传热学实验
传热学实验报告
传热学实验报告传热学实验报告摘要:本实验通过研究传热学的基本原理和实验方法,探究了不同材料的导热性能和热传导规律。
通过实验数据的分析和处理,得出了一系列结论,对于进一步研究传热学提供了重要的参考。
引言:传热学作为热力学的一个重要分支,研究了热能在物质之间传递的规律和过程。
在工程领域中,传热学的应用非常广泛,例如热交换器、散热器等设备的设计和优化都需要依靠传热学的理论和实验研究。
本实验旨在通过实验手段,深入了解传热学的基本原理和实验方法,并通过实验数据的分析和处理,得出一些有价值的结论。
实验方法:1. 实验仪器和材料的准备本实验所需的仪器包括导热仪、温度计等,实验材料包括不同导热性能的物体,如金属、塑料等。
2. 实验步骤(1) 将不同材料的样品放置在导热仪的传热面上,并确保与传热面接触良好。
(2) 打开导热仪,记录下初始温度。
(3) 记录下不同时间间隔内的温度变化,并计算出相应的传热速率。
(4) 将实验数据整理并进行分析。
实验结果与讨论:通过实验数据的分析,我们得出了以下几个结论:1. 不同材料的导热性能存在明显差异。
在实验中,我们发现金属材料的导热性能要远远高于塑料等非金属材料。
这是因为金属材料中的自由电子能够在材料内部快速传递热能,而非金属材料中的分子结构则限制了热能的传导速度。
2. 传热速率与温度差成正比。
根据实验数据的分析,我们发现传热速率与传热面和环境之间的温度差成正比。
这是因为温度差越大,热能的传递速度越快。
3. 传热速率与传热面积成正比。
我们还观察到传热速率与传热面积成正比的规律。
这是因为传热面积越大,热能的传递面积也就越大,传热速率也就越快。
结论:通过本次实验,我们深入了解了传热学的基本原理和实验方法。
通过实验数据的分析和处理,我们得出了一系列结论,对于进一步研究传热学提供了重要的参考。
在实际应用中,我们应根据不同的工程需求,选择合适的材料和设计合理的传热面积,以提高传热效率和节约能源。
《传热学》实验指导书
《传热学》实验指导书建筑环境与设备工程教研室实验一 强迫对流换热实验一、实验目的1、了解热工实验的基本方法和特点;2、学会翅片管束管外放热和阻力的实验研究方法;3、巩固和运用传热学课堂讲授的基本概念和基本知识;4、培养学生独立进行科研实验的能力。
二、实验原理1、翅片管是换热器中常用的一种传热元件,由于扩展了管外传热面积,故可使光管的传热热阻大大下降,特别适用于气体侧换热的场合。
2、空气(气体)横向流过翅片管束时的对流换热系数除了与空气流速及物性有关以外,还与翅片管束的一系列几何因素有关,其无因次函数关系可表示如下:N u =f(R e 、P r 、、、、、、olo t o o o D P D P D B D D H /δn) (1) 式中:N u =γD h ∙为努谢尔特数;R e =γm o u D ∙=ηmo G D ∙ 为雷诺数;P r =h ν=λμ∙C 为普朗特数; H 、δ、B 分别为翅片高度、厚度、和翅片间距;P t 、P l 为翅片管的横向管间距和纵向管间距;n 为流动方向的管排数; D o 为光管外径,u m 、G m 为最窄流通截面处的空气流速(m/s )和质量流量 (kg/m 2s ), 且G m =u m •ρ。
λ、ρ、μ、γ、α为气体的特性值。
此外,换热系数还与管束的排列方式有关,有两种排列方式,顺排和叉排,由于在叉排管束中流体的紊流度较大,故其管外换热系数会高于顺流的情况。
对于特定的翅片管束,其几何因素都是固定不变的,这时,式(1)可简化为:N u =f (R e 、P r ) (2)对于空气,P r 数可看作常数,故N u =f (R e ) (3)式(3)可表示成指数方程的形式N u =CR e n (4)式中,C 、n 为实验关联式的系数和指数。
这一形式的公式只适用于特定几何条件下的管束,为了在实验公式中能反映翅片管和翅片管束的几何变量的影响,需要分别改变几何参数进行实验并对实验数据进行综合整理。
传热实验(实验报告)
实验五 传热实验一、 实验目的1. 了解换热器的结构及用途。
2. 学习换热器的操作方法。
3. 了解传热系数的测定方法。
4. 测定所给换热器的传热系数K 。
5. 学习应用传热学的概念和原理去分析和强化传热过程,并实验之。
二、 实验原理根据传热方程m t KA Q ∆=,只要测得传热速度Q 、有关各温度和传热面积,即可算出传热系数K 。
在该实验中,利用加热空气和自来水通过列管式换热器来测定K ,只要测出空气的进出口温度、自来水的进出口温度以及水和空气的流量即可。
在工作过程中,如不考虑热量损失,则加热空气放出的热量Q 1与自来水得到热量Q 2应相等,但实际上因热量损失的存在,此两热量不等,实验中以Q 2为准。
三、 实验流程及设备四、 实验步骤及操作要领1.开启冷水进口阀、气源开关,并将空气流量调至合适位置,然后开启空气加热电源开关2.当空气进口温度达到某值(加120℃)并稳定后,改变空气流量,测定不同换热条件下的传热系数;3.试验结束后,先关闭电加热器开关。
待空气进口温度接近室温后,关闭空气和冷水的流量阀,最后关闭气源开关;五、 实验数据1.有关常数换热面积:0.4m 22.实验数据记录表以序号1为例:查相关数据可知:18.8℃水的密度348.998m kg=ρ20℃水的比热容()C kg kJ C p 。
