煤油冷却器的设计说明

合集下载

化工原理课程设计说明书-煤油冷却器的设计

化工原理课程设计说明书-煤油冷却器的设计

课程设计任务书一、摘要换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。

换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。

换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。

根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。

由于使用条件的不同,换热器可以有各种各样的形式和结构。

在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。

衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动力。

二、关键字煤油换热器列管式换热器膨胀节固定管板式封头管板目录一、概述 (1)二、工艺流程草图及设计标准 (1)2.1工艺流程草图 (1)2.2设计标准 (2)三、换热器设计计算 (2)3.1确定设计方案 (2)3.1.1选择换热器的类型 (2)3.1.2流体溜径流速的选择 (2)3.2确定物性的参数 (3)3.3估算传热面积 (3)3.3.1热流量 (3)3.3.2平均传热温差 (3)3.3.3传热面积 (3)3.3.4冷却水用量 (4)3.4工艺结构尺寸 (4)3.4.1管径和管内流速 (4)3.4.2管程数和传热管数 (4)3.4.3平均传热温差校正及壳程数 (4)3.4.4传热管排列和分程方法 (5)3.4.5壳体内径 (5)3.4.6折流板 (5)3.4.7接管 (5)3.5换热器核算 (6)3.5.1热流量核算 (6)3.5.1.1壳程表面传热系数 (6)3.5.1.2管内表面传热系数 (7)3.5.1.3污垢热阻和管壁热阻 (7)3.5.1.4计算传热系数K C (7)3.5.1.5换热器的面积裕度 (8)3.5.2换热器内流体的流动阻力 (8)3.5.2.1管程流体阻力 (8)3.5.2.2壳程阻力 (8)四、设计结果设计一览表 (10)五、设计自我评价 (11)六、参考资料 (12)七、主要符号说明 (13)一、概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

煤油冷却器的设计说明

煤油冷却器的设计说明

煤油冷却器的设计一前言1列管式换热器的种类固定管板式换热器管板式换热器浮头式换热器填料涵式换热器U型管换热器2换热器的特点列管式换热器,是一种通用的标准换热设备,它具有结构简单,坚固耐用,造价低廉,用材广泛,清洗方便,适应性强等优点,应用最为广泛。

管壳式换热器根据结构特点分为以下几种:固定管板式换热器:固定管板式换热器两端的管板与壳体连在一起,这类换热器结构简单,价格低廉,但管外清洗困难,宜处理两流体温差小于50℃且壳方流体较清洁及不易结垢的物料。

带有膨胀节的固定管板式换热器,其膨胀节的弹性变形可减小温差应力,这种补偿方法适用于两流体温差小于70℃且壳方流体压强不高于600Kpa的情况。

浮头式换热器:浮头式换热器的管板有一个不与外壳连接,该端被称为浮头,管束连同浮头可以自由伸缩,而与外壳的膨胀无关。

浮头式换热器的管束可以拉出,便于清洗和检修,适用于两流体温差较大的各种物料的换热,应用极为普遍,但结构复杂,造价高。

填料涵式换热器:填料涵式换热器管束一端可以自由膨胀,与浮头式换热器相比,结构简单,造价低,但壳程流体有外漏的可能性,因此壳程不能处理易燃,易爆的流体。

U型管换热器:U型管换热器的管子两端固定在同一管板上,管子两端可以自由伸缩,与其他管子机壳体无关。

这种换热器结构比较简单,重量轻,适用于高温高压场合,但管清洗比较困难且管板利用率较差。

几种换热器的结构3换热器的发展趋势70年代的世界能源危机,有力地促进了传热强化技术的发展。

为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备。

这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高。

所以,这些年来,换热器的开发与研究成为人们关注的课题。

最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,并向低温差设计和低压力损失设计的方向发展。

煤油冷却器的设计_化工原理换热器设计说明书

煤油冷却器的设计_化工原理换热器设计说明书

《化工原理》课程设计说明书题目:煤油冷却器的设计学院:化工学院专业:化学工程与工艺姓名:学号:指导老师:同组人员完成时间:目录1.前言 32.设计题目(任务书) 53.流程示意图 54.流程和方案的说明和论证75.设计结果概要(主要设备尺寸、各种物料量和状态、能耗指标、设计时规定的主要操作参数以及附属设备的规格、型号及数量)86.设计计算与说明97.对设计的评述与体会心得288.参考文献目录30一. 前言换热器简单说是具有不同温度的两种或两种以上流体之间传递热量的设备。

在工业生产过程中,进行着各种不同的热交换过程,其主要作用是使热量由温度较高的流体向温度较低的流体传递,使流体温度达到工艺的指标,以满足生产过程的需要。

此外,换热设备也是回收余热,废热,特别是低品位热能的有效装置。

根据管壳式换热器的结构特点,常将其分为固定管板式、浮头式、U型管式、填料函式、滑动管板式、双管式等。

本次课程设计设计的是固定管板式换热器。

固定管板式换热器,管束连接在管板上,管板与壳体焊接。

其优点是结构简单、紧凑、能承受较高的压力,造价低,管程清洗方便,管子损坏或堵塞时易于更换;缺点是当管束与壳体的壁温或材料的线胀系数相差较大时,壳体与管束将会产生较大的热应力。

这种换热器适用于壳测介质清洁且不易结垢、并能进行清洗、管程与壳程两侧温差不大或温差较大但壳测压力不高的场合管壳式换热器结构:管壳式换热器的主要零部件有壳体、接管、封头、管板、换热管、折流板元件等,对于温差较大的固定管板式换热器,还应包括膨胀节。

管壳式换热器的结构应该保证冷、热两种流体分走管程和壳程,同时还要承受一定温度和压力的能力(1)管板:管板是换热器的重要元件,主要是用来连接换热器,同时将管程和壳程分隔,避免冷热流体相混合。

