分数乘法第二课时PPT课件

合集下载

分数乘法第分数乘法二课件ppt

分数乘法第分数乘法二课件ppt

分数乘法的多种算法
03
总结词:简单直接
详细描述:直接将两个分数相乘,第一个分数的分子与第二个分数的分母相乘,第一个分数的分母与第二个分数的分子相乘,得到的结果就是两个分数相乘的结果。
算法一:直接相乘
总结词:通用性强
详细描述:先将两个分数通分,将两个分数的分母变为相同的分母,然后再将两个分数相乘,得到的结果就是两个分数相乘的结果。
02
在电学中,分数的加减法和乘除法可以用来解决一些复杂的电路问题。
热学中分数的应用
03
在热学中,分数的加减法和乘除法可以用来解决一些与热量和温度有关的问题。
在化学中,分数的加减法和乘除法可以用来解决一些化学计量问题。
化学计量中分数的应用
在化学反应中,分数的加减法和乘除法可以用来解决一些化学反应速率问题。
详细描述
总结词
分数乘法和分数加减法具有不同的运算规则,混淆两者的区别是另一个常见的错误。
详细描述
分数乘法是将分子和分母分别相乘,而分数加减法是先将分子和分母分别相加再化简。例如,$\frac{2}{3} + \frac{4}{5}$应该先计算分子和分母的和得到$\frac{14}{15}$,而$\frac{2}{3} \times \frac{4}{5}$应该将分子和分母分别相乘得到$\frac{8}{15}$。如果混淆了两者的运算规则,就会得到错误的结果。
算法二:通分相乘
总结词:快速高效
详细描述:先将两个分数约分,将两个分数化为最简分数,然后再将约分后的分数相乘,得到的结果就是两个分数相乘的结果。
算法三:约分相乘
练习题及解析
04
基础练习题
总结词:巩固基础
详细描述:设计简单分数乘法计算题,考察学生对于分数乘法基础知识的理解和掌握程度。

《分数乘法二》课件

《分数乘法二》课件

VS
详细描述
在进行分数乘法时,为了简化计算,通常 需要先对分子和分母进行约分。约分的关 键是找到分子和分母的最大公约数,然后 同时除以这个公约数。学生常常由于对最 大公约数的寻找不准确或约分不完全,导 致结果不正确。
分数乘法中的化简问题
总结词
化简是分数乘法的另一个重要步骤,但学生 往往在执行这一步时遇到困难。
分数乘法与加法、减法的关系
分数乘法与加法的关系
分数乘法可以理解为将一个分数重复加多次,因此,a/b × c = a/b + a/b + ... (c次)。
分数乘法与减法的关系
通过将减法转换为加法的形式,可以将减法与分数乘法联系起来。例如,a/b a/b × c 可以转换为 a/b + (-a/b) + ... (c次),从而利用分数乘法的性质进行计 算。
乘法的结合律和交换律
总结词
乘法的结合律是指三个数相乘时,顺序不影 响结果;交换律是指两个数相乘时,顺序不 影响结果。
详细描述
乘法的结合律是指三个数相乘时,无论它们 的顺序如何组合,结果都是相同的。例如,
计算$(a times b) times c$和$a times (b times c)$时,结果都是$a times b times c$。乘法的交换律是指两个数相乘时,无论 它们的顺序如何组合,结果都是相同的。例 如,计算$a times b$和$b times a$时,结
详细描述
化简的目的是将分数转化为最简形式。在进 行分数乘法时,学生需要先对分子和分母进 行化简,然后再进行乘法运算。化简的方法 包括找出分子和分母的公因数并约分,以及 将分子和分母分解为质因数并约分。学生常 常由于对化简方法掌握不熟练或执行不准确 ,导致结果不正确。

