数值分析复习资料

合集下载

数值分析word复习纲要

数值分析word复习纲要

第1-3章 习题课 (绪论、插值、逼近)一、基本内容及基本要求 第一章、绪论1. 了解数值分析的研究对象与特点。

2. 了解误差来源与分类,会求有效数字;会简单误差估计。

3. 了解误差的定性分析及避免误差危害 第二章、插值法1. 了解插值的概念。

2. 掌握拉格朗日(Lagrange)插值法及其余项公式。

3. 了解均差的概念及基本性质,掌握牛顿插值法。

4. 了解差分的概念,会牛顿前插公式、后插公式。

5. 会埃尔米特(Hermite)插值及其余项公式。

6. 知道高次插值的病态性质,会分段线性插值和分段埃尔米特插值及其误差和收敛性。

7. 会三次样条插值,知道其误差和收敛性。

第三章、函数逼近与曲线拟合1. 了解函数逼近的基本概念,了解范数和内积空间。

2. 了解正交多项式的概念,了解切比雪夫多项式和勒让德多项式以及它们的性质,知道其他常用正交多项式。

3. 理解最佳一致逼近的概念和切比雪夫定理,掌握最佳一次一致逼近多项式的求法。

4. 理解最佳平方逼近的概念,掌握最佳平方逼近多项式的求法,了解用正交多项式做最佳平方逼近的方法。

5. 了解曲线拟合的最小二乘法并会计算,了解用正交多项式做最小二乘拟合。

6. 了解最小二乘三角逼近与快速傅里叶变换*。

二、练习.7321.1 ,7320.1 ,732.1 ,73.173********.131各有几位有效数字,问近似值、设 ==A .5,4,4,3 答:.1118 .01118 22准确无初始误差和假定系数、解二次方程=+-x x .6,992.117992.5859348059 1位有效数字有答:=+≈+=x ?008.0992.58592=-=x.1021,992.1171 )992.117(992.1171992.1171992.11711711212-⨯≤+=⎪⎭⎫ ⎝⎛+++=+==εεηηη x x .102.0 ,008475.0992.1171622-⨯≤+=εε.1021 ,008475.01621212112-⨯≤+≤+++==∴εεεεεεx x .008475.0112,有四位有效数字≈=⇒x x 说明什么?位数字求解,计算结果再用准确解位数字解方程组、用十进制6 )1,1( .127.0330.0457.0,217.0563.0780.0 33-==⎩⎨⎧=+=+y x y x y x.586.0217.0127.0)586.0563.0330.0( ,217.0563.0780.0 (1)⎩⎨⎧⨯-=⨯-=+y y x 解: .00 ,217.0563.0780.0 ⎩⎨⎧==+y y x..585897.0217.0127.0)585897.0563.0330.0( ,217.0563.0780.0 (2)⎩⎨⎧⨯-=⨯-=+y y x .00014.000014.0-=y ,127140.0127.0)329860.0330.0(-=-y 00000.1,00000.1=-=x y ).30()30( )1ln()( *42-++=f f x x x f 和计算,试用六位函数表设反双曲正弦、P19, 5,9..3)()()(*)()(,34)(3p C R V R V R R R R V R V R V R R V =='≈∆-=π %.3.0%33.0≤∆≤∆RRR R ,或只需%.1%,1)(*)()(≤∆-∴RRC R V R V R V V p 只需为的相对误差限要使,)()( 5M x f h x f ≤''在节点上造表,且有以等距假设对、;:)1( 21Mh 性插值误差不超过任意相邻两节点上的线证明.10,sin )()2( 621-⨯≤=差取多大能使线性插值误问设h x x f .102 ),2(5 3-⨯≤h 答:.,2),(21 0.5 1 0 12)( 63.02并估计误差的近似值用以求建立二次插值多项式::的函数表试由、x p y x x f x -=;2475.1)3.0(2 ;175.025.0)( 23.02 2=≈++=p x x x p or 牛拉答:.03030.0)13.0)(03.0)(13.0()3.0(2 !36660.023.0=--+≤-p6660.0)2(ln 2)(max 311=='''≤≤-x f x保证两位有效数字∴P59, 6,8.7、P59, 4.].2,,2,2[]2,,2,2[,13)( 871061046 f f x x x x f 和求设、+++=.0 )2( ,1 )1( 答:).()12(3);()(2)()(2);()]([1)( 922x T x T x T x T x T x T x T x T T k x T n n n m n m n m mn n m k =-=+=-+)()()(明次切比雪夫多项式,证是设、.