态转换表
图5-7 74LS175的引脚排列图
5.3.2移位寄存器
在数字电路系统中,由于运算的需 要,常常要求输入寄存器的数码能逐位 移动,这种具有移位功能的寄存器,称 为移位寄存器。
移位寄存器的逻辑功能和电路结构 形式较多。
根据移位方向可分为单向移位寄存 器和双向移位寄存器两种;根据接收数 据的方式可分为串行输入和并行输入两 种;根据输出方式可分为串行输出和并 行输出。
所谓串行输入,是指将数码从一个 输入端逐位输入到寄存器中,而串行输 出是指数码在末位输出端逐位出现。
1.单向移位寄存器
单向移位寄存器,是指数码仅能作 单一方向移动的寄存器。可分为左移寄 存器和右移寄存器。如图5-8所示是由D 触发器组成的4位串行输入、串并行输出 的左移寄存器。
图5-8 4位左移寄存器
分析同步时逻辑电路的一般步骤如 下。
(1)写出存储电路中每个触发器的驱 动方程; (2)将驱动方程分别代入各触发器的 特性方程,得出每个触发器的状态方 程; (3)根据逻辑电路写出输出方程。
5.2.2时序逻辑电路的一般分析方法
实际上,从驱动方程、状态方程和 输出方程这3个方程中,还不能对时序逻 辑电路的逻辑功能有一个完全的了解, 还需要通过另外一些更直观的方法来分 析和描述时序逻辑电路的逻辑功能。这 里主要介绍3种比较重要而且常用的方法 ,分别是状态转移表、状态转移图、时 序图。
数字电路 第七章 时序逻辑电路
/0 001
/0
010 /0
101
100 /1 /0
011
结论:该电路是一个同步五进制( ⑥ 结论:该电路是一个同步五进制(模5)的加 法计数器,能够自动启动, 为进位端. 法计数器,能够自动启动,C为进位端.
§7.3 计数器
7.3.1 计数器的功能和分类
1. 计数器的作用
记忆输入脉冲的个数;用于定时,分频, 记忆输入脉冲的个数;用于定时,分频,产 生节拍脉冲及进行数字运算等等. 生节拍脉冲及进行数字运算等等.
1 0 1 0 1 0 1 0
3. 还可以用波形图显示状态转换表. 还可以用波形图显示状态转换表.
CP Q0 Q1 Q2
思考题: 思考题:试设计一个四位二进制同步加法计数 器电路,并检验其正确性. 器电路,并检验其正确性.
7.3.4 任意进制计数器的分析
例:
Q2 J2 Q2 K2 Q1 J1 Q1 K1 Q0 J0 Q0 K0
第七章 时序逻辑电路
§7.1 概述 §7.2 时序逻辑电路的分析方法 §7.3 计数器 §7.4 寄存器和移位寄存器 §7.5 计数器的应用举例
§7.1Байду номын сангаас概述
在数字电路中, 在数字电路中,凡是任一时刻的稳定 输出不仅决定于该时刻的输入,而且还和 输出不仅决定于该时刻的输入,而且还和 电路原来的状态有关者 电路原来的状态有关者,都叫做时序逻辑 电路,简称时序电路 时序电路. 电路,简称时序电路. 时序电路的特点:具有记忆功能. 时序电路的特点:具有记忆功能.