人教版数学六上《分数乘法》(第二课时)PPT课件

人教版数学六上《分数乘法》(第二课时)PPT课件
分母不变;能约分的要约分。
• 练一练:计算并说出它们的意义
7 2 3
105 4 35
5 4 25
1 12 6
(二)分数乘分数
• 1、意义 • 表示求一个数的几分之几是多少
• 2、法则 • 用分子相乘的积作积的分子,用分母相乘的积作积的分母,能约
分的要约分。
计算
5 3 6
12 45
你做对了吗?
5 3 6
53 6
15 6
5 2
12 45
1 2 45就到这里
•祝你学习进步 !
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/9/15
最新中小学教学课件
16
谢谢欣赏!
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等等,这些 用语往往体现了老师的思路。来自:学习方法网
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
6×3.05 3×0.5 4 ×0.25

人教版六年级上册数学公开课课件第2讲 分数乘法(二)(37页PPT)

人教版六年级上册数学公开课课件第2讲 分数乘法(二)(37页PPT)
答:再输150毫升正好输完这瓶药水的 1 。 2
【解析】 此题可根据求 一个数的几分之几是多少,用乘法来求出这瓶药
水的 1 , 然 后再减去100毫升即可解答。 2
5.简便计算。 20 9 9 17 37 ×29 + 37 ×29
【答案】
20 9 9 17 9 20 9 17 37 ×29 + 37 ×29 = 37 ×29 + 37 ×29
【学习重点】 掌握分数乘加、乘减混合运算的顺序。理解整数乘法运算定律 对于分数乘法同样适用,并能应用这些定律进行一些简便计算。 【学习难点】 熟练掌握运算定律,灵活、准确、合理地进行计算。
2020/6/10
芝麻开门
温故而知新
交换律
结合律
分配律
(a×b)×c=a×(b×c)
a×b=b×a a×b×c=a×c×b
3 5

1 4
(32
3) 5
(1+1) 1 23 5

1 1+1 1 2535
乘法交换律 乘法结合律 乘法分配律
学海寻宝
一、交换律
例1
3 5
×(
1 6
×5)
=53×(5×16 )
运用了

=53
1
×5×
1 6
1
=31×16
=12
一、交换律
例1
3 5
×(
1 6
×5)
=53×(5×16 )
=53
C.11×
7 76
D.76×
7 76
-
7 76
2020/6/10
【答案】B 【解析】 此题可 将77拆分成(76+1)的方法可使运 算简便,注意在实 际运算中“×1”可省略不写。

小学数学人教版六年级上册《第一单元 分数乘法 课时2》课件

小学数学人教版六年级上册《第一单元 分数乘法 课时2》课件
12L
解答
桶是多少升?
整数乘分数与分数乘整 数的计算方法一样
162 × = 6( L )
1 答: 桶是6升。
分析题意
求 桶是多少升? 每桶水的体积×桶数=水的体积
1பைடு நூலகம்L
解答
桶是多少升?
132 × = 3( L ) 1 答: 桶是3升。
一个数乘分数的意义。
6 12 × = 6L
1 3 12 × = 3L
整数乘分数计算方法 1.一个数乘分数表示求这个数的几分之几是多少。求一 个数的几分之几是多少,可以用”一个数×几分之几” 来计算。 2.整数乘分数与分数乘整数的计算完全相同,能约分的 可先约分再乘。
谢谢大家
人教版 数学六年级上
第2课时
一个数乘分数
1桶水有12L。 3桶共多少升?
请你计算一下。
12+12+12=36L 每桶水的体积×桶数=水的体积
12×3=36L
请你思考一下。
例1
桶是多少升? 桶又是多少升?
分析题意
求 桶是多少升?
每桶水的体积×桶数=水的体积
12L
分析题意
求 桶是多少升? ?
二分之一桶水就半桶水
2
1
2× =
=
2
×1 =
比一比,说说你发现了什么?
3× < 3
3× > 3
3 ×1 = 3
1.一个数(0除外)乘一个小于1的数,积小于这个数; 2.一个数(0除外)乘一个大于1的数,积大于这个数; 3.一个数乘1,积等于这个数。
5× > 5 12 × < 5
4× < 3 8× = 6
6 ×1 > 3 4 × 4 > 12

人教版《分数乘法》(完美版)PPT课件1(共8张PPT)

人教版《分数乘法》(完美版)PPT课件1(共8张PPT)