[-1,1]53)( 102多项式上的线性最佳一致逼近在求、-+=x x x f .293)(21)()( )(21)()(解2*12*1-=-==-x x T x f x p x T x p x f ,:).7([-1,1]arcsin )( 11==n x x f 上的切比雪夫级数在求、[-1,1],,)(2)( 7107∈+=∑=x x T a a x p j j j 解:0,d 1arcsin )(211222奇其中=-=⎰-x xxx T a k k πxxxx T a k k d 1arcsin )(21121212⎰-++-=πθθθθπθππd )sin (sin )2]()12(cos[2 0⎰--+=k .)12(4d 1)sin(2k )12(2 2+=++=⎰k k πθθππ[-1,1].,)(491)(251)(91)(4)( 75317∈⎥⎦⎤⎢⎣⎡+++=x x T x T x T x T x p πP115,1,4(2),6,8,13,15,17(1),19,按基本方法即可,[-1,1].,4964175288315248105764)( 7537∈⎥⎦⎤⎢⎣⎡+-+=x x x x x x p π一、数值积分与数值微分第4-5章 习题课(数值积分和数值微分,解线性方程组的直接法).d )( :0∑⎰=≈nk k k baf w x x f 求积公式.,1, m次代数精度称该求积公式具有则成立次的多项式等式不准确而对于某一个成立的多项式都准确对于所有次数不超过若一个求积公式+m m.d )( ,d )( )( )( 0称为插值型求积公式,其中,得到求积公式由拉格朗日插值⎰∑⎰∑=≈===bak k nk k k bak nk k n x x l w f w x x f f x l x L [].d )()!1()(d )()(][ :0)1(x x x n f x x L x f f R banj j n b an ⎰∏⎰=+-+=-=ξ余项.d )( 0它是插值型求积公式次代数精度至少具有求积公式⇔≈∑⎰=n f w x x f nk k k ba定理.C ,C )(d )(,],[)(0)(Cotes系数Cotes公式-Newton 称为,称为上的插值型求积公式在等距节点等分,步长做将求积区间n k nk k n k bak f a b x x f kh a x nab h n b a ∑⎰=-≈+=-= .d )()!(!)1(d C0000)(⎰∏⎰∏≠=-≠=---=---=+=n n kj j kn n n kj j n kt j t k n nk t j k j t a b h th a x ,则有作变换 )],()([2d )( ,1n b f a f ab T x x f ba +-=≈=⎰得到梯形公式时当(2.3) )]()2(4)([6d )( , ,2n ,也称为得到抛物线公式时当b f ba f a f ab S x x f b a+++-=≈=⎰n)公式辛普森(Simpso )4.2( .4,)],(7)(32)(12)(32)(7[90,443210ab h kh a x x f x f x f x f x f ab C n k -=+=++++-==其中得到时当公式柯特斯(cotes).,C 8)(公式不稳定出现负值时柯特斯系数表C N n n k -≥ .].,[ ),(12)(][ ],[)(3b a f a b T I f R b a x f T ∈''--=-=''ηη则梯形公式的余项为 上连续,在若 ].,[),(2 180 )]()2(4)([6d )(][ 辛普森 ,],[)()4(4)4(b a f a b a b b f ba f a f ab x x f S I f R b a x f baS ∈⎪⎭⎫ ⎝⎛---=+++--=-=⎰ηη公式的余项为则上连续在若.)]()(2)([2)]()([2 1101∑∑-=-=+++=+=n i i n i i i n b f x f a f hx f x f h T ).(12)(12)](121[2313ηηηf h a b f h n f h T I n i i n ''--=''-=''-=-∑-=)].()(2)(4)([6101121b f x f x f a f hS n i n i i i n +++=∑∑-=-=+).,( ),(8802)(2180)4(410)4(4b a f h a b f h h S I n i i n ∈--=⎪⎭⎫ ⎝⎛-=-∑-=ηηη)].()([2)1(1b f a f ab T +-=初值.)(221 ),2,1,0( 2)2(1221∑-=++==-=n i i n n i x f h T T i ab h 计算,令 .63/ ,15/C ,3/ )3(222222)()()(求加速值n n n n n n n n n n n n C C C R S S S T T T S -+=-+=-+=).2( )4(否则,转满足精度要求;., ,12,)(d )()( ,010 高斯求积公式高斯点求积公式为并称此则称此组节点为次代数精度具有使插值型求积公式若一组节点+≈≤<<<≤∑⎰=n x f w x x f x b x x x a ni i i ban ρ0.d )()()( ,)()()())(()( 110110=---=⇔≤<<<≤⎰++ba n n n n x x P x x x x P n x x x x x x xb x x x a ωρρω即正交带权的多项式不超过与任何次数高斯点是插值型求积公式的节点 定理 .],[ ,d )()()!22()( ][21)22(b a x x x n f f R b a n n n ∈+=⎰++ηρωη[]),(2)()(1)(010ξf h x f x f h x f ''--='[]).(2)()(1)(011ξf hx f x f h x f ''+-='),(3)]()(4)(3[21)(22100ξf h x f x f x f h x f '''+-+-='),(6)]()([21)(2201ξf h x f x f h x f '''-+-=').(3)](3)(4)([21)(22102ξf h x f x f x f h x f '''++-=').(12)]()(2)([1)()4(221021ξf h x f x f x f h x f -+-=''基本内容及基本要求1. 了解数值求积的基本思想、代数精度的概念、插值型求积公式及其代数精度、求积公式的收敛性和稳定性。