下面将重点 讨论蓝颜色 电路—移位 电路 移位 寄存器的工 寄存器的工 作原理. 作原理. D0 = 0 D1 = Q0 D2 = Q1 D3 = Q2
数电 时序逻辑电路
0 1 2 3 4 5 6 7 0
0 0 0 0 1 1 1 0 1
0 0 1 1 0 0 1 0 1
0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 1
9
二、状态转换图
10
四、时序图
11
例:
例2:
D1 Q1 (1)激励方程: D2 A Q1 Q2 AQ2Q1 AQ2 Q1 AQ2 Q1 AQ2Q1
7
例:
TTL电路
1.写驱动方程: K1 1 J1 (Q2Q3 ), K 2 (Q1Q3 ) J 2 Q1 , J QQ , K 3 Q2 1 2 3
Q1* (Q2Q3 ) Q1 Q2 * Q1Q2 Q1Q3Q2 Q * Q Q Q Q Q 1 2 3 2 3 3
A
00
01
10
11
0 1
01/0 10/0 11/0 00/1 11/1 00/0 01/0 10/0
(5)状态转换图
13
*6.2.3 异步时序逻辑电路的分析方法
各触发器的时钟不同时发生 例: Q2 * Q2 clk2 Q1* Q3 Q1 clk1
TTL电路
具体步骤参考同步时序逻辑电路。
2
6.1 概述
一、时序逻辑电路的特点
1. 功能上:任一时刻的输出不仅取决于该时刻的输入, 还与电路原来的状态有关。
例:串行加法器,两个多位数从低位到高位逐位相加 2. 电路结构上
①包含存储电路和组合电路
②存储器状态和输入变量共同决定输出
3
二、时序电路的一般结构形式与功能描述方法
数字电路 第6章 时序逻辑电路
? 分析目的: 时序电路
逻辑功能(Y,Q*)
分析步骤:
①驱动方程 ②状态方程 ③输出方程
三个方程 状态图或时序图
状态转换表
几个概念
数字电路 第6章
有效状态:在时序电路中,凡是被利用了的状态。
有效循环:有效状态构成的循环。
无效状态:在时序电路中,凡是没有被利用的状态。 无效循环:无效状态若形成循环,则称为无效循环。
Mealy型 —Y=F[X,Q] Moore型 —Y=F[Q]
没有输入信号
数字电路 第6章
6.2 时序逻辑电路的分析方法
6.2.1 同步时序电路的分析方法
6.2.2 时序逻辑电路的状态转换表、状态 转换图、状态机流程图和时序图 *6.2.3 异步时序电路的分析方法
数字电路 第6章
6.2.1 同步时序电路的分析方法 检查自启动
FF0
FF1
FF2
FF3
Di
输出
1D
1D
1D
1D
C1
C1
C1
C1
左移
输入
CP
驱动方程 D0 Q1n、D1 Q2n、D2 Q3n、D3 Di 状态方程 Q0n1 Q1n ,Q1n1 Q2n ,Q2n1 Q3n ,Q3n1 Di 主要特点:
1. 输入数码在 CP 控制下,依次右移或左移;
自启动:在CLK作用下,无效状态能自动地进入到 有效循环中,则称电路能自启动,否则称不能自启 动。
例6.2.1 同步、Moore型
=1
数字电路 第6章
①驱动方程
②状态方程
J1 J2
(Q2Q3 )', K1 1; Q1, K2 (Q1'Q3' )'
数字电路中的时序逻辑设计原理
数字电路中的时序逻辑设计原理时序逻辑是数字电路中的重要概念,通过有序的时钟信号来控制电路的行为。
在数字系统中,时序逻辑电路扮演着重要的角色,用于处理和存储数据。
本文将介绍数字电路中的时序逻辑设计原理,包括时钟信号、触发器、状态机以及时序逻辑设计的方法。
1. 时钟信号时钟信号在数字电路中起到同步和定时的作用。
它通过周期性的信号波形,使得电路中的操作在特定的时间点发生。
时钟信号通常表示为高电平和低电平的变化,这些变化用于触发电路中的不同操作。