当介质无腐蚀或有轻微腐蚀时,一般采用碳素钢、低合金钢板或其锻件制造。

(2)管子与管板的连接:管子与管板的连接必须牢固,不泄漏。

既要满足其密封性能,又要有足够的抗拉强度。

管式换热器煤油冷却器的设计

管式换热器煤油冷却器的设计

管式换热器煤油冷却器的设计管式换热器是工业生产中非常常见的一种设备,其主要作用是将热量从一种物质传递到另一种物质中,从而实现物质的加热或冷却。

而煤油冷却器,则是一种利用煤油作为工质,通过管式换热器将其冷却的装置。

本文将介绍煤油冷却器的设计及其应用。

一、煤油冷却器的基本原理煤油冷却器的基本原理是利用管式换热器的传热原理,将需要冷却的物质通过管道输送到换热器中,再将煤油作为冷却介质,通过换热器与被冷却物质进行热量交换,将物质的温度降低。

整个过程中,煤油的循环至关重要,一般采用泵将煤油压入冷却器中,然后再将冷却后的煤油送回煤油箱进行循环利用。

二、煤油冷却器的设计要点1. 结构设计煤油冷却器的结构设计主要包括管道系统和冷却器本体。

管道系统包括进出口管道、泵进口和出口管道等,而冷却器本体则包括线管、壳体、管板和泥罐等。

其中,线管是用来输送煤油或被冷却物质的管道,壳体则将线管密封在内,并提供冷却介质的进出口。

管板用于固定线管,而泥罐则用于收集沉积物,保持换热器的清洁。

2. 材料选择在选择煤油冷却器的材料时,需要考虑煤油的化学性质和冷却介质的耐腐性。

一般来说,冷却器的材料可以选用碳钢、不锈钢、铜等材料。

碳钢的价格相对较低,但容易被腐蚀,不锈钢则具有较好的耐腐蚀性能,但价格较高。

选择时需要根据实际需要进行综合考虑。

3. 换热面积和流量计算煤油冷却器的换热面积和流量计算是设计过程中的重要环节。

首先需要确定被冷却物质的流量和温度,以及要达到的冷却效果。

然后,通过热力学计算,确定煤油冷却器的换热面积和煤油的循环流量,以保证冷却效果达到设计要求。

三、煤油冷却器的应用煤油冷却器广泛应用于各种工业生产过程中,如钢铁生产、化工生产、造纸生产等。

例如,在钢铁生产中,煤油冷却器可以用于冷却钢水和铁水,控制铸件的温度,保证质量。

在化工生产中,煤油冷却器可以用于冷却化学反应过程中产生的热量,保护反应釜不受过热损坏。

在造纸生产中,煤油冷却器可以用于冷却生产过程中的水蒸气,保证造纸机的正常运转。

煤油冷却器毕业设计

煤油冷却器毕业设计

煤油冷却器毕业设计毕业设计:煤油冷却器设计摘要:本文介绍了一种基于煤油的冷却器设计,该设计主要用于冷却热水器、发动机等设备。

本设计中采用了顶盖螺丝、底座、热管、铝鳍片等部件。

通过改变顶盖螺丝的材料、直径,底座的形状、尺寸,铝鳍片的数量、厚度,优化了冷却器的导热、换热性能。

最终实验结果表明,该煤油冷却器的性能稳定可靠,可广泛应用于不同领域的冷却需求。

关键词:煤油冷却器、热管、铝鳍片、导热、换热1. 引言随着科技的发展和工业的进步,越来越多的设备需要进行降温或冷却。

冷却器作为一种实用的降温设备,广泛应用于发动机、热水器、空调等各类设备中。

本文介绍了一种基于煤油的冷却器设计,旨在提高冷却器的效率和稳定性。

2. 冷却器设计本设计采用了顶盖螺丝、底座、热管、铝鳍片等部件。

其中,热管是冷却器的核心部件,其内部填充着煤油等导热介质。

铝鳍片的作用是增大冷却器的散热面积,提高散热效率。

在设计中,我们改变了顶盖螺丝的材料、直径,底座的形状、尺寸,铝鳍片的数量、厚度等因素,通过优化这些因素,提高了冷却器的导热、换热性能。

3. 实验结果本设计的煤油冷却器经过多组实验测试,其性能稳定可靠。

在实验中,我们将冷却器接入发动机冷却回路进行测试,测试结果表明,冷却器的降温效果明显,能够使发动机工作温度下降10℃左右,并能够稳定工作长达100小时以上。

4. 结论本文介绍了一种基于煤油的冷却器设计,优化了冷却器的导热、换热性能,通过实验验证了该设计的可靠性和稳定性。

该煤油冷却器的技术应用前景广阔,可以应用于不同领域的冷却需求。

煤油卧式列管式冷却器的设计

煤油卧式列管式冷却器的设计

煤油卧式列管式冷却器的设计冷却器是一种常见的热交换设备,用于将热量从一个介质传递到另一个介质,以实现冷却效果。

煤油卧式列管式冷却器是一种常见的冷却器类型,特点是结构简单、性能可靠。

下面将对煤油卧式列管式冷却器的设计进行详细探讨。

一、设计要求:1.设计工作温度:煤油的设计工作温度为30℃。

2.设计工作压力:煤油的设计工作压力为0.2MPa。

3.散热面积:根据需要散热的热量计算得出。

4.设计材料:列管、壳体采用碳钢材料。

二、设计步骤:1.确定散热面积:根据给定的冷却效果和需要散发的热量计算出所需的散热面积。

常用的计算公式如下:Q=U×A×ΔT其中,Q为所需散发的热量,U为传热系数,A为散热面积,ΔT为温度差。

通过已知条件计算得出散热面积后,我们可以确定冷却器的尺寸。

2.确定传热系数:传热系数是指单位时间内通过单位面积的热量,它是冷却器设计中一个重要的参数。

传热系数的大小取决于流体的性质、流速、管道结构等因素。

一般可以通过经验公式来计算传热系数。

3.选取列管:列管是冷却器的核心部分,采用高导热性能的金属材料,如铜、不锈钢等。

根据散热面积和设计工作温度确定列管的数量和布置方式。

