视频传输类型及原理简介
视频传输协议
视频传输协议一、概述视频传输协议(Video Transport Protocol,VTP)是一种用于视频传输的协议,它负责在网络中传输视频数据,使得视频流能够被发送并在接收者端播放。
随着视频应用的广泛普及,视频传输协议也变得越来越重要。
通过视频传输协议,用户能够在任何时间、任何地点观看自己需要的视频。
同时,视频传输协议也为企业提供了视频会议、远程培训等方便的解决方案。
本文将详细介绍视频传输协议的基本原理、分类、优缺点等内容。
二、基本原理视频传输协议的基本原理是将视频数据拆分成若干个数据包,通过网络传输,再由接收端将数据包重新组合成完整的视频流,最终播放。
为了保证传输的实时性和稳定性,视频传输协议通常采用UDP协议。
UDP协议不像TCP协议那样需要进行确认和重传,因此能够更加快速地传输数据。
但是相比TCP协议,UDP协议对网络质量的要求更高,因为一旦数据包丢失就无法进行重传。
为了提高传输效率和节省网络带宽,视频传输协议还常常采用压缩算法对视频数据进行压缩。
常用的视频压缩算法有H.264、H.265等。
三、分类根据视频传输协议的不同应用场景,可以将其分为实时视频传输协议和文件视频传输协议。
1、实时视频传输协议实时视频传输协议是一种用于视频会议、直播等实时应用的协议。
它能够保证视频的实时性和稳定性,提供较低的延迟和较高的带宽利用率。
目前比较流行的实时视频传输协议有RTP(Real-time Transport Protocol)、RTSP(Real-time Streaming Protocol)等。
RTP协议是一种在UDP协议上建立的实时数据传输协议。
它通过序列号和时间戳等机制保证视频数据的实时性和可靠性,同时支持多个数据流的传输。
RTSP协议是一种用于视频流媒体的协议,能够实现实时视频的点播和直播。
它支持多种流传输方式,包括UDP、TCP、HTTP等,能够适用于不同的网络环境和终端设备。
2、文件视频传输协议文件视频传输协议是一种用于文件视频传输的协议。
视频的通信原理与应用
视频的通信原理与应用一、视频通信的原理视频通信是利用网络或者其他通信工具通过传输图像和声音的方式进行远程交流的技术。
其原理主要包括以下几个方面:1.1 视频的采集和编码视频通信首先需要将实时的图像和声音采集下来,通常通过摄像头、麦克风等设备进行采集。
采集到的视频数据会经过编码器进行压缩和编码,将其转化为数据流的形式,以便于传输和存储。
1.2 数据传输和网络协议视频数据传输通常使用网络进行,传输的方式可以包括有线和无线传输。
在传输过程中,需要使用网络协议来管理数据的传输和控制。
常见的视频传输协议包括TCP和UDP,其中TCP协议可保证数据的可靠传输,而UDP协议则更适合实时性要求较高的视频通信。
1.3 视频的解码和显示接收端会首先接收到传输过来的视频数据,并通过解码器对视频数据进行解码。
解码器能够将压缩的视频数据还原为原始的图像和声音。
解码后的数据通过显示设备,如显示器和扬声器进行显示和播放,使接收端能够观看到发送端传输的图像和听到声音。
二、视频通信的应用视频通信在多个领域有着广泛的应用,下面以几个典型的应用场景进行介绍:2.1 远程会议视频通信的一个主要应用场景是远程会议。
在远程会议中,与会人员不需要亲自到达会议室,只需要通过视频通信的方式进行远程交流。
这样可以克服时间和地域上的限制,提高工作效率,减少交通和住宿等费用的支出。
2.2 远程教育视频通信还被广泛应用于远程教育领域。
通过将教育资源进行视频化,可以实现远程教学,学生们不需要亲身到学校,只需要通过电脑或手机等设备观看直播或录播的课程。
这种方式使得教育资源得到了更好的共享和利用,大大提高了教育的普及程度和质量。
2.3 视频监控随着技术的发展,视频监控系统得到了广泛应用。
通过视频通信技术,可以实现对各种场所的远程监控。
这种方式可以为人们提供更好的安全保障,例如监控街道、公共场所、企事业单位等,及时发现和处理各种异常情况。
2.4 视频医疗视频通信在医疗领域也有着重要的应用。
视频传输原理
视频传输原理视频传输是指将视频信号从一个地方传输到另一个地方的过程。
视频传输原理涉及到信号的采集、编码、传输和解码等多个环节,是实现视频通信的基础。
本文将从视频信号的采集、编码、传输和解码等方面进行介绍,帮助读者深入了解视频传输的原理。
首先,视频信号的采集是视频传输的第一步。
视频信号可以通过摄像头、摄像机等设备进行采集,将现实世界中的图像转换成电信号。
采集到的视频信号经过模拟/数字转换器转换成数字信号,以便后续的数字处理和传输。
接下来是视频信号的编码。
在视频编码过程中,视频信号会经过压缩处理,以减小数据量,提高传输效率。
常见的视频编码标准包括MPEG-2、MPEG-4、H.264等。
这些编码标准通过采用不同的压缩算法,实现对视频信号的高效压缩,从而减小数据量,保证视频传输的流畅性和清晰度。
然后是视频信号的传输。
视频信号的传输可以通过有线或无线方式进行。
有线传输主要包括光纤传输和同轴电缆传输,无线传输则包括无线局域网、蓝牙、红外线等方式。
在传输过程中,视频信号会经过调制处理,将数字信号转换成适合传输的模拟信号或数字信号,以便在传输过程中保持信号的稳定性和可靠性。
最后是视频信号的解码。
接收端会对传输过来的视频信号进行解码处理,将压缩的视频信号还原成原始的视频数据。
解码过程中需要使用与编码相对应的解码算法,以确保视频信号的质量和清晰度。
解码后的视频信号可以通过显示器、投影仪等设备进行显示,让用户观看到高质量的视频画面。
综上所述,视频传输原理涉及到视频信号的采集、编码、传输和解码等多个环节。
通过对这些环节的深入了解,可以更好地理解视频传输的工作原理,为视频通信技术的发展和应用提供理论支持。
希望本文能够帮助读者对视频传输原理有更深入的认识。
4g视频传输方案
4G视频传输方案简介4G视频传输是指通过4G网络将视频信号传输到远程设备的过程。
