第24讲 相似与锐角三角函数(含答案)

合集下载

初三数学三角函数(含答案)

初三数学三角函数(含答案)

初中数学三角函数1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边c 的平方。

a 2b 2c 24、任意锐角的正切值等于它的余角的余切值; 任意锐角的余切值等于它的余角的正切值。

tan A cot B cot A tan Bcot-1 ~3~6、 正弦、余弦的增减性:当0°w < 90°时,sin 随 的增大而增大,cos 随 的增大而减小7、 正切、余切的增减性:当0° < <90°时,tan 随 的增大而增大,cot 随 的增大而减小。

1、解直角三角形的定义:已知边和角(两个,其中必有一边)一所有未知的 边和角。

依据:①边的关系: a 2b 2c 2;②角的关系:A+B=90 °;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角; 俯角:视线在水平线下方的角(2)坡面的铅直高度 h 和水平宽度I 的比叫做坡度(坡比)。

用字母i 表示,即i y 。

坡度一 般写成1: m 的形式,如i 1:5等。

把坡面与水平面的夹角记作 (叫做坡角),那么h + i tan 。

l3、 从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图 3, OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、 指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30° (东北方向), 南 偏东45° (东南方向),南偏西60° (西南方向), 北偏西60° (西北方向)。

铅垂线*视线 ‘ 仰角水平线俯角1*视线初三数学三角函数综合试题一、填空题: 1、在 Rt △ ABC 中/C = 90°, a = 2, b = 3,则 cosA =_, sinB =_ , tanB = ___ 2、直角三角形 3、已知tan ABC 的面积为24cm 2,直角边AB 为6cm , / A 是锐角,则sinA = =—, 是锐角,贝U sin 12 + ) + cos 2(40 ° 4、 cos 2(50° — _______ ? 5、 如图1,机器人从A 点,沿着西南方向,行了个4,:2单位,至U 达 60°的方向上,贝U 原来 )—tan(30)tan(60 ° + 到原点O 在它的南偏东 保留根号).A 的坐标为B 点后观察 _ (结果 NMNC 0(2)10cm 周长为36cm 则一底角的正切值为_、3的山坡走了 50米,则他离地面 米高。

第24讲 锐角三角函数

第24讲 锐角三角函数

考点三
三角函数之间的关系
1.同角三角函数之间的关系
sin2α+cos2α=
1
;tan
α=csions
α α.
2.互余两角的三角函数之间的关系
若∠A+∠B=90°,则 sin A=cos B,
sin B=cos A,
tan A·tan B=1.
3.锐角三角函数的增减性 当 α 为锐角时,0<sin α<1,0<cos α<1,且 sin α,tan α 的值都随 α 的增大而 增大 ;cos α 的值随 α 的增大而 减小 . 温馨提示: 这些关系式都是恒等式,正反均可运用,同时还 要注意它们的变形公式.
Rt△ABD 中,cos A=AD=2 2=2 5.故选 D.
【答案】D
AB 10 5
3.把△ABC 三边的长度都扩大到原来的 3 倍,则
锐角 A 的正弦值( A )
A.不变
B.缩小为原来的13
C.扩大到原来的 3 倍 D.不能确定
4.在锐角三角形 ABC 中,若sin A- 23+(1-
tan B)2=0,则∠C 的度数是( C )
= 5
5+1.故选 C. 4
【答案】C
5.(2016·福州)如图,以 O 为圆心,半径为 1 的弧 交坐标轴于 A,B 两点,P 是 AB 上一点(不与 A,B 重合),连接 OP,设∠POB=α,则点 P 的坐标是( )
A.(sin α,sin α) B.(cos α,cos α) C.(cos α,sin α) D.(sin α,cos α)
考点三
三 角函数的增减性
例 3 如图,若锐角
△ABC 内接于⊙O,点 D 在
⊙O 外(与点 C 在 AB 同侧),

用锐角三角函数概念解题的常见方法(含答案11页)

用锐角三角函数概念解题的常见方法(含答案11页)

