概率论与数理统计公式汇总(浙大第四版)
(浙大第四版)概率论与数理统计知识点全汇总
第1章随机事件及其概率(1)排列组合公式)!(!nmmP n m从m个人中挑出n个人进行排列的可能数)!(!!nmnmC n m从m个人中挑出n个人进行组合的可能数(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,,表示事件,它们是的子集。
为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA如果同时有BA,AB,则称事件A与事件B等价,或称A 等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。
理学概率论与数理统计浙江大学第四版盛骤概率论部分
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
9
§2 样本空间·随机事件
(一)样本空间
定义:随机试验E的所有结果构成的集合称为E的 样本空间,记为S={e},
例:
➢ ➢
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
第十二章 平稳随机过程
• 12.1 平稳随机过程的概念 • 12.2 各态历经性 • 12.3 相关函数的性质 • 12.4 平稳过程的功率谱密度
5
概率论
第一章概率论的基本概念
6
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
7
§1 随机试验
确定性现象
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
概率论与数理统计浙江大学第四版盛骤概率论部分ppt精选课件
1 P(A)1P(A)
P(A)0不能A; P(A)1不能AS;
A AS P(A)P(A)1 P()0
2 若 A B , 则 有 P ( B A ) P ( B ) P ( A ) P ( B ) P ( A )
BA AB P (B )P (A )P (A B )
P ( B ) P ( A ) P ( A B ) P ( B A ) 0P(B)P(A)
例:
向上抛出的物体会掉落到地上 ——确定
明天天气状况
——不确定
买了彩票会中奖 ——不确定
8
•篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
3 概 率 的 加 法 公 式 : P ( A B ) P ( A ) P ( B ) P ( A B )
A B A ( B A B ) P ( A B ) P ( A ) P ( B A B ) 又 B A B , 由 2 。 知 P ( B A B ) P ( B ) P ( A B )
✓ A B A B { x |x A 且 x B }
S AB
✓ A 的 逆 事 件 记 为 A , A A A A S , 若 A A B B S , 称 A ,B 互 逆 、 互 斥
S
✓ “和”、“交”关系式
AA
n
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
• 7.1 参数的点估计 • 7.2 估计量的评选标准 • 7.3 区间估计
概率论与数理统计(浙大_第四版简明本--盛骤) 第一章
解:
S={1,2,…,8} A={1,2,3}
P
A
3 8
22
例2:从上例的袋中不放回的摸两球,
记A={恰是一红一黄},求P(A).
解:
P( A)
C31C51
/ C82
15 28
53.6%
例3:有N件产品,其中D件是次品,从中不放 回的取n件,
记Ak={恰有k件次品},求P(Ak).
解:P(
• 7.1 参数的点估计 • 7.2 估计量的评选标准 • 7.3 区间估计
第八章
假设检验
• 8.1 假设检验 • 8.2 正态总体均值的假设检验 • 8.3 正态总体方差的假设检验 • 8.4 置信区间与假设检验之间的关系 • 8.5 样本容量的选取 • 8.6 分布拟合检验 • 8.7 秩和检验
自然界与社会生活中的两类现象
不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定
明天天气状况
——不确定
买了彩票会中奖 ——不确定
8
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
第九章 方差分析及回归分析
• 9.1 单因素试验的方差分析 • 9.2 双因素试验的方差分析 • 9.3 一元线性回归 • 9.4 多元线性回归
5
概率论
第一章概率论的基本概念
6
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
概率论与数理统计浙大第四版
不可能事件——不包含任何样本点的事件, 记为 ,每次试验必定不发生的事件.
