聚合物太阳能电池综述
聚合物本体异质结型太阳能电池研究进展
基金项目:国家自然科学基金(59983001);作者简介:王彦涛(1979-),男,硕士研究生,主要从事光电功能材料的研究。
聚合物本体异质结型太阳能电池研究进展王彦涛,韦 玮,刘俊峰,张 辉(西安交通大学环境与化学工程学院,西安710049) 摘要:聚合物本体异质结型太阳能电池是一种基于电子给体/受体混合物薄膜的高效率有机光伏器件。
文中介绍了近年来聚合物本体异质结型太阳能电池的最新研究进展,指出了目前存在的问题和今后的发展方向。
关键词:有机太阳能电池;共轭聚合物;异质结随着全球对能源需求的日益增加,石油、煤炭、天然气等传统能源日益枯竭,地球每年吸收的太阳能为5.4×1024J 左右,相当于目前世界上所有可用能源的几万倍。
因此太阳能的利用,尤其是直接利用太阳辐射转变为电能的太阳能电池的应用,特别受人关注。
目前,太阳能电池有很多种,几乎所有商品化的太阳能电池都是由硅或者无机化合物半导体制成,然而其高成本,制造过程当中的毒性和不易柔性加工等缺点,使得人们从上个世纪70年代开始关注有机太阳能电池研制,尤其是共轭聚合物太阳能电池的研究更是近年来研究的一个热点。
这种聚合物电池具有很多独特的性质,如:可提供湿法加工成膜(旋涂、刮涂及丝网印刷等);可制成柔性器件、特种形状器件以及大面积器件;共轭聚合物很容易和其他有机或者无机材料共混而制备杂化器件等等。
目前,纯聚合物太阳能电池光电转换效率大都很低[1],为1%~2%,制约其能量转换效率的主要因素是电池的光谱响应与太阳光地面辐射不匹配、载流子在势场中的迁移率以及载流子的电极收集效率低等。
光诱导电荷转移现象的发现[2,3],使得聚合物太阳能电池的效率有了大幅提高。
如Saricifici 等[4]发现聚2-甲氧基252(22己基己氧基)21,42对苯撑乙烯(MEH 2PPV )与C 60的复合体系中存在光诱导电子转移现象。
利用共轭聚合物作为电子给体材料(D ),有机小分子或者无机半导体作为电子受体材料(A )制成复合薄膜,通过控制相分离的微观结构形成互穿网络,从而在复合体中存在较大的D/A 界面面积,每个D/A 接触处即形成一个异质结,同时D/A 网络是双连续结构的,整个复合体即可被视为一个大的本体异质结,以这种复合体薄膜为活性层的太阳能电池被称为聚合物本体异质结型太阳能电池。
DSSC太阳能电池结构原理及各方面的综述
收稿日期:2006-03-20作者简介:白素贞(1977-),女,河南省襄城县人,平顶山学院化学化工学院讲师.DSSC 太阳能电池白素贞,杨维春(平顶山学院,河南平顶山467002)摘 要:介绍了染料敏化纳米太阳能电池(DSSC 电池)的结构和原理,对纳米TiO 2膜、敏化染料、电解质的研究进展进行了综述,并对其应用前景作出展望.关 键 词:染料敏化;纳米薄膜;太阳能电池中图分类号:T K511 文献标识码:A 文章编号:1673-1670(2006)05-0044-041 引言太阳能作为一种可再生能源,具有其它能源所不可比拟的优点.它取之不尽,用之不竭,而且分布广泛,价格低廉,使用安全,不会对环境构成任何污染.将太阳能转换为电能是利用太阳能的一种重要形式.在过去的十几年中,利用半导体光电化学电池替代常规固态光伏半导体太阳能电池来完成太阳能转换的潜在经济价值日益显现.在众多的半导体材料中,TiO 2以其独有的低廉、稳定的特点得到广泛的应用.辐射到地球表面的太阳光中,紫外光占4%,可见光占43%,N 型半导体TiO 2的带隙为3.2eV ,吸收位于紫外区,对可见光的吸收较弱,为了增加对太阳光的利用率,人们把染料吸附在TiO 2表面,借助染料对可见光的敏感效应,增加了整个染料敏化太阳能电池对太阳光的吸收率,由此构造了染料敏化太阳能电池-DSSC (dye -sensitized solar cell )电池.1991年瑞士洛桑高等工业学院的Gratzel 教授等[1]在Nature 上发表文章,提出了一种新型的以染料敏化TiO 2纳米薄膜为光阳极的光伏电池,它是以羧酸联吡啶钌(Ⅱ)配合物为敏化染料,称为Gratzel 型电池.这种电池的出现为光电化学电池的发展带来了革命性的创新.目前,此种电池的效率已稳定在10%左右,制作成本仅为硅太阳能电池的1/5~1/10,寿命能达到20年以上,具有广泛的应用价值.2 DSSC 电池的结构和基本原理DSSC 是由透明导电玻璃、TiO 2多孔纳米膜、敏化染料、电解质溶液以及镀Pt 对电极构成的“三明治”式结构电池.光电转换机理如下[2-3]:1)太阳光(hν)照射到电池上,基态染料分子(S )吸收太阳光能量被激发,染料分子中的电子受激跃迁到激发态(S 3);2)激发态的电子快速注入到TiO 2导带中;3)电子在TiO 2膜中迅速的传输,在导电基片上富集,通过外电路流向对电极;4)处于氧化态的染料分子(S 3)与电解质(I -/I 3-)溶液中的电子供体(I -)发生氧化还原反应而回到基态,染料分子得以再生;5)在对电极附近,电解质溶液得到电子而还原(见图1).图1 染料敏化太阳能电池基本原理示意图第21卷第5期2006年10月 平顶山学院学报Journal of Pingdingshan University Vol.21No.5Oct.20063 影响因素下面主要从太阳能电池的结构讨论其光电转化性能的影响因素.3.1 TiO 2电极膜材料在染料敏化纳米太阳能电池中可以用的纳米半导体材料是多种多样的,如金属硫化物、金属硒化物[4-5]、钙钛矿以及各种金属的氧化物.在这些半导体材料中,TiO 2性能较好:1)作为光电极很稳定;2)TiO 2比较便宜,制备简单,并且无毒.纳米TiO 2的粒径和膜的微结构对光电性能的影响很大.纳米TiO 2的粒径小,比表面积越大,吸附能力越强,吸附染料分子越多,光生电流也就越强.所以人们采用不同方法制备大比表面积的纳米TiO 2,包括气相火焰法、液相水解法、TiCl 4气相氧化法、水热合成法、溶胶凝胶法等[3,6-8].将得到的TiO 2微粒沉积到导电玻璃表面制备TiO 2薄膜电极.染料敏化纳米太阳能电池所用的纳米膜包括致密的TiO 2薄膜和纳米多孔结构的TiO 2薄膜.通常的制备方法有:溶胶凝胶法、水热反应法、溅射法、醇盐水解法、溅射沉积法、等离子喷涂法和丝网印刷法等[9-11].纳米TiO 2的微观结构,如粒径、气孔率等对太阳能电池的光电转换效率有非常大的影响.对TiO 2电极的改造工作主要包括2个方面:1)TiO 2的离子掺杂.离子的掺入减少了电子空穴对的复合,促进了电子空穴的分离,延长了电荷的寿命,从而使光电流得到增大,掺杂离子主要是过渡金属离子或者稀土元素[12-16];2)复合薄膜.常用的复合半导体化合物有CdS ,ZnO ,PbS 等[17-19].3.2 敏化染料的开发染料敏化光电化学电池对染料敏化剂和氧化还原对有一定的要求,必须满足下列条件:1)在半导体表面具有良好的吸附性,能够快速达到吸附平衡,且不易脱落,染料分子母体上应有易于纳米半导体表面接合的基团,如-COOH ,-SO 3H ,-PO 3H 2等[1,3,20];2)足够负的激发态氧化还原电势以使电子注入到半导体导带;3)激发态寿命足够长,且具有高电荷传输效率;4)与太阳光谱相匹配,尽可能将光吸收区扩展到红外区;5)氧化态与激发态稳定性较高,不易分解;6)基态的染料敏化剂不与溶液中的氧化还原对发生作用;7)氧化还原对的电势与半导体的平带电势相差越大越好;8)电子在转移过程中速率常数要大,以使能量损失较小[3,21-23].常见的用作敏化剂的染料主要包括:1)羧酸多吡啶钌.这是用得最多的一类染料,它们具有特殊的化学稳定性、突出的氧化还原性质和良好的激发态反应活性,对能量传输和电子传输都具有很强的光敏化作用.目前,使用效果最好的染料为RuL 2(SCN )2(L =4,4’-二羧基2,2’-联吡啶)和K -19染料(见图2)[24-28].2)有机类染料.包括聚甲川染料[29]、酞菁类染料(见图3)[30]、以及一些天然染料,如类胡萝卜素[31]、花青素[32]、紫檀色素[33]等.纯有机染料种类繁多,吸光系数高,成本低,但电池的IPCE 和ηsun (总光电转换效率)比较低.3)复合染料.