⋅=185.4空气流量:s m Q 3004.0360016==气 水流量:s kg Q W 022.03600/48.99810803-=⨯⨯=⋅=ρ水水 水的算数平均温度:C t t t 。
出入平均3.212246.182=+=+=传热速率:s J Q t t W C p 437.5016.18-24022.0418512=⨯⨯=-⋅=)()(水()()()()℃查图得:对数平均温度:逆△△。
△022.3699.0386.3699.09.146.18245.291.110-06.06.181.1106.1824386.366.185.29241.110ln 6.185.29241.110ln 122111122121=⨯====--=-==--=--==-----=∆∆∆-∆=∆∆t t t t T T tT t t t t t t m t m t m R P C t ϕϕ 传热系数:K m W t S Q K m 2801.34022.364.0437.501=⨯=∆⋅=六、 实验结果及讨论1.求出换热器在不同操作条件下的传热系数。
传热实验报告范文
一、实验目的1. 了解传热的基本原理和传热过程。
2. 熟悉传热实验装置的结构和操作方法。
3. 通过实验,测定传热系数,分析影响传热效果的因素。
4. 培养实验操作技能和数据分析能力。
二、实验原理传热是指热量从高温物体传递到低温物体的过程。
传热方式主要有三种:导热、对流和辐射。
本实验主要研究导热和对流传热。
1. 导热:热量通过固体物质从高温部分传递到低温部分的过程。
其基本原理为热传导定律,即热量在单位时间内通过单位面积,沿着温度梯度方向传递的速率与温度梯度的乘积成正比。
2. 对流:热量通过流体(气体或液体)的流动而传递的过程。
其基本原理为牛顿冷却定律,即流体与固体表面之间的热交换速率与流体与固体表面的温度差成正比。
三、实验装置与仪器1. 实验装置:传热实验装置包括加热器、温度计、流量计、实验管等。
2. 实验仪器:温度计、流量计、秒表、游标卡尺、电子天平等。
四、实验步骤1. 准备工作:检查实验装置是否完好,调节加热器功率,预热实验管。
2. 实验数据记录:1. 测量实验管的长度、直径和厚度。
2. 测量实验管两端的温度,计算温度差。
3. 调节流量计,控制流体流量。
4. 记录实验数据,包括时间、温度、流量等。
3. 实验结束:关闭加热器,停止实验。
五、实验结果与分析1. 实验数据:| 时间(min) | 流体温度(℃) | 温度差(℃) | 流量(L/min) || :----------: | :------------: | :----------: | :------------: || 0 | 20.0 | 10.0 | 1.0 || 5 | 30.0 | 20.0 | 1.0 || 10 | 40.0 | 30.0 | 1.0 || 15 | 50.0 | 40.0 | 1.0 |2. 结果分析:根据实验数据,绘制温度-时间曲线。
可以看出,随着时间推移,流体温度逐渐升高,温度差也逐渐增大。
1. 影响传热效果的因素:1. 流体流量:流体流量越大,传热效果越好。
传热实验实验报告
传热实验实验报告一、实验目的。
本实验旨在通过传热实验,探究不同材料的传热特性,加深对传热机理的理解,为工程实践提供理论支持。
二、实验原理。
传热是物体内部或不同物体之间热量传递的过程,包括传导、对流和辐射三种方式。
在本实验中,我们主要关注传导传热的特性。
传导是通过物质内部的分子振动传递热量,其速度取决于物质的导热系数和温度梯度。
传热实验通常通过测量材料的导热系数来研究传热性能。
三、实验仪器与材料。
1. 导热实验仪。
2. 不同材料的样品(如金属、塑料、绝缘材料等)。
3. 温度计。
4. 数据记录仪。
四、实验步骤。
1. 将实验仪器连接好并预热至稳定状态。
2. 准备不同材料的样品,并测量其初始温度。
3. 将样品放置在传热实验仪上,记录下不同时间间隔下的温度变化。
4. 根据实验数据,计算不同材料的导热系数。
五、实验数据与分析。
通过实验记录和数据处理,我们得到了不同材料的导热系数。
在实验过程中,我们发现金属类材料的导热系数较高,而绝缘材料的导热系数较低。
这与材料的分子结构和热传导机理密切相关。
通过对实验数据的分析,我们得出了不同材料传热特性的定性和定量结论。
六、实验结论。
通过本次传热实验,我们深入了解了不同材料的传热特性,掌握了传热实验的基本方法和数据处理技巧。
同时,我们也加深了对传热机理的理解,为今后的工程实践提供了有益的参考。
七、实验总结。
本次传热实验取得了良好的实验结果,但也存在一些不足之处,例如实验过程中的温度测量误差、样品准备不均匀等。
在今后的实验中,我们将进一步改进实验方法,提高实验数据的准确性和可靠性。
八、参考文献。
1. 李华,张三. 传热学[M]. 北京,高等教育出版社,2008.2. 王五,赵六. 传热实验指导[M]. 北京,科学出版社,2015.以上就是本次传热实验的实验报告内容,谢谢阅读。
综合传热实验报告
综合传热实验报告传热学实验报告一、实验目的1、通过实验熟悉热传导实验;2、实验运用载入形式的均匀热流,考察传热过程中的热传导系数的数值;3、掌握恒定温度差的传热过程,并分析热传导系数的影响。
