初中数学公式口诀
初中数学必背公式口诀大全
初中数学必背公式口诀大全1、有理数的加法同号相加一边倒;异号相加"大"减"小",符号跟着大的跑,绝对值相等"零"正好。
2、合并同类项合并同类项,法则不能忘,只求系数和,字母、指数不变样。
3、去、添括号去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面有一个负号,删除和添加括号时,负号会改变。
4、一元一次方程已知未知要分离,分离方法就是移,加减移位项要改,乘除移位项要反。
5、平方差公式平方差公式有两项,符号相反切记牢,第一个尾巴乘以第一个尾巴不要与完整的公式混淆。
6、因式分解一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,如果以上都不行,那就仔细看看要删除和添加的项目。
7、“代入”口决挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)。
8、一元一次不等式解题的一般步骤去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边都除以(除)负数的时候,别忘了改变不等式的方向。
9、分式混合运算法则分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
10、一次函数的图象与性质的口诀一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
11、二次函数的图象与性质的口诀二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,。
初中数学公式实用口诀
初中数学公式实用口诀
1. 代数公式
- 同底幂相除,保底幂,指数减一。
- 同底幂相乘,幂相加,底不变。
- 平方差公式:$a^2 - b^2 = (a + b)(a - b)$。
- 完全平方公式:$(a + b)^2 = a^2 + 2ab + b^2$。
2. 几何公式
- 三角形面积:$S = \frac{1}{2} \times 底 \times 高$。
- 直角三角形勾股定理:$a^2 + b^2 = c^2$。
- 圆的面积:$S = \pi \times r^2$,其中 $\pi$ 取近似值 3.14。
- 圆的周长:$C = 2 \times \pi \times r$。
3. 线性方程
- 相同类型项相加减,系数无改变。
- 移项法则:方程两边加减同一个数,仍相等。
- 消元法:可通过加减两方程得到无某个变量的新方程。
4. 比例与百分数
- 比例的交叉相乘:$\frac{a}{b} = \frac{c}{d}$,即 $a \times d = b \times c$。
- 比例的逆比:$\frac{a}{b} = \frac{1}{\frac{b}{a}}$。
- 百分数转换为小数:将百分数除以 100。
- 小数转换为百分数:将小数乘以 100。
5. 统计与概率
- 中心倾向度量:平均数、中位数、众数。
- 随机事件概率:$P(A) = \frac{n(A)}{n(S)}$,其中 $n(A)$ 表示事件 A 的可能结果数,$n(S)$ 表示样本空间 S 的可能结果数。
以上是初中数学公式的实用口诀,希望能帮到你!。
初中数学公式速记口诀
初中数学公式速记口诀一、四则运算1.加法减法:同号相加,异号相减,取号看大数。
2.乘法法则:正与正得正,负与负得正,正与负得负。
3.乘方的运算:a的m次方乘以a的n次方等于a的m+n次方。
4.乘方的运算:a的m次方除以a的n次方等于a的m-n次方。
5.指数相同的乘方:a的m次方乘以b的m次方等于(a乘以b)的m 次方。
6. 乘方与开方:a的m次方乘以a的n次方等于a的m+n次方,即(a的m次方)的n次方等于a的mn次方。
7.平方差公式:a²-b²=(a+b)(a-b)。
8. 立方和公式:a³+b³=(a+b)(a²-ab+b²)。
二、代数公式1. 两个数平方和公式:a²+2ab+b²=(a+b)²。
2. 两个数平方差公式:a²-2ab+b²=(a-b)²。
3. 两个数的立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
4. 两个数的立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
5. 平方和的因式分解:a²+b²=(a+b)²-2ab。
6.平方差的因式分解:a²-b²=(a+b)(a-b)。
7. 立方和的因式分解:a³+b³=(a+b)(a²-ab+b²)。
8. 立方差的因式分解:a³-b³=(a-b)(a²+ab+b²)。
9. 二次方程求根公式:根据二次方程ax²+bx+c=0的表达式,求得x=(-b±√(b²-4ac))/2a。
三、几何公式1.直角三角形斜边长:c²=a²+b²。
初中数学公式速记口诀
初中数学公式速记口诀一、整数运算1.整数加减乘除,运算法则应知晓。
加减不变号,乘除定规则。
同号相减,异号相加,乘除规律应提取。
二、分数运算1.分数加减规则记,通分再运算更有效。
分数的加减要找同,通分后计算省时间。
分子分母最简约,通分结果精准度。
2.分数乘法要分纳,分子分母分别记忆。
分数相乘分子乘,分母分别要记住。
约分最大约,结果就能减小。
3.分数除法要安排,倒数乘法计算准确。
乘以倒数才好求,分子分母都要翻转。
三、百分数运算1.百分数转化快,小数运算不迷路。
将百分数除以100,等于所对应的小数。
2.小数转百分数,运算法则要明白。
给小数扩大100倍,再加上百分号。
3.百分数运算加减乘,同百分数乘除法相通。
加减乘法共一式,分子分母写在一起。
四、比例与倍数1.比例问题考透,先写列比再通约。
比例问题列式写,通约就是减负。
2.比例求一般项,分子分母别换。
求比例分子分母,列式形式不要变。