为了最大限度的吸收可见光-近红外光波段的太阳光能,把两种或多种在不同光谱段有敏化优势的染料嫁接在一起,形成的复合染料[34-35].4)透明染料.将DSSC 太阳能电池板制备成窗玻璃,这是针对DSSC 电池实用化开发的新染料.图2 K -19染料的化学式3.3 电解质液体电解质的选材范围广,电极电势易于调节,因此得到了令人欣喜的结果.目前主要应用的液体电解质为I 3-/I -、Br 2/Br -、Na 2SO 4/Na 2S 、[Fe(CN )6]3-/[Fe(CN )6]4-[36-37]等.液体电解质的转化效率较高,但易出现敏化染料脱附、密封困难等问题.固体电解质可以避开这些缺点,因此开发转化效率较高的固体电解质有重要意义[38].固态电解质的研究包括:1)凝胶电解质:如由偏二氟乙烯和六氟丙稀聚合的凝胶电解质,敏化到纳晶电极上组成的电池在太阳光下的光电转化效率超过了6%[39-40].2)P 型半导体电解质:如CuI 电解质、CuSCN 聚合物电解质等[41].3)聚合物空穴传输材料,如聚乙烯咔唑、聚硅烷、聚丙烯酸酯等也被用于固态太阳能电池中[42].・54・第5期 白素贞,杨维春:DSSC 太阳能电池与液体电解质相比,这些半固态、固态电解质的光电转化效率还普遍较低(小于3%),这可能是由于半固态、固态电解质很难与多孔的TiO 2电极紧密结合,载流子在“染料/电解质”界面复合严重造成的.但是,我们相信随着研究的深入,固态电解质将进一步发挥其优势,光电性能将逐渐逼近传统的液态电解质.图3 酞菁Zn 化合物3.4 光阴极(对阴极)I 3-在光阴极上得到电子生成I -离子,该反应越快,光响应就越好.目前,铂电极用的最多,当然也有研究者用碳材料以及其他廉价金属来代替铂作光阴极材料,取得了一定的进展[43].4 结论尽管染料敏化纳米太阳能电池总的光电转换效率已超过了10%,发展潜力巨大,但是要想真正实用化还需要解决以下几个问题:1)纳米TiO 2膜的制备.优化纳米晶膜,减少电子在传输过程中的损失;探索多种半导体的复合膜,优化TiO 2的能级结构和与染料能级的匹配性,制备更为紧凑有序的纳米阵列电极材料是今后的主要研究内容[7,44].2)染料问题.寻找低成本而性能良好的染料和利用几种染料的共敏化作用,设计合成全光谱吸收的黑染料可以提高总的效率.3)固态电解质.这是DSSC 太阳能电池实用化的前提.4)对电子注入和传输的内在机理进行深入的研究.设计出更有利于光吸收、电子注入和传输的DSSC 太阳能电池.虽然目前还存在一些问题,但是随着技术的进一步发展,DSSC 太阳能电池必将走向实用化,从根本上解决人类的能源问题.参考文献:[1]O ’REG AN B ,GRA TZEL M.A Low -cost ,High E ffi 2ciency S olar Cell Based on Dye -sensitized Colloidal TiO 2Films[J ].J Nature ,1991,353:734-740.[2]Tennakone K ,et al.A dye -sensitized mano -porous sol 2id -state photovoltaic cell [J ].Semicond.Sci.Technol.1995,10(12):1689-1693.[3]陈 炜,孙晓丹,等.染料敏化太阳能电池的研究进展[J ].世界科技研究与发展,2004,26(5):27-34.[4]Wang Y anqin ,Hao Y anzhong et al.The Photoelec 2trochemistry of transition metal -ion -doped TiO 2nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO 2electrode [J ].J .Mater.Sci ,1999,34(12):2773-2779.[5]Shiratsuchi ,K entaro ,Takizawa ,Hiroo.Photoelectric conversion device and solar cell :European patent.,0901175A2[P].1999-03-10.[6]方晓明,翟金清,陈焕钦.液相法合成纳米TiO 2的进展[J ].硅酸盐通报,2001(6):30-32.[7]武文俊,郝彦忠.纳米光电化学电池的敏化剂及其敏化机理研究[J ].河北科技大学学报,2004,25(2):4-9.[8]Yury V K olen ko ,Victor D Maximov ,Alexei V G arshev ,et al.Hydrothermal synthesis of nanocrystalline and meso 2porous titania from aqueous complex titanyl oxalate acid so 2lutions[J ].Chemical Physics Letters ,2004,388:411-415.[9]Christophe J ,Gr ¨atzel Michael ,et al .Nanocrystalline ti 2・64・平顶山学院学报 2006年tanium oxide electrodes for photovoltaic application[J].J.Am.Ceram.S oc.,1997,80(12):3157-3171. [10]Hagfeldt Anders,et al.Photoelectrochemical studies ofcolloidal TiO2films:the charge separation process studied by means of action s pectra in the UV region[J].S olar Energy Materials and S olar Cells,1992,27:293-304. [11]Hofler H J urgen,Hahn Horst.Temperature dependenceof the hardness of nanocrystalline titanium dioxide[J].J.A m.Ceram.S oc.,1991,74(10):2672-2674.[12]杨 蓉,王维波,等.苯基磷酸联吡啶钌络合物敏化纳晶多孔TiO2薄膜电极光电性能研究[J].感光科学与光化学,1997,15(4):293-296.[13]Wang Y anqin,Cheng Humin,Hao Y aozhong,et al.Preparation,characterization and photoelectrochemical be2 haviors of Fe(III)-doped TiO2nanoparticles[J].J.Mater.Sci.,1999,34(15):3721-3729.[14]Wang Chuan-yi.In situ electron microscopy investiga2tion of Fe(III)-doped TiO2nanoparticles in an aqueous environment[J].Journal of Nanoparticle Research,2004(6):119-122.[16]Teruhisa Ohno,Toshiki Tsubota.Photocatalytic activityof a TiO2photocatalyst doped with C4+and S4+ions having a rutile phase under visible light[J].Catalysis Let2 ters,2004,98:255-258.[17]Tennakone K.A dye-sensitized nano-porous solid statephotovoltaic cell[J].Semiconductor Science and Technol2 ogy,1995(10):1689-1693.