固体物理1 晶体的结构图文
合集下载
固体物理课件-几种常见的晶体结构
簡單晶格必須由同種原子組成;反之,由同種原子組成 的晶格卻不一定是簡單晶格。
如:金剛石、Mg、Zn 、 C60和NaCl等晶格都是複式晶格
1 2
3
1
1
4
41
2
1
32
4
4
1 2
1
3
1
4
4
4
3
1
3
4
4
4
1
3
1
4 14
4
2
1
1
2
2
1 2
三、倒格子
倒格子的定義:
ai b j 2ij
i, j=1, 2, 3
NaCl結構中的八面體位置
➢ CsCl結構 典型晶體:CsCl、CsBr、CsI
➢ 閃鋅礦結構 典型晶體:ZnS、CdS、GaAs、
-SiC
§1.2 晶格的週期性
一、晶格與空間點陣
1. 晶格:晶體中原子(或離子)排列的具體形式
2. 空間點陣
A
B
➢ 等同點系:晶格中所有與起始點在化學、物理和 幾何環境完全相同的點的集合
C:底心Bravais格子 F:面心Bravais格子 H: 六方Bravais格子
P
Triclinic
P
C
Monoclinic
P
C
I
F
Orthorhombic
R
Rhombohedral
P
I
Tetragonal
H
P
Hexagonal
I
F
Cubic
立方晶系的基矢
c
fcc:
a1
0
a2
b a3 a
c
如:金剛石、Mg、Zn 、 C60和NaCl等晶格都是複式晶格
1 2
3
1
1
4
41
2
1
32
4
4
1 2
1
3
1
4
4
4
3
1
3
4
4
4
1
3
1
4 14
4
2
1
1
2
2
1 2
三、倒格子
倒格子的定義:
ai b j 2ij
i, j=1, 2, 3
NaCl結構中的八面體位置
➢ CsCl結構 典型晶體:CsCl、CsBr、CsI
➢ 閃鋅礦結構 典型晶體:ZnS、CdS、GaAs、
-SiC
§1.2 晶格的週期性
一、晶格與空間點陣
1. 晶格:晶體中原子(或離子)排列的具體形式
2. 空間點陣
A
B
➢ 等同點系:晶格中所有與起始點在化學、物理和 幾何環境完全相同的點的集合
C:底心Bravais格子 F:面心Bravais格子 H: 六方Bravais格子
P
Triclinic
P
C
Monoclinic
P
C
I
F
Orthorhombic
R
Rhombohedral
P
I
Tetragonal
H
P
Hexagonal
I
F
Cubic
立方晶系的基矢
c
fcc:
a1
0
a2
b a3 a
c
晶体结构(共78张PPT)
多为无色透明,折 射率较高
山东大学材料科学基础
共价键结合,有方 向性和饱和性,键 能约80kJ/mol
Si,InSb, PbTe
金属键结合, 无方向性,配 位数高,键能 约80kJ/mol
Fe,Cu,W
范得华力结合 ,键能低, 约 8-40 kJ /mol
Ar,H2,CO2
熔点高
强度和硬度由中到 高,质地脆
闪锌矿〔立方ZnS〕结构 S
Zn
属于闪锌矿结构的晶体有β-SiC,GaAs,AlP,InSb
山东大学材料科学基础
•
•
•
•
萤石〔CaF2〕型结构
立方晶系Fm3m空间群,
a0=0.545nm, Z=4。 AB2型化合物, rc/ra>0.732〔0.975〕 配位数:8:4
Ca2+作立方紧密堆积,
F-填入全部四面体 空隙中。 注意:所有八面 体空隙都未被占据。
山东大学材料科学基础
钙钛矿〔CaTiO3〕结构
Ti
ABO3型
立方晶系:以
•
一个Ca2+和3个
O2-作面心立方
Ca
密堆积,
Ti4+占1/4八面体C空aT隙iO3。晶胞 配位多面体连接与Ca2+配位数
Ti4+配位数6,rc/ra=0.436(0.414-0.732)
Ca2+配位数12,rc/ra=0.96
O2-配位数6;
取决温度、组成、掺杂等条件,钙钛矿结构呈现立方、
四方、正交等结构形式。
山东大学材料科学基础
许多化学式为ABO3型的化合物,其中A与B两种阳 离子的半径相差颇大时常取钙钛矿型结构。在钙钛矿 结构中实际上并不存在一个密堆积的亚格子,该结构 可以看成是面心立方密堆积的衍生结构。较小的B离 子占据面心立方点阵的八面体格位,其最近邻仅是氧 离子。
山东大学材料科学基础
共价键结合,有方 向性和饱和性,键 能约80kJ/mol
Si,InSb, PbTe
金属键结合, 无方向性,配 位数高,键能 约80kJ/mol
Fe,Cu,W
范得华力结合 ,键能低, 约 8-40 kJ /mol
Ar,H2,CO2
熔点高
强度和硬度由中到 高,质地脆
闪锌矿〔立方ZnS〕结构 S
Zn
属于闪锌矿结构的晶体有β-SiC,GaAs,AlP,InSb
山东大学材料科学基础
•
•
•
•
萤石〔CaF2〕型结构
立方晶系Fm3m空间群,
a0=0.545nm, Z=4。 AB2型化合物, rc/ra>0.732〔0.975〕 配位数:8:4
Ca2+作立方紧密堆积,
F-填入全部四面体 空隙中。 注意:所有八面 体空隙都未被占据。
山东大学材料科学基础
钙钛矿〔CaTiO3〕结构
Ti
ABO3型
立方晶系:以
•
一个Ca2+和3个
O2-作面心立方
Ca
密堆积,
Ti4+占1/4八面体C空aT隙iO3。晶胞 配位多面体连接与Ca2+配位数
Ti4+配位数6,rc/ra=0.436(0.414-0.732)