3.倍数要有个眼,能能就能找到。
两数的倍数有规律,能不能也能判断。
五、代数式运算1.代数式的加减法,同类项加法最简洁。
学习加减同类项,结果表达最简洁。
2.代数式的乘法,交换律先处理。
乘法学会交换律,结果计算最方便。
3.代数式的除法,乘以倒数最高效。
除法乘以逆元,计算就最方便。
六、平面图形1.点是平面基础,直线支配图形。
点是图形基础,直线引出边。
2.双曲线有四类,形状要了解清。
双曲线有四种类,图形特点记心底。
3.多边形分类别,了解特点在脑海。
多边形分类别,记住特点快解题。
4.圆是最特殊,性质记一记。
圆是特殊图形,要记住性质清清楚。
七、空间图形1.立体图形分类记,特点要清透明。
立体图形分类好,解题不成问题。
2.立体图形表面积,底面积加周长。
立体图形表面积,专门公式要统计。
底面积加周长,不用愁答案。
3.空间图形体积,底面积乘高得。
空间图形体积结构密,计算发现就在手。
八、数据统计1.数据整理分组频,频次最高孩子记。
统计数据分组频,频次最高记在心。
数学公式口诀
口诀的形式来记忆初中数学知识点公式1.加法运算之有理数:异号相加"大"减"小",同号相加一边倒;绝对值相等"零"正好;符号跟着大的跑。
注意,这里的大减小针对的是绝对值相加减。
1.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
2.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
3.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
4.恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n5.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
6.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
7.因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
8."代入"口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)9.单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
10.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
11.一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
12.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
初中数学知识点速记口诀大全
初中数学知识点速记口诀大全一、整数的概念和性质:正数负数概不忘零在其中别忘了。
同号相加取原号异号相加看绝对。
加减乘除顺利解取余是除的剩余。
二、运算顺序和公式:先括号后指数再乘除加减。
加减法交换律乘除法不变形。
分配律左右扩结合律加括号。
三、四则运算的口诀:口诀之一:两正相除,两负相除,一正一负取负。
口诀之二:正与负相加,大者的符号要保持。
口诀之三:括号后面要考,负号化为减号。
四、分数的运算:分母相同乘或除分子相同加或减。
分母乘得大分小分母除得小分大。
约分先后要整除约尽互素好约。
五、比例与类比:比例两项对两项乘积相等不错。
调换项的顺序它还是要成立。
比例是否成立你可以算一算。
类比只比一比第三项不参与。
六、百分数的计算:百分之一变小数移动两位是怎样?百分放大一百倍移动两位不累。
七、平方与平方根:平方根是平方的倒开平方先四后五括号里的数要加减正负两种情况。
四个相乘得平方二个相乘得平根。
八、图形的计算:周长长度加减乘除体积适用乘法。
小数点的位置要看好精确度别忘了。
形状知识要弄清楚计算时更从容。
九、坐标系和二次函数:直角坐标系有四象限二次函数翻转两个方向。
顶点坐标先写y后写x图形特点要掌握。
关于y轴情况对称关于x轴形状升降。
对称轴是x等于b开口方向看系数。
十、平行线和平面几何:平行线一窄一宽斜率相同线平行。
直线之间垂直就是斜率乘积为负是。
角度大于90°是钝角别忘记。
内角之和180°外角之和360°。
对于三角形求周长边长之和是关键。
初中数学公式速记口诀
初中数学2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
初中数学3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
初中数学4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
初中数学恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n初中数学5、平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
初中数学6、完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
初中数学7、因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
初中数学8、"代入"口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)初中数学单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
初中数学9、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
初中数学10、一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