时钟频率表示时钟信号的周期,单位为赫兹(Hz)。
2. 触发器触发器是时序逻辑电路中常用的元件,用于存储和传输数据。
它基于时钟信号来触发输入数据的存储,并且在时钟信号的上升沿或下降沿改变输出。
触发器一般分为 D 触发器、JK 触发器、SR 触发器等不同类型,根据需求选择适当的触发器类型。
3. 状态机状态机是一种时序逻辑电路,用于描述系统的行为和状态转换。
它由状态和状态之间的转移组成,通过输入信号的变化触发状态转移。
状态机可以是同步的或异步的,同步状态机与时钟信号同步,而异步状态机不需要时钟信号。
4. 时序逻辑设计方法时序逻辑设计需要遵循以下步骤:a) 分析需求:明确设计的目标和功能,确定所需的输入和输出信号。
b) 设计状态图:根据需求设计状态机的状态和状态转移。
c) 确定触发器类型:选择合适的触发器类型来实现状态机的功能。
d) 实现电路:根据设计的状态机和触发器类型,搭建电路并连接输入输出信号。
e) 验证和调试:通过模拟和测试验证电路的正确性,修复可能存在的问题。
总结:时序逻辑设计原理在数字电路中起着重要的作用。
时钟信号作为同步和定时的基准,触发器用于存储和传输数据,状态机描述系统行为和状态转换。
时序逻辑设计需要分析需求、设计状态图、选择合适的触发器类型、搭建电路并进行验证和调试。
通过了解和应用这些原理,可以有效设计和实现复杂的数字电路系统。
时序逻辑电路
时序逻辑电路时序逻辑电路是数字电路中的一种重要设计方式,也是现代计算机和数字系统的核心组成部分之一。
它通过存储当前状态以及根据特定的输入信号进行状态转换来实现特定的功能。
在本文中,我们将详细介绍时序逻辑电路的工作原理、设计方法以及常见的应用场景。
工作原理时序逻辑电路的工作原理基于状态机理论。
状态机是指由一组状态和状态转移函数组成的抽象数学模型,用于描述系统在不同状态下的行为和转移关系。
在数字电路中,可以通过使用触发器、计数器等元件来实现状态机的功能。
在一个典型的时序逻辑电路中,状态转移发生在时钟信号的上升沿、下降沿或信号延迟后,也就是说状态转移的时机是由时钟信号控制的。
这种工作原理使时序逻辑电路具有高度的可控性和可预测性,可以确保状态转移的准确性和时序正确性。
设计方法时序逻辑电路的设计方法基本上可以分为两种类型:同步设计和异步设计。
同步设计是指以时钟信号为主导,采用同步触发器等元件实现状态机的转移。
异步设计则是指无时钟信号或者时钟信号不是主导的设计方式,采用异步触发器等元件实现状态机的转移。
在进行时序逻辑电路的设计时,需要根据具体的需求选择不同的设计方法,并合理选择元件、时钟信号频率等参数。
此外,在设计过程中同时要考虑到时序正确性、可靠性、功耗等因素,以确保设计出的电路能够满足实际应用中的需求。
应用场景由于时序逻辑电路具有高度的可控性和可预测性,以及快速的状态转移速度等特点,因此在数字电路中得到了广泛的应用。
以下是时序逻辑电路常见的应用场景:计数器计数器是一种常见的时序逻辑电路,可以通过状态机的方式来实现二进制、十进制或其他进制数的计数功能。
计数器在编码器、分频器、时序生成器等应用中得到了广泛的应用。
时序生成器时序生成器是指能够生成精确时序脉冲、时序信号的一类电路。
它可以通过使用状态机的方式来生成各种复杂的时序信号,并被应用于数字信号处理、通信、图像处理等领域。
控制器控制器是一种具有时序控制功能的电路,可以通过状态机的方式来实现对系统的控制和管理。
常用的时序逻辑电路
常用的时序逻辑电路时序逻辑电路是数字电路中一类重要的电路,它根据输入信号的顺序和时序关系,产生对应的输出信号。
时序逻辑电路主要应用于计时、控制、存储等领域。
本文将介绍几种常用的时序逻辑电路。
一、触发器触发器是一种常见的时序逻辑电路,它具有两个稳态,即SET和RESET。
