图像退化与复原
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.实验名称:图像退化与复原
二.实验目的
1.了解光电图像的退化原因;
2.掌握和理解基本的噪声模型,并能对图像进行加噪处理;
3.了解点扩展函数(PSF)与光学传递函数(OTF)的关系,熟悉几种经典的退化模型的模拟试验和 OTF 估计方法;
4.熟悉和掌握几种经典的图像复原方法及其基本原理;
5.能熟练利用 MATLAB 或 C/C++工具进行图像的各种退化处理,并能编程实现退化图像的复原。
三.实验原理
光电成像系统出现图像退化的过程是复杂多变的,为了研究的需要,通常情况下都把退化简化为化为一个线性移不变过程,见下图 1 所示。
图 1 光电图像退化与复原原理图
因此,在空域中退化过程可以表示如下:
g f h(1)
(x,y)(x,y)(x,y)(x,y)
只有加性噪声不存在情况下,退化过程可以模型化如下表达式:
g f(2)
(x,y)(x,y)(x,y)
其频域表达式为:
u (3)
v v
=(,)+
(),)
G,(
F u v N u
针对这种退化图像的复原,除了周期噪声以外,通常都可以采用空间域滤波的方法进行图像复原,此时图像复原与图像增强几乎是没有区别的。常见的空间域滤波方法有均值滤波器和统计排序滤波器。
当退化图像存在线性移不变退化时,图像的复原不能采用简单空间域滤波器来实现,要实现线性移不变退化图像的复原,必须知道退化系统的退化函数,即点扩展函数(x,y)h 。 在点扩展函数已知的情况下,常见图像复原方法有逆滤波和维纳滤波两种。
在考虑噪声的情况下,逆滤波的原理可以表示如下:
()()
()
()
()
()
G u,v N u,v F u,v F u,v H u,v H u,v
(4)
通常情况下,()N u,v 是未知的,因此即使知道退化模型也不能复原图像。 此外,当,H u v 的任何元素为零或者值很小时,,/,N u v H u v 的比值决定着复原的结果,从而导致图像复原结果出现畸变。对于这种情况,通常采用限制滤波频率使其难以接近原点值,从而减少遇到零值的可能性。
维纳滤波则克服了逆滤波的缺点,其数学模型表示如下:
2
*2
()
1
()
()()()(,)/(,)
f H u,v F u,v G u,v H u,v H u,v S u v S u v
(5)
然而,为退化图像的功率谱很少是已知的,因此常常用下面表达式近似:
2
*2
()
1
()
()()()H u,v F u,v G u,v H u,v H u,v k
(6)
因此,本实验的内容就是利用上述经典图像复原的原理,对降质退化图像进行复原。
四. 实验步骤
本次实验主要包括光电图像的退化模型和复原方法实现两大部分内容。 (一) 图像的退化图像 1、 大气湍流的建模
1)湍流引起图像退化的光学传递函数(OTF)生成。已知湍流退化模型的OTF表达式如下:
225/6
(,)exp[-()]
H u v k u v(7)
其中,k为一个常数,反映了大气湍流的严重程度。(,)
u v分别代表了(x,y)方向的频率坐标。为了生成中心化的OTF,可以考虑将式(7)改写为:
5/6
22
(,)exp[-(/2)(/2)]
H u v k u M v N(8)
其中,M,N为图像的长和宽。
2)读入一幅灰度图像,设定式(8)中0.0025
k,进行退化试验。分别显示原始图像、退化模型和退化图像。
3)设定0.0010.00025
k、重复上一步的试验。
对原图形进行灰度处理
将上述结果进行fft处理
得到FP
读入原始图像
设计退化湍流模型为H
结束
显示原图像
显示传递函数
由FP与H进行相关处理,
得到退化图像
显示退化图像
图 2 大气湍流的退化过程
2、运动模糊的图像退化试验
1)匀速直线运动引起图像退化的光学传递函数( OTF)生成。已知相机匀速直线运动的 OTF 表达式如下:
()
(,)
sin[()]()
j ua vb T
H u v ua
vb e
ua vb (9)
其中,T 为相机曝光时间,a ,b 分别表示(,)x y 方向的速度;(,)u v 分别对 应(,)x y 方向的频率坐标。
2) 读入一幅灰度图像,设定式( 9)中 T = 1.0, a=b=0.1,编写 MATLAB 代 码进行模糊退化试验。要求分别显示原始图像、退化模型和退化图像。
3)
设定不同的值,a ,b 值,重复上一步的试验。
4) 利用数字显微镜或其它图像采集设备,移动物体过程中,采集图像。
对原图形进行灰度处理将上述结果进行fft 处理
得到FP
读入原始图像
设计运动模糊模型为H 结束
显示原图像
显示传递函数
由FP 与H 进行相关处理,
得到退化图像
显示退化图像
图 3 运动模糊的图像退化
(二) 图像复原试验 1、 逆滤波
1) 根据试验(一) 设计一幅退化图像(包括噪声污染+模糊退化两部分),其中模糊退化可选高斯模糊、大气湍流模糊或运动模糊( 方向可任意指定,如10 度、20度、45度等),噪声模型可自行设定。