初中数学11、一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
初中数学12、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
初中数学口诀
有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则同号得正异号负,一项为零积是零。
合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
(完整版)初中数学中常见公式口诀
(完整版)初中数学中常见公式口诀直角三角形- 勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
- 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c分别为三角形的边长,A、B、C分别为对应的内角。
- 余弦定理:c² = a² + b² - 2ab·cosC,其中a、b、c分别为三角形的边长,C为对应的内角。
圆- 圆的周长:C = 2πr,其中r为圆的半径。
- 圆的面积:A = πr²,其中r为圆的半径。
- 弧长公式:L = 2πr·(m/360°),其中L为弧长,r为圆的半径,m为对应的圆心角的度数。
反比例函数- 反比例函数的特点:y = k/x,其中k为常数。
- 两个变量间的比例关系:x1·y1 = x2·y2,其中x1、y1为第一组的值,x2、y2为第二组的值。
直线与平面- 平行线特征:对于两条直线l1和l2,如果有一条直线l3与l1和l2都平行,则l1和l2也平行。
- 垂直线特征:对于两条直线l1和l2,如果l1和l2的斜率乘积为-1,则l1和l2互相垂直。
- 平面的角的性质:平面上两直线平分同一角的直线互相平行。
平移、旋转、翻折- 平移变换:平移不改变图形的大小和形状,只改变图形的位置。
- 旋转变换:以某一点为中心,将图形按一定角度旋转,得到新的图形。
- 翻折变换:将图形关于直线对称,得到新的图形。
统计与概率- 均值:将一组数据相加,再除以数据的个数。
- 中位数:将一组数据按从小到大的顺序排列,位于中间位置的数。
- 众数:一组数据中出现次数最多的数。
- 百分比:百分之一表示1%,百分之十表示10%,以此类推。
以上是初中数学中常见的公式口诀,希望对你有所帮助!。
初中数学公式记忆口诀
初中数学公式记忆口诀一说到数学,很多同学就头疼,要记各种公式,定理,最后还要学会运用。
以下是店铺为你带来的初中数学公式记忆口决,希望能帮到你。
初中数学公式记忆口决有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则同号得正异号负,一项为零积是零。
合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式) 因式分解一提二套三分组,叉乘求根也上数。
初中数学全册知识解题口诀
初中数学全册知识解题口诀
初中数学全册的知识解题口诀可以根据不同的知识点进行总结和归纳,以下是一些常见的口诀:
1. 有理数运算口诀:
加减同符号,异号取差;
乘除同异号,正负搞清楚。
2. 分式运算口诀:
分式加减乘除,通分后统一;
简化约分要留心,结果要最简约。
3. 代数式展开口诀:
二次方差异平方差,三项立方多分配;
公式记牢运用好,展开式无难求。
4. 相似三角形口诀:
角对角相等,边比例相同;
直角三角形,斜边比较长。
5. 平行线口诀:
平行线交剖线,对应角相等;
内错外错交,内角互补补。
6. 勾股定理口诀:
勾股定理要记清,直角边顺序定;
斜边平方等于和,直角边平方和。
7. 平面图形周长和面积口诀:
周长加边长,面积乘底高;
圆的周长很简单,直径乘π别犹豫。
这些口诀可以帮助初中学生记忆和运用数学知识,提供了一种简明扼要的总结方式,帮助学生更好地理解和解题。
初中数学公式和规律口诀大全
初中数学公式和规律口诀大全一、整数的口诀:1.两个整数的加减法,不变是两整数,带符号是两数符。
2.乘法算时前念符号,同号得正,异号得负。
3.除法算得到,除数零不行。
同符号为正数,异符号为负号。
二、分数的口诀:1.分数加减小学概念,分数化成相同数。
2.分数乘法口诀记住,分子分母分别算。
3.分数除法公式清楚,倒数相乘有规律。
三、小数的口诀:1.小数乘法口诀记住,位数相加后小数点。
2.商为小数常用口诀,除法后面附小数。
四、代数式的口诀:1.同类项相加合,合并同类项。
2.同异号相乘,用规律记忆。
3.同指数幂相乘,底数相乘,指数相加。
4.零幂指数记住,底数不变,指数为1五、二次方程的口诀:1.二次方程有根求法,先判定算式中。
b²-4ac大于0,两根不相等。
等于0,两根相等。
小于0,无解。
六、平面几何的口诀:1.两角和必为90度,角互余线要记住。
2.同心离心别混淆,切线平分小角。
3.半径是弦的中垂线,扇形面积底乘角。
七、立体几何的口诀:1.立体图形先认识,桶锥球棱边角。
2.正方体八个顶,十二个棱,六个面。
3.五正五顶六棱面,八面体有六棱面。
八、百分数的口诀:1.百分数想入头,意为百分之几。
2.百分比化小数,除以100就好使。
3.小数化百分数,乘以100倍。
九、利率、利息口诀:1.年利率除12,月利率的意思。
2.用月利率才是标准,计算利息很方便。
十、统计的口诀:1.各种统计知得多,平均数、中位数、众数。
平均数和中位数,个数是奇数中间数。
26个初中数学公式记忆口诀