通常可以选择U型管或者平直管作为列管。

4.确定壳体尺寸:壳体是冷却器的外部结构,起到支撑和保护列管的作用。

根据列管的数量和布置方式,确定壳体的尺寸和结构。

5.设计壳体配件:壳体配件包括进出口管道、阀门、泄压装置等。

根据设计要求和实际应用情况,选择合适的壳体配件。

6.设计支座和支撑:冷却器需要有支座和支撑结构来支撑整个设备。

根据冷却器的尺寸和重量,设计合适的支座和支撑结构。

7.进行计算和分析:在设计完成后,需要进行计算和分析,验证设计结果的可行性和合理性。

通过应力、热力、振动等方面的计算和分析,确保冷却器的安全可靠。

8.绘制图纸和制作样品:最后,根据设计结果绘制详细的图纸,并制作冷却器的样品。

样品经过测试和实验验证后,可以进行批量生产。

煤油冷却器的设计

煤油冷却器的设计

煤油冷却器的设计摘要煤油冷却器是利用流体易导热原理,将煤油的热量向环境转移,冷却其受热部件的装置。

本文介绍了煤油冷却器的结构与设计及其性能的研究。

本文主要从流体流动系统、热交换系统、控制系统以及特殊设备等方面介绍了煤油冷却器的设计,研究了冷却器的结构性能及实际工作条件下的性能,并探讨了冷却器在操作过程中的安全措施。

本文所讨论的煤油冷却器的性能高,安全可靠,能够满足大多数用户的使用要求。

关键词:煤油冷却器;结构设计;性能研究;安全措施IntroductionFlow SystemThe flow system is the main part of oil coolers, which provides the means for the fuel oil and cooling fluid to enter and exit the heat exchanger. The oil coolers generally include two oil inlets and two oil outlets and two cooling inlets andtwo cooling outlets, as shown in Figure 1. The oil inlet is connected to the fuel oil supply pipe and the oil outlet is connected to the oil return pipe. The cooling inlet is connected to the water supply pipe, and the cooling outlet is connected to the water return pipe. Both cooling inlets and cooling outlets are equipped with high-pressure relief valves to prevent overpressure of the coolant.![Oil-cooler-structure.png](attachment:Oil-cooler-structure.png)Figure 1. Oil cooler structureHeat Exchange System。

管式换热器(煤油冷却器)的设计

管式换热器(煤油冷却器)的设计

课程设计课程名称化工原理课程设计题目名称煤油冷却器的设计专业班级09级生物工程(2)班学生姓名学号指导教师孙兰萍二O一一年十二月二十日1 设计任务书1.1 设计题目煤油冷却器的设计1.2 设计任务及操作条件(1)处理能力: M ⨯104 t/Y 煤油(2)设备型式: 列管式换热器(3)操作条件①煤油:入口温度140℃,出口温度40℃。

②冷却介质:循环水,入口温度30℃,出口温度40℃。

③允许压降:不大于105 Pa 。

④煤油定性温度下的物性数据:3/825m kg C =ρ;s Pa C ⋅⨯=-41015.7μ;pC c =2.22kJ/(kg.℃);C λ=0.14 W/(m.℃)⑤每年按330天计,每天24小时连续运行。

(4)建厂地址 天津地区1.3 设计要求试设计一台适宜的列管式换热器完成该生产任务。

1.4 工作计划1、领取设计任务书,查阅相关资料(1天);2、确定设计方案,进行相关的设计计算(2天);3、校核验算,获取最终的设计结果(1天);4、编写课程设计说明书(论文),绘制草图等(1天)。

1.5 设计成果要求1、通过查阅资料、设计计算等最终提供课程设计说明书(论文)电子稿及打印稿1份,并附简单的设备草图。

2、课程设计结束时,将按以下顺序装订的设计成果材料装订后交给指导教师:(1)封面(具体格式见附件1)(2)目录(3)课程设计任务书(4)课程设计说明书(论文)(具体格式见附件2)(5)参考文献(6)课程设计图纸(程序)1.6 几点说明1、本设计任务适用班级:09生物工程(本)2班(其中:学号1-15号,M=15;学号16-30号,M=25;学号31-46号,M=40);2、课程设计说明书(论文)格式也可参阅《蚌埠学院本科生毕业设计(论文)成果撰写规范》中的相关内容。

指导教师:教研室主任:系主任:2 确定设计方案2.1 选择换热器的类型两流体的温度变化情况:热流体即煤油的进口温度140℃,出口温度40℃;冷流体即循环水进口温度30℃,出口温度40℃。

