分布函数均匀分布指数分布函数PPT
分布函数、均匀分布、指数分布函数-精品文档
X pk
3
0 .1
4
0 .3
5
0 .6
例4、 向[0,1]区间随机抛一质点,以 X表示质点坐标. 假定质点落在[0,1]区间内任一子区间内的概率与区间 长度成正比,求 X的分布函数. 解:F x P { X x } 当 x 时 0,
F x 0 ;
1, 当 x 时
F A B 0 1 1 2 A B 2 A F B 1 2
1 1 所以 F r c t a n x x a 2
例2. 已知随机变量X 的分布律为 求分布函数 F ( x )
X
pk
0 1 3
1
2
1 2
1 6
F ( x ) P { X x } 解:
F x 1
当0 时 , x 1
F ( x ) P { X x } P { 0 X x } kx
特别,令 x 1, P k 1 { 0 X 1 } k 1 1
, x0 0 F (x ) = P { X x } = , 0x1 x 1 x1 ,
F ( x ) F ( x ) P { X x } 2 1 1
同理,还可以写出 P P { x X x } { x X x }, 1 2 1 2
二、分布函数的性质
,则 F ⑴ 单调不减性: ( x ) F ( x ) 若 x 1 2 1 < x2
F ( x ) 1,且 F ( ) l i m F () x 0 , ⑵ 0
一般地,设离散型随机变量 X 的分布律为
P { X x } p , k 1 , 2 , 3 , k k
16种常见概率分布概率密度函数、意义及其应用
目录1.均匀分布 (1)2.正态分布(高斯分布) (2)3.指数分布 (2)4.Beta 分布(分布) (2)5.Gamma分布 (3)6.倒Gamma分布 (4)7.威布尔分布 (Weibull分布、韦伯分布、韦布尔分布 ) (5)8.Pareto 分布 (6)9.Cauchy分布(柯西分布、柯西 - 洛伦兹分布) (7)10.2.........................................................................7分布(卡方分布)11.t分布 (8)12.F分布 (9)13.二项分布 (10)14.泊松分布(Poisson分布) (10)15.对数正态分布 (11)1.均匀分布均匀分布 X ~ U (a,b) 是无信息的,可作为无信息变量的先验分布。
f (x)1b aa bE(X)2(b a)2Var ( X )122.正态分布(高斯分布)当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作X ~ N ( ,2 ) 。
正态分布为方差已知的正态分布N( , 2) 的参数的共轭先验分布。
1( x )2e 22f ( x)2E(X)2Var ( X )3.指数分布指数分布 X ~ Exp( ) 是指要等到一个随机事件发生,需要经历多久时间。
其中0 为尺度参数。
指数分布的无记忆性:P X s t | X s P{ X t} 。
f ( x)e x , x 0E(X )1Var( X )1 24. Beta 分布(分布)Beta 分布记为X ~ Be(a, b),其中 Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。
如果二项分布B( n, p) 中的参数p的先验分布取 Beta (a,b) ,实验数据(事件 A 发生 y 次,非事件 A 发生 n-y 次),则 p 的后验分布Beta( a y, b n y) ,即 Beta 分布为二项分布B(n, p)的参数 p 的共轭先验分布。
二项分布、泊松分布、均匀分布、指数分布、正态分布
二项分布、泊松分布、均匀分布、指数分布、正态分
布
二项分布是离散概率分布的一种,适用于只有两种可能结果(成功和失败)的独立重复试验。
每次试验成功的概率为p,失败的概率为1-p。
试验的次数为n。
二项分布表示了在n次独立重复试验中,成功次数为k的概率分布。
泊松分布:
泊松分布是在一段固定时间或空间中,随机事件发生的次数的概率分布。
它适用于事件发生率较低,但时间或空间较大的情况。
泊松分布的参数λ表示单位时间或单位空间中事件的平均发生率。
泊松分布的概率质量函数是离散的,表示了事件发生次数为k的概率。
