防止空气预热器低温腐蚀措施
循环流化床锅炉空预器低温腐蚀技术
循环流化床锅炉空预器低温腐蚀技术发布时间:2021-04-01T08:12:35.851Z 来源:《中国科技人才》2021年第5期作者:李满[导读] 我厂采用LAP12948/2500这种四分仓容克式空气预热器,是一种以逆流方式运行的再生式热交换器。
中泰圣雄能源股份有限公司热电厂发电车间摘要:新疆中泰圣雄能源股份有限公司热电厂锅炉全部选用的四川东方锅炉厂制造的循环流化床锅炉,回转空预器由东方电气集团东方锅炉股份有限公司同步配套,目前国内很多大型300MW及以上机组锅炉均采用回转式空气预热器,它不但是电站锅炉的主要部件,而且也是化工、冶金过程中理想的节约能源、提高效率的热交换器。
其优点为换热效率高,耐磨损,便于检修维护,但是同时也面临着许多燃煤机组空预器冷端低温腐蚀的问题,对于低温腐蚀的问题也是很多技术人员、学者长期在研究、攻关的一个课题。
为了更好的保护设备,延长设备、机组运行周期,下面结合我厂实际运行调整情况以及涉取其它厂对空预器冷端低温腐蚀的情况进行综合分析研究,采取可行、可控的手段来保证设备的安全稳定。
关键词:空预器;低温腐蚀;三氧化硫S03;硫酸H2S04;风温一、回转式空预器工作原理我厂采用LAP12948/2500这种四分仓容克式空气预热器,是一种以逆流方式运行的再生式热交换器。
加工成特殊波纹的金属蓄热元件被紧密地放置在转子,其左右两半部份分别为烟气和空气通道。
当烟气流经转子时,烟气将热量释放给蓄热元件,使烟气温度降低;当蓄热元件旋转到空气侧时,又将热量释放给空气,使空气温度升高。
如此周而复始地循环,实现烟气与空气的热交换。
二、空预器低温腐蚀的机理和原因低温腐蚀机理:烟气中含有水蒸气和硫酸蒸气。
当烟气进入低温受热面时,由于烟温降低,使蒸汽接触温度较低的受热面,就可能发生蒸汽凝结。
液态的H2S04和H2O将附着在设备、金属表面,腐蚀受热面金属,形成所谓的低温腐蚀。
低温腐蚀原因:1、主要是煤中的硫分和灰分。
回转式空气预热器低温腐蚀产生原因及其处理措施
回转式空气预热器低温腐蚀产生原因及其处理措施摘要:关于大容量锅炉使用回转式空预器运行中,发生低温腐蚀原因及如何防治,结合实践运行参数和经验,给出了相关意见和方法关键词:三分仓回转式空气预热器低温腐蚀过量空气系数烟气温度0 引言作为锅炉尾部受热面,空气预热器布置在锅炉对流烟道的最后。
当受热面壁温接近或低于烟气露点温度时,烟气中的硫酸蒸汽就会在壁面凝结和对壁面产生腐蚀。
我厂空预器进口烟温一般在260-360℃左右,出口烟温大约在110-160℃之间,在这样的烟温下工作的受热面,空气预热器低温区段烟气温度较低时,烟气中的水蒸汽和硫酸蒸汽有可能在管壁上凝结,从而导致受热面金属产生低温腐蚀。
1 回转式空预器介绍我厂锅炉主设备为东方锅炉股份有限公司生产的DG1163/17.35—Ⅱ13型锅炉,该锅炉为亚临界参数、单炉膛自然循环汽包锅炉。
平衡通风,摆动燃烧器四角切圆燃烧,干式排渣煤粉炉,同步建设烟气脱硫、脱硝装置。
尾部烟道设有两台三分仓回转式空气预热器。
由于设计煤种水分高,需采用较高的干燥剂温度,故空气预热器器先加热一次风,以获得较高的热一次风温,满足炉内燃烧的需要。
这种空气预热器是以逆流方式运行的热交换器。
加工成特殊波纹的金属蓄热元件被紧密地放置在转子扇形隔仓格内,转子以0.99转/分的转速旋转,其左右两侧分别分为烟气通道和空气通道。
空气侧又由一次风通道及二次风通道组成,当烟气流经转子时,烟气将热量传给蓄热元件,烟气温度降低;当蓄热元件旋转到空气侧时,又将热量传给空气,空气温度升高。
循环往复,以此实现烟气与空气的热交换。
2 腐蚀原因锅炉尾部受热面的腐蚀,属低温腐蚀,它是由于燃料中含有硫,燃烧后形成SO2,其中少量的进一步氧化生成SO3,SO3与烟气中的水蒸气H2O结合成为硫酸H2SO4,含有硫酸蒸汽的烟气露点温度大为升高。
当受热面低于露点温度时,硫酸蒸汽就会在受热面上凝结腐蚀金属。
为了减轻低温腐蚀,应首先设法了解影响烟气中硫酸形成的因素、硫酸蒸汽冷凝在受热面上的因素,这些均是影响低温腐蚀速度的主要因素。
浅析空气预热器低温腐蚀的原因及预防措施
浅析空气预热器低温腐蚀的原因及预防措施摘要:本文结合本厂实际情况,理论联系实际简要阐述空气预热器结构特性、发生低温腐蚀的原因及运行过程中如何预防等措施。
关键词:空气预热器;低温腐蚀;低氧燃烧前言:我厂锅炉型式:亚临界、自然循环、前后墙对冲燃烧方式、一次中间再热、单炉膛、平衡通风、固态排渣、尾部双烟道、全钢构架的∏型汽包炉,再热汽温采用烟气挡板调节,空气预热器置于锅炉主柱内。
烟气飞灰含量较大,容易磨损,温度低,由于本厂增设脱硝装置,空预器处极易产生硫酸及硫酸铵,对空预器造成腐蚀。
一、空气预热器的内部结构及工作原理1、结构空气预热器主要由转子、蓄热元件、壳体、梁、扇形板、烟风道、密封系统、控制系统、驱动装置、轴承、润滑系统、吹灰和清洗装置组成。