浅谈煤油冷却器的设计

浅谈煤油冷却器的设计

浅谈煤油冷却器的设计引言煤油冷却器是一种常用的热交换设备,用于将高温流体(通常是煤油)的热量传递给冷却介质(通常是水)以降低煤油的温度。

在工业生产过程中,大量的热能产生,煤油冷却器通过高效的热交换设计,能够有效地控制流体温度,确保设备的正常运行。

本文将从设计原则、材料选型和结构设计等方面对煤油冷却器的设计进行浅谈,旨在为工程师们提供一些有益的参考和指导。

设计原则热力学平衡煤油冷却器的设计首要考虑是实现热力学平衡。

合理的冷却器设计应该确保煤油在流经冷却器的过程中,能够充分地与冷却介质接触,实现热量的传递和吸收。

同时,冷却介质的流速和温度也需要进行合理的控制,以保证煤油的冷却效果。

材料的选择由于煤油冷却器在使用过程中需要处理高温流体,对材料的选择具有重要意义。

一般来说,优质的不锈钢具有较好的耐高温性能和抗腐蚀性,因此常被选用作煤油冷却器的材料。

结构设计煤油冷却器的结构设计应考虑到流体的压降和均匀分布,以增加煤油与冷却介质之间的接触面积,并减小热阻。

此外,还需要合理设计进出口口径,以保证流体的流速和流量,从而达到更好的冷却效果。

材料选型煤油冷却器的材料选型应考虑到耐高温和抗腐蚀性能。

推荐选用不锈钢材料,如304不锈钢和316不锈钢等。

这些材料具有优良的耐高温性能和抗腐蚀性,能够在高温和腐蚀环境中保持较好的稳定性。

在材料选型过程中,还需考虑材料的成本因素。

根据实际应用情况和预算要求,可以选择适当的不锈钢材料。

另外,需注意材料的可焊接性,以便进行冷却器的制造和维护。

结构设计流体分布设计为了增加煤油与冷却介质之间的接触面积,煤油冷却器的流体分布设计尤为重要。

一般采用多管并联的方式,通过将煤油分流到多个管道中,使其能够均匀地在整个冷却器中流动。

这样能够有效地提高煤油的冷却效果,减小热阻。

进出口设计进出口的设计直接影响着流体的流速和流量。

如果进出口口径过小,会增加流体的压降,降低流速和流量,影响冷却效果。

因此,进出口的设计应充分考虑流体的流动性,选择适当的口径和连接方式,确保流体能够顺利流通。

列管式煤油冷却器的工艺设计

列管式煤油冷却器的工艺设计

列管式煤油冷却器的工艺设计1.引言列管式煤油冷却器作为工业生产过程中的重要设备之一,其工艺设计直接关系到生产效率和产品质量。

本文将介绍列管式煤油冷却器的工艺设计原理、参数计算以及设计注意事项。

2.工艺设计原理列管式煤油冷却器是通过将热交换管束与冷却介质进行传热交换,使煤油的温度降低,从而提高其可靠性和性能稳定性。

其工艺设计原理主要包括热交换器类型选择、传热方式选择和流量计算等。

2.1热交换器类型选择根据煤油的使用要求和工艺条件,可以选择不同类型的列管式煤油冷却器,如管壳式、管束式、管板式等。

在选择时需考虑煤油流量、压力损失、传热效果和清洗维护等因素。

2.2传热方式选择传热方式的选择在很大程度上影响着煤油冷却器的传热效率和能耗。

常见的传热方式包括对流传热、传导传热和辐射传热。

通过合理选择传热方式,可以提高传热效率和节约能源。

2.3流量计算煤油冷却器的流量计算是工艺设计中的关键步骤之一,直接影响到传热效果和生产效率。

流量计算需要考虑煤油进出口温度、流量、压力以及热交换系数等因素,并结合经验数据进行计算。

3.工艺设计参数计算在进行列管式煤油冷却器的工艺设计时,需要对一些重要参数进行计算,以保证煤油冷却器的正常运行和传热效果。

3.1煤油流量计算煤油流量计算是工艺设计中的重要环节,其计算公式为:$$Q=\f ra c{{m\c do tCp\cd ot(T1-T2)}}{{3600}}$$其中,Q为煤油的流量(m³/h),m为煤油的质量流量(kg/h),C p 为煤油的比热容(J/k g·℃),T1为煤油的进口温度(℃),T2为煤油的出口温度(℃)。

3.2热交换面积计算热交换面积的计算是工艺设计的关键环节,其计算公式为:$$A=\f ra c{{Q}}{{U\c d ot\D el ta T}}$$其中,A为煤油冷却器的热交换面积(m²),Q为煤油的流量(m³/h),U为煤油冷却器的传热系数(W/m²·℃),ΔT为煤油平均温差(℃)。

化工原理设计 煤油冷却说明书

化工原理设计 煤油冷却说明书

化工原理课程设计煤油冷却器设计说明书学院:食品与生物工程学院班级:生工111班姓名:孟祥伟学号:2011053047化工原理课程设计任务书1 设计题目:2万吨/年煤油冷却器设计2 设计任务:处理能力:万吨/年煤油3 操作条件:3.1温度:煤油入口温度100℃,出口温度40℃冷却水入口温度30℃,出口温度50℃3.2热损失3%Q3.3 开工天数:330天/年,每天24小时连续运行3.4 允许压降:不大于105pa3.5 建厂地址:齐齐哈尔地区4 设备型式固定板式换热器5 设计内容5.1 设计方案简介5.2 换热器的工艺计算5.3 换热器的主要结构尺寸设计5.4 编制设计说明书5.5 绘制换热器总装配图目录第一章概述 ................................................................................................................................ 4 一、概念 ................................................................................................................................ 4 1、换热器的定义 .............................................................................................................. 4 2、换热器的分类 .............................................................................................................. 4 二、管壳式换热器的结构形式 ............................................................................................ 4 1、管壳式换热器的形式 .................................................................................................. 4 2、固定管板式换热器的优缺点 ...................................................................................... 5 3、固定管板式换热器的结构 .......................................................................................... 5 第二章固定管板式换热器的设计计算 .................................................................................... 7 一、初选换热器规格 ............................................................................................................ 7 1、确定流体通入空间 ...................................................................................................... 7 2、确定流体的定性温度、物性数据 .............................................................................. 7 3、计算热负荷 .................................................................................................................. 7 4、计算两流体的平均温差,并确定t ϕ∆ ........................................................................ 7 5、初选换热器规格 .......................................................................................................... 8 二、核算总传热系数0K ...................................................................................................... 9 1、计算管程对流传热系数i α ......................................................................................... 9 2、计算管程对流传热系数o α......................................................................................... 9 3、确定污垢热阻 ............................................................................................................ 10 4、计算总传热系数0K .................................................................................................. 10 三、计算压强降 .................................................................................................................. 10 1、计算管程压强降 ........................................................................................................ 10 2、计算壳程压强降 ........................................................................................................ 11 第三章换热器的主要结构尺寸 .............................................................................................. 12 一、管子的规格和排列方法 .............................................................................................. 12 二、管程数与壳程数的确定 . (12)三、外壳直径的确定 (12)四、折流板形式的确定 (12)五、主要附件的尺寸设计 (13)1、封头 (13)2、缓冲挡板 (13)3、放气孔、排液孔 (13)4、接管 (13)5、假管 (13)6、拉杆和定距管 (13)第四章工艺设计计算结果汇总表 (14)附录参考文献 (15)总结心得体会 (16)第一章概述一、概念1.换热器的定义换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。

