数据的描述性分析分解
几种描述性统计分分析的SAS过程
几种描述性统计分分析的SAS过程描述性统计是统计学中的一种方法,用于总结和描述数据集的主要特征。
它有助于了解数据的整体分布、偏差和离散性等。
SAS(统计分析系统)是一种流行的统计软件,具有丰富的分析功能。
以下是几种常用的SAS过程,用于执行描述性统计分析。
1.PROCMEANS:PROCMEANS是一种计算统计指标的SAS过程,包括均值、总和、最小值、最大值、标准差等。
可以使用该过程对数值变量进行描述性统计,并在输出中显示这些统计指标。
可以通过指定多个变量和分组变量来计算针对不同子组的统计指标。
该过程还可以生成频数和百分比。
2.PROCFREQ:PROCFREQ是一种用于计算分类变量频数和百分比的SAS过程。
它可以计算每个类别的频数,并使用该信息生成频数表。
该过程还可以计算两个或更多分类变量之间的交叉频数表,并计算出每个类别的百分比。
3.PROCUNIVARIATE:PROCUNIVARIATE是一种用于执行单变量分析的SAS过程。
它可以计算变量的均值、标准差、峰度、偏度等统计指标。
该过程可以绘制直方图、箱线图、正态检验图和PP图等,以帮助理解数据的分布特征。
还可以执行分位数分析、离散度分析和异常值识别等。
4.PROCCORR:PROCCORR是一种用于计算变量之间相关性的SAS过程。
它可以计算变量间的皮尔逊相关系数,并使用协方差矩阵和相关系数矩阵来描述变量之间的线性关系。
该过程还可以绘制散点图矩阵和相关系数图,以直观地显示变量之间的关系。
5.PROCGLM:PROCGLM是一种用于执行多因素方差分析的SAS过程。
它可以根据自变量的水平和交互作用来分解因变量的方差,并进行显著性检验。
该过程可以计算组间差异的F值和p值,并生成方差分析表。
PROCGLM还支持使用协变量进行调整的方差分析,以控制对方差的影响。
以上是几种常用的SAS过程,用于执行描述性统计分析。
每个过程都有各自的功能和输出,可以根据数据和分析需求选择合适的过程。
数据分析实验报告(数据描述性分析)
数据分析实验报告(数据描述性分析)浙江理⼯⼤学实验报告实验项⽬名称数据描述性分析所属课程名称数据分析实验类型验证型实验实验⽇期班级学号姓名成绩【实验⽬的及要求】了解SPSS软件的安装、启动、退出以及运⾏管理⽅式;熟悉各主要操作模块,窗⼝及其功能,相关的系统参数设置等。
掌握SPSS软件的Analyze菜单中的Descriptive Statistics模块进⾏数据的描述性统计分析。
【实验原理】数据分析是指⽤适当的统计⽅法对收集来的⼤量第⼀⼿资料和第⼆⼿资料进⾏分析,以求最⼤化地开发数据资料的功能,发挥数据的作⽤;是为了提取有⽤信息和形成结论⽽对数据加以详细研究和概括总结的过程。
要对数据进⾏分析,当然要分析数据中包含的主要信息,即要分析数据的主要特征,也就是说,要研究数据的数字特征。
对于数据的数字特征,要分析数据的集中位置、分散程度。
数据的分布是正态的还是偏态等。
对于多元数据,还要分析多元数据的各个分量之间的相关性等。
【实验环境】CPU P4;RAM 512M。
Windows XP;SPSS 15.0等。
【实验⽅案设计】选取我国历年⼈⼝的出⽣率、死亡率和⾃然增长率,利⽤SPSS软件分别对出⽣率、死亡率和⾃然增长率进⾏数据的描述性统计分析:(1)计算各个变量的均值、⽅差、标准差、变异系数、偏度、峰度。
(2)计算中位数,下、上四分位数,四分位极差,三均值,并做五数总括及字母显⽰值;分析各个变量的主要数字特征。
(3)做出直⽅图,茎叶图,箱线图;分析各个变量的正态性。
(4)计算各个变量之间的协⽅差矩阵,Pearson相关矩阵、Spearman相关矩阵,分析各变量间的相关性。
【实验过程】(实验步骤、记录、数据、分析)(1)打开SPSS软件,输⼊我国历年⼈⼝的出⽣率、死亡率和⾃然增长率的数据后,点Analyze菜单按钮中的Descriptive Statistics 命令项中的 frequencies命令,跳出命令框后将左侧“出⽣率,死亡率,⾃然增长率”调到右边的variables栏中,再点击 statistics...钮,弹出frequencies Statistics 对话框。
描述性统计分析报告
描述性统计分析报告引言:统计数据是现代社会中不可或缺的一部分,它为我们提供了了解各种现象和现实情况的重要工具。
在本篇文章中,我们将进行一项关于某地区居民收入的描述性统计分析,通过对数据的分析和解释,将展示出居民收入的整体状况以及在不同人口群体之间的差异。
数据来源和样本:本次统计分析所用的数据来自于某地区政府统计部门的年度统计报告,并且涵盖了该地区所有居民的收入情况。
样本总数为1000,通过随机抽样方式选取了不同年龄、教育水平、职业和家庭收入水平的居民。
总体数据分析:1. 平均收入:通过对数据进行计算,我们得出该地区居民的平均收入为12000元。
2. 中位数:进行中位数的计算后,我们发现该地区居民的中位数收入为10000元。
3. 众数:进行众数的计算后,我们发现该地区居民的众数收入为8000元。
居民收入差异分析:1. 年龄差异:我们将居民按照年龄分组,并计算每个年龄组的平均收入。
结果显示,年龄在25岁到34岁之间的居民平均收入最高,为15000元,而年龄在55岁以上的居民平均收入最低,为8000元。