Ca2+配位数12,rc/ra=0.96
O2-配位数6;
取决温度、组成、掺杂等条件,钙钛矿结构呈现立方、
四方、正交等结构形式。
山东大学材料科学基础
许多化学式为ABO3型的化合物,其中A与B两种阳 离子的半径相差颇大时常取钙钛矿型结构。在钙钛矿 结构中实际上并不存在一个密堆积的亚格子,该结构 可以看成是面心立方密堆积的衍生结构。较小的B离 子占据面心立方点阵的八面体格位,其最近邻仅是氧 离子。
固体物理课件 第一章 晶体结构
晶面指数(122)
a
c b
(100)
(110)
(111)
在固体物理学中,为了从本质上分析固体的性质,经常要研究晶体中的 波。根据德布罗意在1924年提出的物质波的概念,任何基本粒子都可以 看成波,也就是具备波粒二象性。这是物理学中的基本概念,在固体物 理学中也是一个贯穿始终的概念。
在研究晶体结构时,必须分析x射线(电磁波)在晶体中的传播和衍射 在解释固体热性质的晶格振动理论中,原子的振动以机械波的形式在晶 体中传播;
1 3 Ω = a1 ⋅ a 2 × a 3 = a 2
(
)
金刚石
c
c
面心立方
钙钛矿 CaTiO3 (ABO3)
Ca
O
Ti
简单立方
所有的格点都分布在相互平行的一族平面 上,且每个平面上都有格点分布,这样的 平面称为晶面,该平面组称为晶面族。
特征: (1)同一晶面族中的晶面相互平行; (2)相邻晶面之间的间距相等;(面间距是
至今为止,晶体内部结构的观测还需要依靠衍射现象来进行。
(1)X射线 -由高速电子撞击物质的原子所产生的电磁波。 早在1895年伦琴发现x射线之后不久,劳厄等在1912年就意识到X射线的 波长在0.1nm量级,与晶体中的原子间距相同,晶体中的原子如果按点阵排 列,晶体必可成为X射线的天然三维衍射光栅,会发生衍射现象。在 Friedrich和Knipping的协助下,照出了硫酸铜晶体的衍射斑,并作出了正确 的理论解释。随后,1913年布拉格父子建立了X射线衍射理论,并制造了第 一台X射线摄谱仪,建立了晶体结构研究的第一个实验分析方法,先后测定 了氯化钠、氯化钾、金刚石、石英等晶体的结构。从而历史性地一举奠定 了用X射线衍射测定晶体的原子周期性长程序结构的地位。 时至今日,X射线衍射(XRD)仍为确定晶体结构,包括只具有短程序的无 定型材料结构的重要工具。
固体物理1 晶体的结构图文
复排列而成的。
所有晶体的结构可以用空间点阵来描述,这种晶格的每个 阵点上附有一群原子,这样的一个原子群称为基元,基元在空 间周期性重复排列就形成晶体结构。
1.基元、格点和晶格
(a)
(b)
(c)
(1)基元
在晶体中适当选取某些原子作为一个基本结构单元,这个
基本结构单元称为基元,基元是晶体结构中最小的重复单元,
平均每个晶胞包含2个格点。
固体物理学原胞的体积 Ω a1 a2 a3 1 a3 2
复式格 (1)氯化铯结构
Cl
Cs
氯化铯结构是由两个简立方子晶格沿体对角线位移1/2的 长度套构而成。 Cl-和Cs+分别组成简立方格子,其布喇菲晶
格为简立方,氯化铯结构属简立方。
每个原胞包含1个格点,每个晶胞包含1个格点。基元由一 个Cl-和一个Cs+组成。
222222????????????????????????????????????????????????????????????????????????????????????cnlbnkanhcnlbnkanhkx222222????????????????????????????????????????????????????????????????????????????????????cnlbnkanhcnlbnkanhkx2222????????????????????????????????????????????????????????????????????cnlbnkanhbnkanhky2222????????????????????????????????????????????????????????????????????cnlbnkanhcnlanhkz??????????????????????????nlcknkbknhakzyx??????12222????????????????????????????????????????????????????????cnlbnkanhanh??与对应的衍射方向表示成
所有晶体的结构可以用空间点阵来描述,这种晶格的每个 阵点上附有一群原子,这样的一个原子群称为基元,基元在空 间周期性重复排列就形成晶体结构。
1.基元、格点和晶格
(a)
(b)
(c)
(1)基元
在晶体中适当选取某些原子作为一个基本结构单元,这个
基本结构单元称为基元,基元是晶体结构中最小的重复单元,
平均每个晶胞包含2个格点。
固体物理学原胞的体积 Ω a1 a2 a3 1 a3 2
复式格 (1)氯化铯结构
Cl
Cs
氯化铯结构是由两个简立方子晶格沿体对角线位移1/2的 长度套构而成。 Cl-和Cs+分别组成简立方格子,其布喇菲晶
格为简立方,氯化铯结构属简立方。
每个原胞包含1个格点,每个晶胞包含1个格点。基元由一 个Cl-和一个Cs+组成。