二、实验原理当一块物体介质之间存在温度差的时候,它们之间会发生热传递,应用热传形式的方式研究它们之间的热传导系数。
热传导的形式有很多种,但是本实验中采用的是载入形式的均匀热流。
在此形式的热传方式中,介质之间的温度差也是恒定的,传热过程中的物体质量和热容量也被忽略,只考虑物体介质之间的热流,这样就可以简化传热过程的模型,从而得出它们之间的热传导系数。
三、实验设备实验中使用的设备主要是:加热片、铜片、温度计、加热源、电阻表等。
四、实验步骤1、将加热片和铜片装入实验装置中,并将它们的温度设置为相同的温度。
2、将加热源的电流调到一个基本值,并从电阻表中测量出来的电阻值。
3、记录下实验装置中两片间的温度差,然后增加加热源的电流,再次记录下实验装置中两片间的温度差,如此循环,直到记录下所有的温度差数据。
4、根据数据计算出两片间的热传导系数,并将计算结果与理论值进行比较,分析出热传导系数的变化过程。
五、实验数据加热电流:0.1A~3A温差(℃):0.15~3.45六、实验结果根据所得的实验数据计算,两片之间的热传导系数为:K=0.064 W/(m·K)七、实验讨论比较理论计算出来的热传导系数(K=0.066 W/(m·K)),可以看到实验得出的热传导系数与理论值有一定的差异,这可能因为实验时的不确定性所致。
八、结论根据本次实验,可以得出两片之间的热传导系数为K=0.064W/(m·K),与理论值有一定的差异,可能是实验不确定性所致,可以通过进一步的实验,对热传导系数进行准确的测定。
传热学实验指导书---实验一(本部)
实验一 非稳态法测量材料的导热性能实验一、实验目的1. 快速测量绝热材料的导热系数和比热。
2. 掌握使用热电偶测量温差的方法。
二、实验原理X图1 第二类边界条件无限大平板导热的物理模型本实验是根据第二类边界条件,无限大平板的导热问题来设计的。
设平板厚度为2δ。
初始温度为t 0,平板两面受恒定的热流密度q c 均匀加热(见图1)。
求任何瞬间沿平板厚度方向的温度分布t(x,τ)。
导热微分方程式、初始条件和第二类边界条件如下:22),(),(x x t a x t ∂∂=∂∂τττ初始条件 0)0,(t x t =边界条件x=0,0),0(=∂∂xt τX=δ,0),(=+∂∂λτδcq x t 方程的解为:⎥⎦⎤⎢⎣⎡--+--=-∑∞=+1221220)exp(cos(2)1(63),(n o n n n n c F x x a q t x t μδμμδδδδλττq c式中: t —温度; τ—时间; t 0 — 初始温度;ɑ — 平板的导温系数; μn — n π n=1,2,3,……2δτa Fo =— 傅立叶准则; q c— 沿方向从端面向平板加热的恒热流密度;随着时间t 的延长,Fo 数变大,上式中级数和项愈小。
当Fo>0.5时,级数和项变得很小,可以忽略,上式变成:)612(),(220-+-=-δτδτλδτa a q t x t c 由此可见,当Fo>0.5后,平板各处温度和时间成线性关系,温度随时间变化的速率是常数,并且到处相同。
这种状态称为准稳态。
在准稳态时,平板中心面x=0处的温度为:)61(),0(20-=-δτλδτa q t t c 平板加热面X=δ处为:)31(),(20+-=-δτλδτδa q t t c 此两面的温差为:λδττδcq t t t 21),0(),(=-=∆如已知q c 和δ,再测出t ∆,就可以由上式求出导热系数:tq c∆=2δλ式中,λ—平板的导热系数,oW /(m C)⋅ cq —沿x 方向给平板加热的恒定热流密度,2W /mδ—平板的厚度,mt ∆—平板中心面x=0处和平板加热面x=δ处两面的温差,o C又,根据热平衡原理,在准稳态有下列关系:式中,F —平板的横截面积ρ—试件材料的密度C —试件材料的比热—准稳态时的温升速率由上式可求得比热为:实验时, 以试件中心处为准。
传热学实验报告
传热学实验报告班级:安全工程(单)0901班姓名:***学号:01第一节稳态平板法测定绝热材料导热系数实验一、实验目的1.巩固和深化稳定导热过程的基本理论,学习用平板法测定绝热材料导热系数的试验方法和技能。
2.测定试验材料的导热系数。
3.确定试验材料导热系数与温度的关系。
二、实验原理导热系数是表征材料导热能力的物理量。
对于不同的材料,导热系数是各不相同的,对同一材料,导热系数还会随着温度、压力、湿度、物质的结构和重度等因素而变异。
各种材料的导热系数都用试验方法来测定,如果要分别考虑不同因素的影响,就需要针对各种因素加以试验,往往不能只在一种实验设备上进行。
稳态平板法是一种应用一维稳态导热过程的基本原理来测定材料导热系数的方法,可以用来进行导热系数的测定试验,测定材料的导热系数及其和温度的关系。
实验设备是根据在一维稳态情况下通过平板的到热量Q 和平板两面的温差t ∆成正比,和平板的厚度h 成反比,以及和导热系数λ成反比的关系来设计的。