这种传输方案可以实现实时视频监控、远程教育、视频会议等多种应用场景。
本文将介绍4G视频传输的基本原理、技术要点和应用实例。
基本原理4G视频传输的基本原理是将摄像头采集到的视频信号通过4G网络传输到远程设备。
传输过程一般包括以下几个步骤:1.视频采集:使用摄像头等设备对现场进行视频信号的采集。
视频信号可以是实时的摄像头画面,也可以是事先录制好的视频文件。
2.视频编码:对视频信号进行压缩编码,减小数据量以方便传输。
目前常用的视频编码标准有H.264和H.265等。
3.数据传输:将编码后的视频数据通过4G网络传输到远程设备。
传输过程中需要考虑带宽、延迟和稳定性等因素。
4.视频解码:远程设备接收到视频数据后,进行解码操作,将压缩编码的视频信号解码为可播放的视频画面。
5.视频播放:解码后的视频画面在远程设备上进行播放,实现实时观看或回放功能。
技术要点在实现4G视频传输方案时,需要考虑以下几个技术要点:1.带宽优化:4G网络的带宽是有限的,为了保证视频传输的稳定性和流畅性,需要对视频进行合理的压缩编码,减小数据量。
同时,可以采用自适应码率的技术,在网络带宽不足时动态调整视频的码率,以保证传输的顺畅性。
2.延迟控制:4G网络的延迟会影响视频传输的实时性。
为了降低延迟,可以采用优化的视频编码算法和传输协议。
另外,可以使用多线程或并发传输的方式,将视频数据分成多个小包并同时传输,以提高传输效率。
3.稳定性保证:4G网络的稳定性可能会受到信号强度、拥塞和信道质量等因素的影响。
为了提高传输的稳定性,可以采用前向纠错、重传机制和丢包恢复等技术,以保证视频数据的完整性和稳定传输。
4.安全性保障:在使用4G网络进行视频传输时,需要考虑数据的安全性。
可以采用数据加密、身份认证和访问控制等技术,保障视频传输过程中的数据安全。
应用实例4G视频传输方案可以应用于以下场景:1.实时视频监控:在无线网络环境下,通过4G视频传输方案可以实现实时的视频监控功能。
网络摄像头的视频传输方式
网络摄像头的视频传输方式随着科技的不断进步和互联网的快速发展,网络摄像头已经成为了我们日常生活中常见的一种智能设备。
网络摄像头不仅可以帮助我们实时监控家庭、办公室等地方,还可以用于远程会议、在线教育等各种场合。
而为了实现视频的传输,网络摄像头采用了多种传输方式。
本文将为您介绍几种常见的网络摄像头的视频传输方式。
一、有线传输方式有线传输是指网络摄像头通过连接网线进行视频信号的传输。
这种传输方式主要有两种:模拟有线传输和数字有线传输。
1. 模拟有线传输模拟有线传输是指网络摄像头将采集到的模拟视频信号通过连接AV线或BNC线等方式传输到显示设备。
这种传输方式主要应用于一些老旧型的网络摄像头,其传输距离较短,且画质较为模糊。
2. 数字有线传输数字有线传输是指网络摄像头通过连接网线将数字视频信号传输到显示设备。
最常用的数字有线传输方式是通过网线采用TCP/IP协议进行视频信号传输,例如常见的以太网传输方式。
这种传输方式具有传输距离远、画质清晰稳定等特点,是目前网络摄像头应用最广泛的一种传输方式。
二、无线传输方式除了有线传输方式,网络摄像头还可以采用无线传输方式进行视频信号的传输。
无线传输方式的优势在于不受距离限制,方便移动和布置。
1. Wi-Fi传输Wi-Fi传输是指网络摄像头通过连接Wi-Fi网络进行视频信号的传输。
用户只需将网络摄像头连接到无线路由器或者NVR(网络视频录像机)等设备,便可利用无线网络传输视频信号。
Wi-Fi传输方式适用于家庭、办公室等需要移动摄像头的场合,但传输距离受限于无线信号的范围。
2. 4G/5G传输4G/5G传输是指网络摄像头通过连接4G/5G移动网络进行视频信号的传输。
这种传输方式适用于需要在室外环境或者没有Wi-Fi覆盖区域使用网络摄像头的场合。
通过SIM卡或者移动热点等方式,网络摄像头可以直接使用移动网络实时传输视频信号。
三、云传输方式随着云计算技术的迅速发展,云传输方式也成为了一种常见的网络摄像头视频传输方式。
视频传输原理
视频传输原理视频传输是指将视频信号从一个地方传输到另一个地方的过程。
在现代社会中,视频传输已经成为了人们日常生活和工作中不可或缺的一部分。
无论是在家庭娱乐、监控安防、教育培训还是远程会议等领域,视频传输都起着至关重要的作用。
本文将从视频传输的原理入手,介绍视频传输的基本概念、技术原理和常见的传输方式。
视频传输的基本概念是指通过某种媒介将视频信号从一个地方传输到另一个地方。
视频信号是由图像和声音组成的,传输视频信号需要考虑到图像和声音的传输方式和质量。
视频传输的基本原理是将视频信号转换成数字信号或模拟信号,通过某种传输媒介传输到接收端,再将数字信号或模拟信号转换成可显示的视频信号。
视频传输的质量受到很多因素的影响,如传输距离、传输媒介、传输速率、信号干扰等。
视频传输的技术原理主要包括模拟传输和数字传输两种方式。
模拟传输是指将视频信号转换成模拟信号进行传输,其优点是传输距离远、成本低,但受到干扰影响大,信号质量较差。
数字传输是指将视频信号转换成数字信号进行传输,其优点是抗干扰能力强、信号质量好,但传输距离有限,成本较高。
在实际应用中,根据传输距离、传输质量和成本等因素,可以选择合适的传输方式。
常见的视频传输方式包括有线传输和无线传输两种。
有线传输是指通过网线、同轴电缆等有线媒介进行视频传输,其优点是传输稳定、质量高,适用于长距离传输。
无线传输是指通过无线电波进行视频传输,其优点是灵活方便、适用于移动设备,但受到信号干扰和传输距离限制。
在实际应用中,根据需求和环境可以选择合适的传输方式。
总的来说,视频传输是通过某种媒介将视频信号从一个地方传输到另一个地方的过程。
视频传输的基本原理是将视频信号转换成数字信号或模拟信号进行传输,再将数字信号或模拟信号转换成可显示的视频信号。
视频传输的技术原理主要包括模拟传输和数字传输两种方式,常见的传输方式包括有线传输和无线传输两种。