222222????????????????????????????????????????????????????????????????????????????????????cnlbnkanhcnlbnkanhkx222222????????????????????????????????????????????????????????????????????????????????????cnlbnkanhcnlbnkanhkx2222????????????????????????????????????????????????????????????????????cnlbnkanhbnkanhky2222????????????????????????????????????????????????????????????????????cnlbnkanhcnlanhkz??????????????????????????nlcknkbknhakzyx??????12222????????????????????????????????????????????????????????cnlbnkanhanh??与对应的衍射方向表示成
固体物理:1-晶体结构-1
1 4
a1
1 4
a2
1 4
a3
晶列、晶向、晶面、及其指数标记
在布拉伐格子中作一簇平行的直线,这些平行直线 可以将所有的格点包括无遗。
—— 在一个平面里,相邻晶列之间的距离相等 —— 每一簇晶列定义了一个方向 —— 晶向
沿晶向到最短的一个格点的位矢
l1a1 l2a2 l3a3
晶向指数 [l1, l2 , l3 ]
Graphene, 石墨烯(2010 Nobel Prize)
布拉维格子(Bravais lattice)
晶体可以看作是在布拉维点阵(Bravais Lattice)的 每一个格点上放上一组基元(Basis )
原胞(元胞,初基元胞) primitive cell
和一个给定格点的最近邻格点的数量为配位数 z
原子球排列为:AB AB AB ……
Be、Mg、Zn、Cd
各种晶格的堆积比
金刚石晶格结构(diamond)
碳原子构成的一个面心立方原胞内还有四个 原子,分别位于四个空间对角线的 1/4处
NaCl晶体的结构 (sodium chloride)
CsCl晶体的结构(cesium chloride)
CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对角线位移1/2 的 长度套构而成
闪锌矿结构 (zinc blende) ZnS
立方系的硫化锌 —— 具有金刚石类似的结构 化合物半导体 —— 锑化铟、砷化镓、磷化铟
钙钛矿结构 (perovskite)
钙钛矿型的化学式可写为ABO3 —— A代表二价或一价的金属 —— B代表四价或五价的金属 —— BO3称为氧八面体基团, 是钙钛矿型晶体结构的特点
晶体结构1
固体物理基础第1章-晶体结构
ˆ a3 ck
*
*
一个原胞中包含A层
和B层原子各一个 共两个原子
六角密排晶格的原胞和单胞一样
第一讲回顾
什么是固体? 研究固体的思路?复杂到简单
为什么从研究晶体开始? 原胞的选取唯一吗?
1-3 晶格的周期性
1.3.3 复式晶格
• 简单晶格:原胞中仅包含1个原子,所有原子的几何位置和化 学性质完全等价 • 复式晶格:包含两种或更多种等价的原子(或离子) * 两种不同原子或离子构成:NaCl, CsCl * 同种原子但几何位置不等价:金刚石结构、六方密排结构
管原子是金或银还是铜,不管原子之间间距的大小,那他们是完全相 同的,就是他们的结构完全相同!
数学方法抽象描写:不区分物理、化学成分,每个原子都是不可区分
的,只有原子(数学上仅仅是一个几何点)的相对几何排列有意义。
1-2 晶格
• 理想晶体:实际晶体的数学抽象 以完全相同的基本结构单元(基元)规则地,重复的以完 全相同的方式无限地排列而成 • 格点(结点):基元位置,代表基元的几何点 • 晶格(点阵):格点(结点)的总和
1-4 晶向和晶面
1.4.1 晶向
晶向指数
晶向指数
1-4 晶向和晶面
1.4.1 晶向 简单立方晶格的主要晶向
# 立方边OA的晶向
立方边共有6个不同的晶向<100>
# 面对角线OB的晶向
面对角线共有12个不同的晶向<110>
# 体对角线OC晶向
体对角线共有?个不同的晶向<111>
1-4 晶向和晶面
1-3 晶格的周期性
Wigner-Seitz 原胞
以某个格点为中心,作其与邻近格点的中垂面,这些 中垂面所包含最小体积的区域为维格纳-赛兹原胞
半导体物理学 固体物理1-3ppt
解决方法如下:人为地加入合理的限制条件(也称 21 0 1
为等价性条件)——前三个指标之和为0。例如, 晶向指标为[uvtw],则u+v+t=0,故a1轴的指标只
能选
。
晶向四指数的解析求法:先求待求晶向在三轴系a1、a2、 c下的指数U、V、W,然后通过解析求出四指数[uvwt]。由 于三轴系和四轴系均描述同一晶向,故 ua1+va2+ta3+wc=Ua1+Va2+Wc
例如,六棱柱的两个相邻的外表面在晶体学上
应是等价的,但其用三指数表示的晶面指数却分别 为(100)和(110);夹角为120°的密排方向是等价的, 但其晶向指数却为[100]和[110]。在晶体结构
上本来是等价的晶面、晶向却不具有类似的指数,