我们知道,通过薄壁平板(壁厚小于十分之一壁长和壁宽)的稳定导热量为:S t hQ *∆*=λ(1)其中:Q 为传到平板的热量,w ;λ为导热系数,w/m ℃;h 为平板厚度,m ; t ∆为平板两面温差,℃; S 为平板表面积;m 2;测试时,如果将平板两面温差t ∆、平板厚度h 、垂直热流力向的导热面积S 和通过平板的热流量Q 测定后,就可以根据下式得出导热系数:St hQ *∆*=λ (2) 其中:d u T -T t =∆,T u 为平板上测温度,T d 为平板下侧温度,℃;这里,公式2所得出的导热系数是在当时的平均温度下材料的导热系数值,此平均温度为:()d u T T 21t +=(3) 在不同的温度和温差条件下测出相应的λ值,然后按λ值标在λ-t 坐标图内,就可以得出()t f =λ的关系曲线。
三、实验装置及测试仪器稳态平板法测定绝热材料的导热系数的电器连接图和实验装置如图1和图2所示。
传热学实验
平板法测导热系数实验 (一)一、 实验目的(1) 理解一维稳态导热概念(2) 用平板法测定保温材料的导热系数 (3) 确定导热系数随温度变化的关系 二、 实验原理对于一维稳态导热傅立叶定律的数学表达式为()c k T T A -=Φδλλ:导热系数; A :平板垂直于导热方向的导热面积δ:平板厚度; k T 、c T :平板两侧的温度基于上述原理,该实验测定保温材料的导热系数。
即()c k T T A -⋅Φ=δλ在实验中需要测得:试验材料的厚度δ,试验材料的面积A , 通 过该面积的热流量Φ,试验材料的两侧表面的温度k T 、c T 。
三、 实验装置及测量仪表实验本体如下图所示:被试验材料做成两块方形薄壁平板试件1,面积为270mm X 270mm , 厚度为20mm 。
其中板中心部位面积为200mm X 200mm 的地方为有效测试面积,由主加热器2加热、四周剩下的面积由辅助加热器3加热。
辅助加热器在自动控制器件的作用下,将四周面积的温度调到与有效试验面积[200mm X 200mm]的温度保持一致。
电加热器2、3产生的热量通过试材1,被冷却水4带走。
上下两块试材的材质、尺寸大小相同。
在设备外围设有保温性能较好的材料5,以确保热量只朝上下两方向传递。
电加热器的功率P可由仪表读出,试件两侧面的温度T、2T、3T、1T(如图a所示)由测温元件测出。
温度测点5T、6T布置在试件的内4侧表面,起到监控辅助加热器的作用。
即它们的值应该与T、2T保持1一致。
当试件上下的传热条件基本一致时,通过每块试材试验区的热流量将是电功率的一半,即2。
=P/UI=1-四、实验步骤1、将试材烘干。
2、记录试材的厚度,两块试材的平均厚度之差应小于1mm,并仔细的将试材装入实验装置内,将热电偶点紧贴在试材的两表面上。
3、按图接线,开启水泵,接通冷却水,合上电源加热,经一段时间后测量温度值,以后每隔十分钟测量数据一次,和前面的数据进行比较,直到观察到系统达到热稳定状态为止。
传热综合实验报告
传热综合实验报告传热综合实验报告引言:传热是物质内部或不同物质之间热能传递的过程。
在工程领域中,传热的研究对于提高能源利用效率、改善工艺流程等方面具有重要意义。
本实验旨在通过实际操作,探究传热的基本原理和实际应用。
实验目的:1. 了解传热的基本概念和原理;2. 掌握传热实验的基本操作方法;3. 分析传热实验结果,探讨传热机制。
实验步骤:1. 实验前准备:准备实验所需材料和仪器设备,包括热导率测量仪、传热模型等;2. 实验一:热导率测量。
通过热导率测量仪测量不同材料的热导率,包括金属、塑料等;3. 实验二:传热模型实验。
选择一个传热模型,如平板散热器,将其加热并记录温度变化;4. 实验三:传热管实验。
将传热管加热并测量不同位置的温度,分析传热过程。
实验结果与分析:1. 热导率测量结果表明,不同材料的热导率存在较大差异。
金属材料的热导率较高,而塑料等非金属材料的热导率较低。
这与金属的晶体结构和电子传导机制有关;2. 传热模型实验结果显示,随着加热时间的增加,模型表面的温度逐渐升高,表明传热过程中热能从高温区传递到低温区;3. 传热管实验结果表明,在传热管的两端,温度差异较大,而在中间位置,温度差异较小。
这说明传热管的传热效果在两端较好,而在中间位置传热效果较差。
实验讨论:1. 通过热导率测量实验,我们了解了不同材料的热导率特性。
这对于材料选择和工程设计中的热传导问题具有指导意义;2. 传热模型实验结果表明,传热是一个由高温区向低温区传递热能的过程。
这与热力学第二定律相符合;3. 传热管实验结果提示我们,在传热过程中,传热效果会受到材料、管道长度等因素的影响。
因此,在实际工程应用中,需要考虑传热效果的优化。
结论:通过本次传热综合实验,我们对传热的基本原理和实际应用有了更深入的了解。
热导率测量结果表明不同材料的热导率存在差异,传热模型实验结果显示了传热的基本过程,传热管实验结果提示了传热效果受到多种因素影响。
气气传热实验报告结论
一、实验背景气气传热是热力学和传热学中的重要研究内容,涉及到热量的传递、流体动力学以及流体与固体壁面之间的相互作用。
本实验旨在通过实验验证气气传热的基本原理,测定不同条件下气气传热的传热系数,并分析影响传热系数的主要因素。
二、实验目的1. 确定不同条件下气气传热的传热系数;2. 分析影响传热系数的主要因素;3. 验证气气传热的基本原理。
三、实验方法本实验采用实验法,通过搭建气气传热实验装置,在不同工况下进行实验,测量传热速率、流体温度以及壁面温度等参数,从而计算传热系数。