2、工作原理空气预热器是利用排烟的余热加热空气的热交换器。
空預器可以进一步降低排烟温度,减少排烟热损失:同时提高燃烧所需空气温度,改善燃料着火和燃烧条件,降低各项不完全燃烧损失,提高锅炉机组热效率等。
其内部高效传热元件紧密排列在圆筒形转子中按径向分割的扇形仓格里。
转子周围的外壳与两端连接板连接,形成空气和烟气两个通道。
预热器转子缓慢旋转,烟气和空气交替流过传热元件。
当转子转至烟气通道时,传热元件表面吸收高温烟气的热量:当转子转至空气通道时,传热元件释放出热量加热空气。
如此反复循环,转子每旋转一周就进行一次热交换,通过转子的连续旋转,不断地将热量传给冷空气,提高进入炉膛燃烧的空气温度,以满足锅炉燃烧需要。
空预器按传热方式分为导热式和再生式(密热式或回转式)。
导热式为管式预热器:回转式空气预热器属于再生式,回转式空气预热器分为两种,受热面回转式和烟风罩转动受热面固定不动。
锅炉配有2台50%容量、单级、三分仓容克式空气预热器,型号为xx型,三分仓与分仓的区别在于可以加热压力较高的一次风,以干燥煤粉,并将煤粉吹到炉膛。
另外的二次风直接经过空预器后进入锅炉风箱,用于燃烧。
防止空气预热器低温腐蚀措施
防止空气预热器低温腐蚀措施某发电厂300 MW机组锅炉配备2台回转式空气预热器(以下简称空预器)。
该空预器为三分仓容克式,是一种以逆流方式运行的再生热交换器。
蓄热元件分热段和冷段,热段的波纹板用0.6 mm厚的钢板压制而成,冷段波纹板由1.2 mm厚的低合金耐腐蚀考登钢压制而成,全部蓄热元件分装在24个扇形仓格内,蓄热元件高度自上而下分别为400,800,300,300 mm,冷热段各两层。
因为空预器的运行和维护对机组安全运行至关重要,因而有必要对防止空预器的低温腐蚀进行研究。
1.低温腐蚀的危害回转式空预器安装在锅炉尾部,进入空预器的烟气与空气进行热交换后,温度降低,从冷段蓄热元件流出的烟温约在155℃左右。
因此,在燃用高硫燃料时,可能引起空预器低温腐蚀,造成蓄热元件严重损坏。
同时,由于壁温低而凝结出的液态硫酸会粘结烟气中的灰粒子,造成烟道堵灰,严重时将影响锅炉满负荷运行。
空预器低温腐蚀增加了设备检修维护费用,严重影响锅炉的安全经济运行。
2.低温腐蚀的原因当燃用含硫高的燃料时,燃烧后形成的SO2有一部分会进一步被氧化成SO3,且与烟气中的水蒸汽结合成硫酸蒸汽。
烟气中硫酸蒸汽的凝结温度称为酸露点,它比水露点要高很多。
烟气SO3(或者说硫酸蒸汽)含量愈多,酸露点就愈高,烟气中的酸露点可达140~160℃,甚至更高。
烟气的酸露点与燃料含硫量和单位时间送入炉内的总硫量有关,而后者是随燃料发热量降低而增加的。
显然,燃料中的含硫量较高,发热量较低,燃烧生成的SO2就越多,进而SO3也将增加,致使烟气酸露点升高。
烟气对受热面的低温腐蚀常用酸露点的高低来表示,露点愈高,腐蚀范围愈广,腐蚀也愈严重。
广安发电公司的燃煤含硫量校核值最低为2.86%,实际含硫量最高可达4%左右,属高含硫煤种。
因此,必须加强运行及维护管理,制定出相应的防范措施,保证设备的安全运行。
3.低温腐蚀的防范措施(1) 对煤碳的含硫指标,必须严格化验,严格把关。
空预器冷端腐蚀(堵灰)防控措施
(3)控制炉内温度水平 ) 炉内温度水平越高, 炉内温度水平越高,特别是火炬尾部温度越 高,越有利于SO3含量增高。可采用分段送 越有利于 含量增高。 风来降低火炬温度。 风来降低火炬温度。 (4)避免漏风 ) 烟道的漏风会促进SO 生成。同时, 烟道的漏风会促进SO3生成。同时,低温受 热面区段的漏风,会造成局部低温, 热面区段的漏风,会造成局部低温,导致低 温腐蚀。 温腐蚀。
空预器冷端腐蚀(堵灰) 空预器冷端腐蚀(堵灰) 防控措施
许彦君
一、低温腐蚀的机理
1、硫酸的形成及其对金属的腐蚀 、 水露点: 水露点:烟气中的水蒸气进入低温受热面 后,由于烟气温度降低或接触到较冷的受热 水蒸气便发生凝结现象。 面,水蒸气便发生凝结现象。水蒸气发生凝 结时的温度称为水露点, 结时的温度称为水露点,其值是由烟气中水 蒸气的分压力所决定的。在一般情况下,燃煤 蒸气的分压力所决定的。在一般情况下 燃煤 锅炉尾部烟道中水蒸气的分压约为10%,即 锅炉尾部烟道中水蒸气的分压约为 , 0.01~0.015MPa,对应水露点为 ,对应水露点为40~45℃, ℃ 发生水蒸气凝结的可能性较小。 发生水蒸气凝结的可能性较小。
均减少,从而使烟气露点随之降低。 均减少,从而使烟气露点随之降低。
三、防止空预低温腐蚀的技术措施
防止和减轻空预积灰腐蚀的主要原则是: 防止和减轻空预积灰腐蚀的主要原则是: 提高受热面壁温,使之大于烟气露点温度; 提高受热面壁温,使之大于烟气露点温度; 燃料脱硫;改善燃烧方式,以减少SO 燃料脱硫;改善燃烧方式,以减少 3的含 采用抗腐蚀材料作为受热面等。 量;采用抗腐蚀材料作为受热面等。 1、受热面壁温要高于露点 、 提高受热面壁温是防止空气预热器低温腐 蚀的最有效的方法。要提高壁温,可以从提 蚀的最有效的方法。要提高壁温, 高排烟温度和入口空气温度两方面入手。 高排烟温度和入口空气温度两方面入手。由 于提高排烟温度增加了排烟损失, 于提高排烟温度增加了排烟损失,使锅炉热