2.要求吃了多少千克,请你列出算式。
3.你是根据什么列出算式的?
(求3kg的 130是多少。)
四、巩固练习
判断大小,寻找规律
3 1 <3 2
3 3 >3 2
31 = 3
一个数(0除外)乘一个小于1的数,积小于这个数;乘
一个大于的数,积大于这个数;乘1,积等于这个数。
1
2
1 4 桶是多少升?
12×
1
4
观察比较上面两个算式表示的意思有什么相同之处?
小结:一个数乘几分之几表示的是求这个数的几分之几是多少。
三、巩固新知Βιβλιοθήκη 一袋面粉重3kg。已经吃了它的
3 10
,吃了多少千克?
3
×
3 10
问题:1.你是怎样理解“已经吃了它的 3 ”这句话的? 10
(把一袋面粉平均分成10份,吃了的占3份。)
你是怎样理解“已经吃了它的 ”这句话的?
4. 1 表示求 1 桶水的体积,就是求12L的( 要求“3桶水共重多少升” 12 × 小结:一个数乘几分之几表示的是求这个数的几分之几是多少。 。 4 4 ( (求3个12L,就是求12L的3倍是多少。
1 4
) )
二、探究新知
2.讨论总结
1
2
桶是多少升?
12 ×
的一半,也就是求12L的 是多少。
二、探究新知
2 1桶水有12L。
1.出示问题
3桶共多少升?
1.你知道了什么?
2.要求“3桶水共重多少升”
怎样列式?
12×3
你是怎么 想的?
(求3个12L,就是求12L的3倍是多少。)
二、探究新知
1 桶是多少升? 2

《分数乘法(二)》分数乘法(第2课时)ppt教材课件

《分数乘法(二)》分数乘法(第2课时)ppt教材课件

请同学们自己做一做。
2.下表记录的是某城市4~7月空气质量达标的情况。 (选自教材P27 T7)
先估一估,哪个月空气质量达标天数最多?再算出各有多
少天。
估计7月空气质量达标天数最多。
4月:30 7 =21(天)
10
5月:31
22 31
=22(天)
6月:30 4 =2(4 天)
5
7月:31
26 31
=26(天)
3.
一场洪灾将村里960m长的公路冲毁了
2,被冲毁的
3
公路长多少米? (选自教材P27 T8)
960 2 =640 (m)
3
答:被冲毁的公路长640m。
4.连一连某种松鼠的体长在20cm到28cm之间,它的尾
3
巴约占体长的 4 ,尾巴最长约有多长?最短约有多 长? (选自教材P27 T9)
为了便于学习和使用,本 文档下载后内容可随意修 改调整及打印,欢迎下载。
知识点 打折的意义及计算方法
(2)一个书包的原价是30元,打九折后的价格是多 少元? (教材P27 T6)
30 9 =27 (元)
10
答:打九折后的价格是27元。
知识提炼
已知原价和打几折,求现价,就用原价乘十 分之几。
小试牛刀
PPT素材:/s ucai/ PPT图表:www.1ppt .co m/tu biao/ PPT教程: /powerpoint/ 个人简历:www.1ppt. co m/jia nli/ 教案下载:www.1ppt. co m/jia oan/ PPT课件:www.1ppt. co m/ ke jian/ 数学课件:www.1ppt.c om/keji an/shuxue/ 美术课件:www.1ppt.c om/keji an/mei shu/ 物理课件:www.1ppt.c om/keji an/wuli / 生物课件:www.1ppt.c om/keji an/sheng wu/ 历史课件:www.1ppt.c om/keji an/lishi /

《分数与分数相乘》分数乘法PPT课件2 (共37张PPT)

《分数与分数相乘》分数乘法PPT课件2 (共37张PPT)