数值分析复习资料

数值分析复习资料

数值分析复习资料一、重点公式第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠ (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。

6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。

数值分析复习

数值分析复习
Review
Chap 1 数值计算中的误差
误差 误差限 有效数字 用微分计算函数值误差 计算方法的数值稳定性
误差 误差限 有效数字
设 x是准确值,x是 x的近似值
1) 定义 1.1: 称 e(x) x x 为 x的绝对误差(简称误差)。
2) 定义 1.2:若 | x x | ,则称 是 x 的误差限。
y
er ( y)
e(xy) ye(x) xe( y)
e
x y
1 y
e(x)
x y2
e( y)
er (xy) er (x) er ( y)
er
x y
er
(x)
er
(
y)
例1.10 , 例1.11, 题1.5
计算方法的数值稳定性
1) 求根公式的数值稳定性 2) 递推法的数值稳定性
敛的.
定理 4.4:若(x)在 x (x)的根 x*邻近有连续的 1阶导数,
且 | (x*) | 1, 则当(x*) 0 时迭代公式(4.5)为线性收敛 . 若 (x)在 x*邻近有连续的 2 阶导数,则当(x*) 0,(x*) 0 时迭代公式(4.5)为平方收敛 .
例4.4, 例4.5, 例4.6, 题4.2, 题4.3, 题4.5
3次Hermite插值基函数 (插值基函数的性质)
0 t t 12 1 2t , 1 t t2 3 2t , 0 t t t 12 , 1 t t2 t 1
插值余项
R3 (x) f (x) P3(x)
f
(4) (
4!
)
(x
x0
)2
(
x
x1 ) 2
,
x [x0 ,x1]
混合型Hermite插值

数值分析复习提纲

数值分析复习提纲

第一章基础
掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。

了解:误差限,算法及要注意的问题。

第二章插值
掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。

了解:Lagrange插值
第三章数据拟合
掌握:给出几个点求线性拟合曲线。

了解:最小二乘原理
第四章数值积分微分
掌握:梯形公式,Simpson公式,代数精度,Gauss 积分,带权Gauss积分公式推导,复化梯形
公式推导及算法。

了解:数值微分,积分余项
第五章直接法
掌握:LU分解求线性方程组,运算量
了解:Gauss消去法,LDL,追赶法
第六章迭代法
掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径
了解:SOR迭代
第七章Nolinear迭代法
掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。

了解:二分法,弦截法
第八章ODE解法
掌握:Euler公式构造、收敛阶。

了解:梯形Euler公式、收敛阶,改进Euler公式题目类型:填空,计算,证明综合题
QQ:13366483
地点:数学102。

数值分析复习提纲(修改完)

数值分析复习提纲(修改完)

第一章 绪论【考点1】绝对误差概念。

近似数的绝对误差(误差):()a =x a E -,如果()δa E ≤则称δ为a 的绝对误差限(误差限)。

【考点2】相对误差限的概念。

近似数a 的相对误差:()()/x a x =a E r -,实际运算()()/a a x a E r -=,a r /δδ=。

【考点3】有效数字定义。

设*x 的近似值a 可表示为n m a a .a a= 21010⨯±,m 为整数,其中1a 是1到9中的一个整数,n a a 2为0到9中的任意整数,若使()n m a||=|x a |E -*⨯≤-1021成立,则a 称近似*x 有位有效数字。

例:设256010002560,00256702.×=.a .=x -*=,则4-10×21=0.00005a -x ≤*。

因为,2-m=所以2n=,a 有2位有效数字。

若257.01000257.02⨯==-a ,则5102100000500000030-≤×=..=x-a ,因为2-=m ,所以3=n ,a 有3位有效数字。

例:设000018.x=,则00008.a=具有五位有效数字。

41021000010-≤×.=x-a ,因为1=m ,所以5=n ,即a 具有五位有效数字。

例:若3587.64=x *是x 的具有六位有效数字的近似值,求x 的绝对误差限。

410×0.358764=x *,即4=m ,6=n ,0.005=1021x -x 6-4⨯≤*【考点4】四舍五入后得到的近似数,从第一位非零数开始直到末位,有几位就称该近似数有几位有效数字。

【考点5】有效数字与相对误差的关系。

设x 的近似数为n m a a .a ×a= 21010±,)(a 01≠如果a 具有n 位有效数字,则的相对误差限为()111021--≤n r ×a δ,反之,若a 的相对误差限为()()1110121--+≤n r ×a δ,则a 至少具有n 位有效数字。