在实际应用中,需要根据传输距离、传输质量、成本等因素选择合适的传输方式,以满足实际需求。
网络视频流媒体传输的实用指南
网络视频流媒体传输的实用指南随着互联网的普及和带宽的提升,越来越多的人开始使用网络视频流媒体来观看各种视频内容,如电影、剧集、新闻、体育赛事等。
然而,网络视频流媒体传输不仅仅是个人观看视频的工具,它还可以应用于教育、商业和娱乐等不同领域。
本指南将为您介绍网络视频流媒体传输的基础知识以及相关实用技巧,帮助您更好地享受网络视频流媒体的服务。
一、网络视频流媒体传输的基础知识1. 定义:网络视频流媒体是通过互联网将音视频内容实时传输到用户设备的一种技术。
它与传统的下载方式相比,具有快速启动、即时播放的特点。
2. 常见的流媒体传输协议:目前,常用的网络视频流媒体传输协议主要包括HTTP、RTMP、HLS和DASH等。
不同的协议适用于不同的场景和设备,可根据需求选择合适的协议。
3. 流媒体传输的工作原理:网络视频流媒体的传输过程主要分为三个步骤:编码、传输和解码。
视频内容经过编码压缩后,通过网络传输到用户设备,然后由用户设备进行解码,最终以音视频的形式呈现给用户。
二、网络视频流媒体传输的实用技巧1. 硬件设备的选择:对于观看高清视频的需求,建议选择性能较好的设备,例如高分辨率的显示屏、快速的处理器和大容量的存储空间,以确保流畅的观看体验。
2. 带宽要求:网络视频流媒体传输需要较高的带宽支持,特别是对于高清视频和4K视频而言。
在选择网络供应商和套餐时,要确保其提供足够的带宽以满足视频传输的需求。
3. 资源缓存:某些流媒体平台提供了资源缓存功能,可以事先将视频内容缓存在本地设备上,以提高播放速度和节省流量。
用户可以在网络条件较好的情况下提前缓存视频内容,然后在网络较差或者没有网络的情况下观看。
4. 流媒体传输协议的选择:根据自己的设备和网络环境选择合适的流媒体传输协议。
例如,HTTP协议适用于大多数设备和场景,而RTMP协议适用于对实时性要求较高的直播场景。
5. 保持网络稳定:网络稳定对于流媒体传输至关重要。
可以通过减少网络负载、选择稳定的无线信号和调整路由器设置等方式改善网络稳定性,从而避免视频中断或卡顿的情况发生。
视频无线传输方案
视频无线传输方案1. 简介随着科技的不断发展,无线传输技术在各个领域都得到了广泛的应用,视频无线传输方案作为其中的一个重要应用方向,受到了越来越多的关注和需求。
视频无线传输方案可以实现视频信号的无线传输和接收,方便了用户在不受传输距离和布线限制的情况下,观看高清视频。
本文将介绍一种常见的视频无线传输方案,并对其主要特点、应用场景以及优缺点进行分析。
2. 方案介绍2.1 技术原理视频无线传输方案主要通过无线通信技术将视频信号传输到接收端,在接收端对信号进行解码和处理,再将处理后的信号显示在输出设备上。
常见的视频无线传输方案包括基于无线电频谱的传输方案和基于无线网络的传输方案。
基于无线电频谱的传输方案使用的是无线电波进行信号传输,主要包括无线电广播、个人无线电通信和无线电电视等。
基于无线网络的传输方案则是利用无线局域网(WLAN)或蓝牙等无线网络技术进行信号传输。
2.2 主要特点视频无线传输方案具有以下主要特点:•无线传输:通过无线通信技术实现视频信号的无线传输和接收,摆脱了传统有线连接的限制,提高了用户的使用体验和便利性。
•高清传输:视频无线传输方案支持高清视频的传输和显示,能够满足用户对高质量视觉体验的需求。
•广泛应用:视频无线传输方案可以在家庭娱乐、商业展示、教育培训等领域得到广泛的应用。
2.3 应用场景视频无线传输方案广泛应用于以下场景:•家庭娱乐:用户可以将电视节目、电影等内容通过视频无线传输方案进行无线传输到电视或投影仪上观看,提供更加舒适和便捷的观影体验。
•商业展示:在商业展览、交流会等场合,通过视频无线传输方案可以将展示内容无线传输到大屏幕上,吸引观众的眼球,提高展示效果。
•教育培训:视频无线传输方案可以用于教育培训领域,教师可以通过无线传输方案将教学内容传输到学生的电脑或平板上,实现远程教学和互动。
3. 优缺点分析3.1 优点•无线传输:视频无线传输方案摆脱了传统有线连接的限制,提高了用户的使用体验和便利性。
视频信号的传输方式
视频信号的传输方式监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视;目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用,根据多年的工程经验,在这里我们作一些介绍供参考。
一、同轴电缆传输(一)通过同轴电缆传输视频基带信号视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3 96编国标视频电缆衰减30dB/1000米, SYV75-5 96编国标视频电缆衰减19dB/1000米,,SYV75-7 96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输150米、75-5可以传输300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术:在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。
其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。
同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及对云台、镜头的控制功能,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性;同轴视控实现方法有两类:一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分开;由于采用频率分割技术,为了完全分割两个不同的频率,需要使用带通滤波器、带通陷波器和低通滤波器、低通陷波器,这样就影响了视频信号的传输效果;由于需将控制信号调制在视频信号频率的上方,频率越高,衰减越大,这样传输距离受到限制;另外方法是采用双调制的方式,将视频信号和控制信号调制在不同的频率点,和有线电视的原理一样,再在前、后端解调。