触发器接受输入信号,并根据输入信号的变化产生对应的输出。
触发器有很多种类型,常见的有SR触发器、D触发器、JK 触发器等。
触发器在存储、计数、控制等方面有广泛的应用。
二、时序计数器时序计数器是一种能按照一定顺序计数的电路,它根据时钟信号和控制信号进行计数。
时序计数器的输出通常是一个二进制数,用于驱动其他电路的工作。
时序计数器有很多种类型,包括二进制计数器、BCD计数器、进位计数器等。
时序计数器在计时、频率分频、序列生成等方面有广泛的应用。
三、时序比较器时序比较器是一种能够比较两个信号的大小关系的电路。
它接受两个输入信号,并根据输入信号的大小关系产生对应的输出信号。
时序比较器通常用于判断两个信号的相等性、大小关系等。
常见的时序比较器有两位比较器、四位比较器等。
四、时序多路选择器时序多路选择器是一种能够根据控制信号选择不同输入信号的电路。
它接受多个输入信号和一个控制信号,并根据控制信号的不同选择对应的输入信号作为输出。
时序多路选择器常用于多路数据选择、时序控制等方面。
五、时序移位寄存器时序移位寄存器是一种能够将数据按照一定规律进行移位的电路。
它接受输入信号和时钟信号,并根据时钟信号的变化将输入信号进行移位。
时序移位寄存器常用于数据存储、数据传输等方面。
常见的时序移位寄存器有移位寄存器、移位计数器等。
六、状态机状态机是一种能够根据输入信号和当前状态产生下一个状态的电路。
它由状态寄存器和状态转移逻辑电路组成,能够实现复杂的状态转移和控制。
状态机常用于序列识别、控制逻辑等方面。
以上是几种常用的时序逻辑电路,它们在数字电路设计中起着重要的作用。
数电 第6章时序电路
J2
* 1 ' 1 ' 0
K '2
' 1 ' 0
Q Q Q0 Q1Q Q0Q Q Q1
J1
* ' ' ' Q0 Q3' Q0 Q2 Q0 ' 3 ' 2 ' 0 '
' K1
0 0 1 1 0 1 1 0
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 0
1 0 1 0 1 0 1 0
6.4 同步时序逻辑电路的设计方法
逻辑电路设计:给定设计要求(或者是一段文字描叙,或 者是状态图),求满足要求的时序电路. 设计步骤:
1、进行逻辑抽象,建立电路的状态转换图(状态转换表)。 在状态表中未出现的状态将作为约束项 2、选择触发器,求时钟方程、输出方程和状态方程; 时钟:若采用同步方案,则CP1=CP2=CPn; 如果采用异步方案, 则需根据状态图先画出时序图,然后从翻转要求出发,为各个 触发器选择合适的时钟信号; 输出:输出与现态和输入的逻辑关系; 状态:各触发器的次态输出方程。
这三组方程反映的电路中各个变量 之间的逻辑关系。
3、进行计算:从输出方程和状态方程,不能看出电路 状态的变化情况。还需要转换成状态转换表和状态转 换图。
状态转换表:把任一组输入变量的值和电路的初态值代入状态 方程和输出方程,得到电路的次态和输出值;把得到的次态作 为新的初态,和现在的输入变量值再代入状态方程和输出方程, 得到电路新的次态和输出值。如此继续下去,把每次得到的结 果列成真值表的形式,得到状态转换表。
数字逻辑电路教程PPT第5章时序逻辑电路
示意图、功能表
74161功能表
74161符号
波形图
012 34 56 7
VCC QCC Q0 Q1 Q2 Q3 T LD 16 15 14 13 12 11 10 9
74LS161
1 2 34 56 7 8
Cr CP D0 D1 D2 D3 P GND
T4161(74LS161)的外引脚图
例5-5 试用74161构成八位二进制加法计数 器。
状态表 状态图
驱动方程 特性方程
状态方程
CP触发沿 时序图
概括逻辑功能