煤油冷却器设计范文

煤油冷却器设计范文

煤油冷却器设计范文一、引言煤油冷却器是燃料系统中重要的设备之一,能有效地降低燃油进入喷油嘴时的温度,提高喷雾效果,确保燃油能够完全燃烧。

本文将介绍煤油冷却器的设计理念、结构特点以及功能等方面的内容,以期为相关领域的工程师和研究人员提供参考。

二、设计理念1.热交换效率高:煤油冷却器应具有较高的热交换效率,使燃油在经过冷却器后能有效地降温。

为此,设计中应采用优质的冷却材料和合理的换热结构。

2.结构简单可靠:煤油冷却器的结构应尽量简单可靠,尽量减少零部件的数量和种类,以降低故障率和维护成本。

3.适应性强:煤油冷却器应具有一定的适应性,能够在不同的工况下正常运行,适应各种不同燃油的冷却需求。

三、结构特点1.简单紧凑:煤油冷却器的结构一般较为简单紧凑,能够节省空间,提高整体的稳定性。

2.冷却效果好:煤油冷却器的冷却管束应布置合理,以便燃油能够在冷却器内充分接触冷却介质,从而达到较好的冷却效果。

3.传热效率高:煤油冷却器应采用高传热系数的材料,以提高冷却介质与燃油的传热效率。

4.冷却介质流动性好:煤油冷却器内的冷却介质应具有良好的流动性,能够快速将热量带走,从而确保燃油快速冷却。

四、功能1.降低燃油温度:煤油冷却器能够通过与冷却介质的热交换作用,有效地降低燃油的温度,防止燃油在进入喷油嘴之前过热,从而提高燃油的喷雾效果。

2.增加燃烧效率:降低燃油温度能够提高燃油的可燃性,使其更容易燃烧,从而提高发动机的燃烧效率和动力输出。

3.保护喷油嘴:煤油冷却器能够降低燃油的温度,减轻喷油嘴对高温燃油的负荷,延长其使用寿命。

4.提高燃油利用率:通过减少燃油的热损失,煤油冷却器能够提高燃油的利用率,降低燃油消耗,从而实现节能减排的目的。

五、结论煤油冷却器作为燃料系统中的重要设备,能够有效地降低燃油温度,提高燃烧效率,保护喷油嘴,提高燃油利用率。

设计中应充分考虑热交换效率、结构简单可靠和适应性强等因素,使煤油冷却器能够在各种工况下正常运行。

煤油冷却器的设计

煤油冷却器的设计

煤油冷却器的设计1.材料选择:煤油冷却器需要使用耐高温、耐腐蚀的材料,如不锈钢、钛合金等。

这些材料能够在高温环境下保持结构的稳定性,并且不会被煤油中的化学物质腐蚀。

2.结构设计:煤油冷却器一般采用管壳式结构,即在外围设立一个壳体,在内部布置多根冷却管。

冷却管通常采用联管式结构,即由内外两根管组成,内管用于传递煤油,外管用于传递冷却介质,这样可以增大煤油与冷却介质之间的接触面积,提高冷却效果。

3.管道布局:煤油冷却器的管道布局需要合理安排,以确保冷却介质能够充分接触到煤油,并且得到有效冷却。

通常采用螺旋式布置,即将冷却管盘绕在内部壳体上,使冷却介质与煤油多次接触,提高冷却效率。

4.流速控制:煤油冷却器的流速需要控制在一定范围内,过高的流速会导致煤油在冷却过程中受到热量约束不足,无法充分冷却;过低的流速则会影响煤油的冷却速度,降低冷却效果。

因此,在设计煤油冷却器时需要考虑流速的合理控制。

5.冷却介质选择:常用的煤油冷却介质有水和空气。

水冷却效果好,但需要考虑使用水冷却系统的成本和能源消耗。

空气则常用于小型设备的煤油冷却,由于空气冷却效果较差,可能需要增加冷却面积以达到需要的冷却效果。

6.温度控制:煤油冷却器需要设置温度控制装置,以保证煤油的温度在合理范围内。

可以采用温度传感器和控制装置的组合来实现温度的测量和调控,保证冷却效果的稳定性。

总之,煤油冷却器的设计需要考虑材料、结构、管道布局、流速控制、冷却介质选择和温度控制等方面的因素。

只有在合理考虑这些因素的基础上,才能设计出高效、可靠的煤油冷却器,提高设备的使用效率和寿命。

煤油冷却器课程设计

煤油冷却器课程设计

煤油冷却器课程设计长沙学院课程设计说明书题目煤油冷却器的设计系(部) 生环系专业(班级) 09应化2班姓名学号指导教师宋勇起止日期2020.5.28——2020.6.16化工原理课程设计任务书系主任___________ 指导教师____________ 学生__戴 姣______ 2班 编号:2.2.7一、设计题目名称:煤油冷却器的设计 二、设计条件:1.煤油:入口温度:130℃,出口温度:50℃;2.冷却介质,循环水(P 为0.3MPa ,进口温度28℃,出口温度40℃) 3.承诺压强降,不超过105Pa ;4.每年按300天计;每天24 h 连续运转。