这给研究带来不方便。
解决的办法是引入第4个指数,即
引入4个坐标轴:a1、a2、a3和c。其中 a1、a2、c不变,a3= - (a1+a2),如图146(a)所示,相互夹角为120°的三个轴 和原来的c轴一起构成四轴体系。引入 四指数后,晶体学上等价的晶面即具 有类似的指数。
图1-44 立方晶体中晶面族的米勒指数
图1-45 立方晶格(111)及其等效晶面
通常晶面指数表示晶面族中某一个具体 的晶面时,也可以不化为互质整数。 可以证明,在立方晶系中,晶面指数和 晶向指数相同的晶面和晶向,彼此互相垂直。 例如[100]⊥(100)、[110]⊥(110)、 [111]⊥(111)。在其它晶系中,这种关系 不一定成立。
晶向指数:
对无限大的理想晶体,通过布拉菲格 子中任意两个格点连一直线,这一直 线将包含无限多个周期性分布的格点, 这样的直线便称为晶列。
固体物理课件第二章_晶体的结构
Na+构成面心立方格子 Cl-也构成面心立方格子
(6) CsCl: 由两个简单立方子晶格彼此沿 立方体空间对角线位移1/2 的长度套构而成
(7) 闪锌矿结构
化合物半导体 —— 锑化铟、砷化镓、磷化铟 面心立方的嵌套
(8) 钙钛矿结构
钛酸钙(CaTiO3) 钛酸钡(BaTiO3) 锆酸铅(PbZrO3) 铌酸锂(LiNbO3) 钽酸锂(LiTaO3)等
面心立方格子:原点和12个近邻格点连线的垂 直平分面围成的正十二面体
体心立方格子:原点和8个近邻格点连线的垂直 平分面围成的正八面体,沿立方轴的6个次近 邻格点连线的垂直平分面割去八面体的六个角, 形成的14面体 —— 八个面是正六边形,六个面是正四边形
§1.2 晶列和晶面
思考: 金刚石为什么有固定的面? 这些面和晶格结构有什么关系?
根据周期性:
f e
k k
ikx
fk e
k
ik ( x na )
f k eikx f k eik( x na)
k k
e
ik na
1
m 0,1,2,
k na k Rn 2m
2 k h Gh a
k=b的波传过一个晶格长度,相位改变2π
晶面:所有结点可以看成分布在一系列相互平 行等距的平面族上,每个平面族称为一个晶面 晶面用法向或晶面指数标志
例:同一个格子,两组不同的晶面族
晶面的性质: –晶格中一族的晶面不仅平行,并且等距 –一族晶面必包含了所有格点 –三个基矢末端的格点必分别落在该族的不 同晶面上(有理指数定理)
晶面(米勒)指数:晶面把基矢 a1 , a2 , a3 分别
2020全国高中物理竞赛辅导课件-固体物理学-第一章 晶体结构(共68张PPT)
1或i
2或m
3 = 3+i
4
6 = 3+m
5)旋转—反映 (复合对称要素)
S1或CS (m)
S2或Ci (i)
S3=C3+CS
S4
S6=C3+Ci
• 描述晶体宏观对称性的独立对称要素只有8个:
C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)、 Ci (i)、 CS (m)和 S4(4)
2020高中物理竞赛 固体物理学
贵州大学版
第一章 晶体结构
1.1 晶体的周期结构
• 点阵和基元 • 原胞的基矢 • 晶胞 • 维格纳-赛茨原胞
1.1 晶体的周期结构
• 晶体:内部组成粒子(原子、离子或原子 团)在微观上作有规则的周期性重复排列 构成的固体。
• 非晶体:组成固体的粒子在空间的排列只 有短程序,但无长程周期性
形其成 平, 移每 关个 系晶 为胞: 中有8个离T子 :RC4l (个fcc)Cl-和a2 RNNaa+(,fcc)
T
RCl
1 2 T[111]RNa ( fcc)
3. 金刚石结构
0
1 2
0
3
1
4
4
1
1
2
0
2
1
3
4
4
0
1 2
0
• 金刚石结构是由同种原子组成的复式格子,位 于立方体顶角及面心的原子与位于立方体内部
• 原胞基矢:
a1 a2
a 2 a 2
( j k)Βιβλιοθήκη (k i)a3a 2
(i
j)
• 格点坐标:
0,0,0;
0,
1 2
固体物理学--ppt课件
22
简立方(Simple Cubic,简称 SC )
三个基矢等长并且互相垂直。
a3 a
a2
原胞与晶胞相同。 a1
a1 ai a 2 aj a3 ak
PPT课件
23
体心立方(Body
问题一
Centered
Cub8ic以1, 体B1心C原C2子个)为原顶子
点,分8别向三个顶角
体心立方晶胞中含有几个原子? 原子引基矢。
PPT课件
11
固体物理学原胞(原胞)特点:
只反映晶格周期性特征 体积最小的周期性重复单元 结点必为顶点,边长等于该方向周期的平行六
面体 六面体内部和面上皆不含其他的结点
PPT课件
12
结晶学原胞(晶胞)的特点:
除反映晶体周期性特征外,还反映其特有 的对称性;
不一定是最小的重复单元; 结点不仅在顶角上,还可在体心或面心; 原胞边长总是一个周期,并各沿三个晶轴
任何基元中相应原子周围的情况相同,但每个基 元中各原子周围情况不同。
c 基元
b a
PPT课件
10
3、晶格、原胞
晶格:通过点阵中 的结点,做许多平 行的直线族和平行 的晶面族,点阵就 成为一些网格,即 晶格。
原胞:用来反映晶 体周期性(及对称 性)特征的六面体 单元,有:
固体物理学原胞 结晶学原胞
问题二
体心立方原胞如何选取?