事件的关系和运算 文氏图 ( Venn diagram )
A
随机事件的关系和运算 雷同集合的关系和运算
1. 事件的包含
A B —— A 包含于B
事件 A 发生必 导致事件 B 发生
非负性: A , P( A) 0
归一性: P( ) 1
可列可加性:P
i 1
Ai
P ( Ai )
i 1
其中 A1, A2 , 为两两互斥事件,
概率的性质
P() 0
有限可加性: 设 A1,A2,An 两两互斥
P
n i1
Ai
n i1
P(Ai )
P(A)1P(A) P(A)1
解 P(AB) P(A)P(B)P(AB)
P(AB) P(A) P(B) P(AB)
P(A)P(B)10.3 —— 最小值
最小值在 P( A B) 1 时取得
P( A B) P( A) 0.6 —— 最大值
最大值在 P(AB) P(B) 时取得
§1.4 古典概型
概率的 设 随机试验E 具有下列特点: 古典定义 基本事件的个数有限
(2) nB C31C122C150C55
P( A) 25 91
P(B) 6 91
例2 把标有 1,2,3,4 的 4 个球随机地放入 标有1,2,3,4 的 4 个盒子中,每盒放一球, 求有至少有一个盒子的号码与放入的球 的号码一致的概率。
解 n A44 4!
设 Ai 表示 i 号球入 i 号盒, i = 1,2,3,4
§1.1 随机事件
概率论与数理统计(第4版)浙江大学 盛聚编
对同一个参数,我们(wǒ men)可以构造许多置信区间.
1.在概率密度为单峰且对称(duìchèn)的情形,当a =-b 时求得的置信区间的长度为最短.
2.即使在概率密度不对称的情形,如 分布, F分布,习惯上仍取对称的分位点来计算未知参数的 置信区间.
17
共十八页
内容(nèiróng)总结
前面,我们讨论了参数点估计. 它是用样本(yàngběn)算得的一个值去 估计未知参数. 但是,点估计值仅仅。X1,X2,。可靠度与精度是一对 矛盾,一般是。按伯努利大数定理, 在这样多的区间中,。个区间, 使得 U取值于该区间的概率为置信水平.。从例1解题的过程,我们归纳出 求置信区间的一般步骤如下:。T(X1,X2,。的分布为已知, 不依赖于任何 未知参数 .。而这与总体分布有关,所以,总体分布的形式是。17
7
共十八页
2、置信区间的求法 在求置信区间时,要查表求分位点.
若 X 为连续型随机变量(suí jī biàn liànɡ) , 则有
所求置信区间为
8
共十八页
同样 对 (tóngyàng) 于
所求置信区间为
共十八页
由此可见,置 信水平为 的置信区间是 不唯一的。
9
例 设X1,…Xn是取自
的样本,
共十八页
第四节 区间 估计 (qū jiān)
前面,我们讨论了参数点估计. 它是用样本算得的一个 (yī ɡè)值去估计未知参数. 但是,点估计值仅仅 是未知参数的一个近似值,它没有反映出这个近似值的误 差范围,使用起来把握不大. 区间估计正好弥补了点估计 的这个缺陷 .
1
共十八页
1、 置信区间定义(dìngyì)
3. 寻找一个待估参数 和估计量 T 的函数 U(T, ),且其分布为已知.
概率论与数理统计公式整理
概率论与数理统计公式整理概率论和数理统计是数学中重要的分支,广泛应用于科学、工程、经济、金融等领域。
本文将对概率论和数理统计中常用的公式进行整理,以帮助读者更好地理解和应用这些概念和方法。
一、概率论公式1. 基本概率公式:P(A) = n(A) / n(S)其中P(A)表示事件A发生的概率,n(A)表示事件A的样本空间,n(S)表示样本空间中所有可能结果的个数。
2. 概率的加法公式:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)其中P(A ∪ B)表示事件A或B发生的概率,P(A ∩ B)表示事件A和B同时发生的概率。
3. 条件概率公式:P(A | B) = P(A ∩ B) / P(B)其中P(A | B)表示在事件B已经发生的条件下,事件A发生的概率。
4. 乘法公式:P(A ∩ B) = P(B) * P(A | B) = P(A) * P(B | A)其中P(A ∩ B)表示事件A和B同时发生的概率。
5. 全概率公式:P(A) = ∑[P(Bi) * P(A | Bi)]其中{Bi}为样本空间S的一个划分,P(Bi)表示事件Bi发生的概率。
二、数理统计公式1. 期望:E(X) = ∑[x * P(X = x)]其中X表示随机变量,x表示X可能取到的值,P(X = x)表示X取到x的概率。
2. 方差:Var(X) = E[(X - E(X))^2]其中E(X)表示随机变量X的期望。
3. 标准差:σ(X) = √(Var(X))其中Var(X)表示随机变量X的方差。