均匀分布:
均匀分布是连续概率分布的一种,也称为矩形分布。
在一个定义在[a, b]区间上的随机变量的情况下,均匀分布概率密度函数使得[a, b]区间上每个区间的长度相等,且概率密度函数在该区间上是常数。
均匀分布的概率密度函数是恒定的,且在[a, b]区间外为零。
指数分布:
指数分布是连续概率分布的一种。
它适用于描述独立随机事件的等待时间,当事件发生的概率是恒定的。
指数分布的概率密度函数呈指数形式下降,并且在x 轴上永不为零。
指数分布的参数λ表示单位时间内事件发生的平均次数。
正态分布:
正态分布是连续概率分布的一种,也称为高斯分布。
它是最常见的概率分布之一,常被用于描述自然界中许多现象的分布情况,如身高、体重等。
正态分布的概率密度函数呈钟形曲线,均值和标准差是正态分布的参数。
正态分布具有许多重要的性质,如对称性、中心极限定理等。
分布函数、均匀分布、指数分布函数讲解
一、连续型随机变量的定义
1. 概率密度 定义1. 设 F(x) 是随机变量 X的分布函数,若存在非负 函数 f x x , ,使对任意实数 x 有
则称 X为连续型随机变量,称 f ( x)为 X 的概率密度函 数,简称概率密度或密度函数。
对于连续型随机变量的 分布函数 F ( x)必是连续函数 .
0 1 10 F x 2 5 1
x3 3 x 4
4 x5
x5
2 1 3 P X 4 F 4 F 4 0 5 10 10
2 3 P X 5 F 5 F 4 1 5 5
130 , 0 x 30 即 f ( x) 其它 0,
为使候车时间 X 少于 5 分钟,乘客必须在7:10 到 7:15 之间,或在7:25 到 7:30 之间到达车站
P{10 X 15} P{25 X 30} 15 1 30 1 1 dx dx 10 30 25 30 3
例 2、 设连续型随机变量 X的概率密度为
求 A的值, 解:
A 1 3
1 3 x 3 0
f ( x)dx
0
A 3.
1 3
1 3 x Ae dx A( )e 3
3 x
0
f ( x ) dx
1 3 0
3e 3 x dx e
∴可以使用分布函数值描述随机变量落在区间里的概率。 (1) P{x1 X x2} (2) P{x1 X x2} 同理,还可以写出
P{X x1} P{X x1}
二、分布函数的性质
⑴ 单调不减性: ,则
常用的连续型分布
P{X196}0(196) 0975
根据0(x)的对称性 有
P{X196}0(196)10(196)109750025
P{|X|196}P{196X196} 0(196)0(196)
20(196)1 209751095
P{1X2}0(2)0(1)0(2)[10(1)]
0(2)0(1)1
097725084131081855
则
X
~
N(0.1)
推论2
X~N( 2)的充要条件是存在一个随机变量~N(0 1) 使
得X
提示
通常称为X的标准化
18
推论3
设X~N( 2) (x) (x)分别为其分布函数与密度函数
0(x) 0(x)是标准正态分布的分布函数和密度函数 则有
(x)
0(
x
)
(287)
(x)
1
0(
x
)
(288)
4 一般正态分布的概率计算
0.9621
查表即得 b178
由于P{Xc}0298105 所以c0 根据对称性 有
0(c)10(c)07019
查表得c053 c053
17
3 一般正态分布与标准正态分布的关系
定理26(正态分布的线性变换)
设X~N( 2) YaXb a b为常数 且a0 则
Y~N(ab a2 2)
推论1
如果 X~N( 2)
X
|
x
}
20(x
)1
0.9
即0(x
)
1.9 2
0.95
查表得x 1.645
于是 x1645355758
23
16
例223 设X~N(0 1) (1)求P{X196} P{X196} P{|X|196} P{1X2} (2)已知P{Xa}07019 P{|X|b}09242 P{Xc}02981 求a b c
大学概率论均匀分布·指数分布
概率论与数理统计教程(第四版)
目录
上一页 下一页
返回
结束
§2.7 均匀分布 • 指数分布
均匀分布的概率密度与分布函数
(1) 概率密度
在区间[a,b]上概率密度 f (x) C(常数),于是
b
C d x C(b a) 1 C
P(x1 X x2)
x2 f (x) dx.