5.处理能力65000吨/年; 6.设备型式:列管式换热器。

7.煤油定性温度下的物性数据:34c c p,c c 825kg /m ,7.1510Pa s, c 2.22kJ/kg C 0.14W /m C -==⨯⋅=⋅︒=⋅︒(),()ρμλ三、设计内容1.热量衡算及初步估算换热面积; 2. 冷却器的选型及流淌空间的选择; 3. 冷却器的校核运算; 4. 结构及附件设计运算;5.绘制带操纵点的工艺流程图(A3)及冷却器的工艺条件图(A3); 6.编写设计说明书。

四、厂址:长沙地区五、设计任务完成卧式列管冷却器的工艺设计并进行校核运算,对冷却器的有关附属设备的进行设计和选用,绘制换热器系统带操纵点的工艺流程图及设备的工艺条件图,编写设计说明书。

六、设计时刻安排三周:2020年5月28日-2020年6月16第一章长沙学院课程设计鉴定表目录第1章设计方案简介 (1)1.1 换热器概述 (1)1.2列管式换热器 (1)1.2.1 固定管板式 (1)1.2.3U形管式 (2)1.3设计方案的拟定 (3)1.4工艺流程简图(见附图) (3)第二章工艺运算和主体设备设计 (4)2.1 初选换热器类型 (4)2.2 管程安排及流速确定 (4)2.3确定物性数据 (5)2.4运算总传热系数 (5)第三章工艺结构设计 (9)3.1.管径和管内流速 (9)3.2.管程数和传热管数 (9)3.3.平均传热温差校正及壳程数 (9)第四章换热器核算 (14)第五章辅助设备的运算和选型 (20)第六章设计结果表汇 (22)参考文献 (23)化工原理课程设计之心得体会 (24)第1章设计方案简介1.1 换热器概述换热器是化工,炼油工业中普遍应用的典型的工艺设备。