4. 协方差:Cov(X, Y) = E[(X - E(X)) * (Y - E(Y))]其中X和Y分别表示两个随机变量。
5. 相关系数:ρ(X, Y) = Cov(X, Y) / (σ(X) * σ(Y))其中Cov(X, Y)表示X和Y的协方差,σ(X)和σ(Y)分别表示X和Y的标准差。
三、概率分布公式1. 二项分布:P(X = k) = C(n, k) * p^k * (1 - p)^(n-k)其中X服从二项分布,n表示试验次数,k表示成功次数,p 表示每次试验成功的概率。
(完整版)大学概率论与数理统计公式全集
大学概率论与数理统计公式全集一、随机事件和概率1、随机事件及其概率2、概率的定义及其计算二、随机变量及其分布1、分布函数性质FbF(aba<≤=P-X)(b()()bFX()P=≤)2、离散型随机变量3、连续型随机变量三、多维随机变量及其分布1、离散型二维随机变量边缘分布∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j i2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的联合分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),( 4、连续型二维随机变量边缘分布函数与边缘密度函数边缘分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 边缘密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布+∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov 6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY==ρρ 若XY 相互独立则:0=XYρ即XY 不相关7、协方差和相关系数的性质 (1))(),(X D X X Cov = ),(),(X Y Cov Y X Cov =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X abCov d bY c aX Cov =++8、常见数学分布的期望和方差五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<- 2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n 11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有:⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b X a P nk knk k -Φ--Φ≈-≤-≤-=≤≤∑∑==1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k nk n x F x x x F =∏=2、统计量(1)样本平均值:∑==ni i X n X 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距: 2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。
概率论与数理统计浙大第四版-第三章2
3 y (4 y ) 3 2 x y dx , 0 y 4, 16 y 32 0 , 其它.
fY ( y ) 0 ,故 因为仅当 y 在 (0,4) 内取值时, 2x y x 2, , f ( x , y) f X |Y ( x | y) 4 y f Y ( y) 其它. 0 ,
3x 2 , 0 x 1, 其它. 0,
3x 1 f ( x , y ) 2 , 0 y x 1, 3x f Y | X ( y | x) x f X ( x) 0, 其它.
于是
1 1 1 1 8 8 P{Y | X } f Y | X ( y | x )dy 4 dy 0 8 4 4 2
j ,若
易知上述条件概率具有分布律的性质
1) P{ X xi Y y j } 0
2)
P{ X x
i 1
i
Y y j}
i 1
pi j p j
p j p j
1
同样,设 ( X , Y是二维离散型随机变量,对于固定 ) 的
P{ X xi } 0 ,则称 pi j P{Y y j X xi } j 1, 2 , pi 为在 X xi 的条件下 X 的条件分布律。
G
0
2
x2
0
16 A x y dy 3
3 A 16
f X ( x)
f ( x , y ) dy
5 3 x2 3x x y dy , 0 x 2, 16 0 32 0 , 其它.