x1
f (x)
P(x1 x x2 )
x
O
x1
x2
概率论与数理统计教程(第四版)
目录
上一页 下一页
返回
结束
§2.6 连续随机变量的概率密度
[例2] 设连续随机变量 X 的概率密度
f
(x)
A 1 x2
,
x .
求: (1) 常数 A 的值;
x0
x
F(x);
x
(2) F (x) P( X x) f (x) dx.
概率论与数理统计教程(第四版)
目录
上一页 下一页
返回
结束
§2.6 连续随机变量的概率密度
[例 1] 设随机变量 X 的概率密度为:
f
(x)
1 2
cos
x,
0,
求 X 的分布函数 F (x).
1 (arctan x π) 1 1 arctan x.
π
2 2π
[柯西(Cauchy)分布]
概率论与数理统计教程(第四版)
目录
上一页 下一页
返回
结束
(1) 均匀分布
Show[fn1,fn3]
小
0.5 0.4
大 0.3 0.2 0.1
-6
几何意义 数据意义
-5 -4 -3 -2 -1
大小与曲线陡峭程度成反比 大小与数据分散程度成正比
正态变量的条件 若 r.v. X
① 受众多相互独立的随机因素影响
② 每一因素的影响都是微小的 ③ 且这些正、负影响可以叠加
在 x = ± 时, 曲线 y = f (x) 在对应的
点处有拐点 曲线 y = f (x) 以 x 轴为渐近线
曲线 y = f (x) 的图形呈单峰状
P(X ) F() 1 F() P(X )
1 2
0.3 0.25
0.2 0.15
0.1 0.05
-6 -5 -4 -3 -2 -1
x
(x) 1
x t2
e 2 d t x
2
其值有专门的表供查.
0.4 0.3 0.2 0.1
-3 -2 -1
123
(0) 0.5 (x) 1 (x)
P(| X | a) 2 (a) 1
(x) 1(x)
X
4)
4
2
2
2
2
(0)
0.3
2 0.8
P(X 0) 0.2
解二 图解法
0.2 0.15
0.1 0.05
0.3 0.2
-2
2
4
6
由图
P(X 0) 0.2
例 3 原理
设 X ~ N ( , 2), 求 P(| X | 3 )
均匀分布课件
0,
F(x)
x
f (t) dt
x b
a a
,
1
x a, a x b,
xb
f ( x)
a
b
x
F( x)
a
b
x
d
(c,d) (a,b), P(c X d)
1
dx dc
c ba ba
即 X 落在(a,b)内任何长为 d – c 的小区间的
概率与小区间的位置无关, 只与其长度成正
无线电元件的寿命 动物的寿命
指数分布 常作为各种“寿命”
分布的近似
(3) 正态分布
若X 的 d.f. 为
f (x)
1
e
(
x )2 2 2
2
, 为常数, 0
x
亦称高斯 (Gauss)分布
则称 X 服从参数为 , 2 的正态分布
记作 X ~ N ( , 2 )
N (-3 , 1.2 )
求 P ( X < 0 ).
解一
P( X
0)
0
2
1
2
P(2
X
4)
4
2
2
2
2
(0)
0.3
2 0.8
P(X 0) 0.2
解二 图解法
0.2 0.15
0.1 0.05
0.3 0.2
-2
2
4
6
由图
P(X 0) 0.2
例 3 原理
设 X ~ N ( , 2), 求 P(| X | 3 )
— 形状参数
固定 ,对于不同的 ,f ( x) 的形状不同.