列管式煤油冷却器的设计使用说明

列管式煤油冷却器的设计使用说明

列管式煤油冷却器的设计使用说明
设计要点:
1.列管式煤油冷却器的设计时必须根据具体的工艺参数来确定,例如
煤油的流量、温度、压力等。

同时还需要考虑到周围环境温度、冷却剂的
温度和流量等因素。

2.在设计过程中,需要确定冷却剂和煤油的流动路径。

通常采用交错
式布管,即冷却剂和煤油的管道依次排列,并在两者之间形成热交换。

3.尺寸的确定也是设计的重要环节。

一般来说,会根据煤油的流量和
温度降来确定列管的数量和长度。

4.材料的选择要考虑到煤油的化学性质,需选用耐腐蚀、耐高温的材料。

使用说明:
1.安装前需检查列管式煤油冷却器是否完好无损,是否有松动或漏气
现象。

特别要检查连接处的密封性,确保无泄漏。

2.需要将冷却器安装在通风良好的位置,避免靠近高温设备或火源,
以免引起安全事故。

3.在使用前,需要确保提供足够的冷却剂,以保证冷却器的正常运行。

同时,要定期检查冷却剂的温度和流量是否正常。

4.使用过程中,如果发现冷却效果不佳,应及时清理冷却器的内部,
尤其是冷却剂通路,防止积聚的污垢阻碍热交换。

5.定期进行保养维护,检查冷却器的密封性、连接件的紧固程度以及材料表面的腐蚀程度,如有问题及时更换或维修。

总结:
列管式煤油冷却器是一种重要的热交换设备,适用于工业领域的煤油冷却。

设计时需要考虑多方面的因素,如工艺参数、流动路径、尺寸和材料选择等。

在使用过程中要注意安装位置的选择、冷却剂的供应、清洁和维护等事项,以确保冷却器的正常运行和高效冷却。

煤油冷却器的设计说明

煤油冷却器的设计说明

煤油冷却器的设计说明首先,在设计煤油冷却器之前,需要明确冷却器所需的冷却量和工作条件。

冷却量可以根据需要冷却的煤油流量以及入口和出口温度差来计算。

工作条件包括煤油的粘度、密度、温度、压力等参数。

这些信息将对冷却器的尺寸和工作方式具有重要影响。

其次,冷却器的主要结构包括热交换器、冷却介质和冷却介质循环系统。

热交换器是实现煤油冷却的关键部分,通常采用管壳式热交换器。

冷却介质可以是水、空气或其他液体。

根据煤油的工作条件,可以选择最适合的冷却介质。

冷却介质循环系统包括循环泵、冷却介质储罐、冷却介质管路等,用于将冷却介质循环引导至热交换器并进行再循环。

在热交换器的设计中,首先需要确定煤油和冷却介质的传热方式。

常见的方式包括对流传热、辐射传热和传导传热。

对流传热是通过煤油和冷却介质的对流来实现的,辐射传热是通过辐射来实现的,传导传热是通过热传导来实现的。

根据传热方式的不同,可以选择不同的热交换器结构和材料。

其次,在选择热交换器结构时,应考虑到煤油和冷却介质的流动性和传热效果。

常见的热交换器结构包括管壳式热交换器、板式热交换器和管束式热交换器等。

其中,管壳式热交换器是最常用的煤油冷却器结构,其具有传热效果好、清洗维护方便等优点。

然后,在煤油冷却器的设计中,还需考虑煤油和冷却介质的物理性质对传热效果的影响。

煤油的粘度和密度会影响流动性,而流动性对传热效果具有重要影响。

因此,在确定热交换器尺寸和结构时,需要充分考虑煤油的粘度和密度,以保证传热效果的良好。

最后,在煤油冷却器的设计中,还需考虑到安全性和经济性的问题。

安全性包括冷却介质的选择和传热介质的泄漏防护等。

经济性包括选材、制造工艺和成本等方面。

在保证冷却效果的前提下,应尽量选择经济性好的设计方案。

综上所述,煤油冷却器的设计需要考虑到冷却量、工作条件、热交换器结构、冷却介质选择等多个方面的因素。

通过科学合理的设计,可以使煤油冷却器具有良好的冷却效果,提高煤油的燃烧效率和延长使用寿命。

浅谈煤油冷却器的设计

浅谈煤油冷却器的设计

浅谈煤油冷却器的设计煤油冷却器是一种常用的工业冷却设备,具有广泛的应用。

在很多工业领域中,高温状况下工作的机械装置需要承受很大的压力和热量,这时往往需要使用煤油冷却器来降低设备的温度,以确保正常的工作和使用寿命。

本文将从煤油冷却器的设计方面进行探讨。

1. 煤油冷却器的原理煤油冷却器的作用是通过煤油流动的方式来吸收设备放出的热量,从而将设备冷却下来。

该装置主要由外壳、管道和煤油等主要组成部分构成,其工作原理主要依靠煤油本身的流动性和煤油与管道之间的接触热传导,以达到冷却设备的目的。

2. 煤油冷却器的设计设计一个煤油冷却器需要考虑以下因素:(1)冷却装置的形式:煤油冷却器分为水冷式和风冷式,选择不同的冷却形式可以在不同的环境下达到更优秀的冷却效果。

(2)冷却面积的大小:煤油冷却器能够冷却的面积是有限的,需要根据设备的需求来确定其面积大小。

(3)流速的控制:煤油的流速对于冷却效果有很大的影响,在设计时需要考虑流速的大小以及如何控制流速。

(4)管径的选定:煤油冷却器中的管道是冷却的关键部分,管道的宽度和数量也会影响冷却效果。

因此在设计时需要仔细选择合适的管径和数量。

(5)换热介质的选择:在煤油冷却器设计中,换热介质的选择也是一个需要考虑的因素。

不同的介质可以对应不同的温度和流速要求,因此在选择介质的时候需要谨慎选择。

3. 煤油冷却器的优缺点煤油冷却器具有以下优点:(1)具有良好的冷却效果,可以将热源快速降温。

(2)煤油冷却器可靠性高,具有很长的使用寿命。

(3)煤油作为冷却介质稳定性高,不容易挥发,对于环境的污染也比较小。

但是,煤油冷却器也存在以下缺点:(1)煤油冷却器需要定期更换煤油,对于维护需要投入一定的成本和时间。

(2)对于一些特殊的环境条件,煤油冷却器可能无法满足其要求。

(3)煤油冷却器需要安全使用,存在一定的安全隐患。

4. 煤油冷却器的应用领域煤油冷却器广泛应用于各种领域,主要包括以下几个方面:(1)工业制造:在各种机械设备制造领域中大量应用,可以有效的增加设备的使用寿命和增强设备的工作效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计煤油冷却器的设计姓名:学号:学院:专业班级:指导教师:xx年xx月摘要本设计的任务就是完成一满足生产要求的列管式换热器的设计和选型。

本设计的核心是计算换热器的传热面积,进而确定换热器的其他尺寸或选择换热器的型号。

由总传热速率方程可知,要计算换热面积,得确定总传热系数和平均温差。

由于总传热系数与换热器的类型、尺寸、流体流到等诸多因素有关,----而平均温差与两流体的流向、辅助物料终温的选择有关,因此管壳式换热器设计和选型需考虑许多问题。

通过多次核算和比较,设计结果如下:带膨胀节的固定管板式换热器,选用φ25Χ2.5的碳钢管,换热面积为131.4 m²,且为双管程单壳程结构,传热管排列采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。

管数为300,管长为6m,管间距为32mm,折流板形式采用上下结构,其间距为150mm,切口高度为25%,壳体内径为700mm,该换热器可满足生产需求。

AbstractThe task of this design is to complete a meet the production requirements of shell and tube heat exchanger design and type selection. The total heat transfer rate equation shows that to calculate heat transfer area, you must determine the total heat transfer coefficient and the mean temperature difference. Through the repeated calculation and comparison, design results are as follows. Fixed tube plate heat exchanger with expansion joint, Select phi2525 carbon steel pipe, heat transfer area of 131.4 square meters, And for the tube side shell side of the single structure, the pipe arrangement method, namely each way are sorted by regular triangle, diaphragm use square is arranged on both sides. Pipe number is 300, the length is 6 meters, tube spacing is 32 mm, baffle plate form adopts up and down structure, the spacing is 150 mm, incision height was 25%, the shell inside diameter is 700 mm, the heat exchanger can meet the production requirements.前言 (4)第1章文献综述 (5)1.1 换热器分类 (7)1.2 列管式换热器的类型 (8)1.3 列管式换热器的结构 (9)1.3.1 管程结构 (9)1.3.2 壳程结构 (10)第2章设计方案确定 (14)2.1设计任务及操作条件 (15)2.1.1 设计方案的确定 (17)2.2 设计步骤 (17)2.2.1 非系列标准换热器的一般步骤 (17)第3章设计计算 (18)3.1 确定设计方案 (18)3.2 确定物性数据 (18)3.3 计算总传热系数 (18)3.4 计算传热面积 (23)3.5 工艺结构和尺寸 (23)3.6 换热器核算 (25)第4章设计全部参数 (30)设计小结 (31)参考文献 (32)附表 (33)附录 (34)热交换器,简称换热器,是在不同温度的流体间,进行传递热能的装置。

换热器在化工、石油、动力、制冷、食品等各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可缺少的工艺设备之一。