fY ( y )
(完整版)概率论与数理统计公式整理(超全版)
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有
。
(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,
则
,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:
。
显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有
,
则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。
(完整word版)(浙大第四版)概率论与数理统计知识点总结详解
(7)概率 的公理化 定义
Ai Ai
德摩根率: i1
i1
AB AB,AB AB
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满足下列三个条件:
件下,事件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 P(Ω/B)=1 P( B /A)=1-P(B/A) 乘法公式: P(AB) P(A)P(B / A) 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 …
An 1) 。 ①两个事件的独立性
设事件 A 、B 满足 P(AB) P(A)P(B) ,则称事件 A 、B 是相互独 立的。
若事件 A 、 B 相互独立,且 P(A) 0 ,则有
A-B,也可表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
1
概率论与数理统计 公式(全)
知识点总结
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同
时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互不 相容的。
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示
1
概率论与数理统计 公式(全)
知识点总结
当 A=Ω时,P( B )=1- P(B)
浙江大学概率论与数理统计(盛骤第四版)——概率论部分1-90页精品文档
# 频率 反映了事件A发生的频繁程度。
15
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
i1
i1
i1
i1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
A B {甲、乙至少有一人来}
都不来}
A BAB{甲、乙至少有一人不来}
14
§3 频率与概率
例:
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
S={0,1,2,…}; 记录某地一昼夜最高温度x,最低温度y
S={(x,y)|T0≤y≤x≤T1}; 记录一批产品的寿命x S={ x|a≤x≤b }
10
(二) 随机事件
一般我们称S的子集A为E的随机事件A,当且 仅当A所包含的一个样本点发生称事件A发生。 例:观察89路公交车浙大站候车人数,S={0,1,2,…};
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
记 A={至少有10人候车}={10,11,12,…} S, A为随机事件,A可能发生,也可能不发生。
如果将S亦视作事件,则每次试验S总是发生, 故又称S为必然事件。 为方便起见,记Φ 为不可能事件,Φ 不包含
概率论与数理统计(浙大_第四版简明本--盛骤) 第一章
则 P(A)=90% 而P(B)=85.5% 记:P(B|A)=95%
解:(1)放回抽样,显然有 P(B)=a/(a+b).
(2) 不放回抽样,各人取一只球,每种取法是一个基本事件。共 有P(k,a+b)个基本事件,且由对称性知每个基本事件发生的可能 性相同。当事件B发生时,第i人取的是白球,有a种取法。其余被 取的k-1只可以是其余a+b-1只球中的任意k-1只,共有P(k-1,a+b1)种取法。于是
§4 等可能概型(古典概型)
定义:若试验E满足:
1. S中样本点有限(有限性) 2. 出现每一样本点的概率相等(等可能性)
P A
A所包含的样本点数 S中的样本点数
称这种试验为等可能概型(或古典概型)。
21
例1:一袋中有8个球,编号为1-8,其中1-3 号为红球,4-8号为黄球,设摸到每一 球的可能性相等,从中随机摸一球, 记A={ 摸到红球 },求P(A).
3
第四章
随机变量的数字特征
• 4.1 数学期望 • 4.2 方差 • 4.3 协方差及相关系数 • 4.4 矩、协方差矩阵
第五章
大数定律和中心极限定理
• 5.1 大数定律 • 5.2 中心极限定理
第六章 数理统计的基本概念
• 6.1 总体和样本 • 6.2 常用的分布
4
第七章
参数估计
P(A B) P(A) P(B) P(AB)
# 3。的推广:
n
n
P( Ai ) P( Ai )
P( Ai Aj )
i 1
i 1
1i jn
概率论与数理统计完整公式以及各知识点梳理
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满 足下列三个条件: 1° 0≤P(A)≤1, 2° P(Ω ) =1 3° 对于两两互不相容的事件 A1 , A 2 ,…有
P Ai P( Ai ) i 1 i 1
常称为可列(完全)可加性。 则称 P(A)为事件 A 的概率。 1° 1 , 2 n , 2° P( 1 ) P( 2 ) P( n )
X x1, x 2,, xk , | P( X xk ) p1, p 2,, pk , 。
显然分布律应满足下列条件: (1) pk 0 , k 1,2, , (2) k 1
p
k
1
。
设 F ( x) 是随机变量 X 的分布函数,若存在非负函数 f ( x) ,对任意实数 x ,有 (2)连续 型随机变 量的分布 密度
F ( ) lim F ( x) 0 ,
x
F ( ) lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F ( x) 是右连续的; P( X x) F ( x) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
P ( AB) 为事件 A 发生条件下,事 P ( A)
件 B 发生的条件概率,记为 P( B / A)
P ( AB) 。 P ( A)
(13)乘法 公式
条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 P(Ω /B)=1 P( B /A)=1-P(B/A) 乘法公式: P( AB) P( A) P( B / A) 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
(完整版),概率论与数理统计(完整公式,知识点梳理),推荐文档
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值的概率,即
事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的
形式给出:
X
| x1, x2,, xk,
P( X xk) p1, p2,, pk, 。
显然分布律应满足下列条件:
满足下列三个条件:
1° 0≤P(A)≤1,
2° P(Ω) =1
3° 对于两两互不相容的事件 A1 , A2 ,…有
P
i 1
Ai
i 1
P( Ai)
常称为可列(完全)可加性。
则称 P(A)为事件 A 的概率。
1° 1, 2 n ,
2°
P(1 )
P( 2 )
P( n )
1 n
。
设任一事件 A ,它是由1, 2 m 组成的,则有
An 1) 。
①两个事件的独立性
设事件 A 、 B 满足 P( AB) P( A)P(B) ,则称事件 A 、 B 是相互独立
的。
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互
独立。
必然事件 和不可能事件 Ø 与任何事件都相互独立。
Ø 与任何事件都互斥。
②多个事件的独立性
设 ABC 是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
浙江大学概率论与数理统计盛骤第四版数理统计部分
为什么?
