数控机床精度检测项目
数控机床加工精度检测与校准方法

数控机床加工精度检测与校准方法在现代制造业中,数控机床是不可或缺的重要设备。
它的高效率、高精度和高稳定性使得加工过程更加精确和可靠。
然而,由于各种因素的影响,数控机床的加工精度可能会出现偏差。
因此,对数控机床的精度进行检测和校准是非常必要的。
一、加工精度检测方法1. 几何误差检测几何误差是数控机床加工精度的重要指标之一。
常见的几何误差包括直线度误差、平行度误差、垂直度误差和圆度误差等。
几何误差的检测可以使用光学测量仪器,如激光干涉仪、光学投影仪等。
通过将测量仪器与数控机床进行联动,可以实时监测数控机床的加工精度,并得出相应的误差数据。
2. 热误差检测热误差是数控机床加工精度的另一个重要指标。
由于加工过程中会产生热量,数控机床的温度会发生变化,从而导致加工精度的偏差。
为了检测热误差,可以使用温度传感器对数控机床进行监测。
通过实时记录数控机床的温度变化,并与加工精度进行对比,可以得出热误差的数据。
3. 振动误差检测振动误差是数控机床加工精度的另一个重要影响因素。
振动会导致数控机床的加工过程不稳定,从而影响加工精度。
为了检测振动误差,可以使用振动传感器对数控机床进行监测。
通过实时记录数控机床的振动情况,并与加工精度进行对比,可以得出振动误差的数据。
二、加工精度校准方法1. 机床调整机床调整是校准数控机床加工精度的常用方法之一。
通过调整数控机床的各项参数,如传动装置、导轨、滑块等,可以减小加工误差。
例如,可以通过调整导轨的平行度和垂直度来改善加工精度。
此外,还可以通过更换加工刀具、调整刀具固定方式等方式来提高加工精度。
2. 补偿技术补偿技术是校准数控机床加工精度的另一种常用方法。
通过对加工过程中的误差进行实时监测,并通过数学模型进行补偿,可以减小加工误差。
例如,可以通过在程序中添加补偿指令,根据误差数据进行补偿,从而提高加工精度。
3. 精度校准仪器精度校准仪器是校准数控机床加工精度的重要工具。
常见的精度校准仪器包括激光干涉仪、光学投影仪、三坐标测量机等。
数控机床工作台的定位精度检测与调整技巧

数控机床工作台的定位精度检测与调整技巧数控机床工作台是现代制造业中不可或缺的重要设备,其定位精度直接关系到加工零件的质量和精度。
本文将为大家介绍数控机床工作台的定位精度检测与调整技巧。
一、定位精度检测方法1. 平面定位精度检测:将工作台移动到机床最大行程的两端,将测量时的测头放置在工作台上,并对两个端点进行平面度测量。
根据测量结果,计算平均偏差,以评估工作台的平面定位精度。
2. 垂直定位精度检测:将工作台移动到最高点或最低点,将测量时的测头放置在工作台上,并对工作台进行垂直度测量。
根据测量结果,计算垂直度偏差,以评估工作台的垂直定位精度。
3. 水平定位精度检测:将工作台移动到机床最大行程的两端,将测量时的测头放置在工作台上,并对两个端点进行水平度测量。
根据测量结果,计算平均偏差,以评估工作台的水平定位精度。
4. 位移重复性检测:将工作台移动到同一个位置,并多次测量工作台的定位偏差。
根据测量结果,计算位移重复性误差,以评估工作台的定位精度。
二、定位精度调整技巧1. 调整导轨与滑块:导轨与滑块是数控机床工作台的关键部件,直接影响着定位精度。
通过调整导轨与滑块之间的间隙,减小摩擦力,可以提高定位精度。
调整时需仔细测量每个位置的间隙,并确保在规定范围内。
2. 调整传动系统:传动系统的精度也是影响工作台定位精度的重要因素。
可以通过调整传动装置的齿轮啮合间隙、传动带的张力以及传动链条的松紧度来提高定位精度。
3. 检查并更换磨损部件:长时间使用后,机床工作台的关键部件可能会出现磨损,导致定位精度下降。
及时检查并更换磨损的部件,可以恢复工作台的定位精度。
4. 调整液压系统:液压系统的稳定性对工作台的定位精度有重要影响。
可以通过调整液压泵的工作压力、检查液压缸的密封状况,保证液压系统的正常工作,提高工作台的定位精度。
5. 关注温度变化:温度变化也会对工作台的定位精度造成影响。
数控机床工作台应放置在稳定的温度环境中,并定期检查温度变化对定位精度的影响,必要时进行调整或采取温度补偿措施。
数控机床精度校验检测

