工业催化剂的制备与使用.ppt
合集下载
催化剂培训材料培训课件PPT工业催化剂制备与使用
– 若晶核长大速率大大超过晶核生成速率,溶液中最 初形成的晶核不是很多,较多的离子以晶核为中心, 依次排列长大而生成颗粒较大的晶型沉淀。
• 对沉淀剂选择有以下要求:
① 尽可能使用易分解并含易挥发成分的沉淀剂
– 常用的沉淀剂有:
• 碱类(NH4OH、NaOH、KOH) • 碳酸盐[(NH4)2CO4、Na2CO4、CO2] • 有机酸(乙酸、草酸)等 • 最常用的是NH4OH和(NH4)2CO4,因为铵盐在洗涤和热处
涤、干燥、粉碎和机 械成型,最后经500℃ 焙烧活化得到 γ-Al2O3。
– 该法生产设备简单、 原料易得且产品质量 稳定。
② 碱中和法
• 将铝盐溶液[Al(NO3)3、AlCl3、 Al2(SO4)3等]用氨水或其它碱 液( NaOH、KOH、NH4OH ) 中和,得到水合氧化铝:
Al3+ + OH- ==== Al2O3·nH2O↓
易洗涤。
④ 形成沉淀物的溶解度应小些
– 沉淀反应愈完全、原料消耗愈小;
• 对于贵金属尤为重要。
⑤ 无毒
– 不应使催化剂中毒或造成环境污染。
• 对金属盐类选择有以下要求:
– 一般选用硝酸盐的形式提供金属盐,硝酸根易于洗 脱或加热时分解而无残留。
– 而氯化物或硫化物残留在催化剂中,在使用时会呈 现H2S或HCl形式释放出来,致使催化剂中毒。
1、载体选择
• 浸渍法首先要选择合适载体,根据用途可选择 – 粉末状载体 – 成型载体
• 根据反应类型特点选择不同性质的载体
– 外扩散控制
不需比表面较大的载体;
– 内扩散控制
载体孔径不宜过小;
• 阻挡反应物分子进入孔道内部;
• 生成物返回气相受阻。
• 对沉淀剂选择有以下要求:
① 尽可能使用易分解并含易挥发成分的沉淀剂
– 常用的沉淀剂有:
• 碱类(NH4OH、NaOH、KOH) • 碳酸盐[(NH4)2CO4、Na2CO4、CO2] • 有机酸(乙酸、草酸)等 • 最常用的是NH4OH和(NH4)2CO4,因为铵盐在洗涤和热处
涤、干燥、粉碎和机 械成型,最后经500℃ 焙烧活化得到 γ-Al2O3。
– 该法生产设备简单、 原料易得且产品质量 稳定。
② 碱中和法
• 将铝盐溶液[Al(NO3)3、AlCl3、 Al2(SO4)3等]用氨水或其它碱 液( NaOH、KOH、NH4OH ) 中和,得到水合氧化铝:
Al3+ + OH- ==== Al2O3·nH2O↓
易洗涤。
④ 形成沉淀物的溶解度应小些
– 沉淀反应愈完全、原料消耗愈小;
• 对于贵金属尤为重要。
⑤ 无毒
– 不应使催化剂中毒或造成环境污染。
• 对金属盐类选择有以下要求:
– 一般选用硝酸盐的形式提供金属盐,硝酸根易于洗 脱或加热时分解而无残留。
– 而氯化物或硫化物残留在催化剂中,在使用时会呈 现H2S或HCl形式释放出来,致使催化剂中毒。
1、载体选择
• 浸渍法首先要选择合适载体,根据用途可选择 – 粉末状载体 – 成型载体
• 根据反应类型特点选择不同性质的载体
– 外扩散控制
不需比表面较大的载体;
– 内扩散控制
载体孔径不宜过小;
• 阻挡反应物分子进入孔道内部;
• 生成物返回气相受阻。
催化剂导论PPT课件
3.×,起加速反应作用而又不改变该反应的标
4.
准Gibbs自由焓变化的物质是催化剂。
4. √
5. ×,催化剂参与化学反应过程
6. √
7. √
8. ×,由盐溶液共沉淀法制备氢氧化物时,部
分氢氧化物沉淀的PH可值编辑都课件 大于7
19
二、在下列各题叙述中选择你认为正确的答案
1.下列分子筛中择形性突出的为: D
可编辑课件
7
第五节 离子交换法
1. 分子筛的合成
2. 分子筛的分类
3.
A、X、Y、ZSM-5等
3. Si/Al比与分子筛的稳定性关系
4.
第六节 催化剂成型
5. 压片、挤条、油可编辑中课件 、转动成型
8
第三章 催化剂性能的评价、 测试和表征
1.催化反应动力学研究的意义和作用
催化动力学研究的一个重要目标是为所研 究的催化反应提供数学模型,帮助弄清催 化反应机理。
知道NaY的结晶度)? (5)你估计图示该工艺中制备NaY的导向剂是何物质? (6)如何将制得的NaY原粉做成球型催化剂?
可编辑课件
26
答: (1)将水玻璃,硫酸铝,偏铝酸钠按合适比例与一定 量导向剂混合,搅拌使成胶,在一定温度下晶化一定时 间后,过滤洗涤除去硫酸根等,干燥即制得NaY原粉 (2)影响晶化的因素主要是:晶化温度、晶化时间、 原料配比及其碱度。通过单因素实验,正交与均匀设 计实验等,即可确定这些因素的较佳值。 (3)导晶沉淀法 (4)通过X射线粉末衍射即可测定NaY的晶化程度 (5)NaY晶种(P52:化学组成、结构类型与分子 筛相类似的、具有一定粒度的半晶化分子筛)。 (6)成球机成型;胶溶后,油柱成型。
催化剂工程导论
催化剂制备方法PPT课件
过 滤
干燥
洗 涤
Na型 丝光
沸石
18
浸渍法
将载体放进含有活性物质的液体中浸渍
载体(如Al2O3)的沉淀 洗涤干燥 载体的成型 用活性组份浸渍 干燥
焙烧分解
活化还原
2021
负载型金属催化剂
19
浸渍法的原理
活性组份在载体表面上的吸附 毛细管压力使液体渗透到载体空隙内部 提高浸渍量(可抽真空或提高浸渍液温度) 活性组份在载体上的不均匀分布
粉末细,成型后机械强度高,但成球困难 加入粘合剂(水),量少成球时间长,量
大时造成多胞,难成球 加大转盘转数和倾斜度,粒度下降;转盘
深,粒度大
2021
47
固体催化剂制备方法进展
超细粒度催化剂
– 超细粒子在纳米尺度时的表面效应
– 反应中的扩散行为
– 催化剂活性增强
溶胶凝胶法
– 多组分在胶体中分布均匀
加热到90-100 0C尿素, 同时释放出OH-
2021
11
导晶沉淀法
借助晶化导向剂引导非晶型沉淀转化为 晶型沉淀
X,Y分子筛 合成
分子筛合 成原料
加晶种 晶化
2021
无定型物 转
X,Y晶体 化
高结晶度
12
沉淀时金属盐类的选择
一般选用硝酸盐(大都溶于水) 贵金属为氯化物的浓盐酸溶液 铼选用高铼酸(H2Re2O7)
金属盐溶液
NaOH(Na2CO3)
沉淀
活
洗涤 干燥 焙烧 研磨 成型
化
催化剂
2021
8
单组分沉淀法
制备非贵金属的单组分催化剂或载体
Al3+ + OH-
载体Al2O3
《工业催化基础》课件(第2章 催化剂与催化作用的基础知识)2015-2
催化反应分类
(1)按反应物相分:
多相催化: 指催化剂与反应物处于不同物相发生的催化反应。由气体反应物与固体催 化剂组成的反应体系称之为气固相催化反应,如乙炔和氢气在负载钯的固 体催化剂上加氢生成乙烯的反应。由气态反应物与液相催化剂组成的反应 体系称为气液相反应,如乙烯与氧气在PdCl2-CuCl2水溶液催化剂作用下氧 化生成乙醛的反应。由液态反应物与固体催化剂组成的反应体系称为液固 相催化反应,如由离子交换树脂等固体酸催化的醇醛缩合反应或醇的脱水 反应。由液态和气态两种反应物与固体催化剂组成的反应体系称为气液固 三相催化反应,如苯在雷尼镍催化剂上加氢生成环已烷的反应。 均相催化: 指催化剂与反应物处于相同物相发生的催化反应。如果催化剂和反应物均 为气相的催化反应称为气相均相催化反应,如SO2与O2在催化剂NO作用下 氧化为SO3的催化反应;如果反应物和催化剂均为液相的催化反应称为液相 均相催化反应,如乙酸和乙醇在硫酸水溶液催化作用下生成乙酸乙酯的反 应。 化工资源有效利用国家重点实验室 7
是催化剂与反应物分子间通过电子转移,形成活性中间物种进行的催化反 应。如在金属镍催化剂上的加氢反应,氢分子均裂与镍原子产生化学吸附, 在化学吸附过程中氢原子从镍原子中得到电子,以负氢金属键键合。负氢 金属键合物即为活性中间物种,它可进一步进行加氢反应,反应式如下:
H H H + M M M H M
这二种分类方法反映了催化剂与反应物分子作用的实质,但由于催化作用的复杂性 ,对有些反应难以将二者绝然分开,有些反应又同时兼备二种机理, 酸碱型及氧化 还原型催化反应比较如下表:
第一节 催化剂的特征
3、催化剂对反应具有选择性
催化剂具有选择性包合两个含义:其一是不同的反应,应该选择不同的催 化剂;其二是同样的反应选择不同的催化剂,可获得不同的产物。例如, 以合成气(CO+H2)为原料在热力学上可以沿着几个途径进行反应,但由 于使用不同催化剂进行反应,就得到下表给出的不同产物。
(1)按反应物相分:
多相催化: 指催化剂与反应物处于不同物相发生的催化反应。由气体反应物与固体催 化剂组成的反应体系称之为气固相催化反应,如乙炔和氢气在负载钯的固 体催化剂上加氢生成乙烯的反应。由气态反应物与液相催化剂组成的反应 体系称为气液相反应,如乙烯与氧气在PdCl2-CuCl2水溶液催化剂作用下氧 化生成乙醛的反应。由液态反应物与固体催化剂组成的反应体系称为液固 相催化反应,如由离子交换树脂等固体酸催化的醇醛缩合反应或醇的脱水 反应。由液态和气态两种反应物与固体催化剂组成的反应体系称为气液固 三相催化反应,如苯在雷尼镍催化剂上加氢生成环已烷的反应。 均相催化: 指催化剂与反应物处于相同物相发生的催化反应。如果催化剂和反应物均 为气相的催化反应称为气相均相催化反应,如SO2与O2在催化剂NO作用下 氧化为SO3的催化反应;如果反应物和催化剂均为液相的催化反应称为液相 均相催化反应,如乙酸和乙醇在硫酸水溶液催化作用下生成乙酸乙酯的反 应。 化工资源有效利用国家重点实验室 7
是催化剂与反应物分子间通过电子转移,形成活性中间物种进行的催化反 应。如在金属镍催化剂上的加氢反应,氢分子均裂与镍原子产生化学吸附, 在化学吸附过程中氢原子从镍原子中得到电子,以负氢金属键键合。负氢 金属键合物即为活性中间物种,它可进一步进行加氢反应,反应式如下:
H H H + M M M H M
这二种分类方法反映了催化剂与反应物分子作用的实质,但由于催化作用的复杂性 ,对有些反应难以将二者绝然分开,有些反应又同时兼备二种机理, 酸碱型及氧化 还原型催化反应比较如下表:
第一节 催化剂的特征
3、催化剂对反应具有选择性
催化剂具有选择性包合两个含义:其一是不同的反应,应该选择不同的催 化剂;其二是同样的反应选择不同的催化剂,可获得不同的产物。例如, 以合成气(CO+H2)为原料在热力学上可以沿着几个途径进行反应,但由 于使用不同催化剂进行反应,就得到下表给出的不同产物。
工业催化--第八章 工业催化剂制备原理
多数非晶形沉淀,在沉淀形成后不采取老化 操作。
– 待沉淀析出后,加入较大量热水稀释,以减少杂 质在溶液中的浓度,同时使一部分被吸附的杂质 转入溶液。
加入热水后,一般不宜放置,而应立即过滤,以防沉 淀进一 步凝聚,并避免表面吸附的杂质包裹在沉淀内 部不易洗净。
洗涤操作的主要目的是除去沉淀中的杂质。
均匀沉淀法常用的类似沉淀母体见下表:
4、浸渍沉淀法
浸渍沉淀法是在普通浸渍法的基础上辅以沉淀 法发展起来的一种新方法。
– 待盐溶液浸渍操作完成之后,再加沉淀剂,而使待 沉淀组分沉积在载体上。
5、导晶沉淀法
借助晶化导向剂(晶种)引导非晶型沉淀转化为 晶型沉淀的快速而有效的方法。
– 普遍用来制备以水玻璃为原料的高硅钠型分子筛, 包括丝光沸石,Y型与X型合成分子筛。
对沉淀剂选择有以下要求:
(1) 尽可能使用易分解并含易挥发成分的沉淀剂
– 常用的沉淀剂有:
碱类(NH4OH、NaOH、KOH); 碳酸盐[(NH4)2CO4、Na2CO4、CO2]; 有机酸(乙酸、草酸)等。 最处理常时用容的易是除NH去4O,H一和般(N不H会4)2遗CO留4,在因催为化铵剂盐中在,洗使涤催和化热剂
如此反复溶解、沉积的结果,消除了细晶体,获得了颗 粒大小均匀的粗晶体。
此时孔隙结构和表面积也发生了相应的变化。
–粗晶体表面积较小,吸附杂质少,吸留在细晶粒之 中的杂质也随溶解过程转入溶液。
– 老化的时间、温度及母液pH值等为老化应考虑的 几项影响因素。
在晶形催化剂制备过程中,老化对催化剂性 能的影响显著。
凝胶法特别适用于主要成分是氧化铝或二氧化 硅的催化剂或载体。
凝胶过程大致可分为缩合与凝结二个阶段。
– 待沉淀析出后,加入较大量热水稀释,以减少杂 质在溶液中的浓度,同时使一部分被吸附的杂质 转入溶液。
加入热水后,一般不宜放置,而应立即过滤,以防沉 淀进一 步凝聚,并避免表面吸附的杂质包裹在沉淀内 部不易洗净。
洗涤操作的主要目的是除去沉淀中的杂质。
均匀沉淀法常用的类似沉淀母体见下表:
4、浸渍沉淀法
浸渍沉淀法是在普通浸渍法的基础上辅以沉淀 法发展起来的一种新方法。
– 待盐溶液浸渍操作完成之后,再加沉淀剂,而使待 沉淀组分沉积在载体上。
5、导晶沉淀法
借助晶化导向剂(晶种)引导非晶型沉淀转化为 晶型沉淀的快速而有效的方法。
– 普遍用来制备以水玻璃为原料的高硅钠型分子筛, 包括丝光沸石,Y型与X型合成分子筛。
对沉淀剂选择有以下要求:
(1) 尽可能使用易分解并含易挥发成分的沉淀剂
– 常用的沉淀剂有:
碱类(NH4OH、NaOH、KOH); 碳酸盐[(NH4)2CO4、Na2CO4、CO2]; 有机酸(乙酸、草酸)等。 最处理常时用容的易是除NH去4O,H一和般(N不H会4)2遗CO留4,在因催为化铵剂盐中在,洗使涤催和化热剂
如此反复溶解、沉积的结果,消除了细晶体,获得了颗 粒大小均匀的粗晶体。
此时孔隙结构和表面积也发生了相应的变化。
–粗晶体表面积较小,吸附杂质少,吸留在细晶粒之 中的杂质也随溶解过程转入溶液。
– 老化的时间、温度及母液pH值等为老化应考虑的 几项影响因素。