监控系统的视频传输
监控系统的视频传输随着科技的发展和网络的普及,监控系统已经成为了现代社会的重要组成部分。
在各个领域,如公共场所、企业、学校、住宅区等,监控系统通过视频传输技术帮助我们监测安全,维护秩序。
本文将就监控系统的视频传输技术进行论述。
一、监控系统的视频传输概述视频传输是监控系统中的核心技术之一。
它通过将拍摄到的实时画面传输到监控中心或其他终端设备,实现对目标区域的实时监控。
传统的监控系统视频传输主要通过有线传输,如同轴电缆、网线等。
然而,随着无线技术的发展,现代监控系统普遍采用了无线视频传输技术,如Wi-Fi、4G等。
二、有线视频传输技术1. 同轴电缆传输同轴电缆传输是传统监控系统中最常见的视频传输方式。
它通过同轴电缆将监控摄像机采集到的视频信号传输到监控中心或终端设备。
同轴电缆传输具有传输距离远、抗干扰能力强等优点,但受限于线路长度和信号质量,传输距离有限。
2. 网线传输随着网络技术的发展,网线传输成为了许多监控系统中使用的视频传输方式。
它通过网线(如CAT5、CAT6)将视频信号传输到监控中心或终端设备。
网线传输具有传输距离远、带宽大、抗干扰能力强等优点,在一些大型监控系统中被广泛采用。
三、无线视频传输技术1. Wi-Fi传输Wi-Fi传输是目前应用最广泛的无线视频传输技术之一。
通过将监控摄像机连接到无线网络,实现视频信号的无线传输。
Wi-Fi传输具有传输距离远、安装方便等优点,但受限于信号干扰、带宽限制等因素,可能存在画面延迟和不稳定等问题。
2. 4G传输4G传输技术利用移动通信网络,将监控摄像机采集到的视频信号传输到监控中心或终端设备。
4G传输具有覆盖范围广、传输速率快等优点,适用于无法铺设有线网络的场景。
四、视频传输优化技术为了提高视频传输的稳定性和效果,监控系统采用了一些视频传输优化技术。
1. 压缩技术视频传输中常用的压缩技术有H.264、H.265等。
这些技术通过减少视频数据量,降低传输带宽要求,提高传输效率。
视频传输解决方案
视频传输解决方案视频传输解决方案随着数字视频技术的快速发展,人们对视频传输的需求也越来越大。
视频传输解决方案是指通过一定的技术手段将视频信号传输到指定位置的方案。
本文将介绍几种常见的视频传输解决方案。
一、有线传输有线传输是最常见的视频传输方式之一,它通过电缆将视频信号传输到指定位置。
常用的有线传输方式包括:1. HDMI传输:HDMI(High Definition Multimedia Interface)是一种数字视频接口,可以传输高质量的高清视频信号。
它使用一种标准接口连接设备,并且支持音频和视频传输。
通过使用HDMI线缆,可以将视频信号传输到高清电视、显示器和其他设备上。
2. DVI传输:DVI(Digital Visual Interface)是一种数字视频接口,可以传输高质量的视频信号。
与HDMI类似,它可以通过使用标准接口将视频信号传输到显示器和其他设备上。
3. VGA传输:VGA(Video Graphics Array)是一种模拟视频接口,用于将视频信号传输到显示器和投影仪上。
它使用15个针脚的D型接口连接设备。
有线传输的优点是信号传输稳定,不易受到干扰。
然而,缺点是在传输过程中可能会出现信号衰减,限制了传输距离。
二、无线传输无线传输是一种不需要通过电缆连接的视频传输方式,可以提供更大的便利性和灵活性。
常用的无线传输方式包括:1. Wi-Fi传输:Wi-Fi(Wireless Fidelity)是一种无线局域网技术,可以通过无线网络将视频信号传输到设备上。
它使用无线接入点(Wi-Fi路由器)来连接设备,并通过无线信号进行数据传输。
2. 5G传输:5G是第五代移动通信技术,具有更高的传输速度和更低的延迟。
通过使用5G网络,可以实现高清视频的实时传输,无需等待缓冲。
无线传输的优点是灵活性和便利性,可以随时随地观看视频。
然而,缺点是信号可能会受到干扰和距离限制。
三、流媒体传输流媒体传输是一种通过网络将视频信号实时传输到终端设备的方式,常用的流媒体传输协议包括:1. RTSP传输:RTSP(Real-Time Streaming Protocol)是一种常用的流媒体传输协议,可以实现实时视频和音频的传输。
视频监控系统主要传输模式
视频监控系统主要传输模式目前,视频监控系统常见的传输方式有双绞线传输、射频传输、光纤传输、微波传输和网络传输等方式。
(一)双绞线传输双绞线传输也称网线传输。
与非平衡的同轴电缆传输相反,它属于平衡传输,是采用差分放大补偿设备来弥补线路衰减,在视频双绞线两端加装转换设备进行视频信号传输的一种方式。
它可以使用普通超五类双绞线,每对双绞线可以传输一路视频信号,可以一线多用,从而提高了线缆的综合利用率:并且抗共模干扰能力强:使用专用的发射端和接收端设备,可以使有效传输距离达到1000~1500m。
双绞线是特性阻抗为100Ω的平衡传输方式,而绝大多数前端的摄像机和后端的视频设备都是单极性、75Ω匹配连接的。
采用双绞线传输时,必须在前后端进行“单-双”(平衡-不平衡)转换和电缆特性阻抗752-100D匹配转换,不能像同轴电缆那样在无交换设备的情况下直接传输视频信号。
双绞线视频传输设备和双绞线配合使用时,可在1.5km的距离范围内实现高质量的视频信号传输。
双绞线传输的布线及设备使用安装简单、系统造价较低、扩展较方便,具有较强的电源及地线抗干扰能力,中距离传输视频信号幅度的衰减及不同频率间的衰减差较小,线缆的有效利用率较高。
但在远距离传输时,高频信号的较大衰减会造成一定程度的色彩偏移,线缆强度较低,不能应用于野外布线。