数控机床精度检测数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。
另一方面,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。
因此,数控机床精度检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。
1、检验所用的工具1.1、水平仪水平:0.04mm/1000mm扭曲:0.02mm/1000mm水平仪的使用和读数水平仪是用于检查各种机床及其它机械设备导轨的直线度、平面度和设备安装的水平性、垂直性。
使用方法:测量时使水平仪工作面紧贴在被测表面,待气泡完全静止后方可读数。
水平仪的分度值是以一米为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进行计算:实际倾斜值=分度值×L×偏差格数水平仪的读数:水平仪读数的符号,习惯上规定:气泡移动方向和水平移动方向相同时读数为正值,相反时为负值。
1.2、千分表1.3、莫氏检验棒2、检验内容2.1、相关标准(例)➢加工中心检验条件第2部分:立式加工中心几何精度检验JB/T8771.2-1998➢加工中心检验条件第7部分:精加工试件精度检验JB/T8771.7-1998➢加工中心检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验JB/T8771.4-1998➢机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定JB/T17421.2-2000加工中心技术条件JB/T8801-19982.2、检验内容精度检验内容主要包括数控机床的几何精度、定位精度和切削精度。
2.2.1、数控机床几何精度的检测机床的几何精度是指机床某些基础零件本身的几何形状精度、相互位置的几何精度及其相对运动的几何精度。
机床的几何精度是综合反映该设备的关键机械零部件和组装后几何形状误差。
数控机床的基本性能检验与普通机床的检验方法差不多,使用的检测工具和方法也相似,每一项要独立检验,但要求更高。
数控机床的精度检测方法与标准

数控机床的精度检测方法与标准数控机床是一种高精度的机床设备,广泛应用于制造业的各个领域。
为了确保数控机床的工作精度,需要进行精度检测。
本文将介绍数控机床的精度检测方法和标准,为读者提供参考。
一、数控机床精度检测方法1. 几何精度检测几何精度是指数控机床在工作过程中,工件表面形状、位置、尺寸等与理论位置之间的差异。
常用的几何精度检测方法包括:平行度检测、垂直度检测、直线度检测等。
这些检测方法可以通过使用测量仪器(例如投影仪、三坐标测量机等)进行测量和比较,以确定数控机床是否满足工作要求。
2. 运动精度检测运动精度是指数控机床在运动中达到的位置是否准确。
常用的运动精度检测方法包括:位置误差检测、重复定位精度检测、速度误差检测等。
这些检测方法可以通过使用激光干涉仪、激光漂测仪等测量设备进行测量,以确定数控机床的运动精度是否符合要求。
3. 刚度检测刚度是指数控机床在受力时的变形情况。
常用的刚度检测方法包括:静刚度检测、动刚度检测等。
静刚度可以通过在数控机床各个部位施加力并测量其变形情况来进行检测;动刚度可以通过在数控机床运动状态下进行控制并测量位移来进行检测。
二、数控机床精度检测标准为了统一数控机床的精度检测标准,国内外制定了相应的标准,其中最有代表性的是国家标准GB/T16857-1997《数控机床精度检验方法》。
该标准规定了数控机床的几何精度、运动精度和刚度等指标的检测方法和要求。
以几何精度为例,该标准包括对工件表面形状、位置、尺寸等几何误差的检测,在该标准中,提供了一系列的测量方法,包括投影法、三坐标法、机床内检测法等。
此外,该标准还规定了几何误差的允许值,即数控机床在工作过程中允许存在的误差范围。
除了国家标准,国际标准也对数控机床的精度检测进行了规范,例如ISO 230-1和ISO 230-2等,这些标准主要用于指导和规范制造商以及使用单位在数控机床精度检测方面的操作。
近年来,随着数控机床技术的不断发展,对精度的要求也越来越高。
数控车床出厂前的检测项目及内容

数控车床出厂前的检测项目及内容数控车床是一种广泛应用于金属加工领域的机械设备,它能够通过数控系统实现精密加工,提高生产效率和产品质量。
在数控车床出厂前,厂家会对其进行一系列严格的检测项目,以确保设备的质量和性能达到标准要求,保证用户购买到的设备是正常、安全的。
本文将对数控车床出厂前的检测项目及内容进行详细介绍,以便读者了解数控车床的质量保证措施。
一、外观检查数控车床出厂前的第一项检测项目是外观检查,包括机床本体、操作面板、操作台等部件的表面光洁度、油漆是否易脱落、铭牌标识是否清晰等。
外观检查是最基本的一项检测内容,它直接关系到设备的美观度和质感,也是用户最先能够感知到的。
数控车床外观检查的合格标准是:机床表面无划伤、无明显凹陷,表面光洁度符合要求,油漆附着力强,铭牌标识清晰完整。
二、尺寸精度检查数控车床的主要功能是精确加工金属工件,因此其尺寸精度是至关重要的检测项目。
数控车床的尺寸精度检查主要包括工作台的平面度、轴线的垂直度、工作台的行程、主轴的旋转精度等。
这些尺寸精度的检查项目主要通过测量仪器来进行,如平面测量仪、卡尺、游标卡尺等。
尺寸精度检查合格标准是:工作台平面度误差小于0.02mm,轴线垂直度误差小于0.01mm,主轴旋转精度误差小于0.005mm。
三、加工精度检查数控车床的加工精度是指在加工过程中,工件表面的粗糙度、圆度、直线度等参数的检查。
这些参数直接关系到工件的最终质量和加工的精度。
加工精度检查主要通过加工测试样件来进行,使用测量仪器如三坐标测量机来检测工件参数。
数控车床加工精度检查的合格标准是:工件表面粗糙度符合要求,圆度误差小于0.01mm,直线度误差小于0.02mm。
四、控制系统稳定性检查数控车床的控制系统是整个设备的核心部件,其稳定性直接关系到设备的运行和加工效果。
控制系统稳定性检查主要包括数控系统的自检功能、数据传输的稳定性、程序运行的流畅性等。
它主要通过模拟运行、程序下发测试来检测控制系统的性能。
数控机床精度及性能检验