若 1< 2
《概率论》课程PPT : 随机变量的分布函数
4
(1, 5)
0 其它
求 X 的分布函数
y
解 当x1时
x
F (x) f (x)dx
0 1 2345 x x
当1 < x 5 时F (x)
x
f (x)dx
1
f (x)dx
x
f (x)dx
1
0 x 1 dx 1 (x 1)
14
(2)X 的密度函数
(1) P(0.3 X 0.7) F(0.7) F(0.3) 0.72 0.32 0.4
(2)密度函数为
f
(x)
F(x)
2x 0
0 x 1 otherwise
例:已知密度函数求分布函数
已知连续型随机变量X的概率密度为
1
f
(
x)
随机变量的分布函数
Distribution Function 分布函数的定义
设X为一随机变量,则对任意实数x,(X<x) 是一个随机事件,称
F(x) P(X x)
为随机变量X的分布函数
F(x)是一个
普通的函数!
定义域为 (-∞,+∞); 值域为 [0,1]。
分布函数表示事件的概率
引进分布函数F(x)后,事件的概率都可以用 F(x)的函数值来表示。
解
X的概率密度
3 e3x x 0 f (x)
0 x 0
P(x1 X x2)
x2 f (x)dx
x1
P(X 1)
f (x)dx
3e3xdx e3
1
1
分布函数、均匀分布、指数分布函数.32页PPT
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
分布函数、均匀分布、指数 分布Fra bibliotek数.31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
13种常见的统计分布ppt课件
属性
✓ 连续型分布 ✓ 用于描述以方向、位置、周期性(环形)时间、角度等为测度
单位的数字特征
应用
✓ 医学领域内一些现象是以方向或时间度量,具有周期性特点, 如某疾病在一年内各月份的发生数、胎儿在一昼夜间各时点 分娩的频度
✓ 有些数据本身就是以角度来表示:如脑电阴图的上升角,气 象环境的风向玫瑰图
✓ 这些数据不能用通常的均数、标准差描述
1 二项分布 Binomial Distribution
应用 条件
✓ 各观察单位只能具有相互对立的一种结果,如阳性或阴 性,生存或死亡等,属于两分类资料
✓ 已知发生某一结果(阳性)的概率为π,其对立结果的概 率为1-π,实际工作中要求π是从大量观察中获得比较稳 定的数值。
✓ n次试验在相同条件下进行,且各个观察单位的观察结果 相互独立,即每个观察单位的观察结果不会影响到其他观 察单位的结果。如要求疾病无传染性、无家族性等。
9 F分布 F Distribution
属性
✓ 连续型分布 ✓ 用于方差Γ分布 Γ Distribution or Gamma Distribution
属性
✓ 连续型分布 ✓ 正偏态分布,常用于正偏态分布的拟合
11 圆形分布 Circular Distribution
5 均匀分布 Uniform Distribution
属性
✓ 连续型分布 ✓ 数值计算的误差分析 ✓ 任意分布的随机数
理解
✓ 均匀分布在自然情况下极为罕见,而人工栽培的有一定株 行距的植物群落即是均匀分布
✓ 均匀,表示可能性相等的含义
6 正态分布 Normal Distribution
属性
✓ 连续型分布 ✓ 自然界、人类社会、心理和教育中大量现象均按正态形式分布,
分布函数、均匀分布、指数分布函数.PPT共32页
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!
分布函数、均匀分布、指数分布函数.
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
随机变量及其分布复习课件.ppt
F(x) x f(t)dt,
则称X为连续型随机变量,其中f(x)称为X的概率 密度函数,简称概率密度。
(II)概率密度的性质
( 1 ) 非 负 性 : f( x ) 0 , x R .
(2)规 范 性 :f(x)dx1. 4
( 3 )对 于 任 意 实 数 a b, 有
P{aXb}abf(x)dx . F(b)F(a)
求这个区间的端点,分二种情形讨论之:
17
(1)区间的一个端点是无穷大,即已知P(X < x) = p1 或P(X > x) = p2,求x .