(二)射频传输射频传输又叫宽频共缆传输,是用视频基带信号对几十到几百兆赫兹的高频载波调幅,形成一个8MHz射频调幅波带宽的“频道”。
将多路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中进行双向传输。
它采用高频信号,回避了大部分的中低频及变频干扰信号的波段,具有较强的抗干扰能力。
1.工作原理通过调制技术,它把不同载波的视频、音频及控制信号集成到“一根”同轴电缆进行双向传输,是个多系统、多信号集成的双向传输。
每路视音频信号大约占用8MHz的带宽,一根使用共缆技术的同轴电缆就可以较高质量地传输40~50路音视频信号。
网络视频传输
网络视频传输网络视频传输已成为当今社会中普遍存在的现象。
无论是在线直播、追剧、教育视频,还是视频会议、远程培训,网络视频传输已经融入了我们的日常生活中。
然而,网络视频传输背后的技术和原理却是复杂而庞大的。
本文将介绍网络视频传输的基本概念、技术原理以及相应的挑战和解决方案。
1. 网络视频传输的基本概念网络视频传输指的是通过互联网将视频内容从发送端传输到接收端的过程。
这个过程涉及到多种技术和协议,包括视频编码、流媒体传输、网络传输和视频解码等。
网络视频传输的目的是将视频内容准确、高效地传递给用户,使用户能够流畅地观看视频。
2. 视频编码视频编码是将视频信号转换为数字信号的过程。
在视频编码中,视频图像被分解为一系列静态图像,然后使用压缩算法对这些静态图像进行编码,以减小数据量。
常见的视频编码标准包括H.264、H.265等。
视频编码的选择不仅影响到传输速度和质量,还会对视频传输过程中的延迟和带宽消耗造成影响。
3. 流媒体传输流媒体传输是一种将视频内容分成小块并逐段传输的方法。
这种传输方式允许用户从视频的任意位置开始播放,并且能够根据用户的网络带宽和设备性能进行调整,以提供更好的用户体验。
流媒体传输还可以将视频内容分发到多个服务器上,以提高传输的可靠性和负载均衡。
4. 网络传输网络传输是指网络视频在互联网中传输的过程。
在网络传输过程中,视频数据会被分成小包进行传输,然后在接收端再次进行组装。
在传输过程中,视频数据会受到网络带宽、传输延迟、网络拥塞等因素的影响。
因此,有效地管理网络传输过程对于保证视频质量和用户体验至关重要。
5. 视频解码视频解码是将编码后的视频信号转换为可观看的视频图像的过程。
在接收端,视频数据会被解码并还原成连续的视频图像。
视频解码器需要能够支持发送端使用的视频编码标准,并且能够根据网络条件进行调整,以保证视频质量和流畅度。
6. 挑战和解决方案网络视频传输面临着多种挑战,其中包括带宽限制、网络延迟、视频质量和安全性等问题。
视频无线传输
视频无线传输摘要:视频无线传输技术是一种将视频信号通过无线传输介质实现从发射端到接收端的传输的技术手段。
随着无线通信技术和视频处理技术的不断发展,视频无线传输技术在多个领域得到广泛应用,如无线监控、移动视频传输、虚拟现实等。
本文将对视频无线传输技术的原理、应用领域和未来发展进行详细介绍。
一、引言随着无线通信和媒体处理技术的发展,视频无线传输技术逐渐取代了传统的有线视频传输方式。
视频无线传输技术能够实现高质量、高带宽的视频传输,大大提升了用户体验。
本文将对视频无线传输技术的原理、应用领域和未来发展进行详细介绍。
二、视频无线传输的原理1. 调制与解调技术视频信号通常通过模拟或数字调制技术进行传输。
常见的调制方式包括调幅(AM)、调频(FM)和调相(PM)。
解调过程将接收到的调制信号转化为视频信号。
2. 多路复用技术多路复用是将多个信号通过同一通信信道进行传输的技术,可以实现多个视频信号的同时传输。
3. 编解码技术编解码技术将源视频信号进行压缩和解压缩,以减小传输带宽和提升传输效率。
常见的编解码标准包括MPEG、H.264等。
三、视频无线传输的应用领域1. 无线监控视频无线传输技术在无线监控系统中起到了重要作用。
无线监控系统可以实现远距离的视频监控,提高监控的灵活性和可靠性。
2. 移动视频传输随着智能手机的普及,移动视频成为了人们日常生活中的重要组成部分。
视频无线传输技术可以在移动网络环境下实现高清视频的实时传输,满足人们对于移动视频的需求。
3. 虚拟现实虚拟现实技术需要实时传输大量的视频数据,视频无线传输技术可以满足对带宽和延迟的要求,为虚拟现实应用提供支持。
四、视频无线传输的挑战与未来发展1. 带宽需求高质量的视频无线传输需要更大的带宽支持。
随着4G和5G网络的快速发展,带宽将不再是视频无线传输的瓶颈。
2. 延迟实时性是视频无线传输的一个重要指标。
减小视频无线传输的延迟是未来发展的重要方向。
3. 异构网络融合视频无线传输需要与多种无线网络进行融合,实现无缝切换和高效传输。
如何通过无线传输技术实现实时视频传输(六)
如何通过无线传输技术实现实时视频传输近年来,随着科技的不断进步,无线传输技术在实时视频传输方面取得了巨大的进展。
在过去,人们只能通过有线连接来传输视频信号,这不仅限制了视频传输的距离,还大大增加了操作的复杂性。
然而,随着无线传输技术的飞速发展,现在我们可以轻松地通过无线方式传输实时视频信号,为我们的生活和工作带来了很大的便利。
本文将介绍如何通过无线传输技术实现实时视频传输。
一、无线传输技术及其应用领域无线传输技术是指通过无线电波或红外线等无线媒介将信息传输到指定的地点。
它与有线传输技术相比,不需要铺设复杂的物理连接,具有更高的灵活性和便捷性。
目前,无线传输技术已广泛应用于各个领域,包括通信、军事、医疗、交通等。
其中,无线视频传输是无线传输技术的一个重要应用领域。
二、无线视频传输的基本原理无线视频传输的基本原理是将视频信号通过无线媒介传输到接收端,然后在接收端将信号转换为视频。
无线视频传输主要涉及到两个主要环节:编码和解码。
编码过程将模拟视频信号转换为数字信号,然后将数字信号通过无线信道传输到接收端。
解码过程将接收到的数字信号解码为视频信号,并显示在显示屏上。