[例5-1]试分析图5-2所示时序电路的逻 辑功能。
⑴根据图5-2所示逻辑图写出的驱动方程为: 写出的输出方程为:
⑵将上式代入JK触发器的特性方程 ⑶求得状态方程:
求状态转换表和状态转换图,画波形图。 设电路的初始状态
代入状态方程和输出方程得
若无效状态在CP作用下不能进入有效循环,则表明电路 不能自启动。
[例5-2]试分析图5-5所示时序电路的逻辑功能。
图5-5
解:⑴根据图5-5写出的驱动方程如下:
图5-5
状态方程、输出方程如下:
⑵列状态转换表(表5-2),画出状态转换图(图5-6)
3、确定逻辑功能:X=0,回 到00状态,且F=0;只有连续 输入四个或四个以上个1时, 才使F=1否则F=0。故该电路 称作1111序列检测器。
预置数与CP同步,清零与CP异步。
Q1
Q2
Q3
Q4
Qcc
T Q Cr LD CP
寄存器
➢ 在数字系统和计算机中,经常要把一些数据信 息暂时存放起来,等待处理。
➢ 寄存器就是能暂时寄存数码的逻辑器件。 ➢ 寄存器内部的记忆单元是触发器。 ➢ 一个触发器可以存储一位二进制数,N个触发
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.1 §7.2 §7.3 §7.4 §7.5
概述 时序逻辑电路的分析方法 计数器 寄存器和移位寄存器 计数器的应用举例
§7.1 概述
在数字电路中,凡是任一时刻的稳定 输出不仅决定于该时刻的输入,而且还和 电路原来的状态有关者,都叫做时序逻辑 电路,简称时序电路。
时序电路的特点:具有记忆功能。
2.写出所使用触发器的特性方程
Qn1 JQn KQn
3.将驱动方程代入特性方程,写出该电路的状态方程
Qn1 0
Q0n
CP的下降边翻
Qn1 1
Qn0 Q1n
Q0nQ10
CP的下降边翻
Qn1 2
Q1nQn0 Q2n
Q1nQn0 Qn2
CP的下降边翻
4.画出该电路的状态转换图
000
001 010 011
D1 Q1 Q1
D2 Q2 Q2
三位二进制异步加法计数器
000 0 01 010
0 11 100
1 01
思考题:试画出三位二进
1 10 1 11
制异步减法计数器的电路 0 0 0 图,简并单分的析时其序工电作路过,直程接。列真值0 表0 或1
画时序波形图就能分析清楚0其1 0
异步计数器优点:电路简单、可靠。 逻辑功能。
1 0 0 0 0 0 0 0 1 1 001
2 0 0 1 0 0 1 1 1 1 010
3 0 1 0 0 0 0 0 1 1 011
4 0 1 1 1 1 1 1 1 100
5 1 0 0 0 0 0 0 1 1 101
6 1 0 1 0 0 1 1 1 1 110
7 1 1 0 0 0 0 0 1 1 111
§7.3 计数器
7.3.1 计数器的功能和分类
1. 计数器的作用
记忆输入脉冲的个数;用于定时、分频、产 生节拍脉冲及进行数字运算等等。
2. 计数器的分类
按工作方式分:同步计数器和异步计数器。
按功能分:加法计数器、减法计数器和可逆计数器。
按计数器的计数容量(或称模数)来分:各种不同的 计数器,如二进制计数器、十进制计数器、二-十 进制计数器等等。
异步计数器缺点:速度慢。
Q0Q1
7.3.3 同步计数器的分析
同步计数器的特点:在同步计数器内部,各个 触发器都受同一时钟脉冲——输入计数脉冲的 控制,因此,它们状态的更新几乎是同时的, 故被称为 “ 同步计数器 ”。
例:三位复二杂进的制时同序步电加路法,计就数要器先。写驱动 方程,再写出状态方程,画出状
J0 = K0 = 1
Q0: 来一个CP,它就翻转一次; Q1:当Q0=1时,它可翻转一次; Q2:只有当Q1Q0=11时,它才能翻转一次。
2. 再列写状态转换表,分析其状态转换过程。