数控机床精度及性能检验数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。
另一方而,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。
因此,数控机床精度和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。
一、精度检验一台数控机床的检测验收工作,是一项工作量大而复杂,试验和检测技术要求高的工作。
它要用各种检测仪器和手段对机床的机、电、液、气各部分及整机进行综合性能及单项性能的检测,最后得出对该数控机床的综合评价。
这项工作为数控机床今后稳定可靠地运行打下一定的基础,可以将某些隐患消除在考机和验收阶段中,因此,这项工作必须认真、仔细,并将符合要求的技术数据整理归档,作为今后设备维护、故障诊断及维修中恢复技术指标的依据。
1、几何精度检验几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。
数控机床的几何精度的检验工具和检验方法类似于普通机床,但检测要求更高。
几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。
考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度:在几何精度检测时应注意测量方法及测量工具应用不当所引起的误差。
在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴故个等的转速运转十多分钟后进行。
常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。
检测工具的精度必须比所测的几何精度高一个等级。
(一)卧式加工中心几何精度检验1)x 、y 、z 坐标轴的相互垂直度。
2)工作台面的平行度。
3)x 、Z 轴移动时工作台面的平行度。
4)主轴回转轴线对工作台面的平行度。
5)主轴在Z 轴方向移动的直线度:6)x 轴移动时工作台边界与定位基准面的平行度。
7)主轴轴向及孔径跳动。
8)回转工作台精度。
具体的检测项目及方法见表2—1。
数控机床精度检测项目及常用工具

(1)几何精度检测:
项目:几何精度包括直线度、垂直度、俯仰与扭摆、平面度、平行度等;
工具:ML10激光干涉仪、直线度光学镜、垂直度光学镜、平面度光学镜、角度镜组件等;
2.3 工作精度:
项目:美国NAS(国家宇航标准)979在20年前就制订了标准化的“圆形—菱形—方形”试验(现在是CMTBA的标志)。
工具:准备铸铁或铝合金试件、铣刀及编制数控切削程序,高精度圆度仪及高精度三坐标测量机做试件精度检验。
特点:该方法需要仔细定义试件的切削方法和测量切削结果;可能要花几天时间,这依赖于计量室的条件。
特点:可采用自动数据采集及分析,精度高,测量范围大。特别是雷尼绍直线度光学镜具有其独特的专利设计,大大改善了调光的复杂程度。
(2)位置精度的检测及其自动补偿:
项目:数控机床位置精度包括定位精度、重复定位精度、微量位移精度等;
工具:ML10激光干涉仪、线性光学镜等;
特点:利用雷尼绍ML10激光干涉仪不仅能自动测量机器的误差,而且还能通过RS232接口,自动对其线性误差进行补偿,上述过程是自动进行的,比通常的补偿方法节省了大量时间,并且避免了手工计算和手动数据键入而引起的操作者误差,同时可最大限度地选用被测轴上的补偿点数,使机床达到最佳精度,另外操作者无需具有机床参数及补偿方法的知识。
(1)什么是球杆仪?
雷尼绍QC10球杆仪是用于数控机床两轴联动精度快速检测与机床故障分析的一种工具。它由一安装在可伸缩的纤维杆内的高精度位移传感器构成,该传感器包括两个线圈和一个可移动的内杆,其工作原理类同于使用LVDT技术的位移传感器。当其长度变化时,内杆移入线圈,感应系数发生变化,检测电路将电感信号转变成分辨率为0.1μm位移信号,通过接口传入PC机。其精度经激光干涉仪检测达±0.5μm(20℃)。
数控机床几何精度检验

6
使百分表/千分表读数在平尺的两端相等。手轮模式
下沿X轴线移动工作台,在全行程上进行检验。记录
百分表/千分表读数的最大差值,即为在XY水平面内
X轴线运动的直线度误差
整理、清洁。准备进行下一项目检验,不用的量检具应放回规定的位置,不能随 7
意在检验区域摆放
2.检验Y轴线运动的直线度 检验Y轴线运动的直线度方法见表3-12。
录指示器的最大读数差,即分别为在平行于X轴线的
ZX垂直平面内Z轴线运动的直线度及在平行于Y轴线
的YZ垂直平面内Z轴线运动的直线度
整理、清洁。准备进行下一项目检验,不用的量检具应放回规定的位置,不能 4
随意在检验区域摆放
二、线性运动的角度偏差
线性运动的角度偏差包括X轴、Y轴和Z轴线性运动的角度偏差,现 介绍X轴线性运动的角度偏差检验方法,见表3-14。
1.检验X轴线运动的直线度
检验X轴线运动的直线度方法见表3-11。
表3-11 检验X轴线运动的直线度方法
检验项目G1
X轴线运动的直线度: a)在ZX垂直平面内; b)在XY水平面内
标准
GB/T 18400.2-2010《加工中心检验条件 第2部分:立式或带主回转轴的 万能主轴头机床几何精度检验(垂直Z轴)》规定,G1项公差为:
项目1 数控机床几何精度检验
任务三 立式加工中心几何精度检验验
项目1 数控铣床和立式加工中心几何精度检验 任务三 立式加工中心几何精度检验
国家标准GB/T 18400.2-2010《加工中心检验 条件 第2部分:立式或带主回转轴的万能主 轴头机床几何精度检验(垂直Z轴)》
一、线性运动的直线度
线性运动的直线度包括X轴、Y轴和Z轴的线性运动直线度
数控机床精度检测报告