问题三
原胞的基a1矢 a形2 式 a?3
1 2
a3
问题原四胞体a1积 a?2 (i
j
k)
a2
a 2
(i
j
k)
a3
a 2
(i
j
k)
PPT课件
固体物理学精品PPT课件
பைடு நூலகம்
4.最小内能性
由同一种化学成分构成的物质,在不同的条件下 可以呈现不同的物相,其相应的结合能或系统的内 能也必不相同。
但是,在相同的热力学条件下,在具有相同化学 成分物质的各种物态——气体、液体、非晶体、晶 体中,以晶体的内能最小,这个结论称为晶体的最 小内能性。
对于固体物质,由于晶体内能比非晶体内能小, 所以非晶体具有自发地向晶体转变的趋势;反之, 晶体不可能自发地转变为其它的物态形式。
在单晶体内部,原子都是规则地排列的。
* 多晶体( Multiple Crystal )
由许多小单晶(晶粒)构成的晶体,称为多晶体。 多晶体仅在各晶粒内原子才有序排列,不同晶粒内 的原子排列是不同的。
晶面的大小和形状受晶体生长条件的影响,它们 不是晶体品种的特征因素。
例如,岩盐(氯化钠)晶体的外形可以是立方体 或八面体,也可能是立方和八面的混合体,如图所 示。
有些晶体的解理性不明显,例如,金属晶体等。
晶体解理性在某些加工工艺中具有重要的意义, 例如,在划分晶体管管芯时,利用半导体晶体的解 理性可使管芯具有平整的边缘和防止无规则的断裂 发生,以保证成品率。
3.晶面角守恒定律
发育良好的单晶体,外形上最显著的特征是晶面 有规则地配置。一个理想完整的晶体,相应的晶面 具有相同的面积。晶体外形上的这种规则性,是晶 体内部分子或原子之间有序排列的反映。
晶格振动是晶体的特性之一。
§1.2 晶体的周期性
一、空间点阵学说 1.空间点阵
为了描述晶体结构的周期性,布拉菲在1848年提 出空间点阵学说,从而奠定了晶体结构几何理论的 基础。
按照空间点阵学说,晶体内部结构是由一些相同 的点子在空间规则地作周期性无限分布所构成的系 统,这些点子的总体称为点阵。
4.最小内能性
由同一种化学成分构成的物质,在不同的条件下 可以呈现不同的物相,其相应的结合能或系统的内 能也必不相同。
但是,在相同的热力学条件下,在具有相同化学 成分物质的各种物态——气体、液体、非晶体、晶 体中,以晶体的内能最小,这个结论称为晶体的最 小内能性。
对于固体物质,由于晶体内能比非晶体内能小, 所以非晶体具有自发地向晶体转变的趋势;反之, 晶体不可能自发地转变为其它的物态形式。
在单晶体内部,原子都是规则地排列的。
* 多晶体( Multiple Crystal )
由许多小单晶(晶粒)构成的晶体,称为多晶体。 多晶体仅在各晶粒内原子才有序排列,不同晶粒内 的原子排列是不同的。
晶面的大小和形状受晶体生长条件的影响,它们 不是晶体品种的特征因素。
例如,岩盐(氯化钠)晶体的外形可以是立方体 或八面体,也可能是立方和八面的混合体,如图所 示。
有些晶体的解理性不明显,例如,金属晶体等。
晶体解理性在某些加工工艺中具有重要的意义, 例如,在划分晶体管管芯时,利用半导体晶体的解 理性可使管芯具有平整的边缘和防止无规则的断裂 发生,以保证成品率。
3.晶面角守恒定律
发育良好的单晶体,外形上最显著的特征是晶面 有规则地配置。一个理想完整的晶体,相应的晶面 具有相同的面积。晶体外形上的这种规则性,是晶 体内部分子或原子之间有序排列的反映。
晶格振动是晶体的特性之一。
§1.2 晶体的周期性
一、空间点阵学说 1.空间点阵
为了描述晶体结构的周期性,布拉菲在1848年提 出空间点阵学说,从而奠定了晶体结构几何理论的 基础。
按照空间点阵学说,晶体内部结构是由一些相同 的点子在空间规则地作周期性无限分布所构成的系 统,这些点子的总体称为点阵。
固体物理课件ppt完全版_图文
一、简单立方晶格(SC格子) 1·配位数:每个原子的上下左右前后各有一个最近邻
原子 — 配位数为6
2·堆积方式:最简单的原子球规则排列形式 — 没有 实际的晶体具有此种结构
简单立方晶 格堆积方式
简单立方晶 格典型单元
3·原胞: SC格子的立方单元是最小的周期性单元 — 选取其本身为原胞
4·晶格的三个基矢:
③
∵面上原子密度大,对X 射线的散射强
∴简单的晶面族,在 X 射 线的散射中,常被选做 衍射面
金刚石晶格中双层密排面
第四节 倒格子
晶格的周期性描写方式: 正格子
※ 坐标空间( 空间)的布拉伐格子表示 ※ 波矢空间( 空间)的倒格子表示
Reason?