2. 教育水平差异:根据居民的教育水平进行分组,并计算每个组的平均收入。
结果显示,高中及以下文凭的居民平均收入最低,为8000元,而拥有本科及以上学历的居民平均收入最高,为15000元。
3. 职业差异:我们将居民按照职业进行分组,并计算每个职业的平均收入。
结果显示,专业人士和经理人员的平均收入最高,为20000元,而服务和销售行业的居民平均收入最低,为8000元。
4. 家庭收入差异:我们将居民按照家庭收入水平进行分组,并计算每个组的平均收入。
结果显示,家庭收入水平较高的居民平均收入较高,为16000元,而家庭收入水平较低的居民平均收入较低,为10000元。
结论:通过对该地区居民收入数据的描述性统计分析,我们可以得出以下结论:该地区居民的平均收入为12000元,中位数为10000元,众数为8000元。
同时,在不同人口群体之间存在明显的收入差异,包括年龄、教育水平、职业和家庭收入水平等方面。
应用统计学(第三章 数据的描述性分析)
累积频率 Cumulative P
0.02 0.09 0.28 0.63
0.84 0.95 1.00
a.自然值进行分组,最大值17,最小值11 b.数据主要集中在14,向两侧分布逐渐减少
(3)计量数据
100例健康男子血清总胆固醇(mol/L)测定结果
4.77 3.37 6.14 3.95 3.56 4.23 4.31 4.71 5.69 4.12 4.56 4.37 5.39 6.30 5.21 7.22 5.54 3.93 5.21 6.51 5.18 5.77 4.79 5.12 5.20 5.10 4.70 4.74 3.50 4.69 4.38 4.89 6.25 5.32 4.50 4.63 3.61 4.44 4.43 4.25 4.03 5.85 4.09 3.35 4.08 4.49 5.30 4.97 3.18 3.97 5.16 5.10 5.85 4.79 5.34 4.24 4.32 4.77 6.36 6.38 4.88 5.55 3.04 4.55 3.35 4.87 4.17 5.85 5.16 5.09 4.52 4.38 4.31 4.58 5.72 6.55 4.76 4.61 4.17 4.03 4.47 3.40 3.91 2.70 4.60 4.09 5.96 5.48 4.40 4.55 5.38 3.89 4.60 4.47 3.64 4.34 5.18 6.14 3.24 4.90
15
21
0.21
0.84
16
11
0.11
0.95
17
5
0.05
1.00
表 2-2 100只梅花鸡每月产蛋数次数分布表
每月产蛋数
11 12 13 14 15 16 17
第一讲——数据的描述性分析
M
D
=
∑
x − x n
−
i=1
加权式平均差
n
M
D
=
∑
x − x f
i
−
i=1
i
∑
f
i=1
i
2.1.3标准差与方差
标准差又称均方差,它是各单位变量值与其平 均数离差平方的平均数的方根,通常用 σ 表示。 它是测度数据离散程度的最主要方法。
◆简单式标准差 ◆总体与样本标准差 ◆加权式标准差
方差是各变量值与其算术平均数离差平方和的 平均数,即是标准差的平方,用 σ 2 表示总体的 方差;用 s 2 表示样本的方差。
分位数
2.1.1由未分组数据确定中位数 由未分组数据确定中位数
对未分组数据资料,需先将各变量值按大小顺 + 序排列,并按公式 n 2 1 确定中位数的位置。 当一个序列中的项数为奇数时,则处于序列中间 位置的变量值就是中位数。 例: 7 6 8 2 3 7、6、8、2、3 当一个序列的项数是偶数时,则应取中间两个数 的中点值作为中位数,即取中间两个变量值的平均数 为中位数。 例: 2、5、7、8、11、12
中位数是一组数据按大小顺序排列后, 处于中间位置的那个变量值,通常用M 表 示。其定义表明,中位数就是将某变量的 全部数据均等地分为两半的那个变量值: 一半数值小于中位数,另一半数值大于中 位数。中位数是一个位置代表值,因此它 不受极端变量值的影响。
e
◆由未分组数据确定中位数 ◆由单项数列确定中位数
数据分布的特征
数据水平 (位置) 位置)
数据差异 (离散程度) 离散程度) 分布形状 (偏态和峰态) 偏态和峰态)
一、 集中趋势的描述 二、 离散程度的描述 三、 分布的偏态与峰度
数据分析数据的描述性分析
数据分析是指通过收集、整理、加工和解释数据,从中发现有价值的信息和见解。
在进行数据分析时,我们通常会使用一系列描述性统计方法,以对数据进行描述性分析。
描述性分析是一种分析数据的方法,它主要关注数据的特征和趋势。
通过描述性统计指标,我们可以了解数据的基本特征、分布情况和偏差情况。
在描述性分析中,常用的统计指标包括均值、中位数、众数、标准差、方差等。
首先,均值是描述数据中心位置的指标。
它是一组数据的算术平均值,通过将所有观测值相加,再除以观测值的数量来计算。
均值可以帮助我们理解数据点的集中趋势,并判断数据是否呈现出正态分布。
其次,中位数是数据的中间位置的指标。
对于一个有序的数列,如果数列的个数为奇数,则中位数是位于中间位置的数值;如果数列的个数为偶数,则中位数是中间两个数的平均值。
中位数可以帮助我们了解数据的中间位置,并且不会受到极端值的影响。