[18]Zaban A,Chen S G,Chappel S,et al.Bilayer nanoporouselectrodes for dye sensitized solar cells[J].Chem.Comm.,2000,22:2231-2232.[19]Tennakone K,et al.An efficient dye-sensitized photo2electrochemical solar cell made from oxides of tin and zinc [J]mu.,1999:15-16.[20]孙世国,彭孝军,等.铼联吡啶系列光敏染料的合成[J].高等学校化学学报,2004,25:820-822.[21]吴季怀,郝三存,等.染料敏化TiO2纳晶太阳能电池研究进展[J].华侨大学学报,2003,24:335-344. [22]Xiao Zhongdang,Li Ming,et al.The influence of newbinding state of dye-molecules to TiO2electrode surface on IPCE performance[J].J.Phys.Chem.S olid,1998, 59:911-914.[23]K ay Andreas,Gr¨atzel M.Low cost photovoltaic modulesbased on dye-sensitized nanocrystalline titanium dioxide and carbon power[J].S olar Energy Materials and S olar Cells,1996,44:99-117.[24]Desilvoestro J,Gratzel M,K aven L,et al.Highly effi2cient sensitization of titanium dioxide[J].J.AM.Chem.S oc.,1985,107(10):2988-2990.[25]Zubavichus Y V,Slovokhotov Y L,et al.StructuralCharacterization of S olar Cell Prototypes Based on Nanocrystalline TiO2Anatase Sensitized with Ru Com plex2 es.X-ray Diffraction,XPS,and XAFS S pectroscopy Study[J].Chem.Mater.,2002,14:3556-3563. [26]Wang P,Zakeeruddin S M,et al.G elation of Ionic Liq2uid-Based Electrolytes with Silica Nanoparticles for Quasi -S olid-State Dye-Sensitized S olar Cells[J].J.AM.CHEM.SOC.,2003,125:1166-1167.[27]Herve′Nusbaumer,Jacques- E.Moser.Co II(dbbip)22+Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells[J].J.Phys.Chem.B,2001,105:10461-10464.[28]Zakeeruddin S M,Nazeeruddin M K.Design,Synthesis,and Application of Amphiphilic Ruthenium Polypyridyl Photosensitizers in S olar Cells Based on Nanocrystalline TiO2Films[J].Langmuir,2002,18:952-954.[29]James C,Hideo T.Fabrication of solid state d ye-sensi2tized TiO2solar cells combined with polypyrrole[J].Jour2 nal of Applied Phycology,2000(12):207-218. [30]Arakawa H,et al.Photosensitization of a porous TiO2electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain[J]mun., 2000,13:1173-1174.[31]Moon I S,K im D S.Electron transfer via organic dyes forso lar conversion[J].Journal of Materials Science:Mate2 rials in Elexctronics,2001(12):137-143.[32]Srikanth K,Marathe V R,M anoj K.Role of electronicstructure of ruthenium polypyridyl dyes in the photoconver2 sion efficiency of dye-sensitized solar cells:Semiem pirical investigation[J].International Journal of Quantum Chem2 istry,2002,89:535-549.[33]Grabzel M.S ol-gel processed TiO2films for photovoltaicapplications[J].Journal of S ol-G el Science and Technol2 ogy,2001,22:7-13.[34]Nuesch F,Gratzel M.Merocyaine Aggregation in Meso2porous Networks[J].J.Am.Chem.S oc.,1996,118(23):5420-5431.[35]Huang Chun Hui,et al.Photocurrent Enhancement ofHemicyanine Dyes Containing-SO32-Group through Treating TiO2Films with Hydrochloric Acid[J].J.Phys.Chem.B,2001,105(38):9210-9217.[36]Hu Jianjun,Lindstro H.Dye-sensitized nano structuretandem cell first demonstrated cell with a dye-sensitized photocathode[J].S olar Energy Materials and S olar Cells, 2000,62:265-273.(下转第60页)・74・第5期 白素贞,杨维春:DSSC太阳能电池[2][美]Russell Jones A.As 与C #:从入门到精通[M ].陈建春,白 雁,杨永平,等,译.北京:电子工业出版社,2003.[3]萨师煊,王 珊.数据库系统概论[M ].北京:高等教育出版社,2002.[4][美]Jeff Ferguson ,Brian Patterson ,等.C #宝典[M ].盖江南,朱海绫,王 勇,等,译.