∵晶体中原子和电子的运动状态,以及各种微观粒子 的相互作用 → 都是在波矢空间进行描写的 晶格振动形成的格波,X 射线衍射均用波矢来表征
晶
列
1· 晶列:在布拉伐格子中,所有格点可以分列在一
系列相互平行的直线系上,这些直线系称
为晶列
2· 晶向:同一个格子可以形成方向不同的晶列,每 一个晶列定义了一个方向,称为晶向
3·晶向指数: 若从一个原子沿晶向到最近的原子的
位移矢量为
, 则用
标志晶向,称为晶向指数
同一晶向族的各晶向
4· 晶面:布拉伐格子的格点还可以看成分列在平行 等距的平面系上,这样的平面称为晶面。
倒易点阵本质
如果把晶体点阵本身理解为周期函数,则倒 易点阵就是晶体点阵的傅立叶变换,所以倒
易点阵也是晶体结构周期性的数学抽象,只
是在不同空间(波矢空间)来反映,其所以要变 换到波矢空间是由于研究周期性结构中波动 过程的需要。
一个三维周期性函数u(r)(周期为T=n1a1+ n2a2+ n3a3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单晶格。 复式晶格:如果晶体由两种或两种以上原子组成,同种原
子各构成和格点相同的网格,称为子晶格,它们相对位移而 形成复式晶格。
简单点的距离称为该方向上的周期。在晶格中
取一个格点为顶点,以三个不共面的方向上的周期为边长形成
的平行六面体作为重复单元,这个平行六面体沿三个不同的方
点阵),这种三维网络也称为晶格(或者说这些点在空间周期
性排列形成的骨架称为晶格)。
用矢量 R n1a1 n2 a2 n3 a3 (n1, n2 , n3取整数)表示
格点的排列。
晶格(空间点阵)是晶体结构周期性的数学抽象,它忽略 了晶体结构的具体内容,保留了晶体结构的周期性。
(3)格点
晶格中的点子代表着晶体结构中相同的位置,称为格点 (结点)。
第一层:每个球与6个球相切, 有6个空隙,如编号为1,2,3,4,5,6。
第二层:占据1,3,5空位中 心。
第三层:占据2,4,6空位中 心,按ABCABCABC······方式排 列。
A B
立方密积
2.配位数
一个粒子周围最近邻的粒子数称为配位数.
可以描述晶体中粒子排列的紧密程度,粒子排列越紧密, 配位数越大。
熔解热用来破坏长程有序。
晶体的宏观特性是由晶体内部结构的周期性决 定的,即晶体的宏观特性是微观特性的反映。
§1.2 密堆积
1.密堆积 把原子视为刚性小球,在一个平面内最简 单堆积形成正方排列,把他们层层重合堆积就
构成简单立方结构。
若简单立方结构空隙内放入同样的原子球与最近邻
的八球相切,就构成体心立方结构单元。
以上两种堆积不是最紧密的,最紧密的堆积原子球 必须与同一平面内相邻的6个原子球相切。这样的原子面
称为密排面。
如果晶体由完全相同的一种粒子组成,而粒子被看作小 圆球,则这些全同的小圆球最紧密的堆积称为密堆积。
密堆积中,原子球必须与同一平面内相邻的6个原 子球相切构成密排面,相邻原子层也必须是密排面,原子 球心必须与相邻原子层空隙重合。
第一节 晶体的共性
一 固体的分类
固体分类(按结构)
晶体: 长程有序
单晶体
多晶体 固体 准晶体:有序但不具有平移对称性
非晶体: 不具有长程序的特点,短程有序。
长程有序: 至少在微米量级范围内原子排列具有周期性。
晶体的分类
晶体
按晶胞分 立方晶系 六方晶系 四方晶系 三方晶系 正交晶系 单斜晶系 三斜晶系
原胞的基本平移矢量,简称基矢。
1.原胞的分类
(1)固体物理学原胞(简称原胞)
构造:取一格点为顶点,由此点向近邻的三个格点作三个
晶面角守恒定律: 属于同一品种的晶体,两个对应晶面间的夹角恒定不变。
石英晶体: a、b 间夹角总是141º47´; a、c 间夹角总是113º08´; b、 c 间夹角总是120º00´。
3.晶体的各向异性
在不同方向上,晶体的物理性质不同。 O
Cl
A
由右图可以看出,在不同的方向上晶
C
O1
A1
体中原子排列情况不同,故其性质不同。
按对称性分 立方体 六方体
按功能分 导体 半导体 绝缘体 磁介质 电介质 超导体
按结合方式分 分子晶体 离子晶体 共价晶体 金属晶体 氢键晶体
二 晶体的共性
1.长程有序: 至少在微米量级范围内
原子排列具有周期性。
d a 1 b2
c
2.自限性(自范性): 晶体所具有的自发地形
成封闭凸多面体的能力称为 自限性。
密堆积的配位数最大——12
同平面内与6个原子球相切,相邻平面内各与三个原子 球相切,这样一个原子的最近邻原子共有6+3+3=12
§1.3 布喇菲空间点阵 原胞 晶胞
(a)
(b)
(c)
(a)、(b)、(c)为二维晶体结构示意图,它们有何异同?