众数是数据中出现频率最高的数值。
它可以帮助我们了解数据的主要趋势,并且通常用于描述离散型数据。
对于连续型数据,我们通常使用分组数据来计算众数。
标准差是描述数据离散程度的指标。
它表示数据围绕均值的分散程度,标准差越大,表示数据的波动性越高。
标准差可以帮助我们判断数据的稳定性和可靠性。
方差是数据离散程度的另一个指标。
它计算了数据与其均值之间的差异的平方的平均值。
方差越大,表示数据的分散程度越高。
方差可以帮助我们判断数据是否集中在均值附近。
描述性分析不仅可以从数值上描述数据,还可以使用图表来直观地展示数据的特征和趋势。
常用的图表包括柱状图、折线图、饼图等。
这些图表可以帮助我们更好地理解数据,发现其中的规律和关联。
除了以上常用的描述性统计指标和图表外,还可以使用其他方法进行数据的描述性分析。
例如,可以通过计算统计学的偏度和峰度指标来描述数据分布的形状;可以通过绘制箱线图来展示数据的离群值情况;还可以使用相关系数分析来研究变量之间的关系等。
总之,描述性分析是数据分析的重要步骤之一,它可以帮助我们了解数据的基本特征和趋势,为后续的数据解释和决策提供基础。
描述性分析在数据分析中的应用实例。
描述性分析在数据分析中的应用实例一、引言描述性分析是数据分析的一种基本方法,旨在通过统计手段对数据的特征进行概括和描述。
通过描述性分析,研究人员可以初步了解数据的分布情况、离散程度、集中趋势等,为进一步的数据挖掘和决策提供支持。
本文将以一个具体的应用实例来阐述描述性分析在数据分析中的重要作用。
二、应用实例背景假设某电商平台希望对其销售的某款智能手机进行深入的市场分析。
这款智能手机在过去一年中的销售数据已经被完整记录,包括销售量、销售额、用户评价等信息。
为了更好地理解销售情况,发现潜在问题,并制定相应的市场策略,电商平台决定利用描述性分析对这些数据进行探讨。
三、数据收集与处理在进行数据描述性分析之前,需要进行数据的收集和处理工作。
电商平台从数据库中提取了相关销售数据,并对数据进行了清洗和整理,以确保数据的准确性和完整性。
数据清洗过程包括去除重复数据、处理缺失值、异常值等。
四、描述性分析过程1. 数据分布描述:通过对销售量的分布情况进行分析,可以发现销售量的整体趋势、高峰期和低谷期等信息。
通过绘制销售量的柱状图或折线图,可以直观地展示销售量的变化情况。
2. 离散程度分析:离散程度反映了数据的波动程度。
在本例中,可以通过计算销售量的标准差或方差来评估销售量的离散程度。
标准差或方差越大,说明销售量波动越大,市场需求可能更加不稳定。
3. 集中趋势分析:集中趋势描述了数据分布的中心位置。
可以通过计算平均销售量或中位数等统计指标来衡量。
例如,计算每月平均销售量可以帮助电商平台了解市场的整体需求水平。
4. 用户评价分析:对于用户评价数据,可以通过文本挖掘技术提取关键词、情感分析等,以了解用户对手机的满意度、主要关注点等。
同时,可以计算评价的星级分布,分析不同星级评价所占的比例。
五、结果与分析通过对销售数据的描述性分析,电商平台可以得出以下结论:1. 销售量在节假日期间出现明显的增长,说明节假日对销售有明显的促进作用。
描述性统计分析方法
描述性统计分析方法描述性统计分析是指对收集到的样本数据进行整理、分析和总结的过程。
它旨在通过使用统计指标和图表来描述数据的特征和分布,以便更好地理解数据,发现其中的规律和趋势。
在进行描述性统计分析时,常用的方法包括中心趋势测度、离散程度测度、分布形态描述和相关性分析等。
一、中心趋势测度中心趋势测度是用来表示数据集中趋向于某个中心的位置。
常用的中心趋势测度包括均值、中位数和众数等。
1. 均值:均值是以所有数据的数值和除以数据个数的统计量,用来表示平均水平。
均值对异常值敏感,容易受到极端值的影响。
2. 中位数:中位数是将数据按照顺序排列后,位于中间位置的数值。
中位数不会受到极端值的影响,更能反映数据的普遍情况。
3. 众数:众数是一组数据中出现频率最高的数值,可用于描述具有离散分布的数据。
二、离散程度测度离散程度测度是用来表示数据集合中数据分散程度的方法。
常用的离散程度测度有范围、方差和标准差等。
1. 范围:范围是最大值和最小值的差值,可用来衡量数据的整体变化幅度。
范围对异常值敏感,易受到极端值的影响。
2. 方差:方差是各数据与均值差的平方和的平均数,用来描述数据的平均离散程度。
方差较大时,表示数据的离散程度较高。
3. 标准差:标准差是方差的平方根,用于度量数据相对于均值的离散程度。
标准差较大时,表明数据分散程度大。
三、分布形态描述分布形态描述是对数据分布形态特征进行描述的方法。
常用的分布形态描述包括偏度和峰度等。
1. 偏度:偏度描述了数据分布曲线相对于均值偏离的大小和方向。
偏度为正表示数据分布朝右偏,为负表示数据分布朝左偏,为0表示数据均匀分布。
2. 峰度:峰度描述了数据分布曲线的陡峭程度,反映了数据分布的尖峰与平顶程度。
峰度大于0表示数据分布曲线相对于正态分布更陡峭,小于0表示数据分布曲线相对于正态分布更平顶。
四、相关性分析相关性分析用来研究两个变量之间的相关关系。
常用的相关性分析方法有协方差和相关系数。
统计学-数据的描述性分析
92801.20 10
80 70 1.43 7
计算结果表明,第二次考试成绩更好些.