答:只有(4)不是统计量。
17
随机变量独立性的两个定理
定理6.1:设X1, X 2 , , X n是相互独立的n个随机变量,
又设y gi x1, , xni , x1, , xni Rni , i 1, 2, k是k个连续函数,
且有n1 n2 nk n, 则k个随机变量:
[说明]:后面提到的样本均指简单随机样本,由概率论知,若总体X 具有概率密度f(x),
则样本(X1,X2,…,Xn)具有联合密度函数:
n
fn x1, x2, xn f xi
i 1
16
统计量:样本的不含任何未知参数的函数。
常用统计量:设(X1,X2,…,Xn)为取自总体X的样本
1.
样本均值
n
Yn x
lim P i1 n
n
x
x
证明略。
1
t2
e 2 dt
2
此定理表明,当n充分大时,Yn近似服从N 0,1.
n
即: X(i 近似)~N (n, n 2 ), i=1
从而,P(a
n i 1
Xi
b)
(b n ) ( a n ).
n
n
答案:N (, 2 )
n
9
定理5.5 德莫佛--拉普拉斯定理
解:设机器出故障的台数为X,则X b400,0.02,分别用三种方法计算:
1. 用二项分布计算
P X 2 1 P X 0 P X 1 1 0.98400 4000.020.98399 0.9972
2. 用泊松分布近似计算
np 400 0.02 8 查表得
P X 2 1 P X 0 P X 1 1 0.000335 0.002684 0.9969
(完整版)大学概率论与数理统计公式全集
大学概率论与数理统计公式全集一、随机事件和概率1、随机事件及其概率运算律名称交换律结合律分配律德摩根律2、概率的定义及其计算公式名称求逆公式加法公式条件概率公式乘法公式全概率公式贝叶斯公式(逆概率公式)伯努利概型公式两件事件相互独立相应公式P(AB)=P(A)P(B)表达式A+B=B+A(A+B)+C=A+(B+C)=A+B+CA(B±C)=AB±ACA+B=ABAB=BA(AB)C=A(BC)=ABCA+(BC)=(A+B)(A+C)AB=A+B公式表达式P(A)=1-P(A)P(A+B)=P(A)+P(B)-P(AB)P(B A)=P(AB)P(A)P(AB)=P(A)P(B A)nP(AB)=P(B)P(A B)i iP(B)=∑P(A)P(B A)i=1P(AjB)=P(Aj)P(B Aj)∑P(A)P(B A)j ii=1∞k kPn(k)=Cnp(1-p)n-k,k=0,1,Λn;P(B A)=P(B);P(B A)=P(B A);P(B A)+P(B A)=1;P(B A)+P(B A)=1二、随机变量及其分布1、分布函数性质P(X≤b)=F(b)P(a<X≤b)=F(b)-F(a)2、离散型随机变量分布名称0–1分布B(1,p)二项分布B(n,p)泊松分布P(λ)几何分布G(p)超几何分布H(N,M,n)3、连续型随机变量分布名称均匀分布U(a,b)密度函数⎧1⎪b-a,f(x)=⎨⎪0,⎩a<x<b其他分布律P(X=k)=p k(1-p)1-k,k=0,1k kP(X=k)=Cnp(1-p)n-k,k=0,1,Λ,nP(X=k)=e-λλkk!,k=0,1,2,ΛP(X=k)=(1-p)k-1p,P(X=k)=k n-kCMCN-MnCN,k=l,l+1,Λ,min(n,M)k=0,1,2,Λ分布函数0,x<a⎧⎪⎪x-aF(x)=⎨,a≤x<bb-a⎪1,x≥b⎪⎩指数分布E(λ)正态分布N(μ,σ2)标准正态分布N(0,1)f(x)=-λx⎧⎪λe,x>0f(x)=⎨⎪其他⎩0,x<0⎧0,F(x)=⎨-λx1-e,x≥0⎩2πσ⎰2πσ⎰11x12πσe-(x-μ)22σ2-∞<x<+∞F(x)=-∞e-(t-μ)22σ2d tϕ(x)=12πe-x22-∞<x<+∞F(x)=x-∞e-(t-μ)22σ2d t三、多维随机变量及其分布1、离散型二维随机变量边缘分布p i⋅=P(X=xi)=∑P(X=x,Y=y)=∑pi jj jijp⋅j=P(Y=yj)=∑P(X=x,Y=y)=∑pi ji iij2、离散型二维随机变量条件分布p i j =P(X=xiY=yj)=P(X=xi,Y=yj)P(Y=yj)=pijP⋅j,i=1,2Λx yp j i =P(Y=yjX=xi)=P(X=xi,Y=yj)P(X=xi)=pijPi⋅,j=1,2Λ3、连续型二维随机变量(X ,Y)的联合分布函数F(x,y)=⎰-∞⎰-∞f(u,v)dvdu4、连续型二维随机变量边缘分布函数与边缘密度函数边缘分布函数:FX (x)=⎰-∞⎰-∞f(u,v)dvdu边缘密度函数:fX(x)=⎰-∞f(x,v)dvF Y (y)=x+∞+∞⎰⎰y+∞-∞-∞f(u,v)dudv