数值分析期末知识点总结

数值分析期末知识点总结

数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。

它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。

在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。

本文将对数值分析期末知识点进行总结,以便帮助大家复习。

二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。

插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。

常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。

2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。

微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。

数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。

3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。

原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。

数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。

4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。

在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。

数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。

三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。

这些误差可能来自于测量、舍入、截断等各种原因。

因此,误差分析是数值分析中一个非常重要的内容。

数值分析期末复习

数值分析期末复习

《数值分析》期末复习提纲第一章数值分析中的误差(一) 考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

误差的定性分析(二)复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

4. 避免误差危害的若干原则第二章插值法(一) 考核知识点插值函数,插值多项式,被插值函数,节点;拉格朗日插值多项式:插值基函数;均差及其性质,牛顿插值多项式;分段线性插值、线性插值基函数。

(二)复习要求1. 了解插值函数,插值节点等概念。

2. 熟练掌握拉格朗日插值多项式的公式,知道拉格朗日插值多项式余项。

3. 掌握牛顿插值多项式的公式,了解均差概念和性质,掌握均差表的计算,知道牛顿插值多项式的余项。

4. 掌握分段线性插值的方法和线性插值基函数的构造。

第三章函数逼近(一) 考核知识点函数逼近的基本概念,内积,范数,勒让德与切比雪夫正交多项式,最佳一次一致逼近,最佳平方逼近,曲线拟合的最小二乘法(二)复习要求1. 熟练掌握内积,范数等基本概念。

2. 熟练掌握勒让德与切比雪夫正交多项式的性质。

3. 掌握用多项式做最佳平方逼近的方法。

4. 最小二乘法及其计算方法。

第四章数值积分与数值微分(一) 考核知识点数值求积公式,求积节点,求积系数,代数精度;插值型求积公式,牛顿―科特斯求积公式,牛顿―科特斯系数及其性质,(复合)梯形求积公式,(复合)Simpson求积公式;高斯型求积公式,高斯点,(二点、三点)高斯―勒让德求积公式;(二) 复习要求1. 熟练掌握数值积分和代数精度等基本概念。

2. 熟练掌握牛顿−科特斯求积公式和科特斯系数的性质。

熟练掌握并推导(复合)梯形求积公式和(复合)Simpson求积公式。

3. 知道高斯求积公式和高斯点概念。

会用高斯−勒让德求积公式求定积分的近似值。

数值分析总复习

数值分析总复习

A
4
5
4,
X
x2
,
8 4 22
x3
解: l11 a11 16 4,
l21 a21 l11 4 4 1,
l31 a31 l11 2,
4
b
3
.
10
l11 a11 , l21 a21 l11 , l22 a22 l221 ,
l31 a31 l11 , l32 a32 l21l31 l22 , l33 a33 l321 l322 . 19 第20页/共36页
l11 a11 , l21 a21 l11 , l22 a22 l221 ,
l31 a31 l11 , l32 a32 l21l31 l22 , l33 a33 l321 l322 . 18 第19页/共36页
一. 用平方根法求线性方程组AX=b, 其中
16 4 8
x1
26
第27页/共36页
六. 确定求解初值问题
y' f ( x, y), a x b,
y(a)
y0 .
的二步隐式Adams方法
yn1
yn
h 12
(5
fn1
fn
fn1 )
中的参数, 使该方法成为三阶方法, 并写出其局部截断误差主项.
可用数值积分方法或Taylor展开方法
8,
Rn1
1 24
h4
解 (1) 由已知, 当 f (x)分别为1, x, x2时, 求积公式等号成立. 即
11x3dx 1
0 1dx 14
11 2
((1x13
1)x23
)
2
故该公式具有3次代数精确度.
1 xdx 1
0

数值分析复习要点

数值分析复习要点

x, y ) || x y || p ( | xi yi | ) (
i 1
p 1, 2, , p25
矩阵空间的距离
( A, B) || A B || p
连续函数空间的距离
p 1,2, , F
( f ( x), g ( x)) || f ( x) g ( x) || p
v 2 1,
2 v2
v2
1 1 1 1 T ( , , , ) 2 2 2 2
u 2 v 2 3 1 2 3 1
v 3 u 3 ( u 3 , 1 ) 1 ( u 3 , 2 ) 2 ( 2 , 3 , 1, 6 )
T
6(
数值分析复习要点
一. 基本概念
二. Gauss变换与矩阵的三角分解 三. Householder变换与矩阵的相似变换 四. 矩阵的正交分解 五. 解线性方程组Ax=b的直接法 六. 解线性方程组Ax=b的迭代法 七. 列满秩最小二乘问题
八. 构造正交多项式 九. 连续函数的最佳平方逼近 十. 离散数据的最佳平方逼近 十一. 函数插值 十二. 数值积分 十三. 数值微分 十四. 非线性方程的数值解法
T
使Hx ke3 , 其中e3 0,0,1,0 , k R .
T
2. 已知向量x (1,2,1,2) , 试构造Householde r阵H
T
使Hx (1, 2 ,0,0) .
T
3. 已知向量x (1, 2, 2) , y (0, 3, 4) , 试构造一个
1 j n
1