浅谈空气预热器的低温腐蚀及预防措施
浅谈空气预热器的低温腐蚀及预防措施引言空气预热器是电厂锅炉的重要辅机,主要是利用锅炉尾部烟道中的烟气通过其内部散热片,将进入锅炉前的空气预热到一定的温度,用于提高锅炉的热效率,降低能量消耗。
由于锅炉长时间低负荷运行,空气预热器低温腐蚀现象严重,造炉空气预热器受热面的损坏和泄漏,导致引风机负荷增加,限制锅炉出力,严重影响锅炉运行的安全性和经济性。
一、锅炉空气预热器的作用锅炉中煤粉与助燃空气燃烧后产生的高温烟气依次流经不同的辐射对流受热面后进入空预器预热进口冷风,进入炉膛的空气被加热,有利于稳燃和燃尽。
电站锅炉装设空预器的主要作用包括如下几点:首先,降低排烟温度,提高锅炉效率。
在现代燃煤电站中,由于回热循环的存在,锅炉给水经各级加热器加热后温度参数大大提高,如中压锅炉的给水温度为172℃左右,高压锅炉的给水温度为215℃左右,超高压锅炉的给水温度为240℃左右,亚临界压力锅炉的给水温度达到了260℃左右。
因此,烟气在省煤器处与给水换热后的温度仍然较高,要使省煤器后排烟温度降到100℃左右是不现实的,而如果直接排放必然造成相当大的排烟热损失。
装设空气预热器后,20摄氏度左右的冷空气与省煤器出来的高温烟气进行换热,一方面显著地降低了排烟温度,另一方面回收了排烟的热量重新进入炉膛,达到了提高燃料利用率的目的。
其次,入炉风温的提高改善了燃料的着火与燃烧条件,同时有利于降低燃料燃烧不完全的损失,这一点对着火困难的煤种尤其重要。
由于提高了燃烧所需的空气温度,改善了燃料的着火环境和燃烧效率,同时也降低了不完全燃烧热损失q3、q4,锅炉效率得到提高。
其三,可以允许辐射受热面设计数量的减少,降低钢材消耗。
由于炉内理论燃烧温度得到提高,炉内的辐射换热得到强化,在给定蒸发量的前提下,炉内水冷壁可以布置得少一些,这将节约金属材料,降低锅炉造价。
其四,有利于改善引风机的工作条件。
排烟温度降低后,直接改善了引风机的工作条件,同时也降低了引风机的电耗,提高了效率。
浅析空气预热器低温腐蚀问题与对策
浅析空气预热器低温腐蚀问题与对策摘要:空气预热器就是以当进入锅炉前的空气被锅炉底部烟道中的烟气通过里部的散热片预先进行加热到一定温度的受热面为原理进行工作的机器。
它的存在之合理就是用来提高锅炉的关于热交换性能,降低能量的不必要消耗。
在它工作时会慢慢的旋转圈,空预器的烟气侧中的烟气会在进去之后再被放出,而空预器中的散热片会吸收烟气中所带的热量,之后空预器慢慢旋转,散热片运动到空气侧,此时热量会被传递给进入锅炉前的空气。
由此,使用时显露的问题也应受到重视,存在待解决的问题,需要进一步优化完善,方便使用途中有应对措施。
本文就空气预热器低温腐蚀问题的种种现象有一个深入分析,对于现存在的问题,提出相关解决措施,旨在推动空气预热器的长远发展。
关键词:空气预热器;低温腐蚀;问题与对策结语漏风和在低温情况下受到腐蚀已然成为了回转式形式的空气预热器最通常的问题。
密封部件(轴向、径向和环向密封)漏风和风壳漏风是漏风现象的主要因由;烟气中的水蒸气与硫一起燃烧,而后变成的三氧化硫会继而形成可怕的硫酸水汽进人空气预热器是致使在低温情况下受到腐蚀的导火索,就会与低温度情况下的热表面金属相结合,致使硫酸蒸汽凝结,这就是金属壁面腐蚀的原因。
受热面产生腐蚀是因为遇冷凝结后形成酸雾,这就是在低温情况下它会形成销蚀的决定性因素,GAL16V8D-15LP其影响因素主要包括烟气露点、硫酸浓度、凝结在空气预热器换热表面的酸量以及受热面金属温度等。
【1】一、分析空气预热器的作用1、改善并强化燃烧空气在受过余热器后再进入炉里部,就会为燃料的脱水、着火和燃烧过程提供强而有力的“加速器”,为锅炉内能够持续燃烧而保驾护航。
2、强化传热炉内燃烧已经得到了护身符,进入炉里的热风温度也在紧随其的脚步,而且炉内平均温度水平也有所改善,这样的话炉内辐射传热就稳定前行。
3、将炉内不必要损失尽量降低,排烟温度也随之尽量下降降低化学不完全燃烧所带来的弊处,可以就炉里的燃烧持续性,辐射热交换的强化展开应有的措施;其次,为了提高锅炉现阶段的热效率,它能够充分发挥烟气余热的作用,这样就深深减少了放烟损失。
空预器冷端腐蚀原因分析及防范措施
空预器冷端腐蚀原因分析及防范措施空气预热器的低温腐蚀主要发生在空气预热器的冷端(即冷风进口处的低温段)。
对回转式空气预热器而言,腐蚀会加重堵灰,使烟道阻力增大,严重影响锅炉的经济运行。
由低温腐蚀会对锅炉造成很大危害,因此必须预防发生低温腐蚀。
一、低温腐蚀的原因烟气进入低温受热面后,随着受热面的不断吸热,烟气温度逐渐降低,其中的水蒸气可能由于烟气温度降低或在接触温度较低的受热面时发生凝结。