北京:电子工业出版社,2002.N e ws Management System B ased On .N etSUN Ze -jun ,SUN Ya -nan(Pingdingshan University ,Pingdingshan ,Henan 467002,China )Abstract :This paper introduces the way and the method of using ASP.N ET and database techniques to develop school news management systems.Schools realize their news dynamic management and the unified news management of each department with this system ,which makes the information management more prompt and more efficient.At the same time ,the developmental principle ,the function and characteristics and the design scheme of the system are introduced.K ey w ords :database ;columns management ;news management ;pictures management ;ASP.N ET(上接第47页)[37]Jessica Kruger ,Robert Plass ,Michael Gratzel.Im prove 2ment of the photovoltaic performance of solid2state dye2sensitized device by silver complexation of the sensi 2tizer cis2bis (4,4’-dicarboxy2,2’-bipyridine )-bis (isothiocyanato )ruthenium (II )[J ].Applied Physics Letters ,2002,81(2):367-369.[38]Tennakone K ,Bandara J.Photocatalytic acivity of dye -sensitized tin (IV )oxide nanocrystalline particles at 2tached to zinc oxide particles :Long distance electron transfer viaballistictrans portofelectrons acrossnanocrystalline [J ].Applied Catalysis (A ):G eneral ,2001,208:335-341.[39]Wang P ,Shaik M ,et al.A stable quasisolid -state dye-sensitized solar cell with an am phiphilic ruthenium sen 2sitizer and polymer gel electrolyte[J ].Nature Materials ,2003(2):402-407.[40]Eichberger R ,Wiling F.Optoelectronic studies innanocrystalline silicon schottky diodes obtained by hot -wire CVD [J ].Chem.Phys.,1990,141:159-167.[41]Tennakone K ,Kumare G R R A ,et al.A d ye sensi 2tized nanoporous solid state photovoltaic cell [J ].Semi 2cond Sci Technol ,1995(10):1689-1693.[42]Brian O ’Regan ,Frank Lenzmann ,Ruud Muis ,Jean 2nette Wienke.A S olid -State Dye -Sensitized S olar Cell Fabricated with Pressure Treated P25TiO 2and CuSCN :Analysis of Pore Filling and IV Characteristics [J ].Chem.Mater.,2002,14:5023-5029.[43]范乐庆,吴季怀,黄昀 ,林建明,等.阴极修饰对染料敏化TiO 2太阳能电池性能的改进[J ].电子元件与材料,2003,22(5):1-3.[44]Ulrike Diebold.The surface science of titanium dioxide[J ].Surface Sceence Reports ,2003,48:53-229.DSSC SOLAR CE LLBA I Su -zhen ,YAN G Wei -chun(Pingdingshan University ,Pingdingshan ,Henan 467002,China )Abstract :The fundamental structure and the principle of the dye -sensitized nanocrystalline solar cell (DSSC )are introduced in this essay.An overview of nanocrystalline TiO 2film ,dye -sensitization and hole -transporting materials is also given ,and the development prospect is described.K ey w ords :dye -sensitization ;nano -crystalline film ;solar cell・06・平顶山学院学报 2006年。
富勒烯 钙钛矿太阳能电池综述
富勒烯钙钛矿太阳能电池综述富勒烯与钙钛矿,这俩名字听起来挺高大上,其实它们正悄悄改变着咱们的太阳能电池界。
一、富勒烯:太阳能界的“超级明星”1.1 独特的结构,非凡的性能富勒烯,听起来像个外国名儿,其实它是一种由碳原子组成的神奇分子,结构就像个足球,由许多六边形和五边形拼接而成。
这种独特的结构让它拥有了非凡的性能,比如在光电转换方面,那可是杠杠的!它能像个小精灵一样,高效地捕捉阳光,把光能变成电能,让咱们的生活更加绿色、环保。
1.2 助力太阳能电池,效率飙升有了富勒烯的加入,太阳能电池的效率那可是嗖嗖往上涨。
它就像个“加速器”,让太阳能电池在同样的阳光下,能产生更多的电能。
这样一来,咱们就能用上更便宜、更环保的电啦!二、钙钛矿:太阳能电池的新宠儿2.1 新材料,新希望钙钛矿,这又是一个听起来挺陌生的名字,但它在太阳能电池界那可是炙手可热的新星。
它是一种由钙、钛和其他元素组成的化合物,结构稳定,性能优越。
用它来做的太阳能电池,效率那也是杠杠的!2.2 低成本,高效率钙钛矿太阳能电池最大的优点就是成本低、效率高。
相比传统的太阳能电池,它就像个“性价比之王”,能让咱们用上更便宜的太阳能电。
而且,它的生产过程还更环保,减少了对环境的污染,真是一举两得!2.3 潜力无限,未来可期钙钛矿太阳能电池的发展潜力那可是无穷的。
科学家们正不断地研究它,希望能让它变得更好、更强。
说不定哪天,它就能成为咱们生活中不可或缺的一部分,让咱们的生活更加美好!三、富勒烯与钙钛矿:携手共创太阳能电池新篇章3.1 强强联合,效果翻倍富勒烯和钙钛矿,这两个本来不相干的“明星”,现在却携手共创太阳能电池的新篇章。
它们强强联合,让太阳能电池的效率更上一层楼。
就像咱们常说的“1+1>2”,它们在一起,那效果可是杠杠的!3.2 推动科技进步,造福人类富勒烯和钙钛矿太阳能电池的发展,不仅推动了科技的进步,更造福了人类。
它们让咱们能用上更便宜、更环保的电,减少了对环境的污染,让咱们的生活更加绿色、健康。
太阳能电池技术综述
太阳能电池技术综述太阳能电池是一种利用光能转化为电能的设备。
它是一种先进的新能源技术,其潜力越来越被人们所重视。
大量的研究表明,太阳能电池在环保、可再生和节能方面表现出了显著的优势。
太阳能电池主要由太阳能电池片和组件两部分组成。
太阳能电池片的结构类似于普通的半导体二极管,由两种材料组成,一种是n型半导体,另一种是p型半导体,它们构成了一个pn结,其中n型半导体中掺入了少量的受光激发的杂质,使其成为光生电池。