n
n
a ij
i1
② 矩 阵 A的 范 数 ( 又 称 为 A的 行 范 数 ) A

数值分析期末复习要点总结省公开课获奖课件市赛课比赛一等奖课件

数值分析期末复习要点总结省公开课获奖课件市赛课比赛一等奖课件

15
Lagrange插值
Lagrange插值基函数
设 lk(x) 是 n 次多项式,在插值节点 x0 , x1 , … , xn 上满足
1, j k lk ( x j ) 0, j k
则称 lk(x) 为节点 x0 , x1 , … , xn 上旳拉格朗日插值基函数
16
线性与抛物线插值
两种特殊情形
x0 ƒ(x0)
x1 ƒ(x1) ƒ[x0, x1]
x2 ƒ(x2) ƒ[x1, x2] ƒ[x0, x1, x2]
x3 ƒ(x3) ƒ[x2, x3] ƒ[x1, x2, x3] ƒ[x0, x1, x2, x3]

xn ƒ(xn) ƒ[xn-1, ƒ[xn-2, xn-1, ƒ[xn-3, xn-2, xn-1, … ƒ[x0, x1,2…7 ,
ln 0.54 旳精确值为:-0.616186···
可见,抛物线插值旳精度比线性插值要高
Lagrange插值多项式简朴以便,只要取定节点就可写 出基函数,进而得到插值多项式,易于计算机实现。
19
Lagrange插值
lk(x) 旳体现式 由构造法可得
lk (
x)
( x x0 ) ( xk x0 )
Rn(x)
n1
Nn( x) a0 a1( x x0 ) a2( x x0 )( x x1 ) an ( x xi )
i 1
其中 a0 f ( x0 ), ai f [x0 ,, xi ], i 1,2,, n
Nn(x) 是 n 次多项式
Rn( x) f [x, x0 , ... , xn]( x x0 )...( x xn1)( x xn )

e(x*) x x*

数值分析总复习

数值分析总复习

样条插值;整体连续光滑,且不需知导数值。
插值问题提法:已知
x y f(x)
x0 y
x1 y
xn y
0
1
n
求一个三次分段函数 S(x) 使
1,
S(
xi
)
y i
x x 2, 在 [ , ] 上是三次多项式
i
i 1
C 3, S(x) 2 ( a,b )
i 0, 1, , n
计算三次样条算法
由边界条件 i , i , , i 0 ,1,, n
插值基函数方法
插值问题解的一般形式 :
n (x) a0 a1 x an xn
(1 )
实质上是在求多项式的 自然基底 Bn Span{1, x , ,xn}
张成的线性空间中的一 个点 —一个多项式 (1) ,由(2 18)
式知,解存在唯一 ,只要解方程组求出线 性组合系数 {ai}
就可以了 , 但计算量太大 .
定理2.5(余项) .
(2 - 35)
设H (x)是过 x0 , x1 的 Hermite 插值多项式 , C f f(x) 3 , ( 4 )(x)在 (a,b) 内存在, (a,b)是
(a,b)
含点 x0 , x1 的任一区间, 则对任意给定的
x (a,b) 总存在一点ξ (x)使
R(x)
f(x) H(x)
f
( 4 )(ξ
4!
)
(x
x0
)2(x
x1
)2
分段三次 Hermite 插值多项式及余项
∑ y h m H n
H (x) [ (x)
( x)]
i0
ii
ii
定理2.7(余项) :