在晶形催化剂制备过程中,老化对催化剂性 能的影响显著。
凝胶法特别适用于主要成分是氧化铝或二氧化 硅的催化剂或载体。
凝胶过程大致可分为缩合与凝结二个阶段。
第4章 工业催化剂的制备、成型与使用
举例
沉淀法 水合氧化物,如氢氧化铁等的制备
浸渍法 混合法
贵金属负载到金属氧化物载体Al2O3 或 SiO2 等载体上
氧化铁-氧化铬CO 变换催化剂的制备
熔融法 合成氨的铁催化剂的制备
沥滤法 瑞尼镍催化剂的制备
… ……
10
§1 沉淀法制备工业催化剂
沉淀法是借助沉淀反应,用沉淀剂(如碱类物质) 将可溶性的催化剂组分(金属盐类的水溶液)转化为 难溶化合物,再经过滤、洗涤、干燥、焙烧、成型 等工序制得成品催化剂。
老化阶段的变化 ① 细晶体逐渐溶解,并沉积到粗晶体上,……, 获得颗粒大小较为均一的粗晶体 ② 孔隙结构和表面积发生变化,原来吸留在细晶 体之中的杂质随溶解过程转入溶液 ③ 初生的非稳定结构的晶体,会逐渐变成稳定的 结构
37
五、沉淀物的过滤、洗涤、 干燥、焙烧、成型和还原操作
1. 过滤与洗涤
悬浮液的过滤,可使沉淀物与水分开,同时除 去NO3-、SO42-、Cl-、K+、Na+、NH4+等离子。
一、沉淀过程和沉淀剂的选择
沉淀产生的条件 ——形成沉淀物的离子浓度积大于该条件下的
浓度积Ksp 沉淀物的形成过程,包括两方面: 1) 晶核的生成,-- 形成沉淀物的离子相互碰撞生 成沉淀的晶核 2) 晶核的长大,-- 溶质分子在溶液中扩散到晶核 表面,晶核继续长大成为晶体
19
图 难溶沉淀的生成速率示意组图
4.浸渍沉淀法 盐溶液浸渍操作完成后,再加沉淀剂,
而使待沉淀组份沉积在载体上。
沉淀法分类
6.超均匀共沉淀法
将沉淀操作分成两步进行,先制成盐溶液的悬 浮层,并将这些悬浮层立即瞬间混合成为超饱和 的均匀溶液;然后由超饱和的均匀溶液得到超均 匀的沉淀物。
催化剂工程导论2工业催化剂常规制备方法
Increasing impregnation time Pt/Al2O3
Al2O3
Impregnation of -Alumina with Pt (from H2PtCl6)
浸渍影响因素
浸渍液浓度
Impregnation of -Alumina with Ni (from Ni(NO3)2),浸渍时间 0.5 h
浸渍法(多次浸渍)实例
镍/氧化铝-----重整催化剂—将甲烷或石脑油重整制合成气
Al2O3+铝酸钙水泥+石墨+水 成型16*16*6mm 预处理:120oC干燥、 1400oC焙烧,得载体
熔融浸渍硝酸镍10-20%
干燥、活化焙烧分解
熔融浸渍硝酸镍10-20%
负载型镍催化剂
干燥、活化焙烧分解
2.3 混合法
干燥
干燥过程中,未吸附的溶液会向空气中挥发,内表面上的活性组分也可能 会向外表面迁移,降低部分内表面活性物质的浓度,造成活性物质分布不 均,甚至部分载体未被覆盖。
on
+
diffusion
diffusion
浸渍后ad的sor热ptio处n 理
干燥过程中活性组分的迁移
evaporation
焙烧与活化
Static drying Drying at low flowrate Freeze drying
Active Phase Distributions
Uniform
Egg-shell
Egg-white
Egg-Yolk
a
b
c
d
Active phase/Support
Support
Influence of Coadsorbing Ions - 竞争吸附法
石油化工催化剂及应用ppt课件
第一章 催化剂与催化作用础知识
对工业催化剂的要求
• 工业催化剂是指具有工业生产实际意义,可以用于大 规模生产过程的催化剂。
• 一种好的工业催化剂应具有适宜的活性、高选择性和 长寿命。
• 工业催化剂的活性、选择性和寿命除决定于催化剂的 组成结构外,与操作条件也有很大关系。这些条件包 括原料的纯度、生产负荷、操作温度和压力等。
第一章 催化剂与催化作用基础知识
• 密度:催化剂的密度是指单位体积内含有的催化 剂的质量(或重量),常以符号ρ表示,单位是 g/mL。
密度常分为堆积密度、颗粒密度以及真密度。
堆
V隙
M V孔
V骨
颗
M V孔 V骨
真
M V骨
第一章 催化剂与催化作用基础知识
比孔容:单位重量催化剂颗粒内部的真正孔体积的 总叫和比孔容。常以符合Vg表示,单位是mL/g。
3
转化率表示法
CA%=反应物A转化 掉的量/流经催化 床层进料中反应 物A的总量×100%
要求反应温度、 压力及原料气组成相同
只要求反应温度相同 , 不要求反应物浓度和催化剂 用量相同
要求反应条件(温度、压力、 接触时间、原料气浓度) 相同
第一章 催化剂与催化作用基础知识
催化活性在理论研究中经常采用: • 转换频率:指单位时间内每个催化活性中心上发
带出旋风分离器;若颗粒过于粗,则流化性不好,并有可 能扩散控制。
第一章 催化剂与催化作用基础知识
(六)机械性质
• 催化剂的机械性质(例如磨损率、压碎强度)和 热性质(例如热导率、抗热冲击性能)是其工程 性能的一个重要方面,催化剂在使用前要经过运 输过程和装料过程。
• 有的催化剂在使用过程中要经受非常高的温度和 剧烈的温度变化,有的在高温和一定的气氛下再 生,这些都要求催化剂具备相应的机械性质和热 性质。
工业催化剂的制备和成型
化工资源有效利用国家重点实验室 18
第二节 浸渍法
3、多次浸渍法
是将浸渍、干燥、焙烧重复进行多次的催化剂制备法。采用多 次浸渍法是基于下列的理由:一是需要浸渍的催化剂的活性组 分的溶解度较小,一次浸渍不能满足符合要求的负载量,需要 多次浸渍;二是为了避免含多组分的浸渍液由于各组分的竞争 吸附而造成的浸渍不均匀。在多次浸渍过程中,每次浸渍后都 需要进行干燥和焙烧,以使浸渍上去的组分转变为不可溶的物 质,避免下一次浸渍时重新溶解到浸渍液中。
第二章 工业催化剂的制备和成型
主要内容:
沉淀法 浸渍法 溶胶-凝胶法 离子交换法 热熔融法 混合法
固体催化剂的成型
催化剂的干燥与焙烧
化工资源有效利用国家重点实验室 1
第一节 沉淀法
沉淀法是以沉淀操作为基本特征的工业催化剂的制备方法, 是固体催化剂最常用的制备方法之一,主要用于制备催化剂
活性组分含量较高且价格相对较低的非贵金属、金属氧化物、
两种溶液分别加入各自的高温槽,然后经过热交换器预热至 50-60℃, 通过活塞开关并流到沉淀槽混合充分,pH值控制在 5-6,在不断搅拌
下形成无定形氢氧化铝沉淀。沉淀浆液送入到过滤器抽滤分离,沉淀
移入洗涤槽打浆洗涤,洗液为 50-60℃的蒸馏水,洗涤至不显 SO42-为 止。洗净的沉淀转入 pH值为 9.5-10.5,温度为 60℃左右的氨水溶液中 静置陈化 4 h,陈化后沉淀物又重复过滤、洗涤,至溶液的比电阻超 过200 Ω/cm,将沉淀物于100-110℃温度下干燥,制得半结晶状的假 -