② 对称分布中的 3 法则
4、如要分别反映甲、乙、丙三个班的考试情况,你会 选择用哪些指标来衡量?
5、如要比较甲、乙、丙三个班的考试情况的优劣,你 又会选择什么样的指标来衡量? 6、甲乙丙三个班的考试成绩分别服从对称分布、左 偏分布、右偏分布中的哪种分布?为什么?
由组距数列确定中位数
n
先计算各组的累计次数,再按公式
i
1
fi
xnfn
fi
i1
fi
xi
例3.1.1 一位投资者持有一种股票,2019,2019,2019,2000年 收益率分别为4.5% ,2.0% ,3.5% ,5.4% .计算该投资者在这四 年内的平均收益率.
例3.1.2 某企业四个车间流水作业生产某产品, 一车间产 品合格率99%,二车间为95%,三车间为92%,四车间为90%,
适用范围
众数主要用于分类数据,也可用于顺序数据和数值型数据, 对于未分组数据和单项式分组数据,众数位置确定之后便 找到了众数.
例:分类数据的众数
例:顺序数据的众数
②.中位数(Median)
中位数是一组数据按一定顺序排列后,处于中间位置 上的变量
负偏 注: (1)中位数总是介于众数和平均数之间.
注:(1)
(2) 数值平均数主要适用于定量数据,而不适用于定性数据. (3) 简单数值平均数适用于未分组的资料,加权数值平均数 适用于分组的资料.
3.1.2 位置平均数
①.众数(Mode)
一组数据中出现次数最多的变量值.
主要特点: ●不受极端值的影响. ●有的数据无众数或有多个众数.
数据描述性统计分析
数据描述性统计分析数据是当今社会中不可或缺的重要资源,通过对数据进行描述性统计分析,可以帮助我们更好地理解数据的特征和规律,为决策提供有力支持。
本文将从数据描述性统计分析的概念、方法和应用等方面进行探讨。
一、概念数据描述性统计分析是指通过对数据的整理、总结、分析和展示,揭示数据的分布规律、集中趋势、离散程度等特征。
在数据分析领域中,描述性统计分析是最基础、最核心的环节,能够直观地帮助我们了解数据的基本情况,为后续的推断性统计分析提供依据。
二、方法1. 数据整理:首先需要对所收集的数据进行整理,包括数据的输入、分类、编码等操作,确保数据的准确性和完整性。
2. 数据总结:接着可以对数据进行总结,包括计算数据的频数、频率、均值、中位数、众数、标准差、方差等统计量,从而揭示数据的集中趋势和离散程度。
3. 数据展示:最后,可以通过图表等形式将数据进行展示,如直方图、饼图、折线图等,直观地展现数据的分布情况,有助于我们更好地理解数据。
三、应用数据描述性统计分析在各个领域都有着广泛的应用,下面以几个典型领域为例进行介绍:1. 商业领域:在市场调研、销售预测等方面,可以通过对数据的描述性统计分析,快速获取市场需求、产品销售情况等信息,为企业决策提供支持。
2. 医疗领域:在医学研究、疾病预防等方面,可以通过对患者的病例数据进行描述性统计分析,揭示疾病的发病率、治疗效果等信息,为医疗保健提供参考。
3. 教育领域:在学生考试成绩、学科发展等方面,可以通过对学生成绩数据进行描述性统计分析,了解学生学习情况、课程难易度等信息,为教学改进提供依据。
综上所述,数据描述性统计分析作为一种重要的数据分析手段,在各个领域都有着广泛的应用,能够帮助我们更好地理解数据、发现问题、做出决策,对推动社会发展和进步具有重要意义。
希望本文对读者有所启发,促进更多人深入了解和应用数据描述性统计分析。
描述性统计分析报告
描述性统计分析报告在统计学中,描述性统计分析是对数据进行整理、总结和展示的过程,通过描述性统计分析,我们可以更好地理解数据的特征和规律。
本报告将对某公司销售数据进行描述性统计分析,以便更好地了解销售情况并为未来的决策提供参考。
首先,我们将对销售数据的基本特征进行描述性统计分析。
销售数据包括销售额、销售数量、销售渠道等指标。
我们将计算这些指标的平均值、中位数、标准差等统计量,以便了解销售数据的集中趋势和离散程度。
通过描述性统计分析,我们可以得出销售额的平均值为XXXX万元,中位数为XXXX万元,标准差为XXXX万元,表明销售额的波动较大,需要进一步关注。
其次,我们将对销售数据的分布情况进行描述性统计分析。
销售数据的分布情况反映了销售情况的差异性和波动性。
我们将绘制销售额、销售数量的频数分布直方图和箱线图,以便观察销售数据的分布情况。
通过描述性统计分析,我们可以发现销售额呈现右偏分布,销售数量呈现正态分布,这表明销售额的波动较大,需要加强管理和控制。
最后,我们将对销售数据的相关性进行描述性统计分析。
销售数据之间的相关性反映了销售指标之间的关联程度。
我们将计算销售额与销售数量、销售额与销售渠道之间的相关系数,以便了解销售数据之间的关联情况。
通过描述性统计分析,我们可以得出销售额与销售数量之间的相关系数为XXXX,销售额与销售渠道之间的相关系数为XXXX,表明销售额与销售数量之间存在一定的正相关关系,需要进一步研究和分析。
综上所述,通过描述性统计分析,我们可以更好地了解销售数据的特征和规律,为未来的决策提供参考。
在未来的工作中,我们将加强对销售额的管理和控制,进一步研究销售数据之间的关联关系,以便提高销售业绩和效益。
通过本次描述性统计分析报告,我们对销售数据有了更深入的了解,为未来的决策提供了参考。
希望本报告能够对公司的发展和决策提供帮助。
统计学中的数据分析方法
统计学中的数据分析方法数据分析是统计学的重要组成部分,通过对数据的收集、整理和解释,可以得出有关数据特征、关联性和趋势等信息。
在统计学中,有多种数据分析方法,本文将介绍其中一些常见的方法。
一、描述性统计分析描述性统计分析是对数据进行整理和总结的方法。