CP
原状态 Q2 Q1 Q0
J2=
控 K2=
制
端
J1= K1= J0=1
K0=1
下,状态, ,
Q2 Q1 Q0
Q1Q0 Q1Q0 Q0 Q0
001
0
001
010
0
010
011
0
011
100
0
100
000
1
101
010
0
110
010
0
111
000
0
⑤ 由状态表作如下所示状态图:
Q2Q1Q0/C 111
110
000 /0
/0 001
010
101
/0
100
011
/1
/0
⑥ 结论:该电路是一个同步五进制(模5)的加 法计数器,能够自动启动,C为进位端。
Q2态 辑J2 转 功换能& 图。,Q这1 J1样来分Q0析J0 其逻
Q2 K2
Q1 K1
Q0K0
CP 计数脉冲
三位二进制同步加法计数器
Q2 J2
&
Q2 K2
Q1 J1 Q1 K1
Q0 J0 Q0K0
CP 计数脉冲
三位二进制同步加法计数器
分析步骤:
1. 先列写控制端的逻辑表达式,即驱动方程:
J2 = K2 = Q1Q0 J1 = K1 = Q0 J0 = K0 = 1
8 1 1 1 1 1 1 1 1 1 000
3. 还可以用波形图显示状态转换表。
CP Q0 Q1 Q2
思考题:试设计一个四位二进制同步加法计数 器电路,并检验其正确性。
7.3.4 任意进制计数器的分析
例:
Q2 J2
Q1 J1
Q0 J0
Q2 K2
Q1 K1
分析步骤:
1. 写出各触发器的驱动方程
Q0 K0
设置
初态
111
110
101 100
5.依据状态图画出波形图
波形图显示状态转换
CP Q0 Q1 Q2
思考题:试设计一个四位二进制同步加法计数 器电路,并检验其正确性。
Q2 J2
&
Q2 K2
Q1 J1 Q1 K1
Q0 J0 Q0K0
CP 计数脉冲
三位二进制同步加法计数器
分析方法2-列表法: 1. 先列写控制端的逻辑表达式: J2 = K2 = Q1Q0 J1 = K1 = Q0
时序电路的基本单元:触发器。
§7.2 时序逻辑电路的分析方法
一、时序逻辑电路的一般分析方法
特点
X(x1,x2,…xi)
组合器件
Z(z1,z2,…zj)
Y(y1,y2,…yn) 存储器件
W(w1,w2,…wm)
一般分析方法 例1: 分析下图所示电路的逻辑功能。
J0 Q0
CP
FF0
K0 Q0
J1 Q1 FF1
计数 脉冲
CP
(即控制端的逻辑表达式)。
J2 = Q1Q0 , K2 = 1 (
CP )
J1 = K1 = 1
(
J0 = Q2 , K0 = 1 (
Q0 ) CP )
7.3.2 异步计数器的分析
异步计数器的特点:在异步计数器内部,有的 触发器直接受输入计数脉冲控制,有的触发器 则是把其它触发器的输出信号作为自己的时钟 脉冲,因此各个触发器状态变换的时间先后不 一,故被称为“ 异步计数器 ”。
例:三位二进制异步加法计数器。
Q2Q1Q0
CP
计数 脉冲
D0 Q0 Q0
n
J2 Q2
K2Q2n
Q0nQ1n
n
Q2
,
CP
Q n1 0
n
J0 Q0
K0Q0n
nn
Q2 Q0 ,
CP
Q n1 1
n
J1Q1
K1Q1n
Q0n
Q1n ,
CP
④ 将输入信号和现态的各种取值组合代入状态 方程,得到状态表,如下表所示:
C Q
n 2
Q1n
Q0n
Q Q Q n1 n1 n1
2
10
000
K1 Q1
J2 Q2 FF2
K2 Q2
&C
解:① 分析电路组成。
② 写出驱动方程和输出方程。
n
J0 Q2 ,
J1 Q0n ,
J2 Q0n Q1n ,
K0 1 K1 Q0n K2 1
C
n
Q0
n
Q1
Q2n
③ 求状态方程。将驱动方程代入JK触发 器的特征方程
Qn1
n
JQ
KQn ,
可得:
Q n1 2