(2)催化剂的制备 用预定量的铂化合物(如氯铂酸或氯铂酸铵),铼化合物(如高铼酸或 高铼酸铵),盐酸,去离子水混合成浸渍液,浸渍液与载体 γ-Al2O3的体 积比为1.0-2.5,在室温下浸渍12-24 h,然后过滤,60-80℃干燥6-10 h, 100-130℃干燥12-24 h,干空气中450-550℃,气剂比为500-1200的条件系 活化2-12 h,H2中400-500℃还原4 h,即得铂铼重整催化剂制备。
第二节 浸渍法
3、多次浸渍法
是将浸渍、干燥、焙烧重复进行多次的催化剂制备法。采用多 次浸渍法是基于下列的理由:一是需要浸渍的催化剂的活性组 分的溶解度较小,一次浸渍不能满足符合要求的负载量,需要 多次浸渍;二是为了避免含多组分的浸渍液由于各组分的竞争 吸附而造成的浸渍不均匀。在多次浸渍过程中,每次浸渍后都 需要进行干燥和焙烧,以使浸渍上去的组分转变为不可溶的物 质,避免下一次浸渍时重新溶解到浸渍液中。
第二章 工业催化剂的制备和成型
主要内容:
沉淀法 浸渍法 溶胶-凝胶法 离子交换法 热熔融法 混合法
固体催化剂的成型
催化剂的干燥与焙烧
化工资源有效利用国家重点实验室 1
第一节 沉淀法
沉淀法是以沉淀操作为基本特征的工业催化剂的制备方法, 是固体催化剂最常用的制备方法之一,主要用于制备催化剂
活性组分含量较高且价格相对较低的非贵金属、金属氧化物、
两种溶液分别加入各自的高温槽,然后经过热交换器预热至 50-60℃, 通过活塞开关并流到沉淀槽混合充分,pH值控制在 5-6,在不断搅拌
下形成无定形氢氧化铝沉淀。沉淀浆液送入到过滤器抽滤分离,沉淀
移入洗涤槽打浆洗涤,洗液为 50-60℃的蒸馏水,洗涤至不显 SO42-为 止。洗净的沉淀转入 pH值为 9.5-10.5,温度为 60℃左右的氨水溶液中 静置陈化 4 h,陈化后沉淀物又重复过滤、洗涤,至溶液的比电阻超 过200 Ω/cm,将沉淀物于100-110℃温度下干燥,制得半结晶状的假 -
(2)催化剂的制备 用预定量的铂化合物(如氯铂酸或氯铂酸铵),铼化合物(如高铼酸或 高铼酸铵),盐酸,去离子水混合成浸渍液,浸渍液与载体 γ-Al2O3的体 积比为1.0-2.5,在室温下浸渍12-24 h,然后过滤,60-80℃干燥6-10 h, 100-130℃干燥12-24 h,干空气中450-550℃,气剂比为500-1200的条件系 活化2-12 h,H2中400-500℃还原4 h,即得铂铼重整催化剂制备。
镍催化剂的合成及其在催化加氢中的应用ppt课件
参考文献:荣泽明,《骤冷骨架Ni和纳米Pt_C催化芳环和硝基加氢的研究》,2010。
镍催化剂组成与制备
Ni-Al合金的浸溶,最常用的是用碱浓度为20-40%的苛性 钠水溶液将合金中无活性组分Al浸溶除去,NaOH使用量可 由合金中Al含量计算,其反应式为: 2Al+2NaOH+2H2O NaAlO2+3H2↑
助剂: Fe、Cu、Co、Ti、Mo、V、Mn等
镍催化剂组成与制备
负载镍制备: 氧化铝制备和催化剂制备
氧化铝载体制备工艺流程图:
镍催化剂组成与制备
镍基催化剂干混法生产工艺流程图:
镍催化剂组成与制备
兰尼镍组成:
用Ni、Co、Fe及Cu与Al或Si熔融,然后用碱除去 Al和Si就制得了这些金属的活泼态催化剂,即兰尼镍型 催化剂,又称为骨架型催化剂。 二元合金:Ni-Al(最常用)、Ni-Si
催化剂残留al较高活性差活性氢减少8595为宜11性质优点缺点多孔结构活泼金属原子nicofecu等的分散度高比表面积大活性高容易自燃价格便宜催化活性高被广泛用于有机合成和工业生产的氢化反应中存在高能耗碱洗废液无法利用而污染环境铝资源浪费使用中存在易燃操作条件严格负载镍良好的催化活性稳定性及抗积碳性能价格较低加氢性能好选择性高工艺简单精细化工领域中得到广泛应用仅限于在悬浮床加氢反应器中使用催化剂与产物分离困难生产成本高
兰尼镍
负载镍
价格较低、加氢 良好的催化活性、 性能好、选择性 稳定性及抗积碳 高、工艺简单、 性能 精细化工领域中 得到广泛应用
镍催化剂在加氢中的应用
1、不饱和化合物、芳香族化合物和杂环化合物的加氢: 其加氢条件取决于双键位置及其双键相连碳原子上取代基的活 性。 2、杂环化合物的加氢:含氧杂环、含氮杂环化合物、酮 式-羟基吡咯、吲哚及咔唑中的吡咯环;各种吡咯羧酸酯;羟基 吡咯及其衍生物。
镍催化剂组成与制备
Ni-Al合金的浸溶,最常用的是用碱浓度为20-40%的苛性 钠水溶液将合金中无活性组分Al浸溶除去,NaOH使用量可 由合金中Al含量计算,其反应式为: 2Al+2NaOH+2H2O NaAlO2+3H2↑
助剂: Fe、Cu、Co、Ti、Mo、V、Mn等
镍催化剂组成与制备
负载镍制备: 氧化铝制备和催化剂制备
氧化铝载体制备工艺流程图:
镍催化剂组成与制备
镍基催化剂干混法生产工艺流程图:
镍催化剂组成与制备
兰尼镍组成:
用Ni、Co、Fe及Cu与Al或Si熔融,然后用碱除去 Al和Si就制得了这些金属的活泼态催化剂,即兰尼镍型 催化剂,又称为骨架型催化剂。 二元合金:Ni-Al(最常用)、Ni-Si
催化剂残留al较高活性差活性氢减少8595为宜11性质优点缺点多孔结构活泼金属原子nicofecu等的分散度高比表面积大活性高容易自燃价格便宜催化活性高被广泛用于有机合成和工业生产的氢化反应中存在高能耗碱洗废液无法利用而污染环境铝资源浪费使用中存在易燃操作条件严格负载镍良好的催化活性稳定性及抗积碳性能价格较低加氢性能好选择性高工艺简单精细化工领域中得到广泛应用仅限于在悬浮床加氢反应器中使用催化剂与产物分离困难生产成本高
兰尼镍
负载镍
价格较低、加氢 良好的催化活性、 性能好、选择性 稳定性及抗积碳 高、工艺简单、 性能 精细化工领域中 得到广泛应用
镍催化剂在加氢中的应用
1、不饱和化合物、芳香族化合物和杂环化合物的加氢: 其加氢条件取决于双键位置及其双键相连碳原子上取代基的活 性。 2、杂环化合物的加氢:含氧杂环、含氮杂环化合物、酮 式-羟基吡咯、吲哚及咔唑中的吡咯环;各种吡咯羧酸酯;羟基 吡咯及其衍生物。
催化剂PPT课件
1.主催化剂 主催化剂又称为活性组分,它是多元催化剂的主体, 是必备的组分,没有它就缺乏所需的催化作用。
V2O5是SCR商用催化剂中最主要的活性组分。钒的 负载量可能不尽相同,在SCR系统中负载量不能太 大,这主要是因为V2O5也能将SO2氧化成SO3,这 对SCR反应是不利的。
2.助催化剂 助催化剂是加入催化剂中的少量物质,这种物质本 身没有活性或活性很小,但却能显著地改善催化剂 的效能,包括催化剂活性、选择性和稳定性等。