fY(y)=⎰+∞-∞f(u,y)du5、二维随机变量的条件分布fY X (y x)=f(x,y)f(x,y),-∞<y<+∞fX Y(x y)=,-∞<x<+∞fX(x)fY(y)四、随机变量的数字特征1、数学期望离散型随机变量:E(X)=∑xk pk连续型随机变量:E(X)=⎰-∞xf(x)dxk=1+∞+∞2、数学期望的性质(1)E(C)=C,C为常数E[E(X)]=E(X)E(CX)=CE(X)(2)E(X±Y)=E(X)±E(Y)E(aX±b)=aE(X)±b E(C1X1+ΛCnXn)=C1E(X1)+ΛCnE(Xn)(3)若XY相互独立则:E(XY)=E(X)E(Y)(4)[E(XY)]2≤E2(X)E2(Y)3、方差:D(X)=E(X2)-E2(X)4、方差的性质(1)D(C)=0D[D(X)]=0D(aX±b)=a2D(X)D(X)<E(X-C)2(2)D(X±Y)=D(X)+D(Y)±2Cov(X,Y)若XY相互独立则:D(X±Y)=D(X)+D(Y)5、协方差:Cov(X,Y)=E(X,Y)-E(X)E(Y)若XY相互独立则:Cov(X,Y)=06、相关系数:ρXY =ρ(X,Y)=Cov(X,Y)D(X)D(Y)若XY相互独立则:ρXY=0即XY不相关7、协方差和相关系数的性质(1)Cov(X,X)=D(X)Cov(X,Y)=Cov(Y,X)(2)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)Cov(aX+c,bY+d)=abCov(X,Y)8、常见数学分布的期望和方差分布0-1分布B(1,p)二行分布B(n,p)泊松分布P(λ)几何分布G(p)超几何分布H(N,M,n)均匀分布U(a,b)正态分布N(μ,σ2)指数分布E(λ)数学期望p方差p(1-p)np(1-p)npλ1pλ1-ppn2nMNM M N-m(1-)N N N-1 a+b2(b-a)212σ2μ1λ1λ2五、大数定律和中心极限定理1、切比雪夫不等式)D (X )若E (X )=μ,D (X )=σ2,对于任意ξ>0有P {X -E (X )≥ξ}≤D (X 或P {X -E (X )<ξ}≥1-22ξξ2、大数定律:若X1ΛXn相互独立且n →∞时,1n(1)若X 1ΛX n 相互独立,E (X i )=μi ,D (X i )=σi 2∑i =1n1Xi−−→nD n∑E (X )ii =1n且σi 21≤M 则:n ∑i =11Xi−−→nP ∑E (X ),(n →∞)ii =1n1nP −→μ(2)若X1ΛXn相互独立同分布,且E (Xi )=μi则当n →∞时:∑X i−ni =13、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为σ2>0的独立同分布时,当n 充分大时有:∑X Y n=k =1nk -n μ~−−→N (0,1)n σ(2)拉普拉斯定理:随机变量ηn(n =1,2Λ)~B (n ,p )则对任意x 有:x →+∞lim P {ηn-npnp (1-p )≤x }=⎰x 12π-∞e-t 22dt=Φ(x )n(3)近似计算:P (a ≤∑Xk≤b )=P (a -n μ≤k =1n∑Xk =1k-n μ≤b -n μn σn σn σ)≈Φ(b -n μn σ)-Φ(a -n μn σ)六、数理统计1、总体和样本总体X 的分布函数F (x )样本(X 1,X 2Λ2、统计量(1)样本平均值:X =1n(3)样本标准差:S =Xn)的联合分布为F (x 1,x2Λx n)=∏F (x k)k =1n∑i =1n1X i(2)样本方差:S =n -12∑1(Xi-X )=n -1i =12nn ∑i =1n (Xi2-nX )21n -1∑1(X i -X ) (4)样本k 阶原点距:Ak=ni =12n ∑Xi =1k i,k =1,2Λ(5)样本k 阶中心距:Bk=M k =1n∑(Xi =1n i-X )k ,k =2,3Λ(6)次序统计量:设样本(X 1,X 2Λ序重新排列,得到x (1)≤x(2)≤Λ为样本(X 1,X 2ΛX n)X n)的观察值(x 1,x 2Λx n),将x 1,x 2Λxn按照由小到大的次≤x(n ),记取值为x (i )的样本分量为X (i ),则称X(1)≤X(2)≤Λ≤X(n )的次序统计量。
概率论与数理统计(完整公式,知识点梳理)
p
k
;
对于分布 二项分布
f ( x)dx
。
P(X=1)=p, P(X=0)=q
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生 的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,, n 。