利用 或
然后反查标准正态分布表,即可求出x (2)区间关于μ对称,不妨设为(μ−a,μ+a),而 P(μ−a<X<μ+a) = p,求a
18
四.随机变量的函数的分布 1.离散型随机变量函数的分布
几种重要的 离散型分布
均指 正 匀数 态 分分 分 布布 布
二项分布的 正态近似
二项分布的 泊松近似
二项 分布
泊几
松何
分分 布 布 21
例题选讲
例1 甲、乙、丙3人进行独立射击 每人的命中率依 次为03 04 06 设每人射击一次 试求3人命中总 数之概率分布律 分析 求离散型随机变量的概率分布的步骤为:(1) 写
23
例2 投掷一个均匀骰子n 次,求(1)恰好得到一个6点的概 率;(2)至少得到一个6点的概率;(3)为了以0.5的概率保 证至少得到一个6点,则至少要投掷几次?
所以至少要投掷4次.
24
例3 设 X 的分布律为 X 1012 1111 p 4444
求 Y X 2 的分布律 .
解 Y 的可能值为 (1)2, 02,12, 22; 即 0, 1, 4.
(课件)概率论与数理统计:均匀分布与指数分布
2
3
2
3
1
3 3 3
2
0
3
20 . 27
3
指数分布的概念导入
三大连续分布之指数分布
2. 指数分布 E(λ )
若连续随机变量 X 的密度函数具有形式
ex , x 0
f (x) 0,
其它
(其中 0)
那么就称该随机变量 X 服从指数分布,也称 X为指数分布变量(简称
指数量),并记为 X E ( )
在实际生活中,常用指数分布作为各种“寿命” 分布的近似。如 电子元件的寿命、动物的寿命等都假定服从指数分布。
服从指数分布的随机变量X具有一个很有趣 的性质:无记忆性。
事实上,P{ X s t | X s} P{( X s t ) ( X s)} P{ X s}
P{X s t} P{X s}
显然,不同的指数分布仅靠一个分布参数 λ 的不同取值相互区分。
指数分布 密度函数
y f (x)
的图象
指数分布 分布函数
y =F (x)
的图象
f (x)
e x , x 0
O
y f (x)
0
,x 0
x
y F (x)
F(x)
1
1 e x , x 0
0
,x 0
O
x
4
指数分布的应用举例
(1)求该电子元件寿命超过2年的概率; (2)已知该电子元件已使用了1.5年,求它还能使用超过2年的概率为多少?
解: 由题知
3e3 x x 0
f (x)
0 x 0,
(1)P( X 2) 3e3 xdx e6 ,
2
3e 3 x dx
2 P( X
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P{ X xk } F ( xk ) F ( xk 0)
例3 已知离散型随机变量 X 的分布函数为
0 1 10 F x 2 5 1
求 X 的分布律。
x3 3 x 4 4 x5 x5
解 X 的可能取值为 3,4,5。
1 P X 3 F 3 F 3 0 10
例3 、 及概率密度函数 f (x)。 解:
求常数 a,b,
例4 、 解:
,求A , B 及 f (x)。
注: F ( x) f ( x)的方法.
二、常用的连续型随机变量
1、均匀分布 定义、 若 连续型随机变量 X 的概率密度为:
1 , a xb f ( x) b a 其它 0,
所以 X 的分布律为
例4、 向[0,1]区间随机抛一质点,以 X表示质点坐标. 假定质点落在[0,1]区间内任一子区间内的概率与区间 长度成正比,求 X的分布函数. 解: 当 当 当 时, 时, 时,
特别,令
第五、六节 连续型随机变量及其分布
一、连续型随机变量的定义 二、常用的连续型随机变量
第二章
一、分布函数的概念
定义1 设 X 是一个随机变量,x 是任意实数,则称函数
( x )
为X 的分布函数。
x 分布函数 F x 的函数值的含义:
表示 X 落在 (, x] 上的概率.