2 2 5、用长方形图表示算式 3 3
5. 计算。
1 1 4 5
1 39 13
7 2 9 3
24 7 35 8
列式:(口答) 3 8个 相加是多少? 4
3 1 的 是多少? 7 5
3 8 的 是多少? 4 9
应用题: 2 一堆煤80吨,用去了 5 , 用去多少吨?
分数和分数相乘的计算方法适用 分数乘分数的计算方法同样适用于分数乘 于分数和整数相乘吗?为什么? 整数。
练一练
4× 1 = 1 5 4 5
1
1
9× 5= 3 4 10 6
2
3
1
2
3× 2 3 = 5 20 8
4
1
2 2 5 × 15 = 3
3
1
练习
1 ⒈ 一台拖拉机每小时耕地 2 公顷, 1 小时耕地多少公顷? 2 小时呢? 3 3 先在图中表示出来,再列式计算。
口算:
1 ×4 5 4 ×4 25 5 ×8 32 1 1 + 4 5 2 6× 5 3 7- 4
3 12× 4
4 ×0 5
说出下列算式所表示的意义 1 3× 4
4 ×9 5
1 2 1 2
的 ×
1 3
1 3
=
1 6
1 4 1 4
的 ×
1 2 1 2
=
1 8
1 3
×
1 4
=
(1 ) (12 )
1. 1 ( 求 的 1 是多少 3 3 ( 求 52 的 1 是多少 6
1 52 6 表示的意义是
1 1 3 3 表示
)。
)。
2. 看图写算式。
2 3. 一根木棒长3米, 根木棒长 5 多少米?

浙教版小学数学五年级下册11《分数乘法(二)》教学ppt课件2

浙教版小学数学五年级下册11《分数乘法(二)》教学ppt课件2
分数乘法(二)
分数和整数相乘,用分数:3× 1 = ? 44
用一张长方形的纸折一折, 想一想,再算一算。
竖着对折2次
涂出它的
3× 1
3 4

横着对折2次 涂出斜线部分的14
3× 1= 3
4 4 4× 4 16
通过上述例子,说一说,你认为两个分 数相乘的计算方法是什么?
是把1公顷平均分成2×4
份,取其中的1份。
1 2
×
1

1
×1=1×1
4 2×4 2×4
1 =8(公顷)
(2)这台收割机 3 小时收割小麦多少公顷?
5
1 2
公顷的
3 5
求 1 公顷的 3 ,就
2
是把
1 2
5
公顷平均分
1公顷 成5份,也就是把1公
2
顷平均分成2×5份,
取其中的3份。
1 ×3 = 1 ×3 = 1×3 = 3(公顷)
2 5 2×5
2×5 10
分数乘分数,用分子相乘的积作 分子,分母相乘的积作分母。
例3
(1)5和 倒数是(
1 5
互为倒数。5的倒数是(
5 )。
1 5
),15

(2)72 和 倒数是(
277互)为。倒数。72
的倒数是(
2 7
),27

2
求一个数(0除外)的倒数,只要把这个数的分 子和分母调换位置。
写出下列各数的倒数。
1
3
淘气只吃了其中的2 ,淘气吃了蛋糕的几分之几?
1× 1× 1=1 326
1
答:淘气吃了蛋糕的 。
6
2.一台收割机每小时收割小麦 1 公顷。 2

分数乘法分数乘法二课件ppt

分数乘法分数乘法二课件ppt

分数乘法的结合律
总结词
分数乘法的结合律是指,当三个分数相乘时,不论它 们的分子和分母如何组合,其乘积不变。
详细描述
设有三个分数A、B和C,其分子分别为a、b和c,分 母分别为d、e和f。根据分数乘法的定义,A乘以B乘 以C等于(a/d)乘以(b/e)乘以(c/f)。不论我们将这三个 分数的分子和分母如何组合,得到的三个新分数的乘 积与原来的A、B、C的乘积是相等的,即(a/d)乘以 (b/e)乘以(c/f)等于(a/d)乘以(c/f)乘以(b/e)。
04
分数乘法的应用
分数乘法在日常生活中的应用
食品分配
在分蛋糕或糖果等食物时,常常需要使用分数来表示每一份的大小。此时,可以通过分数 乘法计算每一份的准确大小。
测量
在测量长度、面积或体积时,常常需要使用分数来表示测量结果。例如,一个长度为1/3 米的路段,可以通过分数乘法计算其具体长度。
购物
在购买商品时,常常需要使用分数来计算折扣或价格。例如,一个原价为10元的商品,打 8折后价格为8元,可以通过分数乘法计算折扣后价格。
分数乘法分数乘法二课件 ppt
xx年xx月xx日
目录
• 分数乘法概述 • 分数乘法的基本性质 • 分数乘法的计算方法 • 分数乘法的应用 • 分数乘法的扩展知识
01
分数乘法概述
分数乘法的定义
分数乘法的定义
分数乘法是指将一个数与一个 分数相乘,具体地说,就是将 分子与分母分别相乘,得到一
个新的分数。
分数乘法在工程领域中的应用
机械制图
在机械制图领域中,常常需要使用分数来表示零件的尺寸。 例如,一个直径为1/2米的轴,可以通过分数乘法计算其具体 直径。
建筑学
在建筑领域中,常常需要使用分数来表示建筑物的尺寸或比 例。例如,一个高度为2/3米的窗户,可以通过分数乘法计算 其具体高度。