k k nk P( X k ) Pn(k ) Cn p q
P( A)
(10)加法 公式 (11)减法 公式 (12)条件 概率
L( A) 。其中 L 为几何度量(长度、面积、体积) 。 L ()
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB) 当 B A 时,P(A-B)=P(A)-P(B) 当 A=Ω 时,P( B )=1- P(B) 定义 设 A、B 是两个事件,且 P(A)>0,则称
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
积分元 f ( x)dx 在连续型随机变量理论中所起的作用与 P( X xk ) pk 在离 散型随机变量理论中所起的作用相类似。
4 / 27
(4)分布 函数
设 X 为随机变量, x 是任意实数,则函数
F ( x) P( X x)
称为随机变量 X 的分布函数,本质上是一个累积函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如 P(Ω/B)=1 P( B /A)=1-P(B/A) 乘法公式: P(AB) P(A)P(B / A)
更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 … An 1) 。
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
5° P(X x) F(x) F(x 0) 。
对于离散型随机变量, F(x) pk ; xk x
(5)八大 分布
x
对于连续型随机变量, F (x) f (x)dx 。
用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用 Pn(k) 表示 n 重伯努利试验
中 A 出现 k(0 k n) 次的概率,
C Pn(k)
k n
pk qnk
,k
0,1,2,, n
。
第二章 随机变量及其分布
(1)离散 型随机变 量的分布 律
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为
它表示 A 发生而 B 不发生的事件。
(6)事件 的关系与 运算
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B
互不相容或者互斥。基本事件是互不相容的。
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A 不发生的事件。互斥未必
加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成, 则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完成, 则这件事可由 m×n 种方法来完成。
P(A)=(1 ) (2 ) (m ) = P(1 ) P(2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
(9)几何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基 本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件 A,
1° B1, B2 ,…, Bn 两两互不相容, P(Bi) >0, i 1,2,…, n ,
n
A Bi
2°
i1 , P( A) 0 ,
则
P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,…n。
P(Bj )P(A/ Bj )
j 1
此公式即为贝叶斯公式。
P(Bi ) ,( i 1, 2 ,…, n ),通常叫先验概率。 P(Bi / A) ,( i 1, 2 ,…, n ),通常称为
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或者 P( )。
超几何分布 几何分布
泊松分布为二项分布的极限分布(np=λ,n→∞)。
P( X
k)
CMk
•
C
nk N M
C
n N
k 0,1,2,l , l min(M , n)
随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。
Ø 与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
(15)全概 公式
(16)贝叶 斯公式
(17)伯努 利概型