采用的一种再生方法。通过将催化剂孔隙中的 含碳沉积物氧化为CO和CO2除去,即可恢复催 化活性。影响烧炭反应的主要因素是氧分压。 当催化剂上积炭量一定时,烧炭的最高温升取 决于输入氧的浓度。烧炭的初始阶段宜采用低 浓度氧气,其后才能逐渐将其浓度提高到一定 的范围。
(2)补充组分法 对于那些因组分流失而失活的催化剂,最适宜
2.加装备用层催化剂。大部分的燃煤电厂脱硝SCR 系统都设计成多层催化剂,多层催化剂在催化剂的 寿命管理和系统性能表现方便更具有灵活性。即便 单层催化剂便能够达到初始的性能要求,反应器的 设计也应考虑至少具备一层附加层。
3.在机组停运检修时,须防止雨水或锅炉冲洗水等 湿气进入催化剂,一般保持脱硝反应器内湿度低于 70%,当湿度较大时,建议在反应器内通入干燥的 压缩空气或放入干燥剂,也可以在反应器下部安装 除湿机,保持反应器内的干燥环境,避免催化剂活 性降低。
(3)机械稳定性:固体催化剂抵抗气流产生的冲击力、摩 擦力、承受上层催化剂的质量负荷的作用、温度变化作用 及变应力作用的能。
(4)化学稳定性:指催化剂能保持稳定的化学组成和化合 状态的性能。
工业催化剂的使用寿命:是指在给定的设计操作条件下, 催化剂能满足工艺设计指标活性的持续时间(总寿命)。
催化剂的制备方法 PPT
Na2CO3并流加入沉淀槽中,强烈搅拌下于恒温与近中性条件下形 成三组分沉淀,经过滤、洗涤、干燥、焙烧后,即为催化剂前驱 物。
第一节 沉淀法
二、各类沉淀法
(三)均匀沉淀法 均匀沉淀法:先将带沉淀的金属盐溶液与沉淀剂母体充分混合, 预先造成十分均匀的体系,然后调节温度和pH值,或在体系中 逐渐生成沉淀剂等方式,创造形成沉淀的条件,使沉淀缓慢的形 成,以制得颗粒十分均匀且比较纯净的的沉淀。
第一节 沉淀法
三、沉淀操作的原理与技术要点
(一)金属盐和沉淀剂的选择 1、盐的选择
首选硝酸盐;原因:硝酸盐的大多溶解于水,并可方便地由其 对应的金属、氧化物、氢氧化物、碳酸盐等与硝酸反应制备。 2、沉淀剂: ①NH3•H2O、(NH4)2CO3等,因为它们在沉淀后的洗涤和热处理时易 于除去而不留残留; ②若用KOH、NaOH,要考虑Na+、K+的残留,且KOH较昂贵; ③NaOH、Na2CO3也是较好的选择,特别是Na2CO3,不但价格低廉, 而却常易于形成晶体沉淀,易于洗净。
对于晶形沉淀,沉淀应在较热的溶液中进行,这样可使沉淀的 溶解度略有增加,过饱和度相对降低,有利于晶体成长增大。同 时,温度越高,吸附的杂志越少。对与非晶形沉淀,在较热的溶 液中沉淀也可以使离子的水合程度较小,获得比较紧密凝聚的沉 淀,防止胶体溶液的形成。
第一节 沉淀法
三、沉淀操作的原理与技术
(二)沉淀形成的影响因素 3、pH值 由于沉淀用碱作为沉淀剂,因此沉淀物的生成在相当程度上
第一节 沉淀法
三、沉淀操作的原理与技术
(一)金属盐和沉淀剂的选择 2、沉淀剂 选择原则: ①尽可能使用易于溶解易分解的沉淀剂。
NH4OH、 (NH4 )2 CO3 、草酸铵、尿素等,在沉淀反应完成后, 经洗涤、干燥、焙烧,大多可以除去,为制备纯度高的催化剂创 造了条件。
第一节 沉淀法
二、各类沉淀法
(三)均匀沉淀法 均匀沉淀法:先将带沉淀的金属盐溶液与沉淀剂母体充分混合, 预先造成十分均匀的体系,然后调节温度和pH值,或在体系中 逐渐生成沉淀剂等方式,创造形成沉淀的条件,使沉淀缓慢的形 成,以制得颗粒十分均匀且比较纯净的的沉淀。
第一节 沉淀法
三、沉淀操作的原理与技术要点
(一)金属盐和沉淀剂的选择 1、盐的选择
首选硝酸盐;原因:硝酸盐的大多溶解于水,并可方便地由其 对应的金属、氧化物、氢氧化物、碳酸盐等与硝酸反应制备。 2、沉淀剂: ①NH3•H2O、(NH4)2CO3等,因为它们在沉淀后的洗涤和热处理时易 于除去而不留残留; ②若用KOH、NaOH,要考虑Na+、K+的残留,且KOH较昂贵; ③NaOH、Na2CO3也是较好的选择,特别是Na2CO3,不但价格低廉, 而却常易于形成晶体沉淀,易于洗净。
对于晶形沉淀,沉淀应在较热的溶液中进行,这样可使沉淀的 溶解度略有增加,过饱和度相对降低,有利于晶体成长增大。同 时,温度越高,吸附的杂志越少。对与非晶形沉淀,在较热的溶 液中沉淀也可以使离子的水合程度较小,获得比较紧密凝聚的沉 淀,防止胶体溶液的形成。
第一节 沉淀法
三、沉淀操作的原理与技术
(二)沉淀形成的影响因素 3、pH值 由于沉淀用碱作为沉淀剂,因此沉淀物的生成在相当程度上
第一节 沉淀法
三、沉淀操作的原理与技术
(一)金属盐和沉淀剂的选择 2、沉淀剂 选择原则: ①尽可能使用易于溶解易分解的沉淀剂。
NH4OH、 (NH4 )2 CO3 、草酸铵、尿素等,在沉淀反应完成后, 经洗涤、干燥、焙烧,大多可以除去,为制备纯度高的催化剂创 造了条件。
1-工业催化原理ppt课件
H2在金属催化剂表面均裂为化 学吸附的活泼的氢原子
42
Hale Waihona Puke 酸碱催化指通过催化剂和反应物的自由电子对或 在反应过程中由反应物分子的键非均裂 形成的自由电子对.使反应物与催化剂 形成非均裂键。
例如,催化异构化反应中,反应物烯烃 与催化剂的酸性中心作用、生成活泼的 正碳离子中间化合物
43
烯烃与催化剂酸性中心作用、 生成活泼正碳离子中间化合物
催化剂作为一种化学物质,它能够与反
应物相互作用,但是在反应的终结它仍 保持不变。
4
催化剂加速化学反应的实例
SO2+O2 SO3 ( V2O5),无催化剂时, 即使加热也几乎不生成 SO3。
N2+H2 NH3 (Fe催化剂),若没有铁催 化剂,在反应温度为400℃时,其反应速 度极慢,竞不能觉察出来,而当有铁催 化剂的存在时,就实现工业生产合成氨。
39
按催化反应分类
催化反应同非催化反应一样,也可根 据反应中反应分子之间电子传递的情况 来分类,可分为:
氧化还原反应
酸碱反应。
40
氧化还原
催化剂使反应物分子中的键均裂而出现 不成对电子,并在催化剂的电子参与下 与催化剂形成均裂键。
这类反应的重要步骤是催化剂与反应物 之间的单电子交换。
41
19
催化剂对反应具有选择性
根据热力学计算,某一反应可能生成不 只一种产物时,应用催化剂可加速某一 目的产物的反应,即称为催化剂对该反 应的选择性。
工业上就是利用催化剂具有选择性,使 原料转化为所需要的产品。
例如,以合成气(CO+H2)为原料,使用 不同的催化剂则沿不同的途径进行反应。
20
催化剂对反应具有选择性
46
双功能催化剂的实例
第10章工业催化剂制备和使用
⑤导晶沉淀法 导晶沉淀法借助晶化导向剂(晶种)引导非晶形沉淀转化
为晶形沉淀的快速而有效的方法。最近普遍用来制备以廉价 的水玻璃为原料的高硅钠型分子筛,包括丝光沸石、Y型、X 型合成分子筛。