烟气中水蒸气开始凝结的温度称为水露点。
纯净水蒸气露点取决于它在烟气中的分压力。
常压下燃用固体燃料的烟气中,水蒸气的分压力p=0.01-0.015Mpa,水蒸气的露点低至45-54℃,一般情况下不易在受热面上发生结露。
而当锅炉燃用含硫燃料时,硫燃烧后全部或大部分生成二氧化硫,其中一部分二氧化硫(占总含量的1%左右,体积分数)又在一定条件下进一步氧化生成三氧化硫(SO3)。
SO3与烟气中水蒸气化合后生成硫酸蒸汽,硫酸蒸气的凝结温度称为酸露点。
酸露点比水露点要高得多,而且烟气中SO3含量越高,酸露点越高,酸露点可达110-160℃。
当受热面的壁温低于酸露点时,这些酸就会凝结下来,对受热面金属产生严重的腐蚀作用,这种腐蚀称为低温腐蚀。
烟气酸露点的高低,表明了受热面低温腐蚀的范围大小及腐蚀程度高低,酸露点越高,更多受热面要遭受腐蚀,而且腐蚀越严重。
因此,烟气中酸露点是一一个表征低温腐蚀是否会发生的指示。
烟气的酸露点与燃料硫含量和单位时间送入炉内的总硫量有关,而后者是随燃料发热量降低而增大的。
两者对露点的影响,综合起来可用折算硫分来反映。
而且折算硫分越高,燃烧生成SO2就越多,SO3也将增多,致使烟气酸露点升高。
当燃用固体燃料时,烟气中带有大量的飞灰粒子。
飞灰粒子含有钙和其他碱金属化合物,它们可以部分地吸收烟气中的硫酸蒸气,从而可以降低它在烟气中的浓度,使得烟气中硫酸蒸气分压力降低,酸露点也降低。
烟气中飞灰粒子数量越多,影响越显著。
空气预热器堵灰及腐蚀的原因及预防措施
空气预热器堵灰及腐蚀的原因及预防措施【摘要】回转式空气预热器在运行中常见的问题是堵灰及腐蚀,堵灰及腐蚀严重影响锅炉运行的安全性及经济性。
本文针对我厂#4炉空气预热器在运行中存在的问题,并就其中原因作出简要的分析,提出几点预防建议措施,以供同行参考。
【关键词】空气预热器、堵灰、腐蚀一、概述湛江电力有限公司#4机组装机容量为300MW,汽轮机为东方汽轮机厂制造的亚临界、中间再热、两缸两排汽、凝汽式汽轮机,型号为N300-16.7/537/537/-3(合缸),采用喷嘴调节。
锅炉DG1025/18.2-Ⅱ(5)为东方锅炉厂制造的亚临界压力、中间再热、自然循环单炉膛;全悬吊露天布置、平衡通风、燃煤汽包炉。
锅炉配备两台型号为LAP10320/3883的回转式三分仓容克式空气预热器。
空气预热器还配有固定式碱液冲洗装置和蒸汽、强声波吹灰装置,在送风机的入口装有热风再循环装置。
二、空气预热器运行中存在的主要问题1 空气预热器堵灰运行中,首先发现一次、二次风压有摆动现象,随后摆幅逐渐加大,且呈现周期性变化。
其摆动周期与空气预热器旋转一周的时间恰好吻合,这说明空气预热器有堵塞现象。
这是因为当堵塞部分转到一次风口时,一次风压开始下降;当堵塞部分转到二次风口时,二次风压又开始下降,在堵塞部分转过之后,风量又开始增大。
#4锅炉燃烧较不稳定,空气预热器堵灰时,由于风量的忽大忽小,炉膛负压上下大幅度波动,严重影响锅炉燃烧的稳定性。
2 空气预热器腐蚀空气预热器堵灰及腐蚀是息息相关的。
空气预热器堵灰时,空气预热器受热面由于长期积灰结垢,水蒸汽及SO3容易黏附在灰垢上,加重了空气预热器的腐蚀;而空气预热器腐蚀时,受热面光洁度严重恶化,加重了空气预热器的积灰。
空气预热器堵灰及腐蚀时,运行中表现出空气预热器出口一、二次风温降低,排烟温度升高,锅炉效率降低。
三、空气预热器堵灰及腐蚀的原因分析1 烟气中含有水蒸汽及SO3由于烟气中含有水蒸气,而烟气中水蒸汽的露点(即水露点)一般在30~60℃,在燃料中水份不多的情况下,空气预热器的低温受热面上不会结露。
防止空气预热器低温腐蚀及积灰的措施
防止空气预热器低温腐蚀及积灰的措施赵景运(中国石化集团洛阳石油化工工程公司,河南洛阳471003)摘要:详细分析了空气预热器低温腐蚀及积灰产生的原因和影响因素,结合某厂1 # 炉存在的问题,提出了预防低温腐蚀与积灰的一些措施。
关键词:锅炉;低温腐蚀;空气预热器中图分类号: T K22313 +4 文献标识码:B 文章编号:1004 - 7948 (2004) 09 - 0034 - 041 前言为了提高锅炉热效率,以节约能源,降低燃料消耗,提高经济效益,通常在锅炉尾部加装空气预热器等余热回收设备,因而在节能降耗的同时也给锅炉长周期运行带来了致命的弱点: 易腐蚀和积灰。
如果不妥善解决锅炉尾部的低温腐蚀和积灰,不仅影响锅炉的平稳运行,还会带来繁重的检修工作和加大检修投资,造成经济损失,而原欲达到的节能目的也难以实现。
某厂D G20/ 1127 - 1 型锅炉是东方锅炉厂制造的,于1993 年投产使用,燃料以渣油为主。
该炉空气预热器腐蚀和积灰非常严重,致使预热器管穿孔,大量空气流入烟气,造成风烟系统短路,以至于送引风机超电流时,锅炉仍不能满负荷运行; 其次,由于积灰未能及时清除,堵塞烟气侧受热面,加剧腐蚀与积灰,影响传热效果,排烟温度一直很高。