它通过计算数据的中心趋势(如平均数、中位数和众数)和离散程度(如方差和标准差),来揭示数据的基本特征。
此外,描述性统计分析还包括制作频数分布表、绘制直方图和绘制箱线图等方法,以便更好地展示数据的分布情况和异常值。
二、推断统计分析推断统计分析是通过样本数据来推断整个总体数据的方法。
在这种分析方法中,我们利用样本统计量(如样本均值和样本比例)来估计总体参数,并通过假设检验和置信区间来对总体参数进行推断。
假设检验可以判断总体参数的差异是否显著,而置信区间则给出了总体参数的一个估计范围。
三、相关性分析相关性分析用于探索两个或多个变量之间的关系。
通过计算相关系数(如皮尔逊相关系数和斯皮尔曼相关系数),可以评估变量之间的线性相关程度。
相关性分析不仅可以帮助我们了解变量之间的关联性,还可以用于预测和建立模型。
四、回归分析回归分析是一种用于研究变量之间关系的方法。
它通过建立回归方程来描述自变量对因变量的影响程度,并进行参数估计和模型评估。
回归分析可以分为线性回归、多项式回归和逻辑回归等,根据数据类型和分析目的选择合适的回归方法。
五、方差分析方差分析(ANOVA)是用于比较两个或多个样本均值是否存在显著差异的方法。
方差分析将总体数据的变异性分解为组内变异和组间变异,并利用F检验来检验组间差异是否显著。
方差分析广泛应用于实验设计和质量控制等领域。
六、聚类分析聚类分析是一种将相似样本归类到同一类别的方法。
它通过计算样本之间的距离或相似性,将样本分成不同的群组。
聚类分析可以帮助我们发现数据的内在结构和规律,对于市场细分和用户分类等问题具有重要意义。
七、时间序列分析时间序列分析是对时间相关数据进行分析和预测的方法。
统计数据报告中的描述性统计分析
统计数据报告中的描述性统计分析统计数据报告是对大量数据进行整理和分析的一种形式,旨在总结和揭示数据中的模式、趋势和关系。
而其中的描述性统计分析则是其中重要的一部分,通过对数据进行统计和分析,可以帮助我们更好地理解数据的特征和背后的规律。
在本篇文章中,将从六个方面进行详细论述,介绍统计数据报告中的描述性统计分析。
一、数据的基本描述1. 样本量:描述数据的数量包括样本总量和每个观测变量的观测数量。
2. 平均数:平均数是最常用的统计指标,用于描述一组数据的中心趋势。
3. 中位数:中位数是按照从小到大的顺序排列数据后位于中间位置的数值,用于描述数据的中心位置。
4. 众数:众数是一组数据中出现次数最多的数值,用于描述数据的集中趋势。
5. 极差:极差是一组数据中最大值与最小值之间的差异,用于描述数据的变异程度。
6. 方差和标准差:方差是数值与平均数之间差异的平方和的平均值,标准差是方差的平方根,用于描述数据的离散程度。
二、数据的分布情况1. 频数分布表:频数分布表将数据分成若干个类别,统计每个类别中数据出现的次数,帮助我们了解数据的分布情况。
2. 直方图:直方图是一种用矩形表示不同类别频数的图表,直观地展示了数据的分布情况。
3. 箱线图:箱线图以五数概括(最小值、下四分位数、中位数、上四分位数、最大值)和异常值的方式展示了数据的分布情况。
三、数据的关系分析1. 相关分析:相关分析用来研究两个或多个变量之间的相关关系,通过计算相关系数来描述变量之间的线性关系强度和方向。
2. 散点图:散点图可以帮助我们观察到两个变量之间的关系,有助于了解变量之间的线性或非线性相关关系。
3. 回归分析:回归分析是一种用来研究因果关系的技术,可以通过建立回归方程来描述自变量对因变量的影响程度。
四、数据的偏倚度和峰度1. 偏倚度:偏倚度用于度量数据分布的对称性,可以帮助我们了解数据是否存在偏倚。
正偏表示数据右偏,负偏表示数据左偏。
2. 峰度:峰度用于度量数据分布的峰态,可以帮助我们了解数据是否呈现尖峭或平坦的分布形态。
Chap04_数据的描述性分析
i 1
n
1 xi
加权调和平均数
xH m1 m2 ...... mn m m1 m2 ...... n x1 x2 xn
m
i 1 n
n
i
mi i 1 x i
调和平均数是算术平均数的变形
xH
m
i 1 n
n
i
mi i 1 xi
x
i 1 n
n
相对指标应用的原则
1、可比性原则 (1)正确选择对比基数 (2)保持对比指标的可比性 2、相对指标与总量指标结合运用原则 3、多种相对指标结合运用原则
集中趋势
集中趋势(Central Tendency)反映 的是一组数据向某一中心值靠拢的倾向, 在中心附近的数据数目较多,而远离中心 的较少。对集中趋势进行描述就是寻找数 据一般水平的中心值或代表值。
例题
峰度
峰度(Kurtosis)是分布集中趋势高峰的形状。在 变量数列的分布特征中,常常以正态分布为标准, 观察变量数列分布曲线顶峰的尖平程度,统计上称 之为峰度。
v4
4
3
x
n i 1
i
x fi
4
i 1
n
3
fi 4
正态分布的峰度系数为0,当>0时为尖峰分布, 当<0时为平顶分布。 例题
例题
离散系数 离散程度的绝对指标 对应的平均指标
V
x
100%
是非标志的平均数和方差
π是一个比率,它表示具有某种特征的个体的 数量占总体中个体总数的比重,即总体成数。 是非标志的平均数为:
x
数据的描述性分析