数值分析期末复习要点总结

数值分析期末复习要点总结

数值分析期末复习要点总结数值分析是一门研究用数值方法来解决数学问题和科学工程问题的学科。

它包括数值计算、数值逼近、数值求解以及数值模拟等内容。

本文将从数值计算的基础知识、数值逼近方法、数值求解方法以及数值模拟方法等方面进行复习要点总结。

一、数值计算的基础知识1. 计算误差:绝对误差、相对误差、有效数字、舍入误差等等。

2. 机器精度:机器数、舍入误差、截断误差等等。

3. 数值稳定性:条件数、病态问题等等。

4. 误差分析:前向误差分析、后向误差分析等等。

二、数值逼近方法1. 插值方法:拉格朗日插值、Newton插值、Hermite插值等等。

2. 曲线拟合:最小二乘法、Chebyshev逼近等等。

3. 数值微分:前向差分、后向差分、中心差分等等。

4. 数值积分:梯形法则、Simpson法则等等。

三、数值求解方法1. 非线性方程求解:二分法、牛顿迭代法、弦截法等等。

2. 线性方程组求解:直接法(Gauss消元法、LU分解法)和迭代法(Jacobi法、Gauss-Seidel法)。

3. 特征值和特征向量:幂法、反幂法、QR分解法等等。

4. 非线性最优化问题:牛顿法、拟牛顿法、梯度下降法等等。

四、数值模拟方法1. 常微分方程数值解法:Euler法、改进Euler法、Runge-Kutta法等等。

2. 偏微分方程数值解法:差分法、有限元法、有限差分法等等。

3. 数值优化方法:线性规划、非线性规划、整数规划等等。

五、数值计算软件1. MATLAB基础:向量、矩阵、符号计算等等。

2. MATLAB数值计算工具箱:插值与拟合工具箱、符号计算工具箱等等。

3. 其他数值计算软件:Python、R、Octave等等。

总结数值分析是一门重要的数学学科,它为解决实际问题提供了有效的数值方法。

在数值计算的基础知识中,我们需要了解计算误差、机器精度和数值稳定性等概念,同时也需要掌握误差分析的方法。

数值逼近方法包括插值、曲线拟合、数值微分和数值积分等内容,其中插值和拟合是常见的逼近方法。

(完整)数值分析知识点,推荐文档

(完整)数值分析知识点,推荐文档

第一章绪论(1-4)一、误差来源及分类二、误差的基本概念1.绝对误差及绝对误差限2.相对误差及相对误差限3.有效数字三、数值计算的误差估计1.函数值的误差估计2.四则运算的误差估计四、数值计算的误差分析原则第二章插值(1.2.4-8)一、插值问题的提法(定义)、插值条件、插值多项式的存在唯一性二、拉格朗日插值1.拉格朗日插值基函数的定义、性质2.用拉格朗日基函数求拉格朗日多项式3.拉格朗日插值余项(误差估计)三、牛顿插值1.插商的定义、性质2.插商表的计算3.学会用插商求牛顿插值多项式四、等距节点的牛顿插值1.差分定义、性质及计算(向前、向后和中心)2.学会用差分求等距节点下的牛顿插值公式五、学会求低次的hermite插值多项式六、分段插值1.分段线性插值2.分段三次hermite插值3.样条插值第三章函数逼近与计算(1-6)一、函数逼近与计算的提法(定义)、常用两种度量标准(一范数、二范数\平方逼近)二、基本概念连续函数空间、最佳一次逼近、最佳平方逼近、内积、内积空间、偏差与最小偏差、偏差点、交错点值、平方误差三、学会用chebyshev定理求一次最佳一致逼近多项式,并估计误差(最大偏差)四、学会在给定子空间上通过解方程组求最佳平方逼近,并估计误差(平方误差)五、正交多项式(两种)定义、性质,并学会用chebyshev多项式性质求特殊函数的(降阶)最佳一次逼近多项式六、函数按正交多项式展开求最佳平方逼近多项式,并估计误差七、一般最小二乘法(多项式拟合)求线性拟合问题第四章数值分析(1-4)一、数值求积的基本思想及其机械求积公式二、代数精度的定义并学会判别求积公式的代数精度三、插值型求积公式、定义及其性质四、newton-cotes公式定义、余项及其代数精度五、学会用几种低阶newton-cotes公式及其逼近公式方程求积分近似值六、学会用龙贝格算法求积分近似值七、高斯公式定义及其代数精度,并学会用guass-chebyshev公式求积分近似值第五章常微分方程数值解法一、掌握显式的欧拉法,隐式欧拉法,梯形方法,中点欧拉法和改进欧拉法,包括这些方法,公式的推导,解题和局部截断误差(是几阶的方程)二、掌握runge-kutta方法的基本思想,以及二阶、三阶、四阶、五阶R-K方法的格式和局部截断误差第六章方程求跟(1-5)一、学会用二分法求解问题二、一般迭代法的基本思想三、局部收敛性定义、定理并学会用该定理判别迭代法的局部收敛性四、牛顿迭代法公式的推导,局部收敛性与收敛速度,牛顿法的应用与解题五、牛顿法的变形第七章解线性方程组的直接截法(1-6)一、学会用顺序高斯消去法,列主元素或完全主元素法,求解线性方程二、学会用矩阵三角分解法,平方根法(改进平方根法),追赶法求解问题三、掌握向量和矩阵的定义,性质,计算,应用四、矩阵的谱半径,条件数,定义,计算,应用五、线性方程组的误差分析第八章线性方程组的迭代法(1-4)一、一般方程组的一般迭代法思想,迭代格式,收敛性,一般误差分析二、学会用雅各比迭代法解题,学会判别其收敛性三、学会guass-seidel迭代法解题,学会判别其收敛性四、学会SOR迭代法解题,学会判别其收敛性。