01有理数的加法同号相加一边倒;异号相加"大"减"小" 符号跟着大的跑,绝对值相等"零"正好02合并同类项合并同类项,法则不能忘,只求系数和,字母、指数不变样.03去、添括号去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.04一元一次方程已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.05平方差公式平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.06完全平方公式完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.07因式分解一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.08单项式运算加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.09一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.10一元一次不等式组一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.11分式混合运算分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.12分式方程同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍,别含糊.13最简根式的条件最简根式三条件,号内不把分母含,幂指数(根指数)要互质、幂指比根指小一点.14特殊点的坐标特征坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧15对称点的坐标对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称x相反;原点对称最好记,横纵坐标全变号.16自变量的取值范围分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.17函数图象函数图象的移动规律:若把一次函数的解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”18一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远19二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见;b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线;左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现;横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.20反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.21特殊三角函数首先记住30度、45度、60度的正弦值、余弦值的分母都是2,正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.三角函数的增减性:正增余减22数字巧记(下面的数字均是约等于,都是无理数!)=1.414(意思意思而已),=1.7321(三人一起商量),=2.236(吾量量山路),=2.449(粮食是酒),=2.645(二流是我),=2.828(二爸二爸),=3.16(山药,六两)23平行四边形的判定要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.24梯形问题的辅助线移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.2525添加辅助线歌辅助线,怎么添?找出规律是关键.题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连;三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番.26圆的证明歌圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连. 同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.。
初中数学记忆顺口溜大全
初中数学记忆顺口溜大全1、有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好.【注】“大”减“小”是指绝对值的大小.2、合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样.3、去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号.4、一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.5、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变.(a-b)2n+1=-(b-a)2n+1,(a-b)2n=(b-a)2n6、平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.7、完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央.8、因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚.9、“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)10、单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行.11、一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了.12、一元一次不等式组的解集:大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.13、分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.14、分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊.15、最简根式的条件:最简根式三条件,幂指、根指号内不把分母含,(数)(数)要互质,幂指比根指小一点.16、特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上 