第四章数据的描述性分析通过本章的学习,我们应该知道:1. 集中趋势的测度有哪些?如何计算?2. 离散程度的测度有哪些?如何计算?3. 分布的偏态和峰度如何测度?4. 如何用计算器和计算机完成上述计算?可我总也得不到我应该的一份这就是平均!这就是差异!目录第四章数据的描述性分析 __________________________________________________________________ 3第一节集中趋势的测度 __________________________________________________________________ 3一、数值平均数 _______________________________________________________________________ 3二、位置平均数 _______________________________________________________________________ 7第二节离散程度的测度 _________________________________________________________________ 12一、离散程度的绝对指标 ______________________________________________________________ 12二、离散程度的相对指标 ______________________________________________________________ 14三、数据的标准化 ____________________________________________________________________ 15四、是非标志标准差 __________________________________________________________________ 15第三节分布偏态与峰度的测度 ___________________________________________________________ 16一、原点矩与中心矩 __________________________________________________________________ 16二、分布偏态的测度 __________________________________________________________________ 17三、分布峰度的测度 __________________________________________________________________ 18第四节计算工具使用指南 _______________________________________________________________ 19一、计算器的使用 ____________________________________________________________________ 19二、Excel的描述统计分析功能 _________________________________________________________ 20习题 _________________________________________________________________________________ 23第四章数据的描述性分析通过调查获得、经过整理后展现的数据已经可以反映出被研究对象的一些状态与特征,但认知程度还比较肤浅,反映的精确度不够,为此,我们要使用各类代表性的数量特征值来准确地描述这些数据。
描述性统计分析:理解数据的系统方法
描述性统计分析:理解数据的系统方法使用描述性统计分析来理解数据是一种系统且有效的方法,它有助于我们揭示数据的内在特征、趋势和模式。
以下是使用描述性统计分析理解数据的具体步骤:一、数据收集与整理1.数据收集:首先,需要明确研究目的,并据此收集相关数据。
数据可以来自实验、调查、观察、数据库等多种渠道。
2.数据整理:收集到的数据可能需要进行预处理,包括去重、处理缺失值、纠正错误数据、统一数据格式等。
二、描述性统计分析的基本内容1.集中趋势分析o平均数:包括算术平均数、几何平均数和调和平均数。
算术平均数是最常用的指标,但容易受极端值影响;几何平均数常用于计算增长率和指数;调和平均数适用于需要放大较小值影响的情况。
o中位数:将数据从小到大排序后位于中间的数值,能较好地反映数据的中心位置,尤其是当数据分布偏斜时。
o众数:数据集中出现次数最多的数值,反映了数据的集中点。
2.离散程度分析o标准差:衡量各数据点与其平均数之间的偏差,标准差越大,说明数据离散程度越大。
o方差:标准差的平方,用于描述数据的变异程度。
o全距(极差):数据中的最大值与最小值之差,反映了数据的波动范围。
o四分位距:上四分位数与下四分位数之差,表示数据的中间50%范围的变异性。
o变异系数:标准差与平均数的比值,用于比较不同均值数据的离散程度。
3.数据分布分析o直方图:展示数据的分布情况,可以直观地看到数据的集中、分散和形状。
o箱线图:同时展示数据的最大值、最小值、中位数、四分位数和异常值,是一种强大的数据分布分析工具。
o偏度和峰度:偏度衡量数据分布的偏斜方向和程度,峰度则描述数据分布的尖锐或平坦程度。
三、应用描述性统计分析的步骤1.计算统计量:根据上述指标,计算数据的平均数、中位数、众数、标准差、方差等统计量。
2.绘制统计图:利用直方图、箱线图等图形工具,直观地展示数据的分布和特征。
3.分析结果:结合统计量和统计图,分析数据的集中趋势、离散程度和分布情况,识别数据中的异常值和离群点。
实验5数据的描述性分析(二)
实验5数据的描述性分析(二)一、实验目的:1.掌握定量数据的描述性统计分析中常用的指标(1)集中趋势:众数、中位数median()、四分位数、百分位数quantile()、(加权)平均数(weigthted.)mean()(2)分散程度:极差range()、半极差、方差var()、标准差sd()、变异系数、标准误(3)分布形态:偏度系数、峰度系数2.掌握R语言绘直方图、茎叶图和箱线图的方法。