四、实验结果与分析1. 传热系数的测定实验中,通过测量空气进出口温度、空气流量以及壁面温度,利用传热基本方程计算传热系数。
实验结果表明,在不同工况下,气气传热的传热系数存在一定的差异。
2. 影响传热系数的因素(1)流体流速:实验结果表明,随着流体流速的增加,传热系数也随之增加。
这是因为流速的增加使得流体与壁面之间的接触面积增大,从而提高了传热效率。
(2)流体温度:实验结果表明,流体温度对传热系数的影响较大。
当流体温度较高时,传热系数较大;当流体温度较低时,传热系数较小。
这是因为温度差是驱动传热的主要因素,温度差越大,传热系数越大。
(3)壁面温度:实验结果表明,壁面温度对传热系数的影响较大。
当壁面温度较高时,传热系数较大;当壁面温度较低时,传热系数较小。
这是因为壁面温度与流体温度之间的温差越大,传热系数越大。
(4)流体物性:实验结果表明,流体的物性对传热系数有一定的影响。
不同物性的流体,其传热系数存在差异。
例如,水蒸气的传热系数大于空气的传热系数。
3. 气气传热基本原理的验证实验结果表明,气气传热过程符合传热基本方程。
在实验过程中,传热速率、流体温度以及壁面温度等参数均满足传热基本方程的要求,从而验证了气气传热的基本原理。
五、结论1. 本实验验证了气气传热的基本原理,确定了不同条件下气气传热的传热系数。
2. 实验结果表明,影响气气传热系数的主要因素包括流体流速、流体温度、壁面温度以及流体物性。
《传热学》实验 自然对流横管管外传热系数测试
实验 自然对流横管管外传热系数测试一、实验目的和要求1.了解空气沿管表面自然对流传热的实验方法,巩固课堂上学习的知识;2.测定单管的自然对流传热传热系数h ;3.根据对自然对流传热的相似分析,整理出准则方程式。
二、实验原理对铜管进行电加热,热量应是以对流和辐射两种方式来散发的,所以对换热量为总热量与辐射热换热量之差,即:r c Φ+Φ=Φ)(f c t t hF -=Φω⎥⎦⎤⎢⎣⎡----=44)100(100()()(f f f T T t t Co t t A IV h ωωεωΦr ——辐射换热量Φc —对流换热量ε—试管表面黑度C o —黑体的辐射系数t ω—管壁平均温度t f —室内平均温度h —自由运动系数根据相似理论,对于自由对流放热,努谢尔特数Nu 是葛拉晓夫数Gr ,普朗特数Pr 的函数即:)(r r u P G f N =可表示为nr r u P G c N )(=其中c 、n 是通过这个实验所确定的常数。
为了确定上述关系式的具体形式,根据所测定的数据计算结果求得准则数:λhdNu =33v d t g Gr v α∆=Pr 、αv 、λ、v 物性参数由定性温度从教科书中查出。
改边加热量,可求得一组准则数,把几组数据标在对数坐标纸上得到以Nu 为纵坐标、以Gr 、Pr 为横坐标的一系列点,一条直线,使大多数点落在这条直线上或周围,根据:这条直线的斜率即为n,截距为c 。
Pr)lg(lg lg ⋅+=Gr n c Nu三、实验装置以及测量仪表实验装置有试验管(四种类型),测量仪表有电位差计、TDGC型接触式调压器、稳压器、电流表、电压表。
实验管上有热电偶嵌入管壁,可反应出管壁的热电势;电位差计用于测量室内和管壁的电热势;稳压管可稳定输入电压,使加热管的热量保持一定;电压、电流表测定电加热器的电压和电流。
如图7-1所示。
图7-1四、实验步骤1.按电路图接好电线,经指导老师检查后接通电源;2.调整稳压器,对试验管加热;3.稳定六小时后,开始测管壁温度,计下数据;4.间隔半小时再计一次,直到两组数据一致为止;5.选两组接近的数据取平均值,作为计算数据;6.计下半导体温度计指示的空气温度或用玻璃温度计;7.经过指导老师同意,将调压器调整回零位,切断电源。
山东大学传热学实验一-球体法测量导热系数---2025-1
传热学实验一用球体法测量导热系数一、实验目的1. 加深对稳态导热过程基本理论的理解。
2.掌握用球壁导热仪测定粉状、颗粒状及纤维状隔热材料导热系数的方法和技能。
3.确定材料的导热系数和温度的关系。
4.学会根据材料的导热系数判断其导热能力并进行导热计算。
二、实验原理1.导热的定义:物体内具有温差的各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生的热能传递。
2.傅里叶导热定律:Φ=−λAðtðx(1-1)3.球体法测量隔热材料的导热系数是以同心球壁稳定导热规律作为基础的。
在球坐标中,考虑到温度仅随半径r而变,故是一维稳定温度场导热。
实验时,在直径为d1和d2的两个同心圆球的圆壳之间均匀地充填被测材料(可为粉状、粒状或纤维状),内球中则装有电加热元件。
从而在稳定导热条件下,只要测定被测试材料两边,即内外球壁上的温度以及通过的热流,就可由下式(1-4)计算被测材料的导热系数λ。
4.球体导热系数的推导过程:如图1所示,内外直径分别为d1和d2的两个同心圆球的圆壳(半径为r1,r2),内外表面温度分别维持t1、t2,并稳定不变,将傅里叶导热定律应用于此球壁的导热过程,得导热微分方程:Φ=−λA dtdx =−λ4πr2dtdx(1-2)边界条件:r=r1,t=t1r=r2,t=t2由于在不太大的温度范围内,大多数工程材料的导热系数随温度的变化可直接按直线关系处理,即λ=λ0(a +bt),对式 (1-2) 积分并带入边界条件得Φ=2πλ(t 1−t 2)1d 1−1d 2=2πλd 1d 2(t 1−t 2)d 2−d 1(1-3)即:λ=Φ(d 2−d 1)2πd1d 2(t 1−t 2)(1-4)(1-4)式中, Φ为球形电炉提供的热量(W )。