2019年12月4日2时59分
24
10-1 工业催化剂的制备
1. 沉淀法 (8)沉淀法的分类
⑥水热合成法 在常温常压下水溶液的沉淀理论,形成沉淀粒子的因素是
2019年12月4日2时59分
22
10-1 工业催化剂的制备
1. 沉淀法
超均匀沉淀法制备硅酸镍催化剂。 先将硅酸钠溶液放入混合器,再将 20%的硝酸钠溶液慢慢倒至硅酸钠溶 液之上,最后将含硝酸镍和硝酸的溶 液慢慢倒于前两个溶液之上。立即开 动搅拌机使其成为超饱和溶液。放置 数分钟至几小时,便能形成超均匀的 水凝胶式胶冻。用分离方法将水凝胶 自母液分出或将胶冻破碎成小块,经 水洗、干燥和焙烧即得所需催化剂。 这样得到的催化剂其结构与由氢氧化 镍和水合硅胶机械混合制得的催化剂 是不同的。
2019年12月4日2时59分
14
10-1 工业催化剂的制备
1. 沉淀法 (5)pH值 沉淀法常用碱性物质作沉淀剂,沉淀物的生成在
相当大的程度上受pH值的影响。
Al3+ + OH-
pH<7 Al2O3·mH2O 无定形胶体 pH=9 α-Al2O3·H2O 针状胶体 pH>10β-Al2O3·nH2O 球状结晶
2019年12月4日2时59分
20
10-1 工业催化剂的制备
1. 沉淀法 (8)沉淀法的分类 ③均匀沉淀法和超均匀沉淀法
均匀沉淀法是在沉淀的溶液中加入某种试剂,此 试剂可在溶液中以均匀的速率产生沉淀剂的离子或 者改变溶液的pH值,从而得到均匀的沉淀物。如在 铝盐中加入尿素,加热到363-373K,溶液中有如下 反应,并生成均匀的Al(OH)3沉淀:
为晶形沉淀的快速而有效的方法。最近普遍用来制备以廉价 的水玻璃为原料的高硅钠型分子筛,包括丝光沸石、Y型、X 型合成分子筛。
2019年12月4日2时59分
24
10-1 工业催化剂的制备
1. 沉淀法 (8)沉淀法的分类
⑥水热合成法 在常温常压下水溶液的沉淀理论,形成沉淀粒子的因素是
2019年12月4日2时59分
22
10-1 工业催化剂的制备
1. 沉淀法
超均匀沉淀法制备硅酸镍催化剂。 先将硅酸钠溶液放入混合器,再将 20%的硝酸钠溶液慢慢倒至硅酸钠溶 液之上,最后将含硝酸镍和硝酸的溶 液慢慢倒于前两个溶液之上。立即开 动搅拌机使其成为超饱和溶液。放置 数分钟至几小时,便能形成超均匀的 水凝胶式胶冻。用分离方法将水凝胶 自母液分出或将胶冻破碎成小块,经 水洗、干燥和焙烧即得所需催化剂。 这样得到的催化剂其结构与由氢氧化 镍和水合硅胶机械混合制得的催化剂 是不同的。
2019年12月4日2时59分
14
10-1 工业催化剂的制备
1. 沉淀法 (5)pH值 沉淀法常用碱性物质作沉淀剂,沉淀物的生成在
相当大的程度上受pH值的影响。
Al3+ + OH-
pH<7 Al2O3·mH2O 无定形胶体 pH=9 α-Al2O3·H2O 针状胶体 pH>10β-Al2O3·nH2O 球状结晶
2019年12月4日2时59分
20
10-1 工业催化剂的制备
1. 沉淀法 (8)沉淀法的分类 ③均匀沉淀法和超均匀沉淀法
均匀沉淀法是在沉淀的溶液中加入某种试剂,此 试剂可在溶液中以均匀的速率产生沉淀剂的离子或 者改变溶液的pH值,从而得到均匀的沉淀物。如在 铝盐中加入尿素,加热到363-373K,溶液中有如下 反应,并生成均匀的Al(OH)3沉淀:
《工业催化精品课件》络合催化
04
络合催化的研究进展与挑战
BIG DATA EMPOWERS TO CREATE A NEW
ERA
新型络合催化剂的设计与合成
总结词
新型络合催化剂的设计与合成是络合催化领域的重要研究方向,旨在开发高效、稳定且具有广泛应用 前景的催化剂。
详细描述
络合催化是一种通过金属络合物活化反应底物的催化方式,广泛应用于有机合成、石油化工和制药等 领域。近年来,科研人员致力于设计和合成新型络合催化剂,以提高催化活性、选择性和稳定性。常 见的催化剂设计策略包括改变金属中心、优化配体结构以及使用多组分催化剂等。
ERA
络合催化的反应机制
络合催化的反应机制主要涉及配位体与金属催化剂的 相互作用,通过形成稳定的络合物来活化反应底物,
从而降低反应能垒,促进反应进行。
配位体在络合催化中起到关键作用,它们能够与金属 催化剂形成强相互作用,从而稳定活性中心,并调节
底物与催化剂之间的电子云分布。
络合催化的反应机制通常涉及多步骤过程,包括配位 体与金属催化剂的结合、底物与络合物的相互作用以
工业催化精品课件:络合
BIG DATA EMPOWERS TO CREATE A NEW
ERA
催化
• 络合催化的定义与重要性 • 络合催化反应原理 • 络合催化反应的应用 • 络合催化的研究进展与挑战 • 案例分析 Nhomakorabea目录
CONTENTS
01
络合催化的定义与重要性
BIG DATA EMPOWERS TO CREATE A NEW
子转移等关键步骤。理论计算还能预测催化剂的性能,为新催化剂的设计提供依据。
05
案例分析
BIG DATA EMPOWERS TO CREATE A NEW
第六章工业催化剂的设计
O2 在Ag 上吸附态 O2-分子态离子基 催化环氧化 O= 离子基 (O- )催化深度氧化 3)借助催化理论进行选择 a)空间因素(多位理论) 反应物分子键长与催化剂晶格常数相适应 反应物分子构型与催化剂晶面花样相适应 在Ni上进行环己烷脱氢生成苯反应 P91图6-7 环己烷六位吸附 其中Ni上1、2、3位形成双键 4、5、6位完成脱氢 按上述要求,在周期表中具有111面晶面花样和 适宜晶距的金属如Co、Ni、Ru、Rh、Pd、 Os、Zr、Pt有催化反应功能 b)电子因素 金属能带理论 催化反应要求适宜的d带空穴 金属价键理论 d%特性百分率与催化活性有关 晶体场理论 晶体场稳定化能与催化活性有关 酸催化理论 酸性质与催化活性有关
CuO是电子型助催化剂 ZnO-Cr2O3 视活化能28kcal/mol ZnO-Cr2O3-CuO 视活化能17kcal/mol • N2 + H2 → NH3 Fe-Al2O3-K2O催化剂 Fe 活性组分 K2O电子型助催化剂 K2O加入后降低了Fe的逸出功φ • C2H2+H2→C2H4 Pd催化剂 在Pd中加入Ag,减少了Pd的d带空穴,降低了 吸附强度,提高了催化剂活性 c) 毒化型助催化剂 使某些不需要的活性中心 被中毒,提高反应选择性 • C2H4+O2→C2H4O Ag/Al2O3 催化剂 加入C2H4Cl2 使 O=被中毒,提高了生成环氧 乙烷的选择性