数控机床精度检测报告1. 检测目的本报告旨在对数控机床的精度进行检测,并评估其在实际运行中的表现,以提供参考和改进方向。
2. 检测方法本次检测主要通过以下方法进行:- 根据相关标准,选择适当的检测工具和仪器。
- 进行各项精度检测,如定位精度、重复定位精度、加工精度等。
- 对检测结果进行数据分析和统计。
3. 检测内容及结果3.1 定位精度定位精度是评估数控机床位置控制精度的重要指标。
通过测量实际运动位置与预定位置的差异来评估机床的定位精度。
我们进行了10次定位精度检测,获取了如下结果:- 平均偏差:0.02mm- 最大偏差:0.05mm3.2 重复定位精度重复定位精度是评估数控机床重复执行同一指令时的位置精度。
通过多次执行同一指令,并测量各次运动位置的偏差来评估重复定位精度。
我们进行了10次重复定位精度检测,获取了如下结果:- 平均偏差:0.03mm- 最大偏差:0.07mm3.3 加工精度加工精度是评估数控机床在实际加工过程中能够达到的精度水平。
通过进行实际加工并测量加工件的尺寸来评估加工精度。
我们进行了多个加工件的尺寸检测,并得出如下结果:- 加工件1:尺寸偏差±0.05mm- 加工件2:尺寸偏差±0.08mm- 加工件3:尺寸偏差±0.06mm4. 数据分析与评估基于以上检测结果,我们对数控机床的精度进行了评估。
4.1 优势数控机床在定位精度和重复定位精度方面表现良好,平均偏差较小,最大偏差也在可接受范围内。
4.2 不足数控机床在加工精度方面存在一定的改进空间,加工件的尺寸偏差较大,需要优化加工工艺和控制系统。
5. 改进方向基于上述评估结果,我们提出如下改进方向:- 进一步优化数控机床的控制算法,提高加工精度。
- 定期对数控机床进行维护和校准,确保其精度稳定性。
- 在加工过程中加强对工件尺寸的实时监测,及时进行调整和纠正。
6. 结论通过本次精度检测和评估,我们认为数控机床在定位精度和重复定位精度方面表现良好,但在加工精度方面仍有改进空间。
数控机床精度检验内容

数控机床精度检验内容数控机床是一种高精度、高效率的自动化加工设备,广泛应用于各种工业制造领域。
而数控机床的精度检验是确保其加工质量和稳定性的重要环节。
本文将围绕数控机床精度检验的内容展开讨论,以帮助读者更好地了解和掌握数控机床的精度检验方法和技术要点。
首先,数控机床的精度检验内容包括几个方面,几何精度、运动精度、定位精度和重复定位精度。
几何精度是指数控机床在工作时各轴线的几何位置精度,包括直线度、平行度、垂直度等。
而运动精度是指数控机床在运动时的加工精度,包括加工表面的光洁度、尺寸精度等。
定位精度是指数控机床在定位时的位置精度,包括定位误差、回零精度等。
重复定位精度是指数控机床在多次定位时的重复性精度,即同一位置的重复性定位误差。
其次,数控机床的精度检验方法主要包括几种,测量仪器法、几何误差补偿法、动态误差补偿法和工件检验法。
测量仪器法是通过使用各种测量仪器对数控机床进行几何精度、运动精度、定位精度和重复定位精度的检测。
几何误差补偿法是通过对数控机床的几何误差进行补偿,以提高其加工精度。
动态误差补偿法是通过对数控机床的动态误差进行补偿,以提高其运动精度。
工件检验法是通过对数控机床加工出的工件进行检验,以验证其加工精度和稳定性。
此外,数控机床精度检验的技术要点包括几个方面,一是要选择合适的测量仪器和测量方法,以确保检验结果的准确性和可靠性。
二是要及时对数控机床的几何误差和动态误差进行补偿,以提高其加工精度和运动精度。
三是要定期对数控机床进行精度检验和校准,以确保其加工质量和稳定性。
四是要严格控制数控机床的使用环境和工艺参数,以减小外部因素对其精度的影响。
综上所述,数控机床的精度检验内容涉及几何精度、运动精度、定位精度和重复定位精度,其检验方法包括测量仪器法、几何误差补偿法、动态误差补偿法和工件检验法,而技术要点包括选择合适的测量仪器和测量方法、及时进行误差补偿、定期检验和校准、严格控制使用环境和工艺参数。
数控机床精度检验