五年级下册数学课件-2.11 分数乘法(二)∣ 浙教版 (共9张PPT)

五年级下册数学课件-2.11 分数乘法(二)∣ 浙教版 (共9张PPT)

3和8 83
5和4 45
7 和 10 10 7
分子、分母的位置互换。
情境导入
5的倒数是多少?1的倒数呢?0有倒数吗?
5= 5 1
5的倒数是 1 。 5
1的倒数是1。
0不能作分母,所以0没有倒数。
巩固练习
1.写出下面各数的倒数。
7 12
1 3
9 4
8
13 2
12 7
3
4 9
பைடு நூலகம்
12 8 13
巩固练习
2.下面长方形的面积都是1,填一填。
(3 ) 1 3
9 10
(10 ) 9
回顾整理
今天你收获了什么?
5× 4 =1 45
7 × 10 =1 10 7
乘积是1的两个数互为倒数。
情境导入
你能找出剩余的数的倒数吗?
5
3
3 5 3 7 4 2 10 8
8 4 5 10 5 3 7 3
3
5
2
3 是倒数。
5 和 3 互为倒数。 3 是 5 的倒数。
35
53
情境导入
观察互为倒数的两个数,它们的分子和分母的
位置发生了什么变化?
浙教版5下第2单元
2.11 分数乘法(二) [2]
情境导入 下面几个分数中,哪两个分数的乘积是1呢?
3 5 3 7 4 2 10 8 8 4 5 10 5 3 7 3
3× 8 =1 83
情境导入 下面几个分数中,哪两个分数的乘积是1?
3 5 3 7 4 2 10 8 8 4 5 10 5 3 7 3

《分数乘法》PPT课件2 (共22张PPT)

《分数乘法》PPT课件2 (共22张PPT)

一面墙的 1
5
分数乘分数:
11 1 1 1 2 5 10 2 5 1 3 1 3 3 2 5 10 2 5
计算:
分数乘分数, 应该分子乘分 子,分母乘分 母。
5 2 7 3
8 2 1 9 7
蜂鸟是目前所发现的世界 上最小的鸟,也是唯一能 倒飞的鸟。蜂鸟每分钟可 2 3 飞行 10 km, 3 分钟飞行 多少千米?
5 1 A: 6 4 5 1 B: 6 4 5 C: 4 1 6
1 方形边长的 5
小正方形的边长相当于大正 ,那么小正方
形的面积相当于大正方形的面
选 择 题
积的( C )。
1 A: 5
1 B: 10
1 C: 25
3 一块平行四边形底边长上 5 米, 5 3 高是底的 ,它的面积是多少平方 4
28 4 21 9 3 75 3 25 4 4 12 26 1 50 13
是多少?
1 144的 是多少? 12
我每小时粉刷 1 这面墙的 5 。
1 小时粉刷这面墙的几分之几? 4
1 5
一面墙的 1
5
我每小时粉刷 1 这面墙的 5 。
灵活应用
求一个数的几分之几 是多少,用乘法计算
米?
列式计算:
1 2 (1) 吨的 是多少? 4 3 3 3 (2) 米的 是多少? 8 4 3 5 (3) 千克的 是多少? 10 6 5 3 (4) 公顷的 是多少? 12 5
谢 谢
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2024版分数乘法ppt课件小学数学PPT课件