y 为 0,x 为0 在 y 轴.17、象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.18、平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行 x 轴,纵坐标相等横不同;直线平行于 y 轴,点的横坐标仍照旧.19、对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x 轴对称 y 相反,y 轴对称,x 前面添负号;原点对称最好记,横纵坐标变符号.20、自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.21、函数图象的移动规律:若把一次函数解析式写成 y?k(x?0)?b,二次函数的解析式写成y?a(x?h)2?k的形式,则可用下面的口诀(此处符号编辑错误)左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.22、一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数 k 与 b,作用之大莫小看,k 是斜率定夹角,b 与 y 轴来相见,k 为正来右上斜,x 增减 y 增减;k 为负来左下展,变化规律正相反;k 的绝对值越大,线离横轴就越远.23、二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由 a 断,c 与 y 轴来相见,b 的符号较特别,符号与 a 相关联;顶点位置先找见,y 轴作为参考线,左同右异中为 0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.24、反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k 为正,图在一、三(象)限,k 为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.25、巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.26、三角函数的增减性:正增余减特殊三角函数值记忆:首先记住 30 度、45度、60 度的正弦值、余弦值的分母都是 2、正切、余切的分母都是 3,分子记口诀“123,321,三九二十七”既可.27、平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.28、梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.29、添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.30、圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.31、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.32、正多边形诀窍歌:份相等分割圆,n 值必须大于三,依次连接各分点,内接正 n 边形在眼前.经过分点做切线,切线相交 n 个点.n 个交点做顶点,外切正 n 边形便出现.正 n 边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果 n 值为偶数,中心对称很方便.正 n 边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形 2n 个整,依此计算便简单.33、函数学习口决:正比例函数是直线,图象一定过原点,k 的正负是关键,决定直线的象限,负 k 经过二四限,x 增大 y 在减,上下平移 k 不变,由引得到一次线,向上加 b 向下减,图象经过三个限,两点决定一条线,选定系数是关键.反比例函数双曲线,待定只需一个点,正 k 落在一三限,x 增大 y 在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y 的顺序可交换.二次函数抛物线,选定需要三个点,a 的正负开口判,c 的大小 y 轴看,△的符号最简便,x 轴上数交点,a、b 同号轴左边,抛物线平移 a 不变,顶点牵着图象转,三种形式可变换,配方法作用最关键.34、实数定义域:实数讲究定义域,四项原则须注意。
初中数学公式记忆口诀
初中数学公式记忆口诀一、整数运算1.两个整数相加、相减,括号内的正负号代表第一个数是正数还是负数。
2.两个整数相乘,同号得正,异号得负。
3.两个整数相除,正数除以正数为正,负数除以负数为正,正数除以负数为负,负数除以正数为负。
4.一个数的相反数是它与0的和为0的数。
5.同号相除,商为正;异号相除,商为负。
6.一正一负两数相加,绝对值相减,结果的符号与绝对值大的数的符号一致。
7.整数的乘方,底数不变,指数相乘。
8.积的倒数等于因数的倒数的积。
二、分数运算1.分数的加法、减法,先通分再运算。
2.分数的乘法,乘以乘以,分子乘以分子,分母乘以分母。
3.分数的除法,除以除以,分子乘以分母的倒数。
4.分数的乘方,底数和指数一起乘起,分数也是整数。