并且同时满足 P(ABC)=P(A)P(B)P(C)
那么 A、B、C 相互独立。
对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
Ai Ai
德摩根率: i1
i 1
AB AB,AB AB
(7)概率 的公理化 定义
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满足下列三个条件:
后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
我们作了 n 次试验,且满足
每次试验只有两种可能结果, A 发生或 A 不发生; n 次试验是重复进行的,即 A 发生的概率每次均一样;
每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否是互不影响的。 这种试验称为伯努利概型,或称为 n 重伯努利试验。
0-1 分布
P(X=1)=p, P(X=0)=q
二项分布
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生的次数是随机变量,
设为 X ,则 X 可能取值为 0,1,2,, n 。
P( X
k)
Pn(k
)
C
k n
p k q nk ,
其中 q 1 p,0 p 1, k 0,1,2,, n ,
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母 A,B,C,…表示
事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω) 的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系:
①两个事件的独立性
设事件 A 、 B 满足 P(AB) P( A)P(B) ,则称事件 A 、 B 是相互独立的。
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独立。 必然事件 和不可能事件 Ø 与任何事件都相互独立。
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,b)。
分布函数为
x
F (x) f (x)dx
0,
xa, ba
1,
x<a, a≤x≤b x>b。
当 a≤x1<x2≤b 时,X 落在区间( x1 , x2 )内的概率为
P( x1
X
x2 )
x2 b
x1 a
。
f (x)
ex ,
0,
对于 n 个事件类似。
设事件 B1, B2,, Bn 满足 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
n
A Bi
2°
i1 ,
则有
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
设事件 B1, B2 ,…, Bn 及 A 满足
重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试 验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表示为 A-AB 或者 AB ,
1° 0≤P(A)≤1, 2° P(Ω) =1
3° 对于两两互不相容的事件 A1, A2 ,…有
P i1 Ai i1 P( Ai)
常称为可列(完全)可加性。
则称 P(A)为事件 A 的概率。
(8)古典 概型
1° 1, 2 n ,
2°
P(1 )
P(2 )
P( n
)1 n。 Nhomakorabea设任一事件 A ,它是由1, 2 m 组成的,则有
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
均匀分布
随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在[a,b]上为常数 1 , ba
即
f
(x)
b
1
a
,
0,
a≤x≤b 其他,
指数分布
1° f (x) 0 。
f (x)dx 1
2°
。
P(X x) P(x X x dx) f (x)dx
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X xk) pk 在离散型随机变量理论
中所起的作用相类似。
设 X 为随机变量, x 是任意实数,则函数 F(x) P(X x)
x 0, x 0,
其中 0 ,则称随机变量 X 服从参数为 的指数分布。
X 的分布函数为
F(x)
1 ex , 0,
记住积分公式:
x nex dx n!
0
x 0,
x<0。