广州数控职业技能培训中心
§1 数控机床精度检验的必要性
数控机床的高精度最终是要靠机床本身的精度来 保证,数控机床精度包括几何精度和切削精度。另一 方面,数控机床各项性能的好坏及数控功能能否正常 发挥将直接影响到机床的正常使用。因此,数控机床 精度检验对初始使用的数控机床及维修调整后机床的 技术指标恢复是很重要的。
9、主轴旋转轴线对工作台(或立柱,或滑枕)横向移 动 的平行度 10、工作台中央或基准T形槽的直线度 11、主轴旋转轴线对工作台中央或基准T形槽的垂直 度(仅适用于卧式床身铣床) 12、中央或基准T形槽对工作台纵向移动的平行度 13、工作台(或立柱,或滑枕)横向移动对工作台纵 向移动的垂直度 14、直线运动坐标的定位精度 15、直线运动坐标的重复定位精度 16、直线运动坐标的平均反向值 (二)工件试切的精度:要求加工一个工件有圆、正 方形、六边形、球面。
• 1、参照GB/T17421.1,尤其是精度检验前的安装、 主轴及其部件的空运转升温和检验方法 • 2、参照GB/T17421.1--1998中3.1的规定,调整 机床安装水平。
机床水平调整安装要求:
• (1) 十字工作台型铣床调整安装水平时,将工 作台、滑座和主轴箱等移动部件分别置于行程的 中间位置,在工作台中央位置放置水平仪,水平 仪在纵向和横向的读数均不得超过 0.030/1000mm 。 • (2) 立柱移动型和滑枕移动型铣床调整安装水平 时,在床身导轨上放置圆检验棒(对V形导轨) 或板桥(对平导轨),圆检验棒和板桥上垂直于 床身导轨放一平尺。在圆检验棒、板桥和平尺上 各放一个水平仪:水平仪a和导轨平行,水平仪和 导轨垂直。调整导轨水平,水平仪a和b的读数均 不得超过0.03/1000。
数控机床的定位精度
卧式加工中心几何精度检测项目和标准

卧式加工中心几何精度检测项目和标准卧式加工中心是一种常用的数控机床,具有高效率、高精度和多功能的特点。
在使用卧式加工中心进行工件加工过程中,必须对其几何精度进行严格的检测,以确保加工结果符合要求。
以下将介绍卧式加工中心几何精度检测项目和标准。
一、直线度检测直线度是指工作台在两个坐标轴上移动时轨迹的偏离情况。
常用的检测方法有拉尺法、激光干涉法和三坐标测量法。
检测结果一般用直线度误差来表示,误差越小,说明直线度越好。
二、平行度检测平行度是指两个轨道表面之间的平行度。
检测方法有平行度计或平行度仪。
通过检测两个轨道表面的间距,计算平行度误差。
平行度误差越小,表明两个轨道之间的平行度越好。
三、垂直度检测垂直度是指主轴和工作台之间的垂直度。
常用的检测方法有水平尺或测角仪。
通过测量主轴和工作台之间的夹角,计算垂直度误差。
误差越小,说明主轴与工作台的垂直度越好。
四、角度度量检测角度度量是指工作台绕着某个坐标轴旋转时的角度度量。
检测方法有角度尺、平台式角度测量仪和三坐标测量仪。
角度度量误差一般用角度误差来表示,误差越小,说明角度度量越好。
五、位置度检测位置度是指工件加工后的位置偏移情况。
检测方法一般采用三坐标测量仪或高精度检测仪器。
位置度误差一般用位置偏移来表示,位置偏移越小,说明位置度越好。
以上是卧式加工中心几何精度检测的常见项目和标准。
不同的工件和加工要求可能还会有其他相关检测项目。
在进行几何精度检测时,需要根据具体的要求和标准来选择合适的检测方法和仪器,确保加工结果符合要求。
只有通过严格的几何精度检测,才能保证卧式加工中心在工件加工过程中达到预期精度。
数控机床几何精度检测项目一任务三

续
表1-50 简式数控卧式车床几何精度检测摘自 GB/T 25659.1-2010 )
续
表1-50 简式数控卧式车床几何精度检测摘自 GB/T 25659.1-2010 )
续
表1-50 简式数控卧式车床几何精度检测摘自 GB/T 25659.1-2010 )
续
表1-50 简式数控卧式车床几何精度检测摘自 GB/T 25659.1-2010 )
表1-51 数控车床和车削中心检验条件 (摘自 GB/T 16462.1-2007) (单位:mm) 续
表1-51 数控车床和车削中心检验条件 (摘自 GB/T 16462.1-2007) (单位:mm) 续
表1-51 数控车床和车削中心检验条件 (摘自 GB/T 16462.1-2007) (单位:mm) 续
精密级 a) 和 b) 在任意300测量长度上为0.010
检验工具 指示器、可调量块和平尺
检验方法(参照GB/T 17421.1-1998的有关条文:.2.1.1)
调整平尺,使其在测量长度两端的读数相等。 将指示器固定在主轴箱上,沿Y轴线方向移动横向滑座进行检验。 a)、b)误差分别计算,误差以指示器读数的最大差值计。
检验项目
G1
工作台移动(X轴线)的直线度: a)在XZ平面内; b)在XY平面内。
简图
a)
b)
允差
普通级 a) 和 b) 在任意300测量长度上为0.016
检验工具
指示器、可调量块和平尺 检验方法 (参照GB/T 17421.1-1998的有关条文:.2.1.1)
调整平尺,使其在测量长度两端的读数相等。 指示器固定在主轴箱上,沿X轴线方向移动工作台进行检验。 a)、b)误差分别计算,误差以指示器读数的最大差值计。
数控车床出厂前的检测项目及内容