二、实验内容:练习:要求:①完成练习并粘贴运行截图到文档相应位置(截图方法见下),并将所有自己输入文字的字体颜色设为红色(包括后面的思考及小结),②回答思考题,③简要书写实验小结。
④修改本文档名为“本人完整学号姓名1”,其中1表示第1次实验,以后更改为2,3,...。
如文件名为“1305543109张立1”,表示学号为1305543109的张立同学的第1次实验,注意文件名中没有空格及任何其它字符。
最后连同数据文件、源程序文件等(如果有的话,本次实验没有),一起压缩打包发给课代表,压缩包的文件名同上。
截图方法:法1:调整需要截图的窗口至合适的大小,并使该窗口为当前激活窗口(即该窗口在屏幕最前方),按住键盘Alt键(空格键两侧各有一个)不放,再按键盘右上角的截图键(通常印有“印屏幕”或“Pr Scrn”等字符),即完成截图。
再粘贴到word文档的相应位置即可。
法2:利用QQ输入法的截屏工具。
点击QQ输入法工具条最右边的“扳手”图标,选择其中的“截屏”工具。
)1.自行完成教材中相应的例题。
2.(习题3.7)画出习题3.3中小鸡增重的直方图(1) 小区间的宽度为0.lg,起点为3.55g,终点为4.95g。
纵坐标是频数,并将频数标在直方图的上方(类似图3.6(a));(1)源代码:hist(x,col="lightblue",borde="red",+ xlab="小鸡增重量(g)",breaks=14,+ labels=TRUE,xlim=c(3.55,4.55))运行结果或截图:(2)将(1)中直方图的纵坐标改为频率,并将数据的概率密度曲线和正态分布密度曲线同时画在直方图上(类似图 3.6(b))。
实验二:描述性分析实验报告
数据分析及优化设计实验指导书(实验报告)实验名称描述性分析实验实验目的1、熟练掌握利用MATLAB软件计算均值、方差、协方差、相关系数、标准差与变异系数、偏度与峰度、中位数、分位数、三均值、四分位极差与极差。
2、熟练掌握jbtest与kstest关于一维数据的正态性检验。
3、掌握统计作图方法。
4、掌握多维数据的数字特征与相关矩阵的处理方法。
实验题答案实验一:1998年到2020年,我国汽车产量相关统计数据如表所示,解决以下问题:1)计算各项指标的平均值、标准差、变异系数、三均值、偏度与峰度;对数据进行读取,并计算各个指标的平均值、标准差、变异系数、三均值、偏度与峰度,代码如下:1.A=xlsread('第二章数据 experiment2_1.xlsx');=["生产产量(万吨)","金属切削机床产量(万台)","汽车产量(万辆)"]3.M=mean(A); %计算各指标(即各列)的均值4.SD=std(A); %计算各指标标准差5.V=SD./abs(M); %计算各指标变异系数6.SM=[0.25,0.5,0.25]*prctile(A,[25;50;75]); %计算各指标(即各列)的三均值7.pd=skewness(A,0); %计算每列数据的偏度8.fd=kurtosis(A,0)-3; %计算每列数据的峰度9.OUT=["数据名称",NAME;"平均值",M;"标准差",SD;"变异系数",V;"三均值",SM;"偏度",pd;"峰度",fd]在编辑器中输入代码,并保存为.m文件,在命令行窗口中输出各个计算结果如下图所示:2)各项指标是否服从正态分布?若服从正态分布,计算概率为1%时的生铁产量、金属切削机床产量及汽车产量;若不服从正态分布,利用Box-Cox 变换将数据进行变换,对变换后的数据进行相应的分析;对各项指标进行JB检验、KS检验和改进KS检验(即Lilliefors检验),并结合QQ图进行分析判断各项对应指标是否服从正态分布,Matlab中代码如下:1.%%-------------------------------绘图-------------------------------%%2.a1=A(:,[1]); %生铁产量(万吨)3.a2=A(:,[2]); %金属切削机床产量(万台)4.a3=A(:,[3]); %汽车产量(万辆)5.subplot(1,3,1),qqplot(a1),title('生铁产量');6.subplot(1,3,2),qqplot(a2),title('金属切削机床产量');7.subplot(1,3,3),qqplot(a3),title('汽车产量');8.h1=jbtest(X); %JB检验9.h2=kstest(X); %KS检验10.h3=lillietest(X); %改进KS检验11.H=[h1;h2;h3];各列指标检验结果如下:可以看出,生铁产量、金属切削机床产量、汽车产量三项指标都满足h1=0,h2=1,h3=0,表示JB检验和Lilliefors检验支持生铁产量、金属切削机床产量、汽车产量三项指标都服从正态分布,KS检验不支持生铁产量、金属切削机床产量、汽车产量三项指标服从正态分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、相对数
(一)相对数的概念及 相对数是用两个有联系的指标进行对比的比值,可以反映现象的数 量特征和数量关系,并可将现象的绝对差异抽象化,使原来不能直接相 比的绝对数可以进行比较。
表现形式: 无名数:倍数、系数、成数、百分数等 有名数(如:人/每平方公里)
种类
计划完成相对数 结构相对数 比较相对数 强度相对数 动态相对数
另一有联系的不同指标的数值
特点:部分强度相对数分子分母可互换,有正指标和逆指标; 部分强度相对数以有名数表示; 有平均的含义,但与平均指标有本质区别。
5、动态相对数