通过这两个环节的协同工作,我们可以实现无线视频传输。
三、无线视频传输的技术方案目前,有几种无线视频传输的技术方案可供选择。
其中,最常用的是Wi-Fi和蓝牙技术。
Wi-Fi技术是基于无线局域网传输的,它具有较高的传输速度和较远的传输距离,适用于长距离实时视频传输。
蓝牙技术是一种较短距离的无线传输技术,适用于近距离实时视频传输。
此外,还有其他一些无线传输技术,如红外线传输和Zigbee传输等,但由于其传输速度和传输距离的限制,应用较为有限。
四、无线视频传输的应用场景无线视频传输技术在各个领域都有广泛的应用。
在安防领域,无线视频传输可用于监控系统,实现对大范围区域的实时监控。
在医疗领域,无线视频传输可用于手术过程中的视频监控,帮助医生进行准确的操作。
视频光纤传输方案
视频光纤传输方案视频光纤传输方案摘要视频光纤传输方案是一种通过光纤传输视频信号的技术方案。
它利用光纤的高带宽、低损耗和抗干扰等优势,可以实现高质量、稳定的视频信号传输。
本文将介绍视频光纤传输方案的基本原理、应用场景以及优缺点,并提供具体的实施步骤与注意事项。
1. 引言随着视频技术的不断发展,对视频传输质量的要求也越来越高。
传统的视频传输方式如同轴电缆、电缆等存在信号衰减、干扰与带宽限制的问题。
相比之下,视频光纤传输方案以其独特的优势逐渐成为业内关注的焦点。
2. 基本原理视频光纤传输方案主要基于光纤传输技术和视频编解码技术。
其中,光纤传输技术利用光纤的高带宽和低损耗特性,可实现高质量视频信号的远距离传输。
而视频编解码技术可以提供高效的压缩算法和码流控制,确保视频信号在光纤传输中的稳定性和可靠性。
3. 应用场景视频光纤传输方案广泛应用于各个领域,包括但不限于以下几个方面:3.1 安防监控现代社会对于安防监控的需求越来越大,而视频光纤传输方案能够满足大规模监控视频传输的需求。
通过光纤传输,监控中心可以远程实时监控各个地点的视频画面,提高安防的效果和反应速度。
3.2 音视频会议音视频会议已经成为企业和机构日常工作中的重要部分。
通过视频光纤传输方案,可以保证会议中音视频信号的高清和稳定,同时还可以实现多点传输,方便跨地域的协同办公与交流。
3.3 广播电视广播电视行业对视频传输的要求十分严格,视频光纤传输方案能够提供高质量的广播电视信号传输,并且在远距离传输中不会出现信号衰减问题,保证了广播电视节目的质量与覆盖范围。
3.4 医疗影像医疗影像传输对于图像质量和实时性有非常高的要求。
视频光纤传输方案可以保证医疗影像的高保真度和实时性,帮助医生做出准确的诊断和决策。
此外,光纤传输还可以避免电磁干扰对医疗设备的影响,保障医疗工作的安全性。
4. 优缺点4.1 优点•高质量:视频光纤传输方案能够提供高清、高保真度的视频信号传输。
无线视频传输技术的研究与应用
无线视频传输技术的研究与应用一、无线视频传输技术的概述随着移动互联网的发展和智能手机的普及,人们对无线视频传输技术的需求日益增加。
无线视频传输技术是一种无需数据线连接即可传输视频信号的技术,可以大大提高视频传输的灵活性和便利性。
目前,无线视频传输主要分为两类,一类是基于WiFi或蓝牙等无线网络传输的技术,另一类是基于移动通信网络的技术。
两种技术的具体实现方式和适用范围各有不同。
二、基于WiFi或蓝牙的无线视频传输技术1. WiFi技术WiFi技术是目前最为常见的无线视频传输技术之一,能够支持高速数据传输和多个设备连接。
基于WiFi技术的无线视频传输具有以下特点:(1)高带宽:WiFi技术可以支持高带宽的数据传输,能够满足高清视频传输的需求。
(2)高速传输:WiFi技术可以实现最高可达10Gbps的传输速度,满足了高速传输的要求。
(3)多连接支持:WiFi技术可以支持多个设备同时连接,便于多人协作和数据共享。
2. 蓝牙技术蓝牙技术是一种低功耗的无线传输技术,可以实现远距离的数据传输和接收。
基于蓝牙技术的无线视频传输具有以下特点:(1)低耗电:蓝牙技术最大的特点是低耗电,能够长时间运行而不需要频繁充电。
(2)近距离传输:蓝牙技术适用于近距离传输,传输距离一般在10米以内。
(3)易于连接:蓝牙技术的连接过程非常简单,只需要将两个设备对接即可实现数据传输。
三、基于移动通信网络的无线视频传输技术基于移动通信网络的无线视频传输技术主要有3G、4G和5G 等技术。
这些技术可以让用户在没有WiFi网络的情况下,依然能够通过移动网络快速地传输视频。
移动通信网络的无线视频传输具有以下特点:(1)全国覆盖:移动通信网络可以实现全国范围的覆盖,用户可以在任何时间任何地点进行视频传输。
(2)高速传输:随着3G、4G和5G等技术的发展,移动通信网络的传输速度越来越快,可达到甚至超过WiFi技术的速度。
(3)数据安全:移动通信网络具有专业的数据安全保障措施,可以保障用户隐私和数据的安全。
无线视频传输原理
无线视频传输原理
无线视频传输是一种将视频信号通过无线方式传输到接收设备的技术。
它主要分为两个部分:视频信号的编码与传输和接收设备的解码与显示。
在视频信号编码与传输方面,首先需要将输入的视频信号进行数字化处理,将连续的模拟视频信号转换为数字信号。
然后利用视频编码标准,比如H.264、VP9等,对数字信号进行编码
压缩,以减小数据量并保持画面质量。
接着,经过时分复用或频分复用技术,将编码后的视频信号与其他数据信号(如音频、控制信号等)进行组合。
最后,利用调制技术将视频信号转换成高频无线电信号。
接收设备方面,利用天线接收到传输的无线信号,并利用解调技术将高频无线电信号解调成数字视频信号。
然后,对解调后的信号进行解码,并还原成数字视频信号。
接下来,通过数字视频信号处理和解压缩,将解码后的视频信号转换为可供显示的格式。
最后,通过显示器或其他输出设备将视频信号展示出来。
整个无线视频传输的过程中,需要注意信号的稳定性、传输距离和传输延迟等因素。
为了保证信号的质量,可以采用信号增强技术、差错纠正技术和多路复用技术等手段。