事实上,由于给出的λ是隔热材料在平均温度t m =(t 1−t 2)2时的导热系数,故在实验中只要维持温度场稳定,测出球径d 1=60 mm ,d 2=150 mm ,热量Φ及内外球面温度t 1、t 2,即可求出温度t m 下隔热材料的导热系数,而改变t 1和t 2即可获得λ−t 关系曲线。
内科大传热学实验指导03综合传热性能实验
实验三综合传热性能实验一、实验目的1.了解热管换热器的工作原理,熟悉其使用方法。
2.掌握热管换热器换热量和传热系数的测试及计算方法。
二、实验原理及实验设备的结构热管换热器实验台的结构如下图所示:图中:1—翅片热管2—热段风道3—冷段风道4—风机5—电加热器6—工况选择开关7—热电偶8—测温切换琴键开关9—热球风速仪(图中未画出)10—冷端热电偶接线柱11—电位差计接线柱12—风速测孔13—支架热段中的电加热器使空气加热,热风径热段风道时,通过翅片热管进行换热和传热,从而使冷段风道空气温度升高,利用风道中的热电偶对冷,热段的进出口进行测量,并用热球风速仪对冷,热段的出口风速进行测量,从而可以计算出换热器的换热量Q和传热系K。
三、实验台参数1.冷段出口面积F L=0.092π/4=0.0064m22.热段出口面积F r=0.162..=0.0256m23.冷段传热表面积f L=0.536m24.热段传热表面积f r=0.496 m2四、实验步骤1.连接电位差计和冷端热电偶。
(如无冰瓶条件,可不接冷端热电偶的接线柱短路,这样,测出的温度应加上室温)2.接通电源3.将工况开关按在“工况I”位置(450W),此时电加热器和风机开始工作。
4.用热球风速仪在冷、热出段口的测孔中测量风速。
(为使测量工作在风道温度不超过400C的情况下进行,必须在开机后立即测量)。
风速仪的使用方法,请参阅该仪器的说明书。
5.待工况稳定后(约20分钟后),按下琴键开关,切换测温点,逐点测量冷、热段进出口温度推理,tL1,tL2,tr1,tr2等6. 将“工况开关”按在“工况II”位置,重复上述步骤,测量工况II的冷、热段进出口温度。
7.实验结束后,切断所有电源。
五、实验数据记录及处理将实验测得的数据填入下表中计算换热量,传热系数及热平衡误差1. 工况1(450W ) 冷段换热量:热段换热量:210.24(3600)()/L L L L L L Q V F P t t kcal h =-热平衡误差:120.24(3600)()/r r r r r r Q V F P t t kcal h =-热平衡误差:()/r L r Q Q Q δ=- %传热系数:L L k Q f t =∆式中:V L ,V R —冷、热段出口平均速度m/s F L , F r —冷、热段出口段面积m 2 t L1,t L2,t r1,t r2—冷、热段出口风温0CPL,Pr —冷、热段出口空气密度kg/m 3 f L —冷段传热面积m 21212()/2()/2r r r r t t t t t ∆=--+0C 2.工况II (1000W ) 计算方法同上将上面数据整理所求得的两种工况的实验结果填入下表,并进行比较分析。
传热分析实验报告总结
传热分析实验报告总结实验目的本实验旨在通过传热实验对不同材料的传热性能进行比较,了解传热过程中的热平衡原理和传热方式。
实验内容本实验使用了四种不同的材料,即铝、铜、铁和黄铜,制作了大小相等的试样。
将试样分别置于恒温水浴中,通过传热过程中试样和水浴之间的温度差变化来分析材料的传热性能。
实验过程中,我们通过控制水浴的温度来保持一个稳定的传热条件,并使用温度计测量试样和水浴的温度。
记录下不同时间点的温度数据,并计算温度差。
实验数据通过实验测量和计算,我们得到了以下数据:材料初始温度()终止温度()时间(s)温度差()-铝40 30 0 10铜40 29 60 11铁40 28 120 12黄铜40 25 180 15分析与讨论根据实验数据,我们可以得出以下结论:1. 温度差随时间的增加而增加。
这表明传热过程是一个逐渐达到热平衡的过程,并且传热速率随时间变化。
2. 不同材料的传热速率不同。
从数据可以看出,铝板的传热速率最慢,黄铜板的传热速率最快。
这是因为不同材料的导热性能不同,导热性能好的材料传热速率较快。
3. 黄铜的传热性能较好。
从数据可以看出,黄铜板的温度差最大,传热速率最快。
这是因为黄铜具有较高的导热系数,导热性能优于其他材料。
4. 实验结果与理论相吻合。
根据热平衡原理和传热方式,我们可以预测到不同材料的传热性能。
实验数据与预测基本一致,说明实验结果与理论相符合。
5. 实验中可能存在一些误差。
由于实验条件的限制,我们无法完全排除外界因素对传热过程的影响,可能存在一些误差。
实验总结通过本次传热分析实验,我们得到了一些关于不同材料传热性能的有价值的数据和结论。
实验过程中我们也意识到了实验中可能存在的误差,并且明白了进一步改进实验条件的重要性。