(a)
(b)
(c)
一 晶体结构的周期性
一个理想的晶体是由完全相同的结构单元在空间周期性重
复排列而成的。
所有晶体的结构可以用空间点阵来描述,这种晶格的每个 阵点上附有一群原子,这样的一个原子群称为基元,基元在空 间周期性重复排列就形成晶体结构。
1.基元、格点和晶格
(a)
(b)
(c)
(1)基元
在晶体中适当选取某些原子作为一个基本结构单元,这个
基本结构单元称为基元,基元是晶体结构中最小的重复单元,
一个格点代表一个基元,它可以代表基元重心的位置,
也可以代表基元中任意的点子。
(a)
(b)
晶格(空间点阵)+基元=晶体结构
2.布喇菲格子、简单晶格和复式晶格
(1)布拉维格子(布喇菲点阵)
结点的总体称为布喇菲格子,这种格子的特点是每点周围 的情况完全相同。
(2)简单晶格和复式晶格
简单晶格:如果晶体由完全相同的一种原子组成,且每 个原子周围的情况完全相同,则这种原子所组成的网格称为
O
晶体的均匀性:
A*
B
NaCl晶体结构(100)面示意图
在晶体内部平行方向上质点的物理性质相同。
晶体的解理性: 晶体沿某些确定方位的晶面劈裂的性质,这样的晶面
称为解理面。
4.固定的熔点:
给某种晶体加热,当加热到某一特定温度时,晶体开 始熔化,且在熔化过程中保持不变,直到晶体全部熔化, 温度才开始上升,即晶体有固定的熔点。
基元在空间周期性重复排列就形成晶体结构。
任何两个基元中相应原子周围的情况是相同的,而每一
个基元中不同原子周围情况则不相同。
(2)晶格
(a)
(b)
(c)
晶体的内部结构可以概括为是由一些相同的点子在空间有
规则地做周期性无限分布,通过这些点做三组不共面的平行直
线族,形成一些网格,这些点子的总体称为空间点阵(布喇菲
向进行周期性平移,就可以充满整个晶格,形成晶体,这个平
行六面体即为原胞,代表原胞三个边的矢量称为原胞的基本平
移矢量,简称基矢。
在晶格中取一个格点为顶点,以三个不共面的方向上的周 期为边长形成的平行六面体作为重复单元,这个平行六面体沿
三个不同的方向进行周期性平移,就可以充满整个晶格,形成 晶体,这个平行六面体即为原胞,代表原胞三个边的矢量称为
(1)六角密积
第三层原子球心落在第二层
AB
的空隙上,且与第一层球平行对
应,形成ABABAB······排列方式
。
(1)六角密积
AB
(2)立方密积
第三层原子球心落在第二层空隙上,
且该空隙也与第一层空隙重合,而第四
A
层又恢复成第一层的排列,即按 B
ABCABCABC······方式排列,形成面
心立方结构,称为立方密积。
子各构成和格点相同的网格,称为子晶格,它们相对位移而 形成复式晶格。
简单点的距离称为该方向上的周期。在晶格中
取一个格点为顶点,以三个不共面的方向上的周期为边长形成
的平行六面体作为重复单元,这个平行六面体沿三个不同的方
点阵),这种三维网络也称为晶格(或者说这些点在空间周期
性排列形成的骨架称为晶格)。
用矢量 R n1a1 n2 a2 n3 a3 (n1, n2 , n3取整数)表示
格点的排列。
晶格(空间点阵)是晶体结构周期性的数学抽象,它忽略 了晶体结构的具体内容,保留了晶体结构的周期性。
(3)格点
晶格中的点子代表着晶体结构中相同的位置,称为格点 (结点)。
第一层:每个球与6个球相切, 有6个空隙,如编号为1,2,3,4,5,6。
第二层:占据1,3,5空位中 心。
第三层:占据2,4,6空位中 心,按ABCABCABC······方式排 列。
A B
立方密积
2.配位数
一个粒子周围最近邻的粒子数称为配位数.