数控车床出厂前的检测项目及内容数控车床作为一种先进的机械设备,在生产制造过程中扮演着至关重要的角色。
在数控车床出厂前的检测项目及内容中,包含了一系列严格的检测标准和流程,以确保车床的质量和性能能够满足用户的需求和标准。
这些检测项目和内容涵盖了机械、电气、控制系统等多个方面,旨在保证数控车床在投入使用前能够正常运行、精准加工,并且具有长久的稳定性和可靠性。
首先,在数控车床出厂前的检测项目中,机械结构是首要考虑的部分之一。
操作平台、主轴、导轨、丝杠等机械结构部件的精度和稳定性是数控车床加工精度和稳定性的关键保障。
在检测项目中,需要对这些机械结构部件的尺寸、形状、表面粗糙度等进行严格检测,以确保其符合设计要求和标准。
同时,还需要对机械结构部件进行动静态刚度、耐磨性、冲击耐久性等方面的测试,以验证其在长时间工作中的性能和可靠性。
其次,电气系统在数控车床中同样起着至关重要的作用。
电控柜、电机、传感器、操作面板等电气设备的质量和性能直接影响数控车床的运行效果和安全性。
在检测项目中,需要对电气设备进行电流、电压、功率、绝缘电阻等方面的测试,以确保其在正常工作情况下不会发生电气故障或损坏。
此外,还需要对电气系统进行电磁兼容性、防雷击、防电磁干扰等方面的测试,以保证数控车床在复杂电磁环境下能够正常工作和稳定运行。
除了机械和电气系统,控制系统也是数控车床中不可或缺的一部分。
控制器、编程软件、驱动器等控制系统设备的性能和稳定性直接影响数控车床的加工精度和速度。
在检测项目中,需要对这些控制系统设备进行速度、精度、稳定性、响应速度等方面的测试,以保证数控车床在各种加工情况下都能够高效、稳定地工作。
同时,还需要对控制系统进行编程逻辑、故障诊断、自动化控制等方面的测试,以确保数控车床具有良好的智能化水平和自动化加工能力。
总的来说,在数控车床出厂前的检测项目中,机械结构、电气系统和控制系统是三个关键的检测方面。
通过对这些方面的严格检测和测试,可以保证数控车床在出厂前具有优秀的质量和性能,能够满足用户的加工需求和标准。
数控龙门铣精度验收标准

数控龙门铣精度验收标准
以下是一个关于数控龙门铣精度验收标准的简要解说:
数控龙门铣的精度验收通常包括以下几个方面:
1. 几何精度:检查机床的各部件在装配后的几何形状和相对位置精度,如工作台的平面度、直线度、平行度等。
2. 定位精度:检测机床在加工过程中各个坐标轴的定位精度,包括各轴的重复定位精度、反向间隙等。
3. 加工精度:通过加工标准试件,检测机床在实际加工过程中的精度,如尺寸精度、形状精度、位置精度等。
4. 表面质量:检查加工零件的表面粗糙度、波纹度等表面质量指标。
5. 机床性能:检查机床的主轴转速、进给速度、换刀时间等性能指标是否符合要求。
在进行精度验收时,需要使用专业的检测仪器和工具,按照相
关的国家标准或行业标准进行检测。
检测结果应符合机床的技术规
格和合同要求。
需要注意的是,以上内容仅为一个简要的解说,具体的精度验收标准和方法可能因机床类型、生产厂家和用户需求的不同而有所差异。
在实际操作中,建议参考相关的机床精度验收标准和技术规范,并结合实际情况进行操作。
数控机床精度要求、检测方法和验收

数控机床精度要求、检测方法和验收一、几何精度工作台运动的真直度、各轴向间的垂直度、工作台与各运动方向的平行度、主轴锥孔面的偏摆、主轴中心与工作台面的垂直度等。
机床主体的几何精度验收工作通过单项静态精度检测工作来进行,其几何精度综合反映机床各关键零、部件及其组装后的综合几何形状误差。
在机床几何精度验收工作中,应注意以下几个问题。
①检测前,应按有关标准的规定,要求机床接通电源后,在预热状态下,使机床各坐标轴往复运动几次,主轴则按中等转速运转10~15min后,再进行具体检测。
②检测用量具、量仪的精度必须比所测机床主体的几何精度高1~2个等级,否则将影响到测量结果的可信度。
③检测过程中,应注意检测工具和检测方法可能对测量误差造成的影响,如百分表架的刚性、测微仪的重力及测量几何误差的方向(公差带的宽度或直径)等。
④机床几何精度中有较多项相互牵连,须在精调后一次性完成检测工作。
不允许调整一项检测一项,如果出现某一单项须经重新调整才合格的情况,一般要求应重新进行其整个几何精度的验收工作。
二、位置精度数控设备的位置精度是指机床各坐标轴在数控系统控制下运动时,各轴所能达到的位置精度(运动精度)。
数控设备的位置精度主要取决于数控系统和机械传动误差的大小。
数控设备各运动部件的位移是在数控系统的控制下并通过机械传动而完成的,各运动部件位移后能够达到的精度将直接反映出被加工零件所能达到的精度。
所以,位置精度检测是一项很重要的验收工作。
1.数控机床的位置精度主要包括以下几项:(1)定位精度;定位精度是指机床运行时,到达某一个位置的准确程度。
该项精度应该是一个系统性的误差,可以通过各种方法进行调整。
(2)重复定位精度;重复定位精度是指机床在运行时,反复到达某一个位置的准确程度。
该项精度对于数控机床则是一项偶然性误差,不能够通过调整参数来进行调整。
(3)反向误差反向误差是指机床在运行时,各轴在反向时产生的运行误差(4)原点复位精度2.检测方法(1)定位精度的检测对该项精度的检测一般在机床和工作台空载的条件下进行,并按有关国家(或国际)标准的规定,以激光测量为准。
数控机床几何精度的检测