此外,还可以利用调频等方式选择合适的频段,以减少干扰。
总结起来,无线视频传输的原理是将视频信号经过编码、调制和解码等步骤,通过无线电信号进行传输,并在接收设备上解
调、解码和显示的过程。
通过各种技术手段的配合,使得视频信号能够在无线环境下实现高质量且稳定的传输。
网络视频传输六大方式
网络视频传输六大方式网络视频传输六大方式1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz 视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。
其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。
缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。
2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。
其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。
其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级扩容。
3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/4、H.264音视频压缩格式传输监控信号。
其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet 网络的地方,安装上远程监控软件就可监看和控制。
其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。
4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。
采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。
其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。
其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
视频传输类型及原理简介视频传输规定:视频设备的输入输出阻抗75Ω(相互配接和通用性)种类:1、基带同轴传输。
2、基带双绞线传输。
3、射频调制解调传输。
4、光缆调制解调传输。
5、视频数字(网络)传输。
6、微波传输。
7、无线天线视频监控系统。
一、基带同轴传输:{0~6M,1V p-p,75Ω}图:同轴电缆是唯一可以不用附加传输设备也能有效传输视频信号方法。
(绝对衰减最小)。
突出矛盾就是频率失真,在传输通道视频失真度条件下,75-5可传输120m(200m以上可观察到失真)。
“频率加权放大技术”目前已成熟,仅用一个末端补偿设备,75-5→2000m;若前后补偿,可到3000m。
单端不平衡传输,一根为信号线;一根为零线,优点:传输阻抗,不受外界干扰和不对外产生干扰。
缺点:分布参量值较大,损耗严重。
线越长越严重。
线缆衰减是指线缆传输信息期发生的能量降低或损耗,它遵循一种叫趋肤效应和近似效应的物理定理,随着频率的增加会增大,导体内部的电子流产生的磁场迫使电子向导体表面聚集,频率越高这个表层越薄,这一效应对电缆的衰减影响相当显著,且衰减与频率的平方根近似成正比。
可知要求 75-5≤200m75-7≤400m75-9≤600m75-13≤800m如超过800m,不建议用同轴传输,由于分布参数更大,寄生干扰引入,图像质量下降。
二、双绞线传输:图:平衡传输方式:不平衡输入的视频经发送器A转换为平衡输出,传输回路的两根线分别是幅度相等相位相反的差分信号,在接收器B中将平衡信号再转换回不平衡信号,以便与现行设备配接。
由于双绞线上的两个信号大小相等,极性相反,且两线相绞(不断改变方向),这样线间的寄生电抗与其相邻电抗也极性相反大小相等。
(两线完全平衡时)图:C1、C2、…C n是每对双绞线每一绕结的分布电容。
L1、L2、…L n是每对双绞线每一绕结的感应电感。
电容C 总= C 1+C 2+…+C n +(-C n+1) 总感应电感BA B A L L L L L +∙=总 L A =L 1+(-L 3)+…+L nL B =-L 2+L 4+…+(-L n+1)当绕结基本平衡时:C n = C n+1,L 总=0,C 总=0这表明从传输信号的角度分析两线间的寄生电容、寄生电感趋于零,但对外界干扰信号而言上述结果并不存在。
(干扰信号在两根线上幅度极性都一样)由于一般通信双绞线的特征阻抗都不是75Ω,为了同输入设备和输出设备匹配,收、发器 ,有的设备在收、发器设定了调节旋钮,以保证正确匹配。
由于双绞线的特征阻抗不稳定,视双绞线种类、长度和布线环境不用而变化,上述的阻抗变换调节只是一种常用典型双绞线时的大约阻抗,在实际工程中布线环境的千差万别,走线不可避免地拐弯打折,使其特征阻抗无法调整准确(施工中要注意)。
双绞线传输视频信号具有优势,但并非所有双绞线都可用于该系统,目前普遍采用5类超五类UTP ,该类线8芯,除传输图像信号外,同时可传送音频信号,控制信号,供电电流和其他信号,布线方便,利用率高。
从线缆本身的传输特性看,双绞线是各类传输方式中,传输衰减和频率失真最大的一种线缆,400m 双绞线同同轴电缆1000m 相当。
所以,需要频率加权放大补偿能力。
由于分布电容原因,选择这种传输方式时不能使用屏蔽双绞线。
在室外使用注意防雷:因输入端对感应电压非常敏感,一旦电缆在某一段被雷电感应,运算放大时会被瞬间击穿。
(速记室外不使用双绞线)三、射频调制解调传输(“宽频共缆”“一线通”电控技术)“宽频”是针对视频“0~6MHz ”而言,充分利用5~550MHz 可同时传输四十多 、音频信号,并在系统中预留了报警,广播布线传输空间。
