九年级上册数学二次函数思维导图
九年级数学上册-第二十二章 二次函数 复习课件-人教版
某商店销售一种销售成本为40元/千克的水产品,若按50元/ 千克销售,一个月可售出500千克,销售价每涨价1元,月销售量 就减少10千克。 (1)写出月销售利润y与售价x之间的函数关系式。 (2)销售单价定为55元时,计算月销售量与销售利润。 (3)商场想在月销售成本不超过3000元的情况下,使得月销售 利润达到8000元,销售单价应定为多少? (4)当售价定为多少元时,会获得最大利润?求出最大利润。
3 AD长度固定,只需找到点P使AP+PD最小即可,找到点A关于y轴的 对称点A',连接A'D,则A'D与y轴的交点即是点P的位置。
思维导图 例题示范
例1
如图,已知二次函数 y 1 x2 bx c 的图象经过A(2,0)、 2
B(0,-6)两点。
(3)若抛物线的顶点为D,在y轴上是否存在一点P,使得△PAD的周
接QE、OP、PQ,求OP+PQ+QE的最小值。
思维导图 例题示范
例3
如图,在平面直角坐标系中,已知抛物线 y 3 x2 3x 4 3 交
3
3
x轴于A,B两点,交y轴于点C,抛物线上一点D的横坐标为-5。
(1)求直线BD的解析式;
解:(1)令y=0,则 3 x2 3x 4 3 0 ,解得x=-4或1,
2
思维导图 例题示范
例1
如图,已知二次函数 y 1 x2 bx c 的图象经过A(2,0)、 2
B(0,-6)两点。
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求
△ABC的面积;
解:(2)∵ 二次函数的解析式为:y 1 x2 4x 6,
2
∴ 二次函数的对称轴为x=4,即OC=4,
二次函数思维导图
四、二次函数与的比较五、二次函数图象的画法六、二次函数的性质二次函数的结构特征(是常数,)的函数,,而可以为零.二次函数的定的二次式,的是常数,是二次项系数,是一次项系数,是二次函数基本形式:的性质的符号标轴时,随的增大而增大;随的增大而减小;时,有最小值.轴时,随的增大而减小;随的增大而增大;时,有最大值.2. 的性质的符号标轴时,随的增大而增大;随的增大而减小;时,有最小值.轴时,随的增大而减小;随的增大而增大;时,有最大值.3. 的性质的符号时,随的增大而增大;随的增大而减小;时,有最小值.时,随的增大而减小;随的增大而增大;时,有最大值.4.的性质的符号时,随的增大而增大;随的增大而减小;时,有最小值.时,随的增大而减小;随的增大而增大;时,有最大值.,确定其顶点坐标的形状“值正右移,负左移;值正上移,负沿轴平移个单位,变成(或)沿轴平移:向左(右)平移个单变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的六、二次函数的性质当时,抛物线开口向上,对称轴为,顶点坐标为当时,随的增大而减小;当时,随的增大而增大;当时,有最小值当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值一般式:(,,为常数,)顶点式:(,,为常数,)两根式:(,,是抛物线与轴两交点的横坐标)点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析中,时,抛物线开口向上,时,抛物线开口向下,在的前提下时,,即抛物线的对称轴在轴左侧时,,即抛物线的对称轴就是轴时,,即抛物线对称轴在轴的右侧在的前提下,结论刚好与上述相反,即时,,即抛物线的对称轴在轴右侧时,,即抛物线的对称轴就是轴时,,即抛物线对称轴在轴的左侧总结起来,在确定的前提下,决定了抛物线对称轴的位置.ab的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是当时,抛物线与当时,抛物线与当时,抛物线与轴的两个交点的横坐标,一般选用两根式关于轴对称后,得到的解析式是关于轴对称后,得到的解析式是关于轴对称后,得到的解析式是关于轴对称后,得到的解析式是关于原点对称后,得到的解析式是关于原点对称后,得到的解析式是关于顶点对称后,得到的解析式是关于顶点对称后,得到的解析式是关于点(m,n)系(二次函数与轴交点情况)一元二次方程是二次函数当函数值时的特殊图象与轴的交点个数时,图象与轴交于两点是一元二次方程的两根.这两点间的.时,图象与轴只有一个交点时,图象与轴没有交点时,图象落在轴的上方,无论为任何实数,都有时,图象落在轴的下方,无论为任何实数,都有抛物线的图象与轴一定相交,交点坐标为,⑴ 求二次函数的图象与轴的交点坐标,需转化为一元二次方程⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式⑶ 根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标⑸ 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系。
思维导图数学篇
知识点思维导图
知识点思维导图
知识点思维导图
知识点思维导图
课堂练习
做出函数单调性的知识点思维导图
习题课
案例:
ห้องสมุดไป่ตู้
以下两个函数中:
(1)
f
(x)
1 1
x x
2 2
;
(2) f (x) (1 x) 1 x . 1 x
非奇非偶的函数是______________.