、全面检查所有相关的几何精度,并根据机床结构分析各项精度之间影响关系;
、根据各项精度的影响关系,确定调整哪些精度以及调整的顺序;
、全面检查所有精度,确认调整以后没有对其他几何精度造成影响。
当发现机床几何精度超过允许误差之后应该进行调整。调整步骤大致如下:
五、几何精度调整
四、主要检测项目
01
02
03
04
摆角平面与直线坐标垂直关系
Z axis
C axis
检测旋转坐标旋转时形成的平面是否与相关的直线坐标垂直。
四、主要检测项目
主轴垂直度 检测主轴是否与 X Y 平面或工作台面垂直。
四、主要检测项目
主轴跳动
检测主轴轴承是否状态良好以及主轴内锥是否标准
四、主要检测项目
指实际轮廓与理论直线之间的误差 导轨直线度 坐标运行直线度
01
一般只检测了坐标运行的直线度,大型机床的导轨长,由多段组成,安装时对导轨进行了重新装配,所以必须对导轨直线度进行检测,确保机床精度。
02
直线度
四、主要检测项目
四、主要检测项目
直线度 检测方法主要有: 平尺检测 准直仪检测 拉钢丝,放大镜检测
C=0~360
同轴度 检测主轴轴线与C轴轴线是否重合。
200~250
四、主要检测项目
转心距(A、B轴转动中心到主轴端面) 转心距=Z2-Z1+D/2 Z1 Z2
四、主要检测项目
T型槽(定位槽)精度 22H7
四、主要检测项目
180°
90°
0°
90°
摆角定角度精度 在不具备检测摆角定位精度仪器的情况下,检测特定角度的精度,可以一定程度上监控摆角定位精度。
三、常用检测工具
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控机床精度检测项目
来源:今日五金网发布时间:2008-02-28
1 前言
对每个工厂来讲,购买数控机床都是一笔相当可观的投资。
为使投资的设备在生产中真正发挥中坚作用,保证加工出合格的零件,尽快回收成本是至关重要的。
经验表明,80%以上的机床在安装时必须在现场调试后才能符合其技术指标。
因此在新机床验收时,要进行检定,使机床一开始安装就能保证达到其技术指标及预期的质量和效率。
另外经验也表明,80%已投入生产使用的机床在使用一段时间后,处在非正常超性能工作状态,甚至超出其潜在承受能力。
因此通常新机床在使用半年后需再次进行检定,之后可每年检定一次。
定期检测机床误差并及时校正螺距、反向间隙等可切实改善生产使用中的机床精度,改善零件加工质量,不至于产生废品,大大提高机床利用率。
总之,及时揭示机床问题可避免导致机床精度损失及破坏性地使用机床。
随着数控技术的进一步推广应用,越来越多的数控机床利用自身带有的测头系统来进行工件、刀具尺寸检测及进行仿形数字化。
要知道上述功能的实现,与机床自身的精度密切相关,若机床精度不作定期校准,则谈不上准确地完成上述工作。
雷尼绍ml10激光干涉仪线性位移测量软件可提供按下述标准进行的数据分析:bs4656英国三测机标准;bs3800英国机床标准;iso 230-2国际标准;vdi/dgq 3441德国工程师学会机床标准;vdi 2617德国工程师学会三测机标准;nmtba美国机床协会标准;gb10931 -89中国国家标准;asme b89.1.12m美国机械工程师学会标准;asme b5.54美国机械工程师学会标准;e60?099法国标准;jisb2330日本国家标准。
2 英国雷尼绍公司先进技术
英国雷尼绍公司是专门从事设计、制造高精度检测仪器与设备的世界性跨国公司。
主要产品为三坐标测量机及数控机床用测头、激光干涉仪、球杆仪等,为机械制造工业提供了序前(激光干涉仪和球杆仪)、序中(数控机床用工件测头及对刀测头)和序后(三测机用测头及配置)检测的成系列质量保证手段。
她的全部技术与产品都旨在保证数控机床精度,改善数控机床性能,提高数控机床效率,可保证和改善数控机床制造厂工作母机的加工精度与质量,扩大制成品的市场。
2.1ml10激光干涉仪
雷尼绍ml10激光干涉仪为机床检定提供了一种高精度仪器,它精度高,达到±1.1ppm (在0~40℃下),测量范围大(线性测长40m,任选80m),测量速度快(60m/min),分辨率高(0.001μm),便携性好。
由于雷尼绍激光干涉仪具有自动线性误差补偿功能,可方便恢复机床精度,更受到用户欢迎!
为使大家进一步了解ml10激光干涉仪在检测数控机床精度方面所具有的独特优点,下面着重介绍ml10激光干涉仪在精度检测中的应用。