当光照射到太阳能电池片上时,电子和空穴被激发进入半导体,形成电流和电势差,产生直流电流。
太阳能电池的发展历史可追溯到19世纪。
最初的太阳能电池是1850年由法国科学家埃德蒙·贝克勒尔发明的,它是通过将两块金属片浸泡在电解质中,形成一个电化学单元,以产生电流的方法实现的。
1960年代,太阳能电池的发展进入了高峰期。
此时,太阳能电池被广泛应用于航空、航天、卫星通信等领域的能源供应。
现代太阳能电池基本上都是基于硅材料的。
目前,太阳能电池已经广泛应用于住宅、商业和工业领域。
国内外很多公司都继续研制太阳能电池,以实现更高的转换效率、更低的成本和更长的使用寿命。
以下是一些主要的太阳能电池技术:1.单晶硅太阳能电池单晶硅太阳能电池是由单晶硅片制成的,具有高效率和长寿命等优点。
其转换效率可以达到20%左右。
这种太阳能电池适用于家庭和商业太阳能发电。
2.多晶硅太阳能电池多晶硅太阳能电池是由多晶硅片制成的,相对于单晶硅太阳能电池具有较低的转换效率,但制造成本更低。
目前,大量的太阳能组件和光伏系统都采用这种技术。
3.薄膜太阳能电池薄膜太阳能电池是指由不同的材料制成的,比如铜铟镓硒和有机材料。
这种技术的转换效率非常低,通常为10%以下。
但它具有更低的制造成本和更好的柔性,可以应用于行动电源和户外光伏系统中。
4.有机太阳能电池有机太阳能电池是由一种特殊的有机材料制成的。
这种太阳能电池较薄而灵活,便于移动和安装。
咔唑基聚合物太阳能电池材料的研究进展
4
• 经实验证实,这一电子转移过程要比光荧光辐射跃迁要快3~4个数量级。这样 光生电荷的发光复合就可以被有效地阻止,从而使电荷的分离效率大幅提高。
5
2006年PCz
• 2006年,Li等合成得到了一种新的聚咔唑衍生物(PCz,图1-1),以苝四羧酸 二酰亚胺(PDI,图1-2)为受体基元,在太阳光谱激发下得到0.6%的光电转 化效率。
26
创新点
• 1)咔唑基-无机纳米晶作为电子受体材料,而不是只有咔唑基衍生物作为电 子给体材料的部分
• 2)对PCDTBT/PCBM聚合物太阳能电池性能进行了部分影响因素的比较
27
参考文献
• 参考文献: • [1]黎立桂,鲁广昊,杨小牛,周恩乐. 聚合物太阳能电池研究进展[J]. 科学通
报,2006,21:2457-2468. • [2]苏雪花,夏德强,王守伟. 咔唑基窄带隙共轭聚合物太阳能电池材料的研究进
25
5.结语
• 咔唑基共轭聚合物具有较窄带隙,可以最大限度地吸收光子、产生激子,确 保较大的光电流。提高了材料的性能,使聚合物电池有一定的光电转化效率, 仍然需要继续提高材料的性能以投入应用;
• 以咔唑衍生物-无机纳米晶为电子受体的太阳能电池光电转化效率很低,但是 研究时间不长,同样具有良好的发展前景。
21
• Wang等报道了使用CdSe-聚咔唑(CdSe-PVK)纳米复合材料 为电子受体,并与羟基包覆的CdSe纳米晶体(CdSe-OH)相 比较。二者都以P3HT为电子给体材料,分别组成以 P3HT/CdSe-OH体系和P3HT/CdSe-PVK体系为基础的聚合 物太阳能电池,光电转化效率为0.02% vs. 0.001%。AFM图 像显示,P3HT 与CdSe-PVK之间在活性层上更平滑、均匀 的膜形态导致设备效率更高。
太阳能电池中有机聚合物材料的研究应用
太阳能电池中有机聚合物材料的研究应用一、概述太阳能电池是一种将光能转化为电能的装置,其中有机聚合物材料作为一种新型的太阳能电池材料,吸引了广泛的关注和研究。
有机聚合物材料具有易制备、可塑性好、成本低等优点,因此在太阳能电池中应用具有广阔的前景。
二、有机聚合物材料的介绍有机聚合物材料是指由有机分子通过化学键链接而成的大分子材料。
这种材料具有很多有用的性质,如可塑性好、易加工、低成本、轻质等。
因此,在太阳能电池中应用具有广泛的前景。
三、有机聚合物材料在太阳能电池中的应用有机聚合物材料在太阳能电池中的应用主要表现在以下几个方面:1. 有机太阳能电池有机太阳能电池是一种利用有机聚合物薄膜作为太阳能电池的光伏材料的一种设备。
与传统的硅基太阳能电池相比,有机太阳能电池具有更便宜的制造成本、柔性和轻质等特点。
2. 透明有机太阳能电池透明有机太阳能电池是一种开发成为透明的有机聚合物薄膜太阳能电池的光伏设备。
这种透明太阳能电池可以应用在诸如机动车、建筑物和移动设备等领域,能够在不影响外观的情况下向内供电。
3. 有机-无机混合太阳能电池有机-无机混合太阳能电池是一种将有机聚合物与无机半导体材料混合的太阳能电池。
这种混合太阳能电池具有兼顾两种材料优点的特点,既具有有机聚合物的可塑性、易加工、低成本等特点,也具有无机半导体的良好电子传输性能等特点。
四、有机聚合物材料应用的优点1. 成本低有机聚合物材料的制备成本相对较低,大大降低了太阳能电池的制造成本。
2. 可塑性好有机聚合物材料具有非常好的可塑性,可以通过各种加工工艺制成各种形式的太阳能电池。
3. 良好的光学性能有机聚合物材料具有良好的光学性能,能够将太阳光转化为电能的效率提高。
五、有机聚合物材料应用的瓶颈1. 效率低当前有机聚合物材料太阳能电池的转换效率仍然比较低,限制了其在大规模应用中的发展。
2. 稳定性差有机聚合物材料的稳定性不如无机半导体太阳能电池,可能会影响太阳能电池的寿命和稳定性。
聚合物太阳能电池的原理及应用前景
聚合物太阳能电池的原理及应用前景随着化石能源的枯竭和环境问题的日益突出,人们开始转向可再生能源的开发和利用。
太阳能作为最常见的可再生能源之一,其占有量巨大,贡献可观。
因此,太阳能电池已经成为人们日常生活和生产中必不可少的能源设备。
而聚合物太阳能电池,是目前市场上最受关注的太阳能电池之一,其具有的高效性与可降低制造成本的特点,让它备受欢迎。
一、聚合物太阳能电池的原理聚合物太阳能电池是利用了一种称为“共轭聚合物”的半导体材料制作而成。
此类材料能够将太阳光能转化为电能。
在当今市场上,聚合物太阳能电池主要有三种类型,包括全聚合物太阳能电池、聚合物/无机太阳能电池和混合太阳能电池。
全聚合物太阳能电池的制造过程非常单一,只需要将电子给体和受体充分混合即可。
此时在材料中会形成复合物,进而形成了完整的光电转换器件。
聚合物/无机太阳能电池结构比全聚合物太阳能电池更为复杂,包括一个或多个界面且需要控制聚合物与无机材料之间的微观结构。
混合太阳能电池是目前研究得最为深入的一种。
其将电子给体与无机电子受体直接组合在一起,利用两者间的互补作用来提高太阳能电池的性能。
二、聚合物太阳能电池的应用前景聚合物太阳能电池具有很高的应用价值和广阔的应用前景。
首先,相比于传统的硅基太阳能电池,聚合物太阳能电池成本更低,生命周期更长,可重复使用。
另外,聚合物太阳能电池的较低制造温度和灵活性使其可以被制成非常薄的材料,适用于多种不同的应用领域,如便携式电子设备、智能家居、太阳光伏农业、建筑物外墙、建筑顶部和汽车车身等。
其次,聚合物太阳能电池在能量转换效率方面也取得了重大进展。
目前,聚合物太阳能电池的效率已经高达16%以上,而且还有望进一步提升。
这使得聚合物太阳能电池对于光伏发电领域的应用来说具有更大的竞争优势。
研究和开发聚合物太阳能电池对于科学发展和经济建设都是极其重要的。
未来,聚合物太阳能电池有望为我们带来更加绿色的能源,减少污染和环境破坏,保护地球的生态环境。
nature 光伏电池背景综述
一、光伏电池的背景随着人类社会的不断发展,能源问题愈发凸显。
传统的化石能源逐渐枯竭,在燃煤、石油等能源资源的消耗下,环境污染日益严重,气候变化问题也成为国际社会的热点。
寻找清洁、可再生的能源成为了全球的共同课题。
在众多的可再生能源中,光伏能源因其无污染、取之不尽的特点受到了广泛关注。
二、光伏电池的发展历程1. 传统光伏电池的发展20世纪50年代,美国贝尔实验室的科学家斯皮诺扎(Daryl Chapin)、珀尔(Calvin Fuller)和柯文(Gerald Pearson)研制成功了世界上第一块太阳能电池。
1954年在纽约举办的全美电气研究会上,他们展示了一块效率达到6的太阳能电池。
早期的光伏电池还存在着效率低、成本高、可靠性差等缺点。