用锐角三角函数概念解题的常见方法1.锐角三角函数(1)锐角三角函数的定义我们规定:sinA=ac,cosA=bc,tanA=ab,cotA=ba.锐角的正弦、余弦、正切、余切统称为锐角的三角函数.(2)用计算器由已知角求三角函数值或由已知三角函数值求角度对于特殊角的三角函数值我们很容易计算,甚至可以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题.①已知角求三角函数值;②已知三角函数值求锐角.2直角三角形中,30°的锐角所对的直角边等于斜边的一半.3.锐角三角函数的性质(1)0<sinα<1,o<cosα<1(0°<α<90°)(2)tan α·cot α=1或tan α=1cot α; (3)tan α=sin cos αα,cot α=cos sin αα. (4)sin α=cos (90°-α),tan α=cot (90°-α).有关锐角三角函数的问题,常用下面几种方法: 一、设参数例1. 在ABC ∆中,︒=∠90C ,如果125tan =A ,那么sinB 的值等于( ) 512.125.1312.135.D C B A 解析:如图1,要求sinB 的值,就是求AB AC 的值,而已知的125tan =A ,也就是125=AC BC 可设k AC k BC 125==, 则k k k AB 13)12()5(22=+=13121312sin ==∴k k B ,选B 二、巧代换例2. 已知3tan =α,求ααααcos sin 5cos 2sin +-的值。

解析:已知是正切值,而所求的是有关正弦、余弦的值,我们可以利用关系式3cos sin tan ==ααα,作代换ααcos 3sin =,代入即可达到约分的目的,也可以把所求的分式的分子、分母都除以αcos 。