目前,低温腐蚀及积灰的问题是普遍存在的,虽然可供借鉴的经验不少,但尚没有完全根除这一问题的既经济又有效的方法。
本文根据近年来的工作经验,分析探讨空预器腐蚀和积灰的原因与机理,为进一步解决这一问题寻求一条有效的预防途径。
2 腐蚀原因锅炉尾部受热面的腐蚀,叫低温腐蚀,它是由于燃料中含有硫,燃烧后形成SO2 ,其中少量的进一步氧化生成SO3 ,SO3 与烟气中的水蒸气H2 O 结合成为硫酸H2 SO4 ,含有硫酸蒸汽的烟气露点温度大为升高。
当受热面壁温低于露点温度时,硫酸蒸汽就会在管壁上凝结,并腐蚀管壁金属。
为了减轻低温腐蚀与积灰,应首先设法了解影响烟气中硫酸形成的因素、硫酸蒸汽冷凝在受热面上的因素、金属和硫系统的自我修复。
防止空气预热器低温腐蚀堵灰
防止空气预热器低温腐蚀堵灰王国俊杜昕为了利用锅炉排烟的余热来提高助燃空气温度以提高锅炉热效率,通常在蒸发量10t/h以上的工业锅炉上均配装有管式空气预热器,它比较容易出现的故障是低温腐蚀和堵灰。
一、危害性处在锅炉低温区域的空气预热器,一旦发生了低温腐蚀和堵灰,就会造成烟气通道堵塞,引风阻力增大,锅炉正压燃烧,这不但降低了锅炉出力,甚至造成被迫停炉。
腐蚀的结果会导致空气预热器管子泄漏损坏,造成严重漏风,引起燃烧工况恶化。
而管内壁积灰,会增大锅炉各项热损失,降低锅炉热效率,影响锅炉安全经济运行。
二、形成机理1、当燃用含硫量较高的燃料时,极容易造成空气预热器腐蚀和堵灰。
燃料中的硫成分在燃烧后,大部分形成二氧化硫,在一定条件下其中少部分进一步氧化成三氧化硫气体与水蒸汽能结合成硫酸蒸汽,其凝结露点温度高,可达120℃以上,当空气预热器管壁温度低于所生成的硫酸露点时,硫酸就在管壁上凝结而产生腐蚀,叫做低温腐蚀(如图1所示)。
硫酸象一层胶膜,一面粘在管壁上腐蚀,一面不断粘着烟灰,形成多种硫酸盐,并逐渐增厚,这就是低温式结渣。
图1 燃料中含硫量与烟气露点的关系对于链条炉或抛煤炉,当燃煤含硫量低于1.5%时,即使排烟温度和空气预热器进风温度较低,空气预热器也不会产生明显的堵灰结渣和腐蚀;如果燃煤含硫量大于2%时,则空气预热器将进入严重腐蚀范围。
而煤粉炉对燃煤含硫量的敏感性较小,当含硫量大于3%时,其空气预热器才会受到严重腐蚀(见图2所示)。
图2 空气预热器管壁的最低允许温度煤中含硫量的多少,影响锅炉排烟温度的选取。
同时,鉴于对锅炉排烟热损失与防止尾部受热面低温腐蚀等因素的综合考虑,目前装有空气预热器的锅炉设计排烟温度一般为160~190℃。
事实上由于某些单位使用蒸汽时负荷变化较大,或长期低负荷运行;设备失修,不及时清灰等原因而造成排烟温度长期低于140℃,即烟气露点之下。
2、从整个炉体排烟流程来讲,空气预热器烟气通道截面较小,阻力较大,因此,增加了形成堵灰结渣的可能性。
回转式空气预热器低温腐蚀的预防
回转式空气预热器低温腐蚀的预防摘要:宏伟热电厂:#1、#2锅炉其炉型为HG-220/9.8-HM12,#3、#4、#5炉为HG-410/9.8-HM16型锅炉,锅炉采用单锅筒,自然循环,集中下降管,#1、#2锅炉倒U型室内布置的固态排渣煤粉炉,#3、#4、#5炉为π形布置的固态排渣煤粉炉。
五台锅炉均采用直吹式风扇磨制粉系统、回转式空气预热器。
冬季大负荷负荷需求量大,由于各种原因导致空气预热器产生低温腐蚀,都会危害锅炉的运行安全,甚至被迫停运。
降低企业的经济效益和社会效应。
本文主要阐述的是如何防止回转式空气预热器腐蚀一系列措施。
关键词:锅炉;预热器;低温腐蚀1.与管式相比回转式预热器优缺点:1.1优点:1.1.1结构紧凑、体积小,重量轻、金属耗量少;1.1.2占地少,所以能简化尾部受热面的布置;1.1.3低温腐蚀危险小,因为受热面温度较高,低温区传热原件可采用耐腐蚀材料制造;1.1.4回转式空预器的传热面被磨损或腐蚀后漏风变化很小,传热原件允许有一定磨损,原件磨损很严重时才需要更换。
1.2缺点:1.2.1设备复杂锅炉厂用电和事故率增加;1.2.2增加运行人员的维护和操作量;1.2.3回转式空预器主要缺点就是漏风量大:造成空气预热器漏风的情况有两种,即间隙漏风和携带漏风。
2.回转式预热器的工作原理:空气预热器按换热方式的不同可分为传热式和再生式,再生式空气预热器由于具有回转的结构部件故称为回转式空预器。
回转式空预器按回转部件不同分为受热面旋转和风罩旋转两种形式,国内电厂多数采用回转式空预器。
回转式空气预热器的工作原来理是:利用转子低速旋转(1.1~1.5r/min)使转子中的传热原件即波形板交替流经烟气和空气所冲刷。
当传热原件与烟气接触时由于烟气将热量传递给传热原件波形板,而当传热原件转到空气侧时即放出热量使空气被加热,从而实现了冷却烟气加热空气的目的。
随着转子的不断转动,烟气中的热量也就被连续不断的传给空气了,为提高传热效率烟气由上住下流,空气则是自下住上流,形成逆流传热方式提高了传热效率。
空气预热器的低温腐蚀机理和防止措施研究