2. 新型光伏电池的诞生20世纪80年代中期以来,随着太阳能市场的快速发展和技术水平的提高,光伏电池技术也得到了迅速发展。
砷化镓太阳能电池(GaAs电池)、硒化铜铟镓硫(TCIGS)太阳能电池、非晶硅太阳能电池、多结构太阳能电池等新型光伏电池相继诞生,各类新型光伏电池以其高效率、光伏电池我国背景综述环保和成本低廉等特点受到了广泛关注。
三、光伏电池的种类1. 结晶硅太阳能电池结晶硅太阳能电池是目前市场上应用最为广泛的太阳能电池,其占据着市场份额的80以上。
其制造工艺相对成熟,生产规模化,因此成本较低。
但也存在着材料短缺、能效低以及外观较为单一等问题。
2. 薄膜太阳能电池薄膜太阳能电池具有重量轻、材料节省、工艺简单等优点,是光伏电池领域的新生力量。
该类太阳能电池主要包括非晶硅太阳能电池、铜铟镓硒太阳能电池、柔性CIGS(S/D/MO)电池等。
然而,其稳定性和寿命仍然是目前制约其发展的主要因素。
3. 多结构太阳能电池多结构太阳能电池是一种新型太阳能电池,其由多层结构组成,可利用多种波段的太阳光。
在提高太阳能电池转换效率的还可以减少光伏系统的投资成本。
多结构太阳能电池备受研究者的关注。
聚合物太阳能电池材料
应用领域拓展案例
建筑一体化
将聚合物太阳能电池与建筑材料相结合,实现建筑一体化的光伏 发电系统,提高建筑能效。
可穿戴设备
利用柔性聚合物太阳能电池为可穿戴设备供电,实现设备的长时间 稳定运行,提高用户体验。
移动电源
将聚合物太阳能电池应用于移动电源领域,开发出轻便、高效、环 保的移动充电解决方案。
05
研究方法
介绍本研究采用的研究方法,包 括材料制备、器件制备、性能测 试等方面。具体方法如溶液法、 气相沉积法、光谱分析法等。
02
聚合物太阳能电池材料基础
聚合物材料种类与特点
共轭聚合物
具有优异的导电性能和光电性能 ,是制备太阳能电池的主要材料
之一。
嵌段共聚物
由两种或多种不同的聚合物链段组 成,具有独特的光电性能和形态结 构。
界面工程与器件结构优化
界面修饰层
01
引入界面修饰层,优化活性层与电极之间的界面接触,降低能
量损失,提高光电转换效率。
活性层厚度调控
02
通过调控活性层的厚度,实现光吸收和载流子传输的平衡,优
化电池性能。
器件结构创新
03
开发新型器件结构,如叠层电池、多结电池等,突破单结电池
的效率极限。
稳定性提升途径
1 2 3
材料稳定性
选用具有高化学稳定性和热稳定性的材料,降低 电池性能衰减速度,提高电池寿命。
界面稳定性
通过界面工程技术,提高界面的稳定性,防止界 面处的电荷复合和泄漏,保持电池长期稳定运行 。
封装技术பைடு நூலகம்
开发高效、环保的封装材料和技术,保护电池免 受外界环境因素的影响,提高电池的稳定性。
04
研究进展与成果展示
有机太阳能电池综述
2000年,5.R.Forrest研究小组通过在有机小分子制备的双层 结构太阳能电池器件的有机层和金属阴极之间插入 BCP(Bathocuproine)薄膜层,使得器件的光电转换效率提高 到了2.4%,并且改善了器件的伏安特性曲线,提高了器件 的稳定性。 2005年,A.J.Heeger等人采用在制备电极后再对器件进行热 退火处理的方法有效地提高了电池的能量转换效率,使其 光电转换效率达到了5%。 2007 年,2000 年诺贝尔化学奖获得者、美国加利福尼亚大 学的 Alan J. Heeger 教授领导的研究小组所制造的串联有机 太阳能电池,光电转换效率在实验室条件下达到了 6.5% 2009年 2 月,日本住友化学也宣布获得了 6.5%的转换效 率;同年 10 月,Solarmer Energy 公司又将这一效率提高至 7.6%
.有机太阳能电池的结构
1。肖特基型有机太阳能电池: 首例有机太阳能电池器件结构,基本的物理过程为: 有机半导体内的电子在太阳光照射下被从HOMO能级 激发到LUMO能级,产生电子一空穴对。电子被低功 函数的电极提取,空穴则被来自高功函数电极的电子 填充,从而形成光电流。 光激发形成的激子,只有在肖特基结的扩散层内,依靠节区 的电场作用才能得到分离。而其它位置上形成的激子,必须 先移动到扩散层内才可能形成对光电流的贡献。但是有机分 子材料内激子的迁移距离相当有限的,通常小于10nm。所 以大多数激子在分离成电子和空穴之前就复合掉了,导致了 其光电转换效率较低。
有机光伏材料具有不同于无机材料的几大特点:
.条件下,不能直接产生自由电子和自由空穴,而是产 生光生激子,激子在特定的条件下才能分离出自由 电子和自由空穴; 分子间力微弱,分子中价电子的最高已占轨道 (HoMO)和最低未占轨道(LUMO)不足以相互作用 形成整个材料的导带和价带,所以电荷以跳跃的方 式在定域状态形式的分子之间传输,而不是能带内 传输,所以其迁移率较低; 具有较高的光吸收系数和较窄的光波长吸收范围; 大多数有机光伏材料在水氧存在的条件下具有不 稳定性"
太阳能电池技术论文文献综述(可编辑)
太阳能电池技术文献综述王胤东南大学机械学院摘要: 资源和环境一直都是制约许多国家持续发展的两大瓶颈,因而在环境愈加恶化、资源日益紧缺、科技日新月异的今天,对于清洁的可再生能源的研究成为了热点。
太阳能作为一种可再生能源,不仅来源较为广泛(光照),并且几乎不会产生污染,因而倍受研究人员的青睐,也是前景比较广阔的研究方向。
本文主要介绍与太阳能电池相关的技术背景、研究方向和发展前景。
关键词: 太阳能,太阳能电池,研究现状,发展前景。
太阳能可以说是“取之不尽,用之不蝎”的能源,与矿物燃料相比,太阳能具有清洁和可在生等独特优点。
将太阳能直接转换为热能和电能,解决能源危机,造福于全人类一直是广大科学家的奋斗目标。
太阳能的利用分为光电转换和集热两种,前者主要有太阳能电池,后者主要有太阳能热水器、太阳能温室等。
利用半导体材料的光伏效应原理把太阳光能转换成电能称太阳能光伏技术,这也是太阳能电池的主要原理。
对光生伏特效应的研究最早可追溯到1839年,到上世纪五十年代,太阳能利用领域出现了两项重大突破:一是1954年美国贝尔实验室研制出效率为6%的实用型单晶硅电池;是1955年以色列科学家提出了选择性吸收表面概念和理论并研制成功选择性太阳吸收涂层。
这两项突破既是太阳能利用进入现代发展时期的划时代标志,也是人类能源技术又一次变革的技术基础。
1.太阳辐射[[1] 施敏著,黄振岗译,《半导体器件物理》,电子工业出版社,1987年12月第一版。
[2] 马丁?格林著,李秀文,谢洪礼,赵海滨等译,《太阳电池工作原理、工艺和系统的应用》,电子工业出版社,1987年1月第一版。
][1]太阳发出的辐射能来自核聚变反应。
每秒钟约有6×1011kg的H2转变为He,净质量损失约为4×103kg,这一质量损失通过爱因斯坦关系(Emc2)转变为4×1012J的能量。
此能量主要作为从紫外到红外和无线电频段(0.2至3μm)的电磁辐射发射出去。
太阳能光伏系统发电效率提升技术综述
太阳能光伏系统发电效率提升技术综述引言:随着能源消耗的快速增长以及全球变暖等环境问题的加剧,人们对清洁能源的需求与日俱增。
太阳能作为一种可再生、无污染的能源之一,其发电效率的提升对于推动可持续发展具有重要意义。
本文旨在综述当前用于提高太阳能光伏系统发电效率的技术,并探讨其优势和应用前景。
一、高效太阳能电池技术1. 单晶硅太阳能电池单晶硅太阳能电池以其高转换效率和较长的寿命而闻名。
其采用纯度较高的硅材料制成,可以实现高效能的太阳能转化。
然而,制造过程复杂且成本较高。
2. 多晶硅太阳能电池多晶硅太阳能电池以其低成本和较高转换效率而受到广泛应用。
其制造过程相对简单,使用的材料也比较广泛。
然而,其转化效率相对于单晶硅电池稍低。
3. 薄膜太阳能电池薄膜太阳能电池通过在基板上制备非晶态硅、铜铟镓硒等材料形成薄膜层,具有较快、成本低的制造过程。
虽然薄膜太阳能电池的转换效率较低,但其在大面积光伏发电领域具有潜力。
二、太阳能集热器技术1. 聚光太阳能集热器聚光太阳能集热器通过提高光的聚集度将太阳光能转化为热能,再通过热能和工作介质的流动来产生蒸汽或发电。
该技术具有高效率、可存储热能等优点,适用于大规模的太阳能发电。