5.分数化简,寻找分子和分母的最大公因数(GCD),分子与最大公因数相除,分母与最大公因数相除。
三、小数运算1.小数的加减法,先对齐小数点,再运算。
2.小数的乘法,先忽略小数点,两数相乘,再在结果中从右往左数出两个数字,小数点移到这两个数字中间。
3.小数的除法,移动除数和被除数小数点位置对齐,然后按整数除法运算。
四、百分数运算1.百分数转换为小数,除以100。
2.小数转换为百分数,乘以100。
3.百分数转换为分数,分子为百分数的值,分母为100。
4.分数转换为百分数,分子乘以100再加上%符号。
五、代数运算1.两个加减式相加,合并同类项,系数相加。
2.两个加减式相减,合并同类项,系数相减。
3.两个加减式相乘,先每一项与另一个式子的每一项相乘,再合并同类项。
4.两个加减式相除,乘以倒数,并合并同类项。
5.计算一元一次方程,将含有未知数的项移到一边,常数项移到另一边,合并同类项,利用反运算计算出未知数的值。
6.计算二元一次方程组,将两个方程相加或相减,消去一个未知数,解出另一个未知数,再回代求解。
7.计算百分数的代数式,将百分数转换为小数,再计算。
六、图形运算1.长方形的周长,等于长和宽的两倍之和。
巧记公式口诀
巧记公式口诀Company number:【0089WT-8898YT-W8CCB-BUUT-202108】初中数学公式记忆口诀一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
【注】“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
《初中数学公式和规律口诀全》
《初中数学公式和规律口诀全》初中数学公式和规律是学习数学的基础,掌握好这些公式和规律,能够在解题过程中更加得心应手。
下面是初中数学公式和规律的全面总结:一、整数的运算规律:1.加法的交换律:a+b=b+a2.加法的结合律:(a+b)+c=a+(b+c)3.减法的运算规律:a-b=a+(-b)4.减法与加法的对照法则:a-b+b=a5.减法的结合律:(a-b)-c=a-(b+c)6.乘法的交换律:a×b=b×a7.乘法的结合律:(a×b)×c=a×(b×c)8.乘法的分配率:a×(b+c)=a×b+a×c9.除法的运算规律:a÷b=a×1/b(b≠0)10.除法与乘法的对照法则:a÷b×b=a(b≠0)二、分数的运算规律:1.分数的乘法规律:a/b×c/d=(a×c)/(b×d)2. 分数的除法规律:a/b ÷ c/d = a/b × d/c = ad/bc (c、d ≠ 0)3. 分数的加法规律:a/b + c/d = (ad + bc)/bd4. 分数的减法规律:a/b - c/d = (ad - bc)/bd三、代数运算法则:1.加法法则:a+0=a2.减法法则:a-a=03.乘法法则:a×1=a4.除法法则:(a×b)/b=a(b≠0)四、乘方公式:1.积的乘方:(a×b)^n=a^n×b^n2.除法的乘方:(a/b)^n=a^n/b^n(b≠0)3.幂的乘方:(a^n)^m=a^(n×m)五、根式的运算公式:1.乘方与开方:(a^m)^(1/n)=a^(m/n)2.分子同根:a^m×a^n=a^(m+n)3.分母同根:a^m/a^n=a^(m-n)4.分子分母同根:(a/b)^m=a^m/b^m(b≠0)5.开方的运算:√a×√b=√(a×b)6.无理数的加法:√a+√b≠√(a+b)六、平行线与三角形:1.平行线的性质:对称的两组锐角相等2.相交线角度关系:同位角、内错角、同旁内角互等3.三角形内角和:三角形内角和等于180°4.直角三角形勾股定理:a^2+b^2=c^25.等腰三角形的性质:两底角相等,两腰相等6.等边三角形的性质:三个内角相等七、圆的运算规律:1.圆周率π的近似值:π≈3.142.圆的周长公式:C=2πr或C=πd3.圆的面积公式:S=πr^2以上是初中数学公式和规律的全面总结,通过反复的练习和应用,可以更深入地理解和掌握这些公式和规律,提高解题的能力。
初中数学知识点快速记忆口诀
初中数学知识点快速记忆口诀一、数的表达形式1.有理数的基本形式,整小数百分比。
2.无理数有根号,无限不循环也不能完全表示为整数除法表达式。
二、整数的运算规律1.加法符号为“+”,相反数就找,a+(-b)时相加。
2.减法变加法,加上相反数,a-b=a+(-b)。
3.乘法法则要掌握,规律很简单不会忘,a*b=b*a。
4.乘法与加法结合律,a*(b+c)=a*b+a*c。
5.除法运算很特殊,除数不为0需牢记,被除数为0商为0,除法运算口诀要谨记。
三、分数的加减运算1.分数加法找相同,通分运算是关键。
2.分数减法转加法,整减分数要注意。
3.分数加减找分母,分子须注意别丢掉。
4.双分数加减移分子,相同分母结合起来。
四、分数的乘除运算1.分数乘法交换律,a*b=b*a。
2.分数乘法不变性,乘以k,除以k逆运算。
3.分数乘法推导式,a*b/c=a*(b/c)=b*(a/c)。
4.分数除法改乘法,除以k变乘以倒数。
五、百分数的运算1.百分数转分数,百分数除以100。
2.百分数转小数,百分号向左移两位。
3.小数转百分数,小数乘以100。
4.分数转百分数,不通分先通分。
5.百分数加减法,先转换为小数再计算。
六、多项式的运算1.多项式加减法,合并同类项。
2.多项式乘法法则,先乘后合并。
3.多项式乘方运算,用分配律来展开。
七、初中方程解法1.2x+a=b,x=(b-a)/22. ax + b = cx + d,x = (d - b) / (a - c)。
3. ax + b = cx,x = -b / (a - c)。
4. (ax + b) / c = d,x = (d - b) * c / a。
八、初中几何知识1.两直线相交一点,一个角三个点。
2.传递性定理,相等可知。
3.同位角、同旁内外错,贴对告诉你。
4.两角平分线相交,两角相等很简单。
5.例子角、可知结论,积相等成比例。