“共缆”指的是多系统,多信号可以通过“一根电缆”双向传输。
图:原理:通过宽频调制器将图像信号调制到高频载波,使多路信号可在同轴电缆中上行传输,传输到控制室经过单路或多路视频解调,解调出标准视频信号。
对前端镜头、云台等控制信号通FSK 数据调制器进行数据载波调制,调制到38MHz 载波上通过同轴电缆下行传输,经过宽带调制器把控制信号解调为RS485控制模式输出给解码器,从而达到对云台的控制。
宽频共缆监控采用成熟稳定的,FDM (频分复用)和FSK (移频键控)技术。
首先将同轴电缆的0~1000MHz 划分为不同的传输通道(上行、下行、报警传输、隔离带),8MHz 为一频道。
然后将利用移频键控(指视频调幅调制、音频调频调制及FSK 数据调制)技术,将不同的信号调制到不同的通道上,通过一根“电缆”上行、下行同时传输,使多系统、多信号共缆。
传输距离:(1~5km)适用(成本)具有抗干扰能力强、传输距离远、布局易、价格低等。
四、光缆调制解调传输光缆是一种频带最宽,传输衰减非常低,抗干扰性能非常高的优质传输介质。
光端机传输技术也很成熟,单路、多路、单向、双向、音频、视频、控制、模拟、数字等。
图:视频信号的传输路径:“C”VF进入发射机的(VTDEO IN)接口,经PFM调制,电光转换,变成光信号经适配器注入光纤,经光纤传输至光接收机,光电转换,PLL锁相解调,还原成VF信号进入控制数据传输路径:从指挥中心发出的控制数字信号从光接收机数据入口(DATEIN)进入光端机,经PFM调制,电光转换,变成光信号经适配器注入光纤,经光→前端光端机,经光电转换,PLL锁相解调,恢复控制码,经数据接口输出到解码箱,控制光端机传输视频,一般都用两次调制解调(模拟光端机:调幅—调光;数字光端机:数字调制—调光)传输过程需配件:1、光跳线:连接作用,光端机与光纤连接起来。
有FC、ST、SC跳线(从光跳线的连接上看),有3m、5m、10m(从光跳线长度看)。
2、终端盒:(熔接盒)主要是保护光跳线和光纤之间熔接处,光纤熔接机将光纤和跳线熔接进终端盒。
(前端复处一个,终端一个)。
3、法兰盘:一种连接器,通常光端机上有一个光纤接口,这就是法兰盘,也就是连接光跳线和光端机连接器(规格有:FC、ST、SC)主要问题:铺设和后期维护难度大,成本较高,由于采用两次调制解调,其信噪比,特别对高频信噪比影响较大。
采样位数不大,图像还原比较“硬”(高频细节丢失)。
还要了解:信噪比、光功率、接收灵敏度、动态范围。
五、视频数字(网络)传输数字传输从原理上彻底避免了模拟传输对信号失真度的苛刻要求以及信号干扰等。
技术上也有足够高的传输分辨率和图像清晰度。
同模拟系统区别:有损传输,无论何种方式、还原后图像质量比模拟差。
由于受网络传输带限制,目前主流的视频压缩方式为MPEG4或者H.264。
我国AVS-S(AVS安防标准)也是未来的主要视频压缩方式。
数字视频图像分辨力一般在CIF—4CIF之间(352×288—704×576像素PAL)MPEG4压缩方式在4CIF、4Mbps、低压缩比时,水平方向分辨率可以对应到480TVL(704×0.7),H.264较MPEG4有近1~1.5 倍的效率,是压缩技术的发展方向。
目前能够完全支持H.264算法的高运算性能DSP还没有出现。
原理:本地就近存储、用现有网络(校园网等)传输终端还原。
技术瓶颈:网络带宽限制。
谈一下比特与字节存储的量度标准一般是字节(B),宽带的量度原理是bps(比特每秒)就CCTV而言:1个字节就是8比特,谈论网络时“比特率”,涉及存储能力时“字节”。
举例:如果一个摄像机一秒钟记录十张图像,每个图像15kB,那么在经过100兆比特每秒的以太网线路时,有多少个摄像机能够共享?另一终端上,记录满一个200GB硬盘驱动需要多长时间?六、微波传输系统无线传输监控视频信号的几种方式:1、300~1400MHz移动视频传输系统:该系统采用COFDM(车载移动系统)调制及MPEG2压缩技术,新闻采访、现场直播等。
缺点一路图像。
2、1.2GHz以2.4GHz无线传输器。
(只能在室内使用),避开900MHz频段干扰,干扰小,传输距离有限:10~50束。
图像有限,没有云台控制。
(小型仓库、超市、办公室等)3、2.4GHz无线网络(11M×40→4M带宽)(20km)是基于802.11B/G无线局域网,发展成室外点对多点组网应用而来,由于是基于无线IP传输技术,监控信息传输都是基于数字化传输,传输质量、传输距离、云台控制都能实现。
无委会有规定:2.4GHz频段不允许在室外使用,频道少,易受干扰。
(不建议用此频段)4、2.5~2.7GHz,3.5GHz宽带无线接入系统。
(专用网络)基于点对多点的数字调制的宽带无线传输系统,满足视频无委会规定申请、审批(广电、运营商),才能用5、5.8GHz宽带无线接入系统(基于IEEE802.11A标准的无线网络)(20km)高吞吐量、高可靠性、卓越的传输距离和高性价比,5.8GHz无线宽带接入产品一般采用DFDM(正交频分多路复用技术)可接供高达54Mbps(或以上)的空中速率,信道宽度为(54M的40%→20MHz)支持MPEG4、H.264等格式的数字视频流。
方案实现:无线网络(视距);中继(非视距)示意图:每个监控区装置固定在装有固定云台摄像机,通过开放的S、C无线,将监控机实时图像传回指挥中心,并可通过局域网、广域网、因特网实现多媒体通信,达到资源信息共享。
七、无线视频监控系统传统的有线视频监控有一个弊端。
用线缆、用因特网(往往图像传输质量不变、带宽、时延)实现中这距离视频监控:基于IP协议的无线视频监控更方便:摄像机、视频服务器、无线连接器→传至用户计算机网络上在网络中任意一台计算机上面都可以通过授权观看,用鼠标或键盘可控制前端。
火车上:利用防区无线可实现每节车厢视频监控。
以上所有视频监控传输方式,在安防系统应用很普遍,有的一种、二种、甚至更多。
设计者可根据实际情况、用户要求进行设计。