可以描述晶体中粒子排列的紧密程度,粒子排列越紧密, 配位数越大。
熔解热用来破坏长程有序。
晶体的宏观特性是由晶体内部结构的周期性决 定的,即晶体的宏观特性是微观特性的反映。
§1.2 密堆积
1.密堆积 把原子视为刚性小球,在一个平面内最简 单堆积形成正方排列,把他们层层重合堆积就
构成简单立方结构。
若简单立方结构空隙内放入同样的原子球与最近邻
的八球相切,就构成体心立方结构单元。
以上两种堆积不是最紧密的,最紧密的堆积原子球 必须与同一平面内相邻的6个原子球相切。这样的原子面
称为密排面。
如果晶体由完全相同的一种粒子组成,而粒子被看作小 圆球,则这些全同的小圆球最紧密的堆积称为密堆积。
密堆积中,原子球必须与同一平面内相邻的6个原 子球相切构成密排面,相邻原子层也必须是密排面,原子 球心必须与相邻原子层空隙重合。
第一节 晶体的共性
一 固体的分类
固体分类(按结构)
晶体: 长程有序
单晶体
多晶体 固体 准晶体:有序但不具有平移对称性
非晶体: 不具有长程序的特点,短程有序。
长程有序: 至少在微米量级范围内原子排列具有周期性。
晶体的分类
晶体
按晶胞分 立方晶系 六方晶系 四方晶系 三方晶系 正交晶系 单斜晶系 三斜晶系
原胞的基本平移矢量,简称基矢。
1.原胞的分类
(1)固体物理学原胞(简称原胞)
构造:取一格点为顶点,由此点向近邻的三个格点作三个
晶面角守恒定律: 属于同一品种的晶体,两个对应晶面间的夹角恒定不变。
石英晶体: a、b 间夹角总是141º47´; a、c 间夹角总是113º08´; b、 c 间夹角总是120º00´。
3.晶体的各向异性
在不同方向上,晶体的物理性质不同。 O
Cl
A
由右图可以看出,在不同的方向上晶
C
O1
A1
体中原子排列情况不同,故其性质不同。
按对称性分 立方体 六方体
按功能分 导体 半导体 绝缘体 磁介质 电介质 超导体
按结合方式分 分子晶体 离子晶体 共价晶体 金属晶体 氢键晶体
二 晶体的共性
1.长程有序: 至少在微米量级范围内
原子排列具有周期性。
d a 1 b2
c
2.自限性(自范性): 晶体所具有的自发地形
成封闭凸多面体的能力称为 自限性。
密堆积的配位数最大——12
同平面内与6个原子球相切,相邻平面内各与三个原子 球相切,这样一个原子的最近邻原子共有6+3+3=12
§1.3 布喇菲空间点阵 原胞 晶胞
(a)
(b)
(c)
(a)、(b)、(c)为二维晶体结构示意图,它们有何异同?
(a)
(b)
(c)
一 晶体结构的周期性
一个理想的晶体是由完全相同的结构单元在空间周期性重
复排列而成的。
所有晶体的结构可以用空间点阵来描述,这种晶格的每个 阵点上附有一群原子,这样的一个原子群称为基元,基元在空 间周期性重复排列就形成晶体结构。
1.基元、格点和晶格
(a)
(b)
(c)
(1)基元
在晶体中适当选取某些原子作为一个基本结构单元,这个
基本结构单元称为基元,基元是晶体结构中最小的重复单元,
一个格点代表一个基元,它可以代表基元重心的位置,
也可以代表基元中任意的点子。
(a)
(b)
晶格(空间点阵)+基元=晶体结构
2.布喇菲格子、简单晶格和复式晶格
(1)布拉维格子(布喇菲点阵)
结点的总体称为布喇菲格子,这种格子的特点是每点周围 的情况完全相同。
(2)简单晶格和复式晶格
简单晶格:如果晶体由完全相同的一种原子组成,且每 个原子周围的情况完全相同,则这种原子所组成的网格称为
O
晶体的均匀性:
A*
B
NaCl晶体结构(100)面示意图
在晶体内部平行方向上质点的物理性质相同。
晶体的解理性: 晶体沿某些确定方位的晶面劈裂的性质,这样的晶面
称为解理面。
4.固定的熔点:
给某种晶体加热,当加热到某一特定温度时,晶体开 始熔化,且在熔化过程中保持不变,直到晶体全部熔化, 温度才开始上升,即晶体有固定的熔点。
基元在空间周期性重复排列就形成晶体结构。
任何两个基元中相应原子周围的情况是相同的,而每一
个基元中不同原子周围情况则不相同。
(2)晶格
(a)
(b)
(c)
晶体的内部结构可以概括为是由一些相同的点子在空间有
规则地做周期性无限分布,通过这些点做三组不共面的平行直
线族,形成一些网格,这些点子的总体称为空间点阵(布喇菲
向进行周期性平移,就可以充满整个晶格,形成晶体,这个平
行六面体即为原胞,代表原胞三个边的矢量称为原胞的基本平
移矢量,简称基矢。
在晶格中取一个格点为顶点,以三个不共面的方向上的周 期为边长形成的平行六面体作为重复单元,这个平行六面体沿
三个不同的方向进行周期性平移,就可以充满整个晶格,形成 晶体,这个平行六面体即为原胞,代表原胞三个边的矢量称为
(1)六角密积
第三层原子球心落在第二层
AB
的空隙上,且与第一层球平行对
应,形成ABABAB······排列方式
。
(1)六角密积
AB
(2)立方密积
第三层原子球心落在第二层空隙上,
且该空隙也与第一层空隙重合,而第四
A
层又恢复成第一层的排列,即按 B
ABCABCABC······方式排列,形成面
心立方结构,称为立方密积。