空气预热器的低温腐蚀机理和防止措施研究摘要:随着工业技术的不断发展与进步,空气预热器开始大规模的运用到工业锅炉当中。
空气预热器的大规模作用有效的优化和提升了工厂生产的运行效率,空气预热器可以改善并且加快工业锅炉的工作效率,通过强化传热的方式,增加工业利用率。
同样,空气预热器可以均衡炉内温度,保持锅炉内温度的稳定,从而降低排烟的损失。
本文根据当前空气预热器的安装使用现状,对如何有效解决空气预热器使用中存在的问题提出建议。
关键词:空气预热器;低温腐蚀机理;工作效率引言:空气预热器在提升工业锅炉的运行工作效率,减少材料损耗,提升产能的同时,也会存在着低温腐蚀的问题,因此在进行空气预热器的安装与使用时务必要做好预防措施。
低温腐蚀机理就是指燃料中存在的硫元素在燃烧的过程中形成二氧化硫物质,二氧化硫中的一部分与氧气发生化学反应最终形成三氧化硫,而三氧化硫与水蒸气反应会形成硫酸蒸汽,硫酸蒸汽对锅炉具有腐蚀作用。
因此要解决空气预热器的低温腐蚀问题要从源头抓起,从根本上解决问题。
一、对燃料及燃烧烟气进行除硫处理空气预热器在安装使用过程中出现低温腐蚀的现象,主要是由于用于燃烧的材料,燃料中存在硫的成分,导致燃烧生成的烟气中也存在硫元素。
燃料以及燃烧产生的烟气产生的硫通过一系列的化学反应,生成了具有腐蚀性的产物。
因此,要对低温腐蚀的问题进行提前的防治和管理,最直接的方式就是对燃料以及燃烧产生的气体进行除硫工作。
除硫的过程十分的复杂,对工作技术与流程有着严格的要求。
首先,作为使用空气预热器的电厂要从燃料的选购方面进行处理,严格的把控燃料的组成成分以及产生硫元素的数量。
寻找专门的工作人员负责燃料的采购,严格的把控燃料质量以为后期的除硫工作减轻负担,保证整体工作的有序进行。
其次,要加大对锅炉的工作运行过程中燃料的除硫措施的研发,当前对燃烧产生气体中的除硫方式的研究还不够完善。
电厂可以成立专门的技术团队做好技术研发工作的部署,对除硫工作及程序的不断的研发,可以有效推动空气预热器的腐蚀现象的降低,提升资源的利用率[1]。
空预器低温腐蚀的原因及预防措施 (1)
关于空预器低温腐蚀的学习赵龙艺(福建大唐国际宁德发电有限责任公司,福建宁德355006)摘要:锅炉加装空预期可以充分利用烟气余热,降低排烟温度,提高锅炉效率,但由于空气预热器处于锅炉内烟温最低区,特别是未级空气预热器的冷端,空气的温度最低、烟气温度也最低,受热面壁温最低,因而最易产生腐蚀,和堵灰,一旦发生腐蚀和堵灰,严重时会照成烟气通道堵塞,引风阻力增大,锅炉正压燃烧,严重影响机组的安全性和经济性。
关键词:空预期低温腐蚀一、腐蚀机理:燃料中或多或少都含有硫份,当燃料中的硫燃烧生成二氧化硫,二氧化硫在催化剂的作用下进一步氧化生成三氧化硫,三氧化硫与烟气中的水蒸气生成硫酸蒸气。
硫酸蒸气的存在使烟气的露点显著升高。
由于空气预热器下部空气的温度较低,预热器下部的烟气温度不高,壁温常低于烟气露点。
硫酸蒸气会凝结在预热器受热面上,造成了硫酸腐蚀。
主要因素:1.燃料中的含硫量:燃料的含硫量越高,烟气中的三氧化硫含量增加,对受热面腐蚀越严重。
2.烟气露点(酸露点):烟气中硫酸蒸汽含量越高,其酸露点(烟气中硫酸蒸汽凝结的温度)的越高,可以高达140—150℃。
烟气对受热面的腐蚀常用酸露点的高低来表示,酸露点越高,说明在较高的烟温下硫酸蒸汽即可凝结,腐蚀也就越严重。
运行中应该使金属温度比烟气露点高10—20℃,可以减轻腐蚀。
3.硫酸浓度和凝结酸量:硫酸浓度在0%--56%,随着浓度的升高,腐蚀速度越高,在56%是,腐蚀速度最高,随着硫酸浓度进一步降低腐蚀速度也逐渐降低。
凝结酸量和腐蚀速度与受热面金属温度有关。
二、低温腐蚀的预防:1、提高空预器管壁温度,使壁温高于烟气露点。
如提高排烟温度,开热风再循环,加暖风器提高空预器入口温度。
此法的优点是简便易行,缺点是锅炉效率降低。
2、加强对空气预热器出、入口差压的监视,特别是在冬季气温急剧下降时更应注意,同时保证换热器冷端温度比烟气露点温度高,当发现空气预热器出、入口一次风、二次风及烟气差压异常时,应加强调整,加强吹灰,吹灰前要将蒸汽疏水彻底排干净,并尽可能保持高负荷。
空气预热器低温换热段腐蚀问题原因分析及处理措施
空气预热器低温换热段腐蚀问题原因分析及处理措施作者:逄燕来源:《科技资讯》2012年第12期摘要:某石化公司加热炉采用管式和热管式复合空气预热器,空气预热器低温段采用外壁镀搪瓷管式结构,烟气在管外流动,空气在管内流动。
关键词:空气预热器热段腐蚀中图分类号:TB47 文献标识码:A 文章编号:1672-3791(2012)04(c)-0103-012009年3月在设备检修过程中发现空气预热器低温段腐蚀严重,主要有以下现象。
(1)在烟气出口端有3、4排管在与空气进口端管板连接处严重腐蚀,部分管子已腐蚀穿孔。
(2)烟气出口接口管靠近管端腐蚀严重区域的保温内衬板腐蚀严重,有很大面积已全部腐蚀掉。
(3)烟气侧箱体保温内衬板腐蚀严重。