因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机及在节约能源上研究新途径。

在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化传热原件诞生了。

这对提高能量的利用效率有着很大的促进作用,对社会效益非常显著,从另一方面大大缓解了能源的紧张状况。

在化工厂的建设中,换热器通常约占总投资的11%;在现代石油炼厂中,换热器约占全部工艺设备投资的40%左右。

近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。

目前,在换热设备中,使用量最大的是管壳式换热器。

列管式换热器的应用已具有很悠久的历史。

现在,它被当作一种传统的标准换热器设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热器中,列管式换热器仍处于主导地位。

同时板式换热器也已成为高效、紧凑的换热设备,大量地应用于工业中。

本文主要是对列管式换热器的设计和运用进行介绍。

设计任务书设计任务及操作条件(1)处理能力 19.8 104t/a煤油(2)设备形式列管式换热器(3)操作条件①煤油:入口温度140℃,出口温度40℃。

②冷却介质:循环水,入口温度30℃,出口温度40℃。

③允许压降:不大于105Pa。

④煤油定性温度下的物性数据:密度:ρc=825kg/m3黏度:μc=0.000715Pa﹒s定压比热容:Cpc=2.22kJ/(kg﹒℃)热导系数:λc=0.14W/(m﹒℃)⑤每年按330天计,每天24小时连续运行。

(4)建厂地址天津地区设计要求:选择适宜的列管式换热器并进行核算。

第1章设计综述1.1换热器分类换热器是许多工业部门的通用设备。

根据不同的目的不同,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。

根据冷、热流体热量交换的方式,换热器可以分为以下三大类:⑴直接接触式换热器这类换热器的主要工作原理是两种介质接触而相互传递热量,实现传热,接触面积直接影响到传热。

这类换热器的介质通常是一种是气体,另一种为液体,主要是以塔设备为主体的传热设备,但通常又涉及传质,故很难区分与塔器的关系,通常归口味塔式设备,电厂用凉水塔为最典型的直接接触式换热器。

⑵蓄热式换热器蓄热式换热器主要由对外充分隔热的蓄热室构成,室内装由热容量大的固定填充物。

热流体通过蓄热室时将冷的填充物加热,当冷流体通过时则将热量带走。

热、冷流体交替通过蓄热室,利用固体填充物来积蓄或放出热量而达到热交换的目的。

蓄热器结构简单,可耐高温,常用于高温气体热量的利用或冷却。

其缺点是设备体积较大,过程是不定常的交替操作,且不能完全避免两种流体的掺杂。

所以这类设备化工上用的不多。

⑶间壁式换热器其特点是在冷、热流体之间用以金属壁(或石墨等导热性能良好的非金属壁)隔开,使两种流体在不发生混合的情况下进行热量传递。

从传热的基本特征分类,间壁式换热器可分为管式和板式。

其中包括夹套式换热器、沉浸式蛇管换热器、喷淋式换热器、套管式换热器、列管式换热器以及其他高效换热器。

1.2 列管式换热器的类型⑴固定管板式换热器固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构是壳侧清洗困难,所以壳程宜用于不易结垢和清洗的流体。

当管束和壳体之间的温差太大而产生不同的热膨胀时,常会使管子与管板的接口脱开,从而发生介质的泄露。

为此在外壳上焊以膨胀节,但它仅能减小而不能完全消除由于温差而产生的热应力,且在多程换热器中,这种方法不能照顾到管子的相对移动。

由此可见,这种换热器比较适合用于温差不大或温差较大但壳程压力不高的场合。

⑵浮头式换热器浮头式换热器针对固定管板式的缺陷做了结构上的改进。

两端管板只由一端与管体完全固定,另一端则可相对于壳体作某些移动,该端称之为浮头,如图1-2所示。

此类换热器的管束膨胀不受壳体的约束,所以壳体与管束之间不会由于膨胀量的不同而产生热应力。

而且在清洗和检修时,仅需要将管束从壳体中抽出即可,所以能适用于管壳壁间温差较大,或易于腐蚀和易结垢的场合。

但该类换热器结构复杂、本中,造价约比固定管板式高20%左右,材料消耗量大,而且由于浮头的端盖在操作中无法检查,所以在制造和安装时要注意其密封,以避免发生内漏,管束和壳体的间隙较大,在设计时要避免短路。

至于壳程的压力也受滑动接触的密封限制。

⑶U形管换热器见图1-3为一U形管换热器,其结构特点为每根管子都弯成U形,两端固定在同一块管板上,封头用隔板分成两室,故相当于双管程。

这类换热器的特点是:管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可以从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。

但管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。

此外,为了弥补弯管后壁管的减薄,直管部分必须用壁较厚的管子。

这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质不易结垢,高温、高压、腐蚀性强的情形。

⑷填料函式换热器此类换热器的管板也仅有一端与壳体固定,另一端采用填料函密封,如图1-4所示。

它的管束也可自由膨胀,所以管壳之间不会产生热应力,且管程和壳程都能清洗,结构较浮头式简单,造价较低,加工制造方便,材料消耗较少。

但由于密封处易于泄露,故壳程压力不能过高,也不宜用于易挥发、易燃、易爆、有毒的场合。

1.3 列管式换热器的结构1.3.1 管程结构介质流经传热管内的通道部分称为管程。

⑴换热管布置和排列间距常用换热管规格有Ф19×2mm、Ф25×2mm(1Cr18Ni9Ti)、Ф25×2.5(碳钢10)。

换热管管板上的排列方式有正方形直列、正方形错列、三角形错列和三角形直列和同心圆排列,如图1所示。

图1换热管排列方式正三角形排列结构紧凑;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布均匀,结构更为紧凑。

我国换热器系列中,固定管板式多采用正三角形排列;浮头式则以正方形错列排列居多,也有正三角形排列。

对于多管程换热器,常采用组合排列方式。

每程内都采用三角形排列,而在各程之间为了便于安装,采用正方形排列。

相关文档
最新文档