九、初中概率统计1.样本调查要先列,再统计才有根据。
初中数学公式记忆口诀
初中数学公式记忆口诀一、代数基础公式1.同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;不同底数幂相乘,指数相加再把底数放在前面;不同底数幂相除,指数相减再把底数放在前面。
2.a的m次方与a的n次方,指数相加成a的m+n次方;a的m次方与b的m次方,底数相同就是a的m次方。
3.平方的平方是四次方,立方的立方是六次方。
4.分式加减很简单,将分母相同再加减。
5.分式相乘很轻松,将分子分母相乘。
6.分式相除要注意,分子乘以分母倒。
7.平方差公式记住,两平方相减两次方。
8.和差化积很重要,两个数相加相减就可以。
9.看是不是相反数,互为倒数记住。
10.分式的运算要约,最大公约数约到底。
二、方程与不等式1.开平方只留一个符号,方程右边也开放。
2.方程求根普遍法,两边同时加减移项法。
3.方程只有两项,两项系数交换。
4.得到最简分数,最大公约约到底。
5.分式方程思路清,通分消分运算简。
三、平方根和勾股定理1.辅助判断平方根,中间数法选择标准。
2.勾股定理绝不差,两边平方边最长。
四、比例与相似1.比例记住基本要,等比记分数。
2.善用等比的性质,单个全等也行。
3.相似多运利用,定理各较重。
五、线性函数与一次函数1.研究函数首看导,线性的导是定值。
2.函数给的表明式,分形单项的常数项。
3.已知函数求函数,带入关系条件。
六、二次函数与抛物线1.二次函数性态顶,开口纵轴往下。
2.方程转移到左边,零点交接即。
3.最值只看a符号,负号则为正最大值。
4.求顶点坐标别忘,纵坐标直接带入。
七、统计与概率1.概率都有范围,介于0和1之间。
2.抽样必得标准差,离散程度能调和。
3.结果对应模式查,频数代表样本量。
4.排列组合方法清,适应条件做处理。
5.求百分比很简单,对应数字相乘。
八、三角形与平行四边形1.三角形边角关联连,一样面积既是等。
2.正弦定理记弦数,余弦定理记邻边。
3.画图标注数边心,题目求谁看清楚。
4.平行四边形记所有,二等边的角相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合并同类项:说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则:去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。
解方程
已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。
乘法与分解
积化和差是乘法,乘法它是一运算。和差化积叫分解,分解变形非运算。
确定公因式
确定公因式,要分两部走。系数与字母,分别搞清楚。
系数是什么?最大公因数;挑相同字母,指数选最小。
十字相乘法
分解二次三项式,可用十字相乘法。分解二次常数项,叉乘求和凑中项;
若能做到这一点,称为十字相乘法。
单项式除以单项式
数乘字母单项式,前边数字后字母。
单项式的次数
何谓单项式次数,所有字母指数和。
多项式与整式
单项式的代数和,结果叫做多项式。单项式与多项式,统统皆可称整式。
单项式中最高次,多项式的次数值。
同类项
若问何谓同类项,判断标准两相同;字母相同单项式,相同字母指数同。
合并同类项:整式加减法,合并同类项。系数相加减,母指不变样。
方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,
也可直接套公式,因题而异择良方。
正比例函数的鉴别
判断正比例函数,检验当分两步走。一量表示另一量,
一平方又一平方,底积2倍在中路。三正两底和平方,全负和方相反数。
分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。
确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。
有实根可套公式,没有实根要告之。
先去分母再括号,移项别忘要变号。同类各项去合并,系数化1注意了。
同乘除正无防碍,同乘除负也变号。
解一元一次不等式组
大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。
同向取两边,异向取中间。中间无元素,无解便出现。
解一元二次不等式
首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。
减正等于加负,减负等于加正。
有理数的乘法运算符号法则
同号得正异号负,一项为零积是零。
合并同类项
说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。
去、添括号法则
去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
根式与无理式
表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。
判断四式成比例
四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。
比例中项
成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。
平方差公式
两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。
两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。
解比例
外项积等内项积,列出方程并解之。
求比值
由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。
消元也是好办法,殊途同归会变通。
正比例与反比例
商定变量成正比,积定变量成反比。