NIST 动力学数据库 优秀的化工数据库之一 收集了1906年以来发表的几乎所有基元反应动力 学方面的数据,定期发表汇总报告,不断补充数据 包括气相反应、液相反应等动力学参数 能提供实验数据测定的方法及数据的可信度 能将不同作者对同一反应测定的不同动力学数据 呈现给用户,并对数据进行曲线拟合,求出该条件 下的k、E、n CATDB 小型专用数据库 有26种表格和125行数据,26种代表着各种捡索 通道,如文摘、作者、文献、反应类型、反应信 息、制备、表征等 2、专家系统 使计算机具有人类专家那样解决问题的“思维”能 力
催化剂的制备
单击此处可添加副标题
工业催化剂的活性、选择性和稳定性不仅取决于它的化学组成, 也和物理性质有关。也就是说,单凭催化剂的化学成分并不足以推 知其催化性能如:Al2O3, 分子筛 。在许多情况下,催化剂的各种物 理特性,如形状、颗粒大小、物相、比重、比表面积、孔结构和机 械强度等,都会 影响催化剂对某特定反应的催化性能; 影响到催化剂的使用寿命; 影响到反应动力学和流体力学的行为。 如果催化剂在使用过程中机械强度下降, 造成催化剂的破碎及粉 化, 使催化剂床层压降大大增加, 催化剂的效能显著下降。催化剂机 械强度既与物质组成的性质有关, 也与制备方法有关。
S2-
硫脲
C2O42-
尿素与草酸二甲酯或草酸
CO32-
三氯乙酸盐
SO42-
硫酸二甲酯
CrO42-
尿素与HCrO4-
SO42-
黄酰胺
常用的均匀沉淀剂母体
将沉淀操作分两步进行:首先制成盐溶液的悬浮层,然后将悬浮层立刻瞬间混合成均匀的过饱和溶液。经一段时间(诱导期)后,形成超均匀的沉淀物 关键:瞬间混合—快速搅拌 (防止形成结构或组成不均匀的沉淀)
Na2SiO3溶液 = 1.3
NaNO3溶液 = 1.2
Ni(NO3)2 + HNO3溶液 = 1.1
Ni/SiO2制备 (苯选择加氢催化剂) 形成均匀的水溶胶或胶冻,再经分离、洗涤、干燥、焙烧、还原即得催化剂
超均匀共沉淀法
借助晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法 — 预加少量晶种引导结晶快速完整形成 例:制备高硅钠型分子筛(丝光沸石、X型、Y型分子筛)
选择原则: 不能引入有害杂质 — 沉淀剂要易分解挥发 沉淀剂溶解度要大 — 提高阴离子的浓度,沉淀完全;被沉淀物吸附量少,易洗涤除去 沉淀物溶解度要小 — 沉淀完全,适用于Cu、Ni、Ag、Mo 等较贵金属 沉淀要易过滤和洗涤 — 尽量选用能形成晶形沉淀的沉淀剂(盐类) 沉淀剂必须无毒
催化剂的选择制备使用与再生
一、现有催化剂的改进
1. 提高催化剂的活性、选择性、长寿性,以提 高产品质量和生产能力;
2. 寻找制备催化剂的廉价原料和简单方法,以 降低成本;
3. 改进催化剂使用条件,如降温降压等,从而 降低生产操作费用;
几种催化剂相对活性稳定性比较
二、 利用廉价原料研4H10
[O]
O
O
O O
O
O O
O
O O
O 低碳原料研究火热
O
三、 为化工新产品和环境友好工艺开发 催化剂
聚合物在生活中的应用: 衣物(聚酯、尼纶、腈纶) 鞋底(聚丙烯) 沙发、家具、包装袋(聚亚胺酯) 防弹衣(聚对苯撑苯二甲酰胺,二十几种催化剂)
L-多巴(L-二羟基苯丙氨酸)(消旋)
②或含有VA或VIA族的非金属元素及其化合物
VA或VIA族的毒物
毒物及相应的无毒物结构
③使催化剂中毒的金属元素及其化合物
b、金属氧化物催化剂中毒: 比金属催化剂稳定,不易中毒。 依据半导体特性,分施主型反应中毒和受主型
反应中毒; 高温下,毒物对氧化物催化剂易失去毒性 如砷对V2O5,超过500oC会失去毒性
注意: a.原料影响 碳酸盐制Co、Ni、Pd、Mg、Zn、Cd、Cu、Sr、 Ba、Ca氧化物 草酸盐制FeO、MnO等
b.热分解对产物影响
D. 熔融法 将所要求组分的粉状混合物在高温条件
下进行烧结或熔融
过程: 固体粉碎—高温熔融或烧结—冷却—破碎
影响因素: 烧结温度
举例:
合成氨催化剂:铁磁矿、碳酸钾、氧化铝在 1600oC熔融,冷却破碎、氢气还原制得。
HgCl2
50年代 HCCH
O CH3CHO
CH3COOH
《催化剂工程》课件
总结词
催化剂工程在现代化学工业中具有重要意义,它能够降低能耗、减少废弃物排放、提高产品质量和经济效益。
详细描述
催化剂工程在现代化学工业中扮演着至关重要的角色。通过研究和开发高效的催化剂,可以降低化学反应的能耗 ,减少废弃物排放,提高产品质量和经济效益。在石油化工、制药、环保等领域,催化剂工程的应用已经取得了 显著的成果。
微乳液法
总结词
一种基于微小液滴的催化剂制备方法
详细描述
微乳液法是将两种互不相溶的溶剂在表面活 性剂的作用下形成微小液滴,并在微小液滴 中制备出催化剂的方法。该方法能够制备出 具有高比表面积、高活性的催化剂,适用于
制备纳米尺度的催化剂。
03 催化剂的表征技术
物理表征技术
扫描电子显微镜(SEM)
观察催化剂的表面形貌和微观结构。
催化剂是一种能够改变反应速率但不改变反应总吉布斯自由能的物质。它可以加速化学 反应的速率,提高产物的选择性。根据性质和用途的不同,催化剂可以分为均相催化剂 和多相催化剂。均相催化剂通常为液态或气态,与反应物处于同一相态;而多相催化剂
则由固态载体和活性组分组成,与反应物处于不同的相态。
催化剂工程的重要性
05 催化剂的未来发展
高性能催化剂的研发
总结词
随着工业生产对催化剂性能要求的不断提高,高性能 催化剂的研发成为未来的重要方向。
详细描述
高性能催化剂的研发主要集中在提高催化剂的活性、 选择性、稳定性和降低成本等方面。通过改进催化剂 的制备工艺、优化活性组分的结构、探索新型载体材 料等方法,可以进一步提高催化剂的性能。
绿色催化剂的研发
要点一
总结词
随着环保意识的日益增强,绿色催化剂的研发成为未来的 重要趋势。
催化剂工程在现代化学工业中具有重要意义,它能够降低能耗、减少废弃物排放、提高产品质量和经济效益。
详细描述
催化剂工程在现代化学工业中扮演着至关重要的角色。通过研究和开发高效的催化剂,可以降低化学反应的能耗 ,减少废弃物排放,提高产品质量和经济效益。在石油化工、制药、环保等领域,催化剂工程的应用已经取得了 显著的成果。
微乳液法
总结词
一种基于微小液滴的催化剂制备方法
详细描述
微乳液法是将两种互不相溶的溶剂在表面活 性剂的作用下形成微小液滴,并在微小液滴 中制备出催化剂的方法。该方法能够制备出 具有高比表面积、高活性的催化剂,适用于
制备纳米尺度的催化剂。
03 催化剂的表征技术
物理表征技术
扫描电子显微镜(SEM)
观察催化剂的表面形貌和微观结构。
催化剂是一种能够改变反应速率但不改变反应总吉布斯自由能的物质。它可以加速化学 反应的速率,提高产物的选择性。根据性质和用途的不同,催化剂可以分为均相催化剂 和多相催化剂。均相催化剂通常为液态或气态,与反应物处于同一相态;而多相催化剂
则由固态载体和活性组分组成,与反应物处于不同的相态。
催化剂工程的重要性