2024版分数乘法ppt课件小学数学PPT课件
杂的数学问题。
在数学中的应用
分数乘法在数学中有着广 泛的应用,如在几何、代 数、概率等领域中都有着
重要的作用。
05
常见问题解答与误区纠正
学生常见错误类型
直接相乘
学生可能直接将两个分数的分子和分母分 别相乘,忽略了分数乘法的规则。
忽略约分
在得出结果后,学生可能会忘记将结果进 行约分至最简分数。
混淆运算顺序
示例:$frac{a}{b} times frac{c}{d} = frac{a times c}{b times d}$
注意点
约分后相乘法
示例:$frac{6}{8} times frac{10}{12} = frac{3}{4} times frac{5}{6} = frac{3 times 5}{4 times 6}$
配料比例调整
根据不同口味或需求调整配料比例,例如原食谱中糖和盐的比例为2:1,若需要减少糖分增加盐分,修或农业种植等场景中,需要计算面积时可以用到分数乘法,例如一个房间的长和 宽分别为3米和4米,则房间面积计算为3 × 4 = 12平方米。若另一个房间面积是第一
示例
$frac{11}{4} = 2frac{3}{4}$,$frac{15}{3} = 5$
特殊情况处理
注意点
在处理特殊情况时,要保持清晰的思路和 步骤。
确保每一步的计算都是正确的,避免因为 粗心而导致的错误。
03
分数乘法在生活中的应用
购物折扣计算
商品打折
一件原价为100元的商品,打9折后的价格计算为100 × (9/10) = 90元。
06
课堂互动环节
小组讨论:分享学习心得
小组讨论的目的
鼓励学生互相交流学 习分数乘法的心得和 体会,共同提高学习 效果。

1.2《分数乘法:分数乘分数》(第二课时)(教学课件)六年级数学上册北京版

1.2《分数乘法:分数乘分数》(第二课时)(教学课件)六年级数学上册北京版
2
探索新知
工作总量=工作效率×工作时间
方法: 用乘法计算
1 1
×
5 2
分数乘分数怎么求呢?
探索新知
探究分数乘分数的计算方法:
画图帮助分析
1 1
×
5 2
探索新知
1 1
1
求 的 是多少,就是把 平均分成2份,求
5 2
5
这样的1份;也就是把单位“1”平均分
成(5×2)份,求这样的1份。
探索新知
解决问题:
北京版·第一单元
分数乘法
第二课时分数乘分数
小学数学·六年级(上)
01
学习目标
02
03
理解“求一个分数的几分之几是多少”的
含义。
掌握“求一个分数的几分之几是多少”的
方法。
掌握正确判断单位“1”的方法。
重点 难点
重 点


理解分数乘分数的意义,掌握分数乘分数的计算方
法。
能解决简单的分数乘分数的实际问题,获得数学

)×
3
分数和分数相乘的计算方法适用
于分数和整数相乘吗?为什么?
达标练习
试一试
分数乘法也可以像下面这样计算。
1
1×2 =1
4 3
6
2
2 5 10
4× =
6
3
3
达标练习
练一练
1
1
4× 1
=
5
4
5
1
1
3× 2
3
=
5
8
20
4
3
1
2
2
3
9× 5
=
4
10 6
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引入情境,探究新知
例3
李伯伯家有一块 1 公顷的地。 2
种土豆的面积占这块地的 1 , 种玉米的面积占 3 。 5
5
(1)种土豆的面积是多少公顷?(2)种玉米的面积是多少公顷? 解决问题:(1)种土豆的面积是多少公顷?
1. 你知道了什么? 2. 你是怎样理解“种土豆的面积占这块地的 1 ”这句话的意思的?
1 2
×
1 ×3
2
5
3 的意思。
5
表示)
1
3
2 公顷的 5 是?公顷
-
3
引入情境,探究新知
解决问题:(2)种玉米的面积是多少公顷?
4. 怎样计算呢?请你写出计算过程。
预设:
1 2
×
3 5