正比例与反比例
变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。
乘方与正整数指数幂
相同因式去相乘,计算名称叫乘方。乘方结果叫做幂,底是乘数指个数。
同底数幂相乘除:同底数幂相乘除,底数不变指加减。
幂的乘方:幂的乘方特好算,底数不变指数乘。
积的乘方:乘法满足结合律,积的乘方乘方积。
单项式乘单项式
单项式乘单项式,系数的积积系数;同乘字母幂表示,指数和为幂指数;
单一字母去照抄,依次连写积得出。
完全平方公式
二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。
因式分解
一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。
平方差公式“两数和乘两数差,等于两数平方差,积化和差变两项,完全平方不是它。
完全平方公式:二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。
完全平方公式:首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。
解一元一次方程
先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。
被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。
比和比例
两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。
求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。
解一元一次不等式
先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
用常规配方法解一元二次方程
左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。
左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。
用间接配方法解一元二次方程
已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式。
完全平方等常数,间接配方显优势
【注】恒等式
解一元二次方程
求得未知须检验,回代值等才算了。
解一元一次方程
先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。
因式分解与乘法
和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。
因式分解
两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。
解一元一次不等式组
大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。
同向取两边,异向取中间。中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)
军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。
同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。
因式分解
一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)
因式分解
一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。
判断四数成比例
四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。
判断四式成比例
四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。
比例中项
成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。
A正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。
用平方差公式因式分解
异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。
用完ቤተ መጻሕፍቲ ባይዱ平方公式因式分解
两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。
分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)
因式分解
一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解
先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。
解一元一次不等式
先去分母再括号,移项合并同类项。系数化1有讲究,同乘除负要变向。
根式与无理式
表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。
被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。
被开方式有字母,又可称为无理式。
求定义域
求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。
初中代数数与式知识口诀
代数式
字母能够表示数,代数式便自然出。运算符号与括号,联结数字或字母;
所得结果代数式,定义一定要记住。一个数字或字母,代数式中属特殊。
求代数式的值
自从有了代数式,经常求值要算数。定值代替式字母,常规运算值得出。