数值分析复习总结

数值分析复习总结

数值分析复习总结数值分析课本重点知识点第一章P4定义一P5定义二P6定理1P7例题3P10条件数(1)绝对误差(限)和相对误差(限)公式(2)有效数字(3)条件数及其公式第二章P26定理2(以及余项推导过程)P36两个典型的埃尔米特插值(1)拉格朗日插值多项式(包括其直线公式和抛物线公式)(2)插值余项推导及误差分析(估计)(3)两个典型的埃尔米特插值(4)三次样条插值的概念第三章P63例题3(1)最佳平方逼近公式的计算(2)T3(x)的表达式第四章P106复合梯形公式P107复合辛普森求积公式P108例题3(1)复合公式及其余项(2)判断一个代数的精确度第五章P162定义3向量的范数P165定理17P169定义8(1)左中右矩形公式(2)LU分解(3)谱半径和条件数(4)向量的范数第六章P192定理9第1条P192例题8第七章P215不动点和不动点迭代法P218定理3P228弦截法P229定理6第九章P280欧拉法与后退欧拉法P283改进欧拉公式数值分析课后点题答案第一章数值分析误差第二章插值法第三章函数逼近所以无解19。

观测物体的直线运动,得出以下数据:时间t(s) 0 0.9 1.9 3.0 3.9 5.0 距离s(m)10305080110求运动方程。

解:被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程 s a bt =+ 令{}1,span t Φ=22012201016,53.63,(,)14.7,(,)280,(,)1078,s s =====则法方程组为614.728014.753.631078a b = ??? ?从而解得7.85504822.25376a b =-??=? 故物体运动方程为22.253767.855048S t =-20。

已知实验数据如下:i x 19 25 31 38 44 j y19.032.349.073.397.8用最小二乘法求形如2s a bx =+的经验公式,并计算均方误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 当n 2时, R2 ( x) f ( )(x x0 )(x x1 )(x x2 ), [ x0 ,x2 ] 6
例2.4, 题2.5
Newton插值公式
1) 差商、差商的计算 2) Newton插值公式 例2.5
Pn ( x) f ( x0 ) f [ x0 , x1 ]( x x0 ) f [ x0 , x1 , x2 ]( x x0 )( x x1 ) f [ x0 , , xn 1 ] ( x x j ) f [ x0 , x1 , , xn ] ( x x j )
0 t t 1 1 2t , 1 t t 2 3 2t ,
2
0 t t t 1 , 1 t t 2 t 1
2
插值余项 R3 ( x) f ( x) P3 ( x)
f (4) ( ) ( x x0 )2 ( x x1 ) 2 , x [ x0 ,x1 ] 4!
例1.10 , 例1.11, 题1.5
计算方法的数值稳定性
1) 求根公式的数值稳定性 2) 递推法的数值稳定性 题1.9, 题1.10
数值计算中应注意的几个原则
避免相近数相减 ; 避免小除数, 大乘数 ; 避免大数吃小数 ; 采用数值稳定的算法 ;
减少运算次数.
题1.7
Chap 2
பைடு நூலகம்
插值法与最小二乘法
例3.1, 题3.1, 题3.2
题3.11

利用代数精度定义构造求积公式
插值型求积公式

b
a
f ( x)dx f ( xk ) lk ( x)dx
b k 0 a
b a
n
1) 求积系数 Ak lk ( x)dx. 2) 求积系数具有 n+1个求积节点的插值型求积公式至少具 有 n 次代数精度. 3) 中矩形公式、梯形公式、Simpson公式是插值型求积公式 (各自的代数精度). 4) Newton-Cotes公式: 一类节点等距分布的插值型求积公式.

lk ( x)是 n 次式;

lk ( x j ) kj ( j 0,1, 2,, n)

l ( x) 1
k 0 k
n
题2.1
4) Lagrange插值余项 定理2.2 :设 xi [a, b] (i 0,1,, n), f ( x)的 n+1阶导数 f ( n1) ( x) 在 [a, b]上存在,则
2) 复合Simpson公式

b
a
n 1 n 1 h f ( x)dx f (a) 2 f ( xk ) 4 f ( xk 1 ) f (b) Sn 2 6 k 1 k 0
复合Simpson求积公式的余项为
1 h I Sn 180 2
Review
Chap 1
数值计算中的误差
误差 误差限 有效数字 用微分计算函数值误差 计算方法的数值稳定性
误差 误差限 有效数字
设 x 是准确值, x 是 x的近似值 1) 定义 1.1: 称 e( x) x x 为 x 的绝对误差(简称误差)。
定义 1.2 : | x x | ,则称 是 x 的误差限。 若 2) x x 为 x 的相对误差。 3) 定义 1.3:称单位量上的误差 er ( x) x