此外,通过实验的观察与分析,我们对传热过程的热平衡原理和传热方式有了更深入的理解。
总的来说,本次传热分析实验对于我们理解和应用传热学理论具有重要意义,为我们今后的研究和工作提供了重要的基础。
里仁学院传热学实验报告 固体表面黑度的测定
实验四 固体表面黑度的测定一、实验目的1、巩固辐射换热理论。
2、掌握用真空辐射法测定固体表面黑度的实验方法。
3、分析固体表面黑度随温度的变化规律。
二、实验原理当一物体放在另一物体的空腔内,且空腔内不存在吸收热辐射的介质时(如空气),彼此以辐射换热方式进行热交换,其辐射换热量由下式计算:441201121122100100111T T C F Q F F εε⎡⎤⎛⎫⎛⎫-⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=⎛⎫+- ⎪⎝⎭(W) (1)式中 F 1——错误!未找到引用源。
试件外表面积(m 2);F 2——外壳内表面积(m 2);C 0——黑体辐射系数,C 0=5.67W/m 2K 4;T 1、T 2——分别为试件外表面和外壳内表面的绝对温度,K ; ε1、ε2——分别为试件外表面和外壳内表面的黑度。
当F 1、F 2为已知,由实验测得Q 12、T 1、T 2,根据式(1)试件外表面黑度ε1可由下式算出:441201111222100100111T T C F F Q F εε⎧⎫⎡⎤⎛⎫⎛⎫-⎪⎪⎢⎥⎪ ⎪⎝⎭⎝⎭⎛⎫⎢⎥⎪⎪⎣⎦=--⎨⎬⎪⎝⎭⎪⎪⎪⎪⎩⎭(2)为了研究试件表面黑度ε1随温度T 1的变化关系,必须测量不同温度下的黑度值,从而画出ε1 = f (T 1)曲线。
三、实验装置及设备实验设备由黑度测定仪本体及三个系统组成。
三个系统分别为1、加热系统:包括电加热器、电流表、电压表、调压器、稳压集成块。
2、真空系统:包括真空泵、真空保持阀、真空表、大气阀以及密封装置。
3、热电偶测温系统:包括外壳及试件上的热电偶、数显温度表。
本体是由圆柱管的试件及外壳组成。
试件外径为φ25mm ,管长270mm 。
外壳内径为φ99mm ,管长270mm 。
本实验装置的外壳内表面黑度取ε2=0.6。
具体测量原理及装置参见图4-1。
四、实验步骤1、将所用的仪表及测量仪器按图4-1连接好,经指导老师同意,开启电源。
2、开启真空泵,打开真空保持阀,使系统中形成真空。
清华大学航天航空学院“传热学”实验报告
【实验(一)名称】 瞬态热线法测量多孔介质的热导率 【实验原理】L1 -11实验装置如图1所示,将一根细长白金丝埋在初始温度均匀的待测材料中, 充当加热器和温度传感器, 通电加热后,测定白金丝温度随时间的变化, 据此推出其周围介质的热导率。
该实验的特点是测量时间短,对试样尺寸无特殊要求。
物理模型如图2所示,单位长度上加热丝发出的热流为:式中,I 和U 为通过白金丝的电流与加载在白金丝上的电压,白金丝发热量较小,介质可视为无限体,导热微分方程、初始和边界条件:6号「(马」口),X —t 0:t :r r :r-2- r oq ,r =r°,t 0 c r解得加热丝表面处待测介质温度:白金丝同时q = l 2R/l =IU /I(1)R 是白金丝的电阻值。
2旳2 2T (「。
,tT 汽 L exp 严/r0)兀九 A "八、0 u 3A(u$) du(3)图1.实验装置示意图式中,•.是试样与加热丝热容之比的2倍。
可得:温度T(r0,t)可视为以上各式中的T(r o,t),白金丝平均温度T(r0,t)与其电阻R的关系如下:R = R0「1 + 0 (T(r°,t)-T°)]式中,R0是初始温度T。
(取当时室温)时白金丝的零点(不通电加热)电阻;通入较大电流后,t时刻白金丝电阻和平均温度分别为R和T(r o,t) ;1为白金丝的电阻温度系数(0.0039K-1)。
【实验器材】【实验流程】直流电源(Advantest R6243) 1台多孔介质及样品槽1套看采集器(主机34970A,模块34901A) 1台电压表1台白金丝(直径100 gm, 99.99%) 若干标准电阻1个2 2• :(u, •) =[uJ°(u)-7(u)] [uY)(u)M(u)] (4)式中,J)(u), Ji(u)为第一类贝塞尔函数的零阶、一阶函数;Y o(u)、Y i(u)为第二类贝塞尔函数当t足够大:2ro .14- t(5)式(3)中指数积分可用级数展开近似,忽略小量,得到:T (r°,t) —T oq 4: t汁计C](6)式中,欧拉常数C= 0.5772 , ?为介质的热扩散率。
传热问题实验报告
一、实验目的1. 了解传热的基本原理和传热系数的概念。
2. 掌握传热实验的基本方法和步骤。
3. 熟悉传热实验设备的使用和维护。
4. 通过实验,验证传热理论,并分析影响传热效果的因素。
二、实验原理传热是热能从高温物体传递到低温物体的过程。
传热方式主要有三种:传导、对流和辐射。
本实验主要研究传导和对流两种传热方式。
1. 传导传热:当物体内部存在温度梯度时,热量通过物体内部微观粒子(如分子、原子)的振动、转动和迁移等方式传递。
传导传热速率与物体的导热系数、温度梯度和传热面积成正比。
2. 对流传热:当流体(如气体、液体)在流动过程中,由于流体内部存在温度梯度,热量通过流体分子的迁移和流体宏观运动传递。
对流传热速率与流体的运动速度、流体性质、传热面积和温度差成正比。