(1)几何精度检测可用于检测直线度、垂直度、俯仰与偏摆、平面度、平行度等。
(2)位置精度的检测及其自动补偿可检测数控机床定位精度、重复定位精度、微量位移精度等。
利用雷尼绍ml10激光干涉仪不仅能自动测量机器的误差,而且还能通过rs232接口自动对其线性误差进行补偿,比通常的补偿方法节省了大量时间,并且避免了手工计算和手动数控键入而引起的操作者误差,同时可最大限度地选用被测轴上的补偿点数,使机床达到最佳精度,另外操作者无需具有机床参数及补偿方法的知识。
目前,可供选择的补偿软件有fanuc,siemens 800系列,unm,mazak,mitsubishi,cin cinnati acramatic,heidenhain, bosch, allen-bradley。
(3)数控转台分度精度的检测及其自动补偿现在,利用ml10激光干涉仪加上rx10转台基准还能进行回转轴的自动测量。
它可对任意角度位置,以任意角度间隔进行全自动测量,其精度达±1。
新的国际标准已推荐使用该项新技术。
它比传统用自准直仪和多面体的方法不仅节约了大量的测量时间,而且还得到完整的回转轴精度曲线,知晓其精度的每一细节,并给出按相关标准处理的统计结果。
(4)双轴定位精度的检测及其自动补偿雷尼绍双激光干涉仪系统可同步测量大型龙门移动式数控机床,由双伺服驱动某一轴向运动的定位精度,而且还能通过rs232接口,自动对两轴线性误差分别进行补偿。
(5)数控机床动态性能检测利用renishaw动态特性测量与评估软件,可用激光干涉仪进行机床振动测试与分析(fft),滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析,导轨的动态特性(低速爬行)分析等。
2.2qc10球杆仪
在数控机床精度检测中,qc10球杆仪和ml10激光干涉仪是两种互为相辅的仪器,缺一不可。
ml10激光干涉仪着重检测机床的各项精度;而qc10球杆仪主要用来确定机床失去精
度的原因及诊断机床的故障。
但与ml10激光干涉仪相比,qc10球杆仪目前还没有被广大用户所了解。
为此以下将着重介绍qc10球杆仪原理、功能及在检测中的应用。
2.2.1什么是球杆仪
雷尼绍qc10球杆仪是用于数控机床两轴联动精度快速检测与机床故障分析的一种工具。
它由一安装在可伸缩的纤维杆内的高精度位移传感器构成,该传感器包括两个线圈和一个可移动的内杆,其工作原理类同于使用lvdt技术的位移传感器。
当其长度变化时,内杆移入线圈,感应系数发生变化,检测电路将电感信号转变成分辨率为0.1μm位移信号,通过接口传入pc机。
其精度经激光干涉仪检测达±0.5μm(在20℃)。
当机床按预定程序以球杆仪长度为半径走圆时,qc10传感器检测到机床运动半径方向的变化,雷尼绍qc10分析软件可迅速将机床的直线度、垂直度、重复性、反向间隙、各轴的比例如否匹配及伺服性能等从半径的变化中分离出来。
2.2.2主要功能
(1)机床精度等级的快速标定通过在不同进给速度下用球杆仪检测机床,使操作者可选用满足加工工件精度要求的进给速度进行加工,从而避免了废品的产生。
(2)机床故障及问题的快速诊断与分析球杆仪可以快速找出并分析机床问题所在,主要可检查反向差,丝杠背隙差,伺服增益不匹配、垂直度误差、丝杆周期误差等性能,譬如机床发生撞车事故后,可用球杆仪检测并快速告诉操作者机床精度状况及是否可继续使用。
在iso标准中已规定了用球杆仪检测机床精度的方法。
(3)方便机床的保养与维护球杆仪可以告诉用户机床精度变化情况,这样可提醒维修工程师注意机床的问题,进行预防性维护,不致酿成大故障。
(4)缩短新机床开发研制周期用球杆仪检测可分析出机床润滑系统、伺服系统、轴承副等的选用对机床精度性能的影响。
这样可根据测试情况更改原设计,因而缩短新机床研制周期。
(5)方便机床验收试验对机床制造厂来说,可用球杆仪快速进行机床出厂检验,检查其精度是否达到设计要求。
球杆仪现已被国际机床检验标准如iso230、 ansi b5.54推荐采用。
对机床用户厂来说,可用球杆仪来进行机床验收试验,以取代nas试件切削,或在用球杆仪检测好机床后再切试件即可。
2.2.3工作精度检测
qc10球杆仪是一种快速(10~15min)、方便、经济地检测数控机床两轴联动性能的仪器,可用于取代工作精度的nas试件切削。