(4)空气进口端管口内有严重的結垢现象,部分管口流通面积不到原来的50%。
1 原因分析(1)腐蚀机理。
燃料中含有硫(S),燃烧后生成二氧化硫(SO2),二氧化硫与烟气中剩余的氧再氧化成三氧化硫(SO3),烟气中含有水蒸汽,而SO3能与烟气中的水蒸汽化合成硫酸蒸汽(H2SO4)。
硫酸蒸汽本身不腐蚀金属,当受热面温度低于酸露点温度时,硫酸蒸汽就在管子表面冷却结成液体,形成硫酸溶液,对金属具有强烈的腐蚀作用。
(2)空气预热器管壁的最低允许温度。
对于管式空气预热器管壁工作温度大约为工作点烟气和空气温度的平均值,设计工况空气进口温度20℃,烟气出口温度145℃,最低管壁温度约80℃,冬季运行时由于空气进口和烟气出口温度更低,管子的最低工作温度也更低。
腐蚀严重的区域管子的工作壁温低于烟气的酸露点温度。
(3)低温管端焊接密封环处搪瓷保护层防腐性能薄弱。
为了解决管子与管板焊接连接处的防腐性能,设计部门在管端焊接10mm厚密封环,在管子烧镀搪瓷前将密封环与管子焊为一体,并将焊缝打磨光滑,一起烧镀搪瓷,在管子安装时在空气侧进行密封环与管板之间的焊接,利用密封圈的厚度抵御腐蚀,提高设备使用寿命。
但由于管子与密封环之间的厚度相差较大,密封环的搪瓷质量不易保证,并且该处在设备的最低点,管子表面结露形成的硫酸溶液大部分流到该部位,所以该处的工作条件更差,也导致该处容易发生腐蚀。
空预器低温腐蚀原因的解决办法及暖风器布置位置的探讨
空预器低温腐蚀原因的解决办法及暖风器布置位置的探讨摘要:本文对火力发电厂空预器的低温腐蚀原因进行分析,提出解决办法,并对暖风器的布置位置进行探讨,供北方电厂设计时借鉴。
关键词:火力发电厂;暖风器;空预器;低温腐蚀;布置Abstract: This paper analyzes the thermal power plant air preheater low temperature corrosion reason, proposed solutions, and discussed the heater arrangement; provide reference for the design of the power plant north.Key words: power plant; air heater; air preheater low temperature corrosion; layout;1概述在火力发电厂中,作为锅炉的主要辅机,空气预热器的运行好坏直接影响锅炉运行的经济性和安全性,最常见的问题就是空气预热器低温段出现腐蚀和堵灰。
本文将对空预器出现腐蚀的原因进行分析,提出解决办法,重点探讨暖风器对空预器的保护作用和暖风器的合理布置。
2 空预器低温腐蚀的形成及造成的恶果空预器产生尾部受热面低温腐蚀的原因是:含硫的燃料燃烧后,产生的SO2在炉膛的高温作用下,部分氧原子会离解成原子状态,它能将SO2氧化成SO3。
烟气中含有的微量SO3在烟温降到580℃以下时,会与烟气中的水蒸汽结合,形成硫酸蒸汽,硫酸蒸汽的露点温度远高于水蒸汽的露点温度,当受热面的冷端平均温度低于烟气酸露点温度时,硫酸蒸汽在受热面上凝结,而产生酸性腐蚀。
一般来说,受热面低温腐蚀发生在一个相当宽的范围内,凝结出来的硫酸浓度也随着温度的降低而逐步变小。
腐蚀的速度与硫酸的浓度有关,硫酸浓度高,腐蚀的速度比较缓慢,在酸浓度达到56%时,腐蚀的速度最快。
锅炉空气预热器低温腐蚀机理及预防措施_百度文库.
锅炉空气预热器低温腐蚀机理及预防措施1前言为充分利用烟气余热,降低排烟温度,提高锅炉热效率,工业锅炉的尾部都加装了空气预热器。
但是作为锅炉尾部的空气预热器,通常是含有水蒸汽和硫酸蒸汽的低温烟气区域,工作条件比较恶劣,容易出现低温腐蚀和堵灰。
处在锅炉低温区域的空气预热器,一旦发生低温腐蚀和堵灰,就会造成烟气通道堵塞,引风阻力增大,锅炉正压燃烧。
这不但降低了锅炉出力,甚至造成被迫停炉。
腐蚀的结果会造成空气预热器管子泄漏损坏,造成严重漏风,引起燃烧工况恶化。
严重时不得不经常更换受热面,既增加了维修工作量和材料损耗,又影响了锅炉的正常运行,冷空气进入烟气侧,还会降低烟温,加速低温腐蚀及堵灰的速度,从而影响锅炉安全运行。
2腐蚀机理造成锅炉尾部受热面低温腐蚀的原因有两点:一是烟气中存在着三氧化硫;二是受热面的金属壁温低于烟气中的酸露点温度。
锅炉燃料中或多或少的都含有硫。
当燃用含硫量较多的燃料时,燃料中的硫份在燃烧后,大部分变成二氧化硫,在一定条件下其中的少部分进一步氧化成三氧化硫气体。
三氧化硫气体与水蒸汽能结合成硫酸蒸汽,其凝结露点温度高达120℃以上,露点温度越高,烟气含酸量愈大,腐蚀堵灰愈严重。
当空气预热器管壁温度低于所生成的硫酸露点时,硫酸就在管壁上凝结而产生腐蚀,叫做低温腐蚀(见图1。
金属壁面被腐蚀的程度取决于硫酸凝结量的多少,浓度的大小和金属壁面温度的高低。