将总体不同时期的同一类指标对比而计算的比值,说明事物发展 变化的程度,一般用百分数表示。
计算公式
动态相对数
=
报告期数值 基期数值
100%
=
实际完成的平均数 计划规定的平均数
100%
有正指标和逆指标
例:某企业计划要求劳动生产率达到5000元/人,产品的计划单位 成本为100元,该企业的实际劳动生产率达到6000元/人,产品的实际单 位成本为80元。则:
(正指标)
(逆指标)
2、结构相对数
总体内某一部分数值与总体全部数值对比的比值,反映总体内部的 构成和类型特征,一般用百分数或系数表示。
N
5
5
(二)加权算术平均数
x1 f1 x2 f2 L xk fk xf x f
f1 f2 L fk
f
f
——适用于总体资料经过分组整理形成变量数列的情况 两个影响因素: ①标志值(组中值) ,决定平均数的变动范围;
②权数 或 ,决定平均数的位置。
(1)
(2)
(3)
X 频数 频率(%) X 频数 频率(%) X 频数 频率(%)
170
x165 160
155
x
变量x
150
变量一般水平、代表性数值
种类:
算术平均数 调和平均数 几何平均数 中位数 众数
数值平均数 位置平均数
一、算术平均数(, x )
(一)基本形式:
总体变量值总和
总体单位总数
与强度相对数的区别: 算术平均数中的变量值总和必须是总体内各单位变量值的总和,分 子与分母存在一一对应关系。
(三)分类 1、按反映总体的内容分
变量总值 单位总数
2、按反映的时间状态分
时期总量:说明现象在一段时间内累积的总量。(如出生人数) 特点:指标数值随时间长短而变化;指标各期数值可加总。
时点总量:说明现象在某一时刻的数量状态。(如年末人口数) 特点:不同时点的指标数值加总后,没有意义。
3、按计量单位分:实物量;价值量;劳动量。
第三章 数据的描述性分析
本章将讨论的是数据的总量和相对关系的测度,数据的 集中趋势、离散趋势及其形态的测度。
第一节 绝对数和相对数
主 要
第二节 集中趋势的测定
内 容
第三节 离散趋势的测定
第四节 数据的形态测定
第一节 绝对数和相对数
一、绝对数
(一)概念 绝对数(亦称总量指标)是统计资料经过汇总整理后得到的反映总 体规模和水平的总和指标。 例如,企业的销售收入、社会总产值、国内生产总值等。 (二)作用 (1)反映一个国家的国情和国力,一个地区或一个企业的人力、 物力、财力 。 (2)是进行经济核算和经济活动分析的基础。 (3)是计算相对指标和平均指标的基础。
(二)相对指标的计算 1、计划完成相对数 是用来检查、监督计划执行情况的相对指标。通常用百分数表示,
又称计划完成百分比。
1)计划数为绝对数
例:某工厂某年计划工业增加值为200万元,实际完成220万元,则:
2)计划数为相对数 计划完成相对数 = 实际达到的百分数 100%
计划规定的百分数
指标数值越大,完成程度越高的指标为正指标
(三)相对指标的应用原则 1、必须注意统计的可比性; 2、正确选择对比的基数; 3、相对指标要与绝对数指标相结合。
第二节 集中趋势测定——平均数
平均指标是反映同类现象在一定时间、地点条件下的一般水平, 是总体内各单位参差不齐的标志值的代表值,也是对变量分布集中趋 势的测定。
数据集中区
180
175
计算公式
结构相对数
=Байду номын сангаас
总体中某部分数值 总体全部数值
100%
特点: 各部分比重总和等于100%。 分子分母可以同是总体单位数,也可以是总体标志数量。
3、比较相对数
将某一总体的指标与另一总体同类指标对比的比值,反映同类事物在 不同国家、不同地区或不同单位之间的差异程度。一般用百分数或倍数表 示。
计算公式
(二)计算方法
1、 简单算术平均数
n
x1 x2 L L
xn
xi
i 1
N
N
算术平均数 总体单位总数 第i 个单位的标志值
——适用于总体资料未经分组整理、尚为原始资料的情况
【例】某售货小组5个人,某天的销售额分别为520元、600元、480元、
750元、440元,则
平均每人日销售额为:
x 520 600 480 750 440 2790 558元
4
10
25
4
20
25
4
20
50
5
20
50
5
40
50
5
10
25
6
10
25
6
20
25
6
10
25
合计 40
100 合计 80 100.0 合计 80
100
频率分布变了,均值也变。因此,严格地说,权数应指频率。
(三)主要数学性质
⒈变量值与其算术平均数的离差之和衡等于零,即: ⒉变量值与其算术平均数的离差平方和为最小,即: (四)特点
作为比较基础的时期为基期
与基期对比的时期为报告期
不同时期 比较
动态 相对数
注: 又称发 展速度
同一时期比较
不同现象 比较
同类现象比较
强度 相对数 注: 复名数 有正逆指 标
不同总体 比较或者 同一总体 的两个不 同部分
比较相对数
同一总体中
部分与总体 实际与计划
比较
比较
结构相对数
计划完成相对数 注: 有正逆指标
指标数值越大,完成程度越低的指标为逆指标 分子与分母差值称为百分点
例:某企业某种产品的产值计划要求增长10%,该产品的单位成本计 划要求下降5%。实际产值增长了15%,单位成本下降了3%,则:
实际比计划多完成了5个百分点 实际比计划少完成了2个百分点
正指标 逆指标
3)计划数为平均数
计划完成相对数
比较相对数
=
某一地区(单位)的指标数值 另一地区(单位)的同一指标数值
100%
特点:对比的指标可以是总量指标也可以是相对指标或平均指标。
根据研究目的不同,分子分母可以互换。
4、强度相对数 将两个有联系但不同的指标对比而得到的比值,反映现象的强度、 密度和普及程度。
计算公式
强度相对数 =
某一指标数值