2. 平板太阳能集热器平板太阳能集热器是利用黑色吸热板将太阳辐射能转化为热能的装置。
通过循环水或工作介质,将热能传递到热水供暖系统或发电系统中。
其制造成本较低,具有广泛应用前景。
三、太阳能跟踪系统技术太阳能跟踪系统通过调整太阳能电池板的方向,使其始终朝向太阳,最大程度地利用太阳辐射能。
跟踪系统分为单轴跟踪和双轴跟踪两种。
该技术使太阳能光伏系统的发电效率提高30%以上。
四、全光谱太阳能电池技术全光谱太阳能电池技术可以同时转化可见光和红外光,从而提高光伏系统的发电效率。
这种技术可以利用普通太阳能电池无法利用的光谱,进一步提高电池的转换效率。
其中,多结光伏电池和量子点太阳能电池是当前研究的热点之一。
五、表面工程技术太阳能电池的表面结构对光的吸收和透射具有重要影响。
聚合物材料在能源领域的应用
聚合物材料在能源领域的应用随着全球对可再生能源和环境保护的重视,聚合物材料作为一种重要的材料类别,逐渐在能源领域得到广泛应用。
聚合物材料具有较低的成本、良好的可塑性和可调性等优势,使得其在能源领域的应用领域不断扩大。
本文将重点介绍聚合物材料在太阳能电池、锂电池和超级电容器等能源领域的应用。
1. 太阳能电池太阳能电池作为一种可再生能源技术,已经逐渐成为解决能源短缺和环境污染问题的重要手段。
聚合物材料在太阳能电池中的应用主要集中在有机太阳能电池(OPV)和染料敏化太阳能电池(DSSC)两个方面。
有机太阳能电池是一种基于聚合物半导体材料的薄膜太阳能电池,相比于传统的硅基太阳能电池,其制备过程更简单、成本更低、重量更轻。
聚合物材料在有机太阳能电池中具有良好的光电转换性能和可调性,可以通过调整分子结构和共轭度来实现光谱范围的扩展和光电转换效率的提高。
染料敏化太阳能电池是一种基于聚合物电解质材料的太阳能电池,其利用染料吸收太阳光并将其转化为电能。
聚合物材料在染料敏化太阳能电池中广泛应用于电解质的制备和载流子传输的调控。
相比于传统的无机电解质材料,聚合物电解质材料具有更好的溶解性、电化学稳定性和导电性能,能够提高太阳能电池的光电转换效率和稳定性。
2. 锂电池锂电池作为当前最为常用的可充电电池之一,广泛应用于移动设备、电动车辆和储能系统等领域。
聚合物材料在锂电池中的应用主要包括聚合物电解质和聚合物正极材料两个方面。
聚合物电解质是一种替代传统无机电解质的新型电解质材料,具有高离子导电性、低毒性和高燃烧温度等特点,能够提高锂电池的安全性和充放电性能。
聚合物电解质材料可以通过控制聚合度、交联度和聚合物链的官能团等方式来调控其导电性能和机械性能,满足不同应用场景的需求。
聚合物正极材料是锂电池中的关键组成部分,能够储存和释放锂离子,影响着锂电池的能量密度和循环寿命。
聚合物正极材料具有较高的理论容量和较好的电化学稳定性,能够提高锂电池的能量密度和循环寿命。
太阳能电池研究综述
太阳能电池研究进展综述[摘要]:综述了当前太阳能电池发展中的新技术和新方向。
为使太阳能电池能够更加充分地吸收太阳光,表现出更高的能量转换效率,同时具备更加低廉的成本及更为广泛的应用领域,薄膜电池、柔性电池以及叠层电池已经成为太阳能电池领域的重要发展方向。
[关键词]:太阳能电池;单晶硅;染料敏化太阳能电池[Abstract]:Summarizes the new technology and new directions in the development of the current solar cell. In order to make the solar battery can be more fully absorb sunlight, exhibit higher energy conversion efficiency, with lower cost and more widely used in the field, thin-film batteries, battery and a flexible laminated battery has become an important development direction in the field of solar battery.[Keywords]:Solar cells; Silicon; Dye sensitized solar cell1.引言人类生存离不开能源,特别是人类现代文明更离不开能源。
常规的化石能源对环境的严重污染所导致的生态破坏、地球温室效应等正日趋严重的威胁着人类生存,而且化石能源迟早会枯竭耗尽。
因此以太阳能为代表的可再生能源,实现能源工业的可再生发展具有重要意义。
太阳能电池的种类很多,按照所用材料的不同可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池等。
太阳能电池(论文)文献综述
太阳能电池技术原理及其应用的分析文献综述1.1太阳能电池的种类及研究现状:根据材料的种类和状态的不同,太阳能电池主要有以下几种:单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、化合物半导体太阳能电池、薄膜型太阳能电池、有机太阳能电池和染料敏化纳米晶太阳能电池,下面分别予以简单介绍。
1.1.1单晶硅太阳能电池单晶硅太阳能电池是开发得最早的一种太阳能电池,硅的禁带宽度为1.leV,是间接迁移型半导体,本来不是制作太阳能电池的最合适材料。
但是由于硅蕴藏量非常丰富,已广泛应用于微电子工业,有很完善的技术基础,有利干太阳能电池的开发应用。
单晶硅太阳能电池具有比较高的转换效率,规模生产的电池组件的效率可以达到 12一16%,而实验室记录的最高转换效率为24.4%。
1.1.2多晶硅太阳能电池多晶硅太阳能电池具有独特的优势,与单晶硅比较,多晶硅半导体材料的价格比较低廉,相应的电池单元成本低,非常具有竞争优势。
但是由于多晶硅材料存在着较多的晶拉间界而有较多的缺点,转换效率不够高,提高多晶硅太阳能电池的转换效率就是目前许多科学家的研究方向。
非晶硅太阳能电池的转换效率和稳定性都不够好,对其研究开始于20世纪七十年代初。
非晶硅及其合金的光暗电导率随着光照的时间加长而减少,经过170℃一200℃的退火处理,又可以恢复到光照之前的值。
这一现象首先由Staebler和Wronski发现,被称为S—K效应。
S—K效应使非晶硅太阳能电池的转换效率由于光照时间加长而衰退,长期以来成为非晶硅太阳能电池应用的主要障碍。
1.1.3化合物太阳能电池化合物太阳能电池包括III—V族化合物电池和II—VI族化合物电池。
III —V族化合物电池主要有GaAs电池、InP 电池、Gasb电池等;II—VI族化合物电池主要有CaS/Culnse电池、CaS/CdTe电池等。
上世纪七十年代末,以GaAs 为代表的III—V族化合物电池材料(包括叠层电池材料),因具有很高的光电转换效率和优异的抗辐射性能而受到重视,发展很快。
聚合物多层修饰电极型太阳能电池
聚合物多层修饰电极型太阳能电池下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!聚合物多层修饰电极型太阳能电池太阳能电池一直是人类追求的清洁能源利用方式之一。
太阳能光伏发电主要技术与进展(综述)
太阳能光伏发电主要技术与进展(综述)太阳能光伏发电主要技术与进展(综述)(中国电⼒企业联合会科技服务中⼼尹淞)⼀、概述太阳能作为⼀种可永续利⽤的清洁能源,是理想的可再⽣能源。
太阳能光伏发电是太阳能利⽤的⼀种重要形式,是利⽤太阳电池的光伏效应原理将太阳辐射能直接转换为电能的⼀种发电形式。
从能源与环境的⾓度来看,太阳能光伏发电属于真正⽆污染的清洁可再⽣能源。
太阳能光伏发电技术的研究始于⼆⼗世纪五⼗年代,近年得到迅速发展,并⾸先在太阳能资源丰富的国家如德国、⽇本和美国等国家得到了⼤⾯积的推⼴和应⽤。
为了实现能源和环境的可持续发展,世界各国都将光伏发电作为发展的重点,在各国政府的⼤⼒⽀持下,太阳能光伏产业发展迅速,太阳能光伏发电技术也得到了很⼤进展。
⼆、主要技术进展太阳能光伏发电技术主要涉及太阳能电池和矩阵、电源转换(逆变器、充电器)、控制系统、储能系统、并⽹技术等领域,本⽂主要就太阳能并⽹电站涉及的主要技术进⾏综述。