解题思维导图
四 开发右脑
思维导图极大地激发我们的右脑。因为我们在创 作导图的时候还使用颜色、形状和想象力。根据科 学研究发现人的大脑是由两部分组成的。左大脑负 责逻辑、词汇、数字,而右大脑负责抽象思维、直 觉、创造力和想象力。巴赞说:“传统的记笔记方 法是使用了大脑的一小部分,因为它主要使用的是 逻辑和直线型的模式。”所以,图像的使用加深了 我们的记忆,因为使用者可以把关键字和颜色、图 案联系起来,这样就使用了我们的视觉感官。
三 同化记忆
思维导图具有极大的可伸缩性,它顺应了我们大脑 的自然思维模式。从而,可以使我们的主观意图自 然地在图上表达出来。它能够将新旧知识结合起来。 学习的过程是一个由浅入深的过程,在这个过程中, 将新旧知识结合起来是一件很重要的事情,因为人 总是在已有知识的基础上学习新的知识,在学习新 知识时,要把新知识与原有认知结构相结合,改变 原有认知结构,把新知识同化到自己的知识结构中, 能否具有建立新旧知识之间的联系是学习的关键。
二、思维导图在复习中的应用
课后复习是巩固知识、提高运用知识解决问题的能力的重要环节。学生对运用思维导图这 种方式进行复习总结都表现出一定的兴趣。在复习中,首先,学生独立对整章知识进行总 结,根据自己的理解,理清数学概念、规律及其区别、联系,区分重点难点,画出思维导 图。其次,教师批阅学生交上来的作品,把握学生对整个章节知识的掌握情况,同时对其 在思维导图中体现的思维错误进行一定程度的修改。第三,在复习课堂上抽取部分典型的 作品,先由大家讨论该思维导图的优劣,进行补充与深化,最后教师进行总结与提升,由 于初中生的思维水平有限,教师的提高主要是将本章知识与已有知识进行联系,将新知识 融入已有的知识体系中,形成知识网络,便于提取。各章、各单元间不是孤立的,而是互 相联系的,让学生自己找出联系,把所有的思维导图编织成自己的知识网,整个过程也是 其乐无穷的。图2为学生学完直角三角形全等后,将直角三角形的知识与已有的三角形全 等的知识相结合绘制的思维导图,加强了对课程内容的整体认识,形成了一个清晰的知识 框架。 除了按章节复习之外,还可以按照知识分类复习,如函数知识,分一次函数、反比例 函数、二次函数三个主要分支,每个主要分支再细分为函数概念、函数图像、函数性质及 应用等,这样当思维导图完成时,学生也有了一个十分清晰的函数知识框架。
九年级函数知识点思维导图
九年级函数知识点思维导图函数是数学中一个非常重要的概念,九年级学生需要掌握函数的相关知识点。
为了帮助大家更好地理解九年级函数知识点,我将为大家制作一个思维导图,来系统地梳理九年级函数知识点。
一、函数的定义与性质函数的定义:函数是一种具有特定输入与输出关系的规则。
1.1 输入与输出:函数将自变量(输入值)映射到因变量(输出值)。
1.2 定义域与值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
1.3 单调性:函数可以是递增的(单调增),也可以是递减的(单调减)。
1.4 奇偶性:函数可以是奇函数或偶函数,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
1.5 周期性:函数可以是周期函数,例如正弦函数和余弦函数。
二、函数的图像与图像的性质函数的图像是函数在平面直角坐标系上的可视化形式,通过观察函数的图像可以了解更多函数的性质。
2.1 函数的图像类型:线性函数、二次函数、立方函数、指数函数、对数函数等。
2.2 对称性:函数的图像可能具有对称性,如关于x轴对称、关于y轴对称、关于原点对称等。
2.3 函数的平移与伸缩:函数的图像可以通过平移和伸缩来变换,平移会改变图像的位置,伸缩会改变图像的形状。
2.4 零点与极值:函数的零点是使函数取值为0的自变量,函数的极值是取得最大或最小值的点。
三、函数的性质与运算函数的性质和运算是九年级函数知识点的重点,它们可以帮助我们对函数进行分析和计算。
3.1 奇偶性的性质:奇函数和偶函数具有一些特殊的性质,如奇函数之间相加是奇函数,奇函数和偶函数相乘是偶函数。
3.2 复合函数:复合函数是一种由两个或多个函数组成的函数,通过复合函数可以将函数的运算进行扩展。
3.3 反函数:反函数是满足特定条件的函数,它与原函数的作用正好相反,可以通过反函数找到原函数的逆运算。