1×3 2×5

3 10
(公顷)
观察1:上面两个问题它们都是求什么呢? (求一个数的几分之几是多少。)
观察2:上面两个算式的计算过程有什么相同之处?
(分子相乘的积做分子,分母相乘的积做分母。)
-
4
巩固练习,提升认识
只列式,不计算。
(1)
3 5
1
kg的 2
是多少千克?
7
4
(2) 12 kg的 7 是多少千克?
3
1
5× 2
7
4
12 × 7
-
5
第一章 · 第三节
分数乘法的简便计算
-
6
(一)出示信息,明确问题
例4:无脊椎动物中游泳最快的是乌贼, 它每分钟可游 9 km。
方法2和方法3的 方法你更喜欢哪个?
分数乘分数,用分子相乘的积作分子, 用分母相乘的积作分母。
为了计算简便,可以先约分再乘。
-
10
巩固练习,提升认识
1. 计算下面各题
4
1
7×4

1 7
8 9
3
× 10 =
4 15

3= 10
9 5
-
11
计算下面各题。
2 9
×
3 =
5
2 15
6 7
7
×
= 9
2 3
10
(1)李叔叔每分钟游的距离是乌贼的 4 。李叔叔每分钟游多少千米?
45
(2)乌贼30分钟可以游多少千米?
解决问题: (1)李叔叔每分钟游多少千米?
1. 你知道了什么?
4
2. 你是怎样理解“李叔叔的游泳速度是乌贼的
”这句话的?
45
(把乌贼的速度平均分成45份,李叔叔的游泳速度有这样的4份。)
-
7
(二)解决问题,提炼方法
5 (把这块地平均分成5份,种土豆的面积占1份。)
-
1
(二)解决问题,提炼方法
3. 怎样列式呢?你是怎样想到的?
1
(求 2
公顷的 1
5
是多少,可以用
1 2×
1 5
1
4. 请你用一张纸动手折一折、画一画,用阴影表示出 2
1 公顷 2
1 公顷的 1
2
5
表示。)
1
× 5 的意思。
?公顷
5. 怎样计算呢?请你写出计算过程。
4 =
9×4
10
45
10×45
2

36 =
450
2 25
(km)
25
12
9 10
×
4 =
9×4
45
10×45

2 25
(km)
55
9 ×
10
1
4 =
9
×
45
10
5
2
4
2
45 = 25 (km)
5
比较三种约分的过程有什么不同,你喜欢哪个?说说你的想法。
-
9
(二)解决问题,提炼方法
解决问题:(2)乌贼30分钟可以游多少千米?
9
5
3
20 × 21 = 38
6 5
×
5 3 =2
说说你是怎样想的。
5 8
4
×5

1 2
3
11 ×
1 =
2
3 22
-
12
布置作业
第6页练习一, 第4题、第5题、第6题。
-
13
例4:无脊椎动物中游泳最快的是乌贼, 它每分钟可游
9 10
km。
3. 求李叔叔每分钟游多少千米怎4 是多少,列式: 9
10
45
10

4. 怎样计算呢?请你试着做一做。
×4
45
-
8
(二)解决问题,提炼方法
预设1: 预设2: 预设3:
9 ×
1 2×
1
1×1
5 = 2×5
1 = 10 (公顷)
-
2
引入情境,探究新知
解决问题:(2)种玉米的面积是多少公顷?
1. 你是怎样理解“种玉米的面积占
3 5
”这句话?
(把这块地 平均分成5份,种玉米的面积占3份。)
2. 怎样列式呢?。 (求 1 公顷的 3 是多少,可以用
2
5
3. 请你用一张纸动手折一折、画一画,用阴影表示出
9
1. 要求乌贼30分钟可以游多少千米,怎样列式?(10 ×30)
2. 请你独立计算。
预设1:
9
10 ×30=
9×30 10
= 270 10
这个结果是不是最简分数?
27
预设2:
9
10 ×30=
9×30 10
= 270 10
=27
预设3:
1
9
9
3
10 ×30= 10 ×30 =27
1
你觉得分数乘法该怎样计算呢?
相关文档
最新文档