∴可以使用分布函数值描述随机变量落在区间里的概率。 (1) P{x1 X x2} (2) P{x1 X x2} 同理,还可以写出
一、连续型随机变量的定义
1. 概率密度 定义1. 设 F(x) 是随机变量 X的分布函数,若存在非负 函数 f x x , ,使对任意实数 x 有
则称 X为连续型随机变量,称 f ( x)为 X 的概率密度函 数,简称概率密度或密度函数。
对于连续型随机变量的 分布函数 F ( x)必是连续函数 .
c l
c
f ( x)dx
c l
c
1 l dx ba ba
由此可得,如果随机变量 X 服从区间[a, b]上的均匀 分布,则随机变量 X 在区间[a, b]上的任一子区间上取
求 F(x).
当x 1时, F ( x) 0 当 1 x 1时, x 2 1 2 1 t dt F ( x) 0 dt 1 x 1 1 2 1 x arcsin x 2 当 x 1, F ( x) 1
x
f (t )dt
所以,
一般地,设离散型随机变量 X 的分布律为
P{ X xk } pk , k 1, 2, 3,
由概率的可列可加性得 X 的分布函数为 F x P{ X x} pk P{ X xk }
xk x
xk x
1
2
离散型的分布函数为阶梯函数;xk为间断点;
f (x)
1
0
a
b
x
4、密度函数f (x)的意义:
反映了随机变量 X在点x 处的密集程度。 在等长度的区间上,f的值越大,说明X在该区间内 落点的可能性越大。
f (x)
1
0
a
b
x
例1. 设 X 的密度函数为 f (x)
解: F ( x) P X x
2 1 x2 , 1 x 1 f ( x) 0, 其它
P{X x1} P{X x1}
二、分布函数的性质
⑴ 单调不减性: ,则
⑵ 0 F ( x) 1 ,且
⑶ 右连续性: 上述三条性质,也可以理解为判别函数是否是分布函数 的充要条件。
例1 已知 F x A arctan x B ,求 A、 B。 解
F
2
A B 0
A
F
2
1
A B 1
1 B 2
1 所以 F x arctan x 2
1
例2. 已知随机变量X 的分布律为 求分布函数 F ( x)
解: F ( x) P{ X x} 当 x 0 时, { X x}
X
pk
0 1 3
1 1 6
2 1 2
F ( x) 0
1 当 0 x 1 时, F ( x) P{ X x} P{ X 0} 3 当 1 x 2时, 1 1 1 F ( x) P{ X 0} P{ X 1} 3 6 2 当x 2时 F ( x) P{ X 0} P{ X 1} P{ X 2} 1
0 1 10 F x 2 5 1
x3 3 x 4
4 x5
x5
2 1 3 P X 4 F 4 F 4 0 5 10 10
2 3 P X 5 F 5 F 4 1 5 5
则称 X 服从 [a, b]上的均匀分布,
记作: X ~ U [a, b]
分布函数为: F ( x)
x
0, xa f (t )dt , b a 1,
x a,
a x b, x b.
均匀分布的概率背景
因为 P{c X c l}
f ( x)可积 F ( x)连续
2.
⑵
概率密度的性质
⑴ 非负性
f ( x) 0
f ( x)dx=1
由于
F ()
f ( x)dx=1
f ( x) F ( x)
(3) f (x)在点x 处连续,则
3、连续性随机变量的特点
(1)
(2)
(3) F(x)连续。
例2、 设连续型随机变量 X的概率密度为
求 A的值, 解:
1 3 x Ae dx A( )e 3
3 x
f ( x)dx
0
0
A 1 3
1 3 x 3 0
A 3.
1 3
f ( x ) dx
1 3 0
3e 3 x dx e
1 e 1.