四、函数的应用函数的应用广泛存在于现实生活中,九年级学生需要了解一些函数的实际应用。
4.1 函数与图像的应用:函数的图像可以模拟真实世界中的各种现象,如物体的运动轨迹、声音的波动等。
人教版九级上册数学优质课件二次函数复习优质课件
人教版九级上册数学优质课件二次函 数复习 优质课 件
思维导图 例题示范
例1
如图,已知二次函数 y 1 x2 bx c 的图象经过A(2,0)、 2
B(0,-6)两点。
(1)求这个二次函数的解析式;
解:(1)将点A(2,0)、B(0,-6)代入得:c226b c 0 ,
解得:bc
4 6
解:(3)存在,点P的坐标为 (0, 2) 。 3
AD长度固定,只需找到点P使AP+PD最小即可,找到点A关于y轴的 对称点A',连接A'D,则A'D与y轴的交点即是点P的位置。
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
思维导图 例题示范
例2
某商店销售一种销售成本为40元/千克的水产品,若按50元/ 千克销售,一个月可售出500千克,销售价每涨价1元,月销售量 就减少10千克。 (1)写出月销售利润y与售价x之间的函数关系式。
人教版九年级上册 数学 课件 第二十二章 二次函数 复习课件(共20张PPT)
思维导图 例题示范
例2
某商店销售一种销售成本为40元/千克的水产品,若按50元/ 千克销售,一个月可售出500千克,销售价每涨价1元,月销售量 就减少10千克。 (2)销售单价定为55元时,计算月销售量与销售利润。
沪教版九年级数学思维导图
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载沪教版九年级数学思维导图地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第二十四章相似三角形(上册)思维导图1、中考分值15分左右,中考常见题型为填空题,综合题。
【考纲要求】(1)掌握比例的性质,了解黄金分割的意义。
(2)理解两条线段的比和比例线段的概念。
(3)掌握平行线分线段成比例定理;掌握三角形一边的平行线的判定方法。
(4)理解相似三角形的概念,掌握判定两个三角形相似的基本方法(5)掌握两个相似三角形的周长比、面积比以及对应的角平分线比、对应的中线比、对应的高的比的性质。
(6)会用相似三角形的判定和性质解决简单的几何问题和实际问题。
(7)知道三角形的中心及其性质。
2、重点和难点重点是平行线分线段成比例定理、相似三角形的判定和性质难点是运用平行线分线段成比例定理,相似三角形的判定和性质解决有关的问题。
3、相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。
相似三角形是初中数学中的重点也是难点,中考24题(压轴)中常结合函数四边形等知识点考察。
建议课时6次。
第二十五章锐角三角比(上册)思维导图1、中考分值12~16分,常考题型填空题和综合题(21或22题)【考纲要求】(1)理解锐角三角比的概念。
(2)会求特殊锐角(30°、45°、60°)的三角比的值。
(3)会用计算器求锐角的三角比的值;能根据锐角三角比的值,利用计算器求锐角的大小。
(4)会解直角三角形。
(5)理解仰角、俯角、坡度、坡角等概念,并能解决有关的实际问题。
九年级上册数学二次函数思维导图
九年级上册数学二次函数思维导图对于九年级上册数学的二次函数,运用图形更容易掌握。
下面小编精心整理了九年级上册数学二次函数思维导图,供大家参考,希望你们喜欢!九年级上册数学二次函数思维导图欣赏九年级上册数学二次函数:顶点式y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k) ,对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。
沪教版(上海市) 初中数学思维导图 九年级数学全册章节思维导图集
你现在的努力要对得起别人对你的好!
第二十八章 统计初步的章节知识点结构思维导图
-3Math 实验室
你现在的努力要对得起别人对你的好!
上海市(沪教版)九年级数学全册章节思维导图 共五章
第二十四章 相似三角形的章节知识点结构思维导图
第二十五章 锐角三角比的章节知识点结构思维导图
-1Math 实验室
你现在的努力要对得起别人对你的好!