硫酸象一层胶膜,一面粘在管壁上腐蚀,一面不断粘着烟灰,形成多种硫酸盐,并逐渐增厚,这就是低温式结渣。
图1 燃料中含硫量与烟气露点的关系对链条锅炉,当燃煤含硫量低于1.5%时,即使排烟温度和空气预热器进风温度较低,空气预热器也不会产生明显的堵灰结渣和腐蚀。
如果燃煤含硫量大于2%时,则空气预热器将进入严重腐蚀范围(如图2所示。
图2 空气预热器管壁的最低允许温度煤中含硫量的多少,影响锅炉排烟温度的选取。
同时,鉴于对锅炉排烟热损失与防止尾部受热面低温腐蚀等因素的综合考虑,目前,装有空气预热器的锅炉设计排烟温度一般为160~190℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
防止空气预热器低温腐蚀措施
某发电厂300 MW机组锅炉配备2台回转式空气预热器(以下简称空预器)。
该空预器为三分仓容克式,是一种以逆流方式运行的再生热交换器。
蓄热元件分热段和冷段,热段的波纹板用0.6 mm厚的钢板压制而成,冷段波纹板由1.2 mm厚的低合金耐腐蚀考登钢压制而成,全部蓄热元件分装在24个扇形仓格内,蓄热元件高度自上而下分别为400,800,300,300 mm,冷热段各两层。
因为空预器的运行和维护对机组安全运行至关重要,因而有必要对防止空预器的低温腐蚀进行研究。
1.低温腐蚀的危害
回转式空预器安装在锅炉尾部,进入空预器的烟气与空气进行热交换后,温度降低,从冷段蓄热元件流出的烟温约在155℃左右。
因此,在燃用高硫燃料时,可能引起空预器低温腐蚀,造成蓄热元件严重损坏。
同时,由于壁温低而凝结出的液态硫酸会粘结烟气中的灰粒子,造成烟道堵灰,严重时将影响锅炉满负荷运行。
空预器低温腐蚀增加了设备检修维护费用,严重影响锅炉的安全经济运行。
2.低温腐蚀的原因
当燃用含硫高的燃料时,燃烧后形成的SO2有一部分会进一步被氧化成SO3,且与烟气中的水蒸汽结合成硫酸蒸汽。
烟气中硫酸蒸汽的凝结温度称为酸露点,它比水露点要高很多。
烟气SO3(或者说硫酸蒸汽)含量愈多,酸露点就愈高,烟气中的酸露点可达140~160℃,甚至更高。
烟气的酸露点与燃料含硫量和单位时间送入炉内的总硫量有关,而后者是随燃料发热量降低而增加的。
显然,燃料中的含硫量较高,发热量较低,燃烧生成的SO2就越多,进而SO3也将增加,致使烟气酸露点升高。
烟气对受热面的低温腐蚀常用酸露点的高低来表示,露点愈高,腐蚀范围愈广,腐蚀也愈严重。
广安发电公司的燃煤含硫量校核值最低为2.86%,实际含硫量最高可达4%左右,属高含硫煤种。
因此,必须加强运行及维护管理,制定出相应的防范措施,保证设备的安全运行。
3.低温腐蚀的防范措施
(1) 对煤碳的含硫指标,必须严格化验,严格把关。
应严格控制或根本不购入高硫份的煤炭,以减小对空预器腐蚀程度。
(2) 在燃煤场应对不同煤种进行混合配煤工作,防止高硫燃料集中进入锅炉。
(3) 防止空预器低温腐蚀的最有效办法是提高壁温,即提高排烟温度和空预器入口空气温度。
但提高排烟温度虽可使腐蚀减轻,却增加了排烟热损失,使锅炉经济性降低。
现代机组都采取提高空预器入口空气温度的办法来解决低温腐蚀问题,即在送风机和一次风机出口与空预器之间安装暖风器,利用汽轮机抽汽来加热冷风,使空气温度升高30~50℃后,再送入空预器。
这是一种较好的方法,但必须保证暖风器系统长期安全运行,控制系统调节可靠。
应当注意的是暖风器一旦损坏只能在机组停运时间较长或大修工作中更换,因此,必须搞好运行和维护,决不能因设备缺陷而使暖风器长期解列,造成空预器低温腐蚀。
(4) 烟气中SO2进一步氧化成SO3是在一定条件下发生的,炉膛火焰中心温度越高,过量空气越多,生成的SO3就会越多。
因此,要求运行人员精心操作,合理配风,使燃烧状态最佳,减少SO3的生成。
(5) 及时清扫锅炉受热面,尤其是对流受热面的吹扫。
因为烟气流过对流受热面时,SO2会在某些催化剂(如钢管表面的Fe2O3膜,,受热面管子上沉积物或燃油时可能出现V2O5等)的作用下生成SO3。
(6) 因为烟气中过剩的氧会增大SO3的生成量,因此在机组运行中应采用较低的过量空气系数,禁止大风量正压运行,各人孔门、看火孔应关严,漏焊的各种穿墙管道或烟道密封应及时补焊封严。
(7) 装设蒸汽吹灰和水清洗装臵,定期对空预器进行清扫,以保证蓄热元件不积灰、堵灰,防止受到粘污而造成低温腐蚀。
但应注意:
①空预器在运行中只能采取蒸汽吹灰。
蒸汽吹扫前必须排净高压蒸汽疏水,以避免
汽水混合物冲洗造成堵灰,对空预器造成磨损、腐蚀等现象。
②采用水清洗空预器只能在机组停运后进行,且应彻底清洗干净,否则比不清洗危害更大。
如果波纹板箱有一层未清洗干净,运行后势必造成堵塞、磨损及腐蚀。
③采用水清洗后还必须进行干燥,一般可将烟道档板打开,利用锅炉余热进行。
如机组停运时间较长,锅炉内无余热,则可启动吸、送风机进行强行通风干燥。
应禁止经水冲洗后不经干燥就投入运行,因为运行中较干燥的烟灰必将粘附于潮湿的波纹板上,造成堵塞和腐蚀。