1、太阳能电池太阳电池技术是太阳能发电技术的主要组成部份。
太阳能电池主要有以下⼏种类型:单晶硅太阳能电池、多晶硅太阳能电池、⾮晶硅太阳能电池、碲化镉电池、铜铟硒电池等。
各类型电池主要性能如表1所⽰。
表 1太阳能电池分类汇总表根据表1,晶硅类电池分为单晶硅电池组件和多晶硅电池组件,两种组件最⼤的差别是单晶硅组件的光电转化效率略⾼于多晶硅组件,也就是相同功率的电池组件,单晶硅组件的⾯积⼩于多晶硅组件的⾯积。
单晶硅、多晶硅太阳能电池具有制造技术成熟、产品性能稳定、使⽤寿命长、光电转化效率相对较⾼的特点。
⾮晶硅薄膜太阳能电池具有弱光效应好,成本相对于硅太阳能电池较低的优点。
⽽碲化镉、铜铟硒电池则由于原材料剧毒或原材料稀缺性,其规模化⽣产受到限制。
我国从上世纪50年代起就开始对太阳能电池进⾏研究,上世纪80⾄90年代先后从国外引进多条太阳能电池⽣产线。
近⼏年,太阳能电池的研究开发和⽣产飞跃地发展。
整体上看,我国不但在太阳能电池⽣产能⼒上进⼊国际先进⾏列,⽽且在薄膜太阳能电池的研究开发上达到国际先进⽔平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献综述聚合物太阳能电池
一、前言
能源问题和环境问题一直是人类关注的重点。
第一次工业革命以来,随着煤、石油等化石燃料的大规模应用,环境问题也日趋严重。
在不可再生的化石燃料逐渐减少的今天,寻找更清洁环保的能源已是迫在眉睫。
太阳能以其清洁环保、储量丰富的特点可以很好地解决这些问题,而太阳能电池的研发与应用是关键的一点。
无机太阳能电池经过几十年的发展已经很成熟了,能量转换效率大约达到了10% ~ 20%。
然而,无机半导体电池也存在着一些缺点,比如:制备成本较高、制备能耗较大、工艺复杂[1]。
近年来,有机聚合物太阳能电池(PSC)开始受到关注,它具有很多优点:提高光谱吸收能力的途径有很多,提高物质载流子的传输能力并扩展光谱的吸收范围;容易加工,成膜性好;物理改性比较容易;工艺简单。
这也说明了有机聚合物太阳能电池拥有光明的应用前景和发展空间。
二、聚合物太阳能电池简介
共轭聚合物太阳能电池是一种新型有机薄膜太阳能电池,它由共轭聚合物给体和富勒烯衍生物受体的共混薄膜活性层夹在ITO 透明导电玻璃正极和低功函数金属负极之间所组成。
下图图1-1是聚合物电池的结构示意图[2]。
ITO(氧化铟锡)作为电池的透光正极,金属Al、Ca等其他金属作为电池负极,正极和负极之间有一层共混膜,厚度约100-200nm,是由给体和受体材料组成的活性层。
聚合物PEDOT:PSS是一层修饰层,厚度约50nm,可以改善ITO电极的功涵和界面性质。
当光透过ITO电极照射到聚合物活性层上时,活性层中的给体材料吸收光子产生激子。
激子随后迁移到聚合物受体/给体的界面上,其中的电子就转移到受体材料的LUMO能级上,空穴则在给体材料的HOMO能级上,光生电荷实现分离。
在电池势场作用下,被分离的空穴会沿着共聚物给体形成的通道传输到正极,而电子沿着受体传输至负极。
空穴和电子分别传达到正极和负极后,就形
成了光电流和光电压,这就是聚合物太阳能电池所产生的光生伏打效应。
大体
的光伏过程为:1.光的吸收;2.产生激子;3.激子发生迁移;4.激子的解离;5.载流子分开、迁移及收集。
三、窄带隙共轭聚合物
如何提高其光电转换率是目前研究的关键课题。
制备窄带隙聚合物是解决转换效率低的一种方法。
聚合物能带隙就是聚合物中HOMO能级与LUMO能级的能级差。
一般来讲,窄带隙聚合物的能带隙小于 2.0eV,它可以吸收的光的波长大于等于620nm。
研究发现,D-A型窄带隙共轭聚合物能够有效提高能量转换效率,这种聚合物由给体单元(D)和受体单元(A)组成。
改变其给体和受体单元,可以改变它的HOMO 和LUMO能级,以降低带隙,提高光电性能。
D-A共聚物中因给体单元
和受体单元的推拉电子作用,使得聚合物的带隙变窄,从而极大地拓宽了聚合
物的吸收光谱。
并且人们可以通过将不同的给体单元与不同的受体单元进行排
列组合,可以在较大的范围内精细地调控聚合物的吸收光谱[3]。
四、D-A共聚物设计要求
影响电池的能量转换效率(PCE)的因素有很多,比如光吸收区的吸收强度、电荷迁移速度、能带隙宽度和活性层的形貌特征等。
1.光吸收:在聚合物太阳能电池的激活区域,要有较强的光吸收。
聚合物给体的带隙一般比较大,吸收光谱和太阳辐射光谱并不能较好匹配。
我们需要聚合物在可见- 近红外区有宽的、强的吸收,这是提高PCE的重点。
在设计聚合物的过程中,在支链上添加基团可以提高光子的吸收,共轭支链上添加上助色团,推、拉电子的基团,促使吸收向可见-近红外区偏移[4]。
2.电荷传输:电荷迁移率是影响电池能量转换效率(PCE)的重要因素。
在设计D-A窄带系共轭聚合物太阳能电池的时候,需要材料的电荷迁移率尽可能的大。
如受体单元(A)异靛蓝的空穴迁移率,达到了
3.62 cm2/Vs,电子迁移率也有 1 cm2/Vs。
相对而言,用作光伏器件材料效果会比较的好。
化合物本身结构对电荷迁移率有着重要影响。
结构的规律性越好,形成长程有序结构的能力就越好,电荷迁移率便会随之而增大。
所以应该选用结构规律性好的化合物来作为聚合物的单体。
3.分子能级:聚合物能带隙的大小直接影响着电池的光伏性能,它决定着吸收光谱的范围和吸收强度,所以 HOMO能级和LUMO能级的大小需要特别关注。
用循环伏安法(CV)测定共聚物的起始氧化电势和它的起始还原电势,用起始氧化电势、起始还原电势能够计算得出HOMO和LUMO能级值。
想要提高材料的HOMO能级可以考虑在共轭链上添加推电子取代基团,以增强给电子能力。
同时在推电子取代基团提高HOMO能级的时侯,也会提高LUMO能级;而吸电子取代基团降低LUMO能级的同时,也会降低HOMO能级[5]。
所以在设计共聚物材料时,要综合考虑推电子基团和吸电子基团的影响,寻找到恰当的方法,使共聚物的能量转换效率达到最大。
4.活性层形貌:活性层形貌同样对聚合物太阳能电池有着巨大的影响。
电荷传输受到给体单元和受体单元所形成的微观结构的影响。
活性层均匀、连续的互穿网络的纳米结构对电池性能的提升效果显著,它的电荷传输能力较强,J sc明显提高。
在活性层中加入添加剂,进行退火等处理有助于得到网络纳米结构,这是聚合物太阳能电池优化的一个重要方法[6]。
五、结论
尽管这类太阳能电池仍存在着能量转换效率(PCE)不够高的缺点,最高的只有8%左右,与无机太阳能电池间还存在较大差距,但D-A共聚物的巨大优势和潜力,吸引了越来越多的人开发新型的窄带隙共轭聚合物,并使得有机太阳电池材料得到蓬勃发展。
近几年,不断有高效率的新型窄带隙聚合物被设计、合成并报道出来,使其应用呈现出光明的前景。
参考文献
[1] 王福芝,谭占鳌.基于交联型窄带隙D—A共聚物的高效平面一本体异质结聚
合物太阳电池[J].
[2] 欧阳平. 聚合物太阳能电池的研究[D].北京交通大学.2007,12,1,1-20
[3]MoritaS,Zakhidov,Yoshino K.Doping effect of Buckminster
fullerene in conducting polymer:change of absorption spectrum and quenching of luminescence[J].Solid State Communications,1992,82(4):250—252.
[4] Amb C M,Chen S,Graham K R,et a1.Dithieno germole as a fused
electron donor in bulk hetero junction solar ceHs[J].201 1,
133(26):10062—10065.
[5]王坤. 基于新型受体单元的 D-A 共聚物的合成和光伏性能[D]. 东北师范
大学, 2013.
[6] T.Mikyana,H.Matsuoka,M.Ara,etal.Solar Energy
Materials&Solar Cells,2001,65:133.。