第二十六章 二次函数的章节知识点结构思维导图
第二十七章 圆ห้องสมุดไป่ตู้正多边形的章节知识点结构思维导图
九年级上册数学知识点思维导图
九年级上册数学知识点思维导图+考点梳理〔开学前新初三必看〕一元二次方程二次函数知识点梳理:1.定义:一般地,如果y=ax²+bx+c〔其中a,b,c是常数,a≠0〕,那么y叫做x的二次函数.2.二次函数y=ax²的性质〔1〕抛物线y=ax²的顶点是坐标原点,对称轴是y轴.〔2〕函数y=ax²的图像与a的符号关系.①当a>0时Û抛物线开口向上Û顶点为其X点;②当a<0时Û抛物线开口向下Û顶点为其X点.〔3〕顶点是坐标原点,对称轴是轴的抛物线的解析式形式为y=ax²〔a≠0〕.3.二次函数y=ax²+bx+c的图像是对称轴平行于〔包含重合〕y轴的抛物线.4.二次函数y=ax²+bx+c用成分法可化成:y=a〔x - h〕²+k的形式,其中5.二次函数由特别到一般,可分为以下几种形式:①y=ax²;②y=ax²+k;③y=a〔x - h〕²;④y=a〔x - h〕²+k;⑤y=ax²+bx+c.6.抛物线的三要素:开口方向、对称轴、顶点.①a的符号决定抛物线的开口方向:当a>0时,开口向上;当a<0时,开口向下;|a|相等,抛物线的开口大小、形状相同.②平行于y轴〔或重合〕的直线记作x=h.特别地,y轴记作直线x=0.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法〔1〕公式法:∴顶点是:对称轴是直线:〔2〕成分法:运用成分的方法,将抛物线的解析式化为y=a 〔x-h〕²+k的形式,得到顶点为(h,k),对称轴是直线x=h.〔3〕运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用成分法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线y=ax²+bx+c中,a、b、c的作用〔1〕a决定开口方向及开口大小,这与y=ax²中的a完全一样.〔2〕b和a共同决定抛物线对称轴的位置.由于抛物线y=ax²+bx+c的对称轴是直线,故:①b=0时,对称轴为y轴;②〔即a、b同号〕时,对称轴在y轴左侧;③〔即a、b异号〕时,对称轴在y轴右侧.〔3〕的大小决定抛物线y=ax²+bx+c与y轴交点的位置.当x=0时,y=c,∴抛物线y=ax²+bx+c与y轴有且只有一个交点〔0,c〕:①c=0,抛物线经过原点;②c>0,与y轴交于正半轴;③c<0,与y轴交于负半轴.以上三点当结论和条件互换时仍成立.如抛物线的对称轴在y轴右侧,则10.几种特别的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式〔1〕一般式:y=ax²+bx+c.已知图像上三点或三对x、y的值,通常选择一般式.〔2〕顶点式:y=a〔x - h〕²+k .已知图像的顶点或对称轴,通常选择顶点式.〔3〕交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y=a(x-x1)(x-x2).12.直线与抛物线的交点〔1〕y轴与抛物线y=ax²+bx+c得交点为(0, c).〔2〕与y轴平行的直线X=h与抛物线y=ax²+bx+c有且只有一个交点〔h, ah²+bh+c〕〔3〕抛物线与轴的交点二次函数y=ax²+bx+c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程ax²+bx+c=0的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点Û△>0Û抛物线与x轴相交;②有一个交点〔顶点在x轴上〕Û△=0Û抛物线与x轴相切;③没有交点Û△<0Û抛物线与轴相离.〔4〕平行于轴的直线与抛物线的交点同〔3〕一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是ax²+bx+c=k的两个实数根.〔5〕一次函数y=kx+n(k≠0)的图像L与二次函数y=ax²+bx+c(a≠0)的图像G的交点,由方程组的解的数目来确定:①方程组有两组不同的解时L与G有两个交点;②方程组只有一组解时L与G只有一个交点;③方程组无解时L与G没有交点.〔6〕抛物线与x轴两交点之间的距离:假设抛物线y=ax²+bx+c与x 轴两交点为A(x1,0),B(x2,0),由于x1、x2是方程ax²+bx+c=0的两个根,故。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册数学二次函数思维导图
对于九年级上册数学的二次函数,运用图形更容易掌握。
下面小编精心整理了九年级上册数学二次函数思维导图,供大家参考,希望你们喜欢!
九年级上册数学二次函数思维导图欣赏
九年级上册数学二次函数:顶点式
y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k) ,对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;
当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;
当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;
当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;
当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。
九年级上册数学二次函数:定义与表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax²+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。