05 催化剂的未来发展
高性能催化剂的研发
总结词
随着工业生产对催化剂性能要求的不断提高,高性能 催化剂的研发成为未来的重要方向。
详细描述
高性能催化剂的研发主要集中在提高催化剂的活性、 选择性、稳定性和降低成本等方面。通过改进催化剂 的制备工艺、优化活性组分的结构、探索新型载体材 料等方法,可以进一步提高催化剂的性能。
绿色催化剂的研发
要点一
总结词
随着环保意识的日益增强,绿色催化剂的研发成为未来的 重要趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/2/27
工业催化 第五章
21
⑵ 共沉淀法
将含有两种以上金属离子的混合溶液与一种沉 淀剂作用,同时形成含有几种金属组分的沉淀物,称 为共沉淀法。
共沉淀的特点是几个组分同时沉淀,各组分间 达到分子级的均匀混合,在热处理(煅烧)时可加速 组分间的固相反应。
利用共沉淀的方法可以制备多组分催化剂,这是 工业生产中常用的方法之一。
•并加法——把金属盐溶液和沉淀剂同时按比例加到
•
中和沉淀槽中。
2021/2/27
工业催化 第五章
18
搅拌加强溶液的湍动,减小扩散层厚度δ、加大 扩散系数D。
搅拌有利于晶粒长大,同时促进晶核的生成,但 对后者的影响微弱。
随着搅拌速度的提高,开始时急剧增加;
当达到一极值后,再继续提高搅拌速度时,晶粒 长大速度就基本不变。
2021/2/27
工业催化 第五章
11
选择沉淀剂应满足下列技术和经济要求
⑴ 生产中常用的沉淀剂有: 碱类(NH3·H2O、 NaOH、KOH); 碳酸盐(Na2CO3、(NH4)2CO3、CO2); 有机酸(乙酸、草酸)等。 其中最常用的是NH3·H2O和(NH4)2CO3。
⑵ 沉淀剂的溶解度要大,形成的沉淀物溶解度要小。
2021/2/27
工业催化 第五章
12
⑶ 形成的沉淀物必须便于过滤和洗涤。 ⑷ 沉淀剂必须无毒,不应造成环境污染。
2021/2/27
工业催化 第五章
13
2. 沉淀条件的选择 ⑴ 浓度 ⑵ 温度 ⑶ pH值 ⑷ 加料顺序 ⑸ 搅拌
2021/2/27
工业催化 第五章
14
图 晶核生成、长大速度与溶液饱和度的关系
2021/2/27
工业催化 第五章
15
图 温度对晶核生成速度的影响
2021/2/27
工业催化 第五章
16
2021/2/27
工业催化 第五章
17
• 加料顺序不同,直接影响沉淀过 程中的pH值,因 而对沉淀物的性能也会有很大的影响。
•加料顺序有:
•顺加法——把沉淀剂加到金属盐溶液中。
•逆加法——把金属盐溶液加到沉淀剂中称为逆加法。
2021/2/27
工业催化 第五章
5
图 催化剂性能与组成、结构及制备方法之间的关系
2021/2/27
工业催化 第五章
6
图 催化剂的机械强度的影响因素
2021/2/27
工业催化 第五章
7
制造方法 沉淀法 浸渍法
混合法 熔融法 沥滤法 热分解法
表 常用的固体催化剂制造方法
举例 水合氧化物,如氢氧化铁等的制备 贵金属负载到金属氧化物载体Al2O3或SiO2 等载体上 氧化铁-氧化铬CO变换催化剂的制备 合成氨的铁催化剂的制备 雷尼镍催化剂的制备
2021/2/27
工业催化 第五章
19
3. 均匀沉淀法与共沉淀法
⑴ 均匀沉淀法
不是把沉淀剂直接加入到待沉淀溶液中,也不是 加沉淀剂后立即沉淀,而是首先使待沉淀溶液与沉淀 剂母体充分混合,造成一个均匀的体系,然后调节温 度,使沉淀剂母体加热分解,转化为沉淀剂,从而使 金属离子产生均匀沉淀。
2021/2/27
2021/2/27
工业催化 第五章
22
表 共沉淀时复盐化合物生成的可能性
Al3+ Mg2+ Ca2+ Zn2+
Cu2+ + –
–
+ Zn2+
Al3+ +
Mg2 Ca2+
+
––
Zn2+
Fe3+ + +
–
– Mg2+ +
+–
Ni2+ + +
–
– Ca2+ –
+
–
2021/2/27
2021/2/27
工业催化 第五章
10
在沉淀过程中采用什么沉淀反应,选择什么样 的沉淀剂,是沉淀工艺首先要考虑的问题。
同一催化剂可以从不同的原料开始制造,如镍, 可以制成Ni(OH)2沉淀或NiCO3沉淀;
同一种离子可以以正离子状态存在,也可以以 负离子状态存在,如Cr3+与CrO4–。
原料形态的选择应根据生产过程特点加以选择。
影响反应的催化活性,彰响催化剂的使用寿命, 更重要的是影响反应动力学和流休力学的行为。
2021/2/27
工业催化 第五章
3
催化剂制备方法
对于负载创催化剂来说,载体的选择对机械强度 影响很大,成型的方法及使用的设备也直接影响到催 化剂的机械强度。
2021/2/27
工业催化 第五章
4
图 不同方法制备的辛烯醛加氢催化剂的性能
2021/2/27
工业催化 第五章
8
§5.1 沉淀法制备工业催化剂
一、沉淀法
沉淀法是制备固体催化剂最常用的方法之一,广 泛用于制备高含量非贵金属、金属氧化物、金属盐催 化剂和载体。
2021/2/27
工业催化 第五章
9
1. 沉淀过程和沉淀剂的选择
沉淀作用给予催化剂基本的催化剂属性,沉淀物实际 上是催化剂或载体的前驱物,对所制得的催化剂的活 性、寿命和强度有很大影响。
工业催化 第五章
20表 预沉淀剂和所利用的源自应生成的 阴离子 OH–PO43– C2O42– SO42– SO42– S2–
S2–
CO32– CrO42–
预沉淀剂
尿素 三甲基磷酸 尿素或HC2O4– 二甲基硫酸 磺酰胺 硫代乙酰胺 硫脲 三氯乙酸盐 尿素与HCrO4–
反应
(NH2)2CO + 3H2O → 2NH4+ + CO2 + 2OH– (CH3)3PO4 + 3H2O → 3CH3OH + H3PO4 2HC2O4– + (NH2)2CO + H2O → 2NH4+ + CO2 + 2 C2O42– (CH3)2SO4 + 2H2O → 2CH3OH + 2H+ + SO42– NH2SO3H + H2O → NH4+ + H+ + SO42– CH3CSNH2 + H2O → CH3CONH2 + H2S (NH2)2CS + 4H2O → 2NH4+ + CO2 + 2OH– + H2S 2CCl3CO2– + H2O → 2CHCl3 + CO2 + CO32– 2HCrO4– + (NH2)2CO + H2O → 2NH4+ + CO2 + 2 CrO42–
第五章 工业催化剂的制备与使用
§5.0 引言
一、工业催化剂的要求
⑴ 活性高 ⑵ 选择性好 ⑶ 在使用条件下稳定 ⑷ 具有良好的热稳定性、机械稳定性和杭毒性能 ⑸ 价格低廉
2021/2/27
工业催化 第五章
2
二、工业催化剂活性
化学组成 物理性质 催化剂形状、颗粒大小、物相、相对密度、比表 面积、孔结构和机械强度等。