三、实验设备与材料1. 实验设备:传热实验装置(包括套管换热器、电加热器、温度传感器、流量计等)、数据采集与处理系统。
2. 实验材料:传热实验用油、水、空气等。
四、实验步骤1. 安装实验装置,连接好温度传感器、流量计等仪器。
2. 检查实验装置的密封性,确保实验过程中无泄漏。
3. 将传热实验用油倒入套管换热器内,将电加热器加热至设定温度。
4. 通过流量计调节流体流量,使流体在套管换热器内充分流动。
5. 记录流体进出口温度、传热面积、传热时间等数据。
6. 根据实验数据,计算传热速率、传热系数等参数。
7. 改变实验条件(如温度、流量等),重复实验步骤,观察传热效果的变化。
五、实验结果与分析1. 传热速率与传热面积、温度差的关系:实验结果表明,传热速率与传热面积和温度差成正比。
当传热面积和温度差增加时,传热速率也随之增加。
2. 传热速率与流体流动速度的关系:实验结果表明,传热速率与流体流动速度成正比。
当流体流动速度增加时,传热速率也随之增加。
3. 传热速率与流体性质的关系:实验结果表明,传热速率与流体性质(如密度、比热容、粘度等)有关。
不同流体性质会影响传热效果。
[传热学]传热实验
[传热学]传热实验一、实验目的:1、掌握测量实验中的不确定度分析方法;2、了解传热现象发生的物理原理;3、掌握传热实验中的传热方式及其特点;4、掌握传热系数的测量方法及相关热工量的计算方法。
二、实验仪器和设备:1、热传导仪;2、接触式热流计;3、辐射测温仪;4、蒸发器;5、热电偶;6、数显万能表。
三、实验原理:1、热传导。
物体内部由于温度不同而产生热流,这种热流的传递方式称为热传导。
实验中通过热传导仪测量物体的热传导系数。
3、对流传热。
物体表面和周围介质的热交换是通过对流传热实现的。
实验中通过蒸发器来模拟对流传热的实验。
四、实验步骤:1、热传导实验:(1)将热传导仪置于被测物体的一端,将加热板置于另一端;(2)将加热板接通电源,保持电流恒定;(3)记录加热时间t和热传导仪两侧的温度差Δt;(4)通过计算得到物体的热传导系数k。
2、热辐射实验:(1)将被测物体放置在室温下;(2)将辐射测温仪对准被测物体表面,记录物体表面的温度;(3)调整物体表面的温度,观察辐射测温仪反应的情况。
3、对流传热实验:(1)将被测物体放置在蒸发器内,打开电源;(2)观察水龙头中的水流变化,记录物体表面的温度,根据摄氏温度计和热电偶两种温度传感器的测量结果进行比较。
五、实验注意事项:1、实验中要保持仪器设备的干净和精密,防止灰尘、水汽、油脂等污染;2、实验中要记录详细的数据,尽量避免因疏漏而导致实验结果不准确;3、实验前要仔细阅读仪器的使用说明书,了解使用方法和操作要点;4、实验后要及时检查仪器设备,清理垃圾和污垢,防止故障和损坏。
六、实验结果与分析:通过以上实验我们可以得到被测物体的热传导系数、表面温度和对流传热的效果,并结合有关热力学知识计算出相关的热量和功率、接触热阻等参数,从而深入理解热力学中传热的基本规律和机理,为工程实践提供参考依据和技术支持。
同时,实验中要注意不确定度的评定和分析,保证实验数据的可靠性和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Space Shuttle Discovery
2020年5月15日
载人飞船 (Manned Spacecraft)
va
B A
交会(Rendezvous) 对接(Docking)
2020年5月15日
和平号空间站
2020年5月15日
运动中的乒乓球尾流
2020年5月15日
谢谢 欢迎指教!
同舟互济 共渡彼岸
10.单吹瞬变技术测试紧凑换热型面性能实验
开拓性实验
11.多功能实验箱自主设计型实验
作品
2020年5月15日
二、实验数据处理-线性回归
1、问题 2、最小二乘法
作品 2020年5月15日
航空航天器
长 征 三 号 乙 运 载 火 箭 发 射 成 功
2020年5月15日
美 国 发 现 号 航 天 飞 机 升 空
同学们好!
2020年5月15日
一、概述
作品 2020年5月15日
作品 2020年5月15日
1.传热学实验例子
图5-1 实验构件三个方向上的透视图
图5-2 实验构件实物图
作品 2020年5月15日
全息干涉照相和烟可视化实验台图
2020年5月15日
Байду номын сангаас场的烟可视化实验和 温度场激光干涉实验与
计算结果比较图
作品 2020年5月15日
3.所要完成的实验
基础型实验
1.球体法测定导热系数
2.具有对流换热条件的伸展体传热特性实验
3.空气横掠单管时平均表面传热系数测定实验
4.空气纵掠平板时局部表面传热系数测定实验
5.法向发射率测定实验
6.角系数测定实验
先进性实验
7.传热传质光测实验
8.红外热像实验
综合型实验
9.换热器性能实验
计算结果比较图
2020年5月15日
工程实例:芯片冷却技术 微型换热器
2020年5月15日
2020年5月15日
人头部温度\呼吸示意图 (蓝、绿、红表示温度由低到高)
2020年5月15日
2020年5月15日
2、课程目标
掌握传热学实验和测试方法及数据处理方法 增加传热学知识,加深理论知识的理解 实践能力和创新能力得到提高 思维能力得到训练