4) 定义 1.4: 若| er ( x) | r , 则称 r 是 x 的相对误差限。
5) 定义 1.5:如果近似值 x 的误差限是它的某一位的半个单 位,就称它准确到这一位。若该位到 x 左边第一位非零
数字共有n 位,则称它有n 位有效数字。
例1.5 题1.1
用微分计算函数值误差
2) 抛物插值 已知函数 f ( x)在点 x0 , x1 , x2上的函数值 y0 , y1 , y2,求作 一个2次多项式 P2 ( x),使得
P2 ( x0 ) y0 , P2 ( x1 ) y1, P2 ( x2 ) y2
x x0 x x2 x x0 x x1 x x1 x x2 P2 ( x) y0 y1 y2 x0 x1 x0 x2 x1 x0 x1 x2 x2 x0 x2 x1 y0l0 ( x) y1l1 ( x) y2l2 ( x)
多项式插值 Lagrange插值公式
Newton插值公式 Hermite插值 分段插值 三次样条函数
插值余项
n 次多项式插值问题:
已知[a, b]上的函数 f ( x)在点 a x0 x1 xn b上的函数值 插值区间 被插值函数
yi f ( xi ) (i 0,1,, n)
3) 和、差、积、商的误差
e( x y) e( x) e( y)
e( xy) ye( x) xe( y) x 1 x e e( x) 2 e( y) y y y
er ( x y )
x y er ( x) er ( y) x y x y
er ( xy ) er ( x) er ( y ) x er er ( x) er ( y ) y
正交,即
n

1
i 1
1
x j Ln ( x)dx 0 ( j 0,1,, n 1).
例3.7, 例3.8, 例3.9, 例3.10, 题3.9, 题3.10, 题3.11
数值微分
1) 中心差商公式
f ( x )在点 a 处以 h 为步长的向前差商
f ( x )在点 a 处以 h 为步长的向后差商
f (a h) f (a ) h
f (a ) f (a h) h
f ( a h) f ( a h) f ( x )在点 a 处以 2h 为步长的中心差商 2h
例3.11 2) Richardson外推 例3.12
Chap 4 方程求根
不动点迭代法 Newton迭代法
简化Newton迭代法 弦截法
1) 已知 x的近似值 x ,一元函数值 y f ( x )的近似值为 y f ( x)
误差 e( y) f ( x ) f ( x) f ( x)e( x)
相对误差
f ( (x x) ) e( y ) xe ( x) er ( y ) e (x r) (x x) ) y f(
混合型Hermite插值
例2.9, 题2.8, 题2.10
分段插值
( 如何确定其解析式, 光滑性, 误差估计? )
1) 分段线性插值 2) 分段3次Hermite插值
题2.11, 题2.12
3次样条函数
1) 什么是3次样条函数, 3次样条插值 2) 比较3次多项式插值(不含导数条件), 分段3次Hermite插值, 3次样条插值
(b a)5 (4) f ( ), Simpson公式余项 I S1 2880
a, b
复合求积公式
1) 复合梯形公式
b
(复合求积的思想)
题3.5, 题3.6

a
2 h 复合梯形求积公式的余项为 I Tn f (b) f (a ) 12
n 1 h f ( x)dx f (a) 2 f ( xk ) f (b) Tn 2 k 1
多项式P 1 ( x) a0 a1 x,使得
P 1 ( x0 ) y0 , P 1 ( x1 ) y1
x x1 x x0 P y1 y0l0 ( x) y1l1 ( x) 1 ( x) y0 x0 x1 x1 x0
Chap 3 数值积分与数值微分
机械求积公式 插值型求积公式
复合求积公式 Gauss求积公式 数值微分
机械求积公式


b
a
求积系数 f ( x)dx Ak f ( xk )
n k 0
求积节点
代数精度: 若一个机械求积公式对 f ( x) x j ,( j 0,1,, m)
准确成立,但对 f ( x) xm1 不准确成立, 就说它具 有m次代数精度.
Newton下山法
不动点迭代法
1) f ( x) 0 x ( x) 求 f ( x) 0的根等价于求 x ( x)的不动点
2) 不动点迭代格式 xk 1 ( xk ), k 0,1, 2, (4.5)
3) 迭代收敛条件
定理 4.1:设 ( x)是闭区间 [a, b] 上的压缩函数,则 ( x)在 ,且对任意 x0 [a, b], 迭 [a, b] 中有唯一不动点 x* 代公式(4.5)都收敛 . (全局收敛) 推论 :设 ( x) C1[a, b],且 1) x [a, b] 总有 ( x) [a, b]; 2) 存在 L (0,1),使 ( x) L, x, y [a, b] 则定理4.1结论成立 . (全局收敛)
( n为奇数时, 代数精度为n; n为偶数时, 代数精度为n+1)

ba T1 f (a) f (b) , 2
ba S1 f (a) 4 f 6
b a 2
f (b) .
(b a)3 梯形公式余项 I T1 f "( ), 12
a, b
4
(3) (3) f ( b ) f (a)
Gauss求积公式
1) 什么是Gauss求积公式? 2) Gauss点的性质? 定理3.4: xi 1 是Gauss点的充分必要条件是以 xi 1为零点
n
n
的多项式 Ln ( x) ( x xi ) 与所有次数不超过 n-1的多项式
相关文档
最新文档