新高考数学一轮复习考点知识归类讲义 第24讲 两角和与差的正弦、余弦和正切公式

新高考数学一轮复习考点知识归类讲义 第24讲 两角和与差的正弦、余弦和正切公式

第24讲 两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β. C (α+β):cos(α+β)=cos αcos β-sin_αsin β. S (α+β):sin(α+β)=sin αcos β+cos_αsin β. S (α-β):sin(α-β)=sin αcos β-cos αsin β.T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎫α,β,α+β≠π2+k π,k ∈Z . T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎫α,β,α-β≠π2+k π,k ∈Z . 2.二倍角的正弦、余弦、正切公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠π4+k π2,且α≠k π+π2,k ∈Z .➢考点1 公式的直接应用[名师点睛]应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. 1.(2022·福建厦门·模拟预测)已知(),0,αβπ∈,且cos21tan 2sin 2βαβ-==,则()cos αβ-=( ) A .45-B .35C .35D .452.(2022·湖南·宁乡市教育研究中心模拟预测)若3sin ,(,)52πααπ=∈,则sin()3πα-=( )A 334-B 334+ C 343-343+3.(2022·江苏·高三专题练习)()2cos cos 24πθπθθ⎛⎫-+= ⎪⎝⎭,且sin 0θ≠,则tan 6πθ⎛⎫+ ⎪⎝⎭的值为( )A 33.23D .23+4.(2022·江苏徐州·模拟预测)已知tan 2α=,则1sin 2cos 2αα+=( )A .3-B .13-C .3D .13[举一反三]1.(2022·北京四中高三阶段练习)角θ的终边过点()2,4P ,则tan 4πθ⎛⎫+= ⎪⎝⎭( )A .13-B .3-C .13D .32.(2022·广东肇庆·模拟预测)已知4cos 5α=,02πα<<,则sin 4πα⎛⎫+= ⎪⎝⎭( )A .210B .7210C .210-D .7210-3.(2022·福建南平·三模)在单位圆中,已知角α的终边与单位圆交于点13,22P ⎛⎫⎪ ⎪⎝⎭,现将角α的终边按逆时针方向旋转3π,记此时角α的终边与单位圆交于点Q ,则点Q 的坐标为( )A .3,221⎛⎫- ⎪ ⎪⎝⎭B .13,22⎛⎫- ⎪ ⎪⎝⎭C .()1,0D .()0,1 4.(2022·江苏扬州·模拟预测)已知sin sin 62ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则tan2α=( )A .3-B .33-C .3±D .33± 5.(2022·湖南师大附中二模)中国古代数学家赵爽绘制“勾股圆方图”证明了勾股定理(西方称之为“毕达哥拉斯定理”).如图,四个完全相同的直角三角形和中间的小正方形拼接成一个大正方形,角α为直角三角形中的一个锐角,若该勾股圆方图中小正方形的面积1S 与大正方形面积2S 之比为1:25,则sin 4πα⎛⎫+= ⎪⎝⎭( )A .210B .2.7210D .726.(2022·海南海口·模拟预测)若tan tan 2αβ⋅=,则()()cos cos αβαβ-+的值为( )A .3-B .13-C .13D .37.(多选)(2022·重庆巴蜀中学高三阶段练习)已知()54cos cos 25αβα+==-,其中,αβ为锐角,则以下命题正确的是( ) A .3sin 25α=B .()25cos αβ-=C .3cos cos αβ=.1tan tan 3αβ=8.(2022·浙江绍兴·模拟预测)已知tan 2α=,则tan2α=________,2sin 2cos αα+=__________.9.(2022·山东淄博·模拟预测)已知()0,απ∈,tan 2α,则cos 4πα⎛⎫-= ⎪⎝⎭______.10.(2022·湖南·长沙一中高三阶段练习)已知1cos cos 5αβ=,2sin sin 5αβ=,则()cos βα-的值为________.➢考点2 三角函数公式的逆用与变形用1.(2022·浙江·高三专题练习)sin 45cos15cos225sin15︒︒-︒︒的值为( )A .B .12-C .12D 2.(2022·福建泉州·模拟预测)已知090α︒≤<︒,且()2sin361sin 22cos 18cos2αα︒+=︒,则α=( )A .18︒B .27︒C .54︒D .63︒3.(2022·江苏苏州·模拟预测)已知sin20tan203m +=,则实数m 的值为( ) A.2C .4D .84.(2022·全国·高三专题练习)在△ABC 中,tan A +tan B A ·tan B ,则C 的值为( ) A .23π-B .3π-C .3πD .23π[举一反三]1.(2022·江苏·高三专题练习)cos15cos75sin15sin75︒︒+︒︒的值为( )A .1B .0C .-0.5D .0.52.(2022·重庆八中高三阶段练习)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点()cos15sin15,cos15sin15P ︒-︒︒+︒,则tan α=( )A .2B .23.(2022·全国·高三专题练习)已知黄金三角形是一个等腰三角形,其底与腰的长度的比值,该值恰好等于2sin18︒),则sin100cos26cos100sin 26︒︒+︒︒=( )A .. 4.(2022·浙江·高三专题练习)tan1tan 441tan1tan 44︒︒︒︒+=-( ) A .1B .1-C .2D .2-5.(多选)(2022·全国·高三专题练习)下列等式成立的是( ) A .1sin21cos81sin69cos92-=-B .223cos 75cos 152-= C .2cos10sin203cos20-=D .()sin5013tan101+=6.(2022·重庆·三模)cos40cos80cos50sin100︒︒-︒︒=___________. 7.(2022·全国·高三专题练习)2cos16cos29cos13︒︒-︒的值等于_________. 8.(2022·江苏南通·高三期末)写出一个满足tan20°+4cos θθ=_________. 9.(2022·山东·青岛二中高三开学考试)tan10tan35tan10tan35︒+︒+︒︒=______.10.(2022·全国·高三专题练习)()()1tan 201tan 25︒︒+⋅+=________.➢考点3 角的变换与名的变换1.(2022·河北唐山·二模)已知02αβπ<<<,函数()5sin 6f x x π⎛⎫- ⎝=⎪⎭,若()()1f f αβ==,则()cos βα-=( ) A .2325B .2325-C .35D .352.(2022·江苏·华罗庚中学高三阶段练习)已知cos α=,()sin βα-=,,αβ均为锐角,则β=( ) A .12πB .6πC .4πD .3π3.(2022·海南·模拟预测)设α为第一象限角,若1cos 65πα⎛⎫+= ⎪⎝⎭,则sin α=( )A B4.(2022·全国·高三专题练习)已知(),0,παβ∈,πcos 2αβ⎛⎫-+ ⎪⎝⎭()tan π7β-=,则tan α=( ) A .3-B .139-C .3D .139[举一反三]1.(2022·全国·高三专题练习)已知3,2παπ⎛⎫∈ ⎪⎝⎭,若tan 23πα⎛⎫+=- ⎪⎝⎭,则cos 12πα⎛⎫+= ⎪⎝⎭( )A B ..2.(2022·湖南·模拟预测)我国古代数学家僧一行应用“九服晷影算法”在《大衍历》中建立了晷影长l 与太阳天顶距()0180θθ︒≤≤︒的对应数表,这是世界数学史上较早的一张正切函数表.根据三角学知识可知,晷影长度l 等于表高h 与太阳天顶距θ正切值的乘积,即tan l h θ=.对同一“表高”两次测量,第一次和第二次太阳天顶距分别为α,β,若第一次的“晷影长”是“表高”的3倍,且()1tan 2αβ-=,则第二次的“晷影长”是“表高”的( )倍. A .1B .23C .52D .723.(2022·湖南株洲·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,sin 4πθ⎛⎫-= ⎪⎝⎭tan θ=( )A .2B .12C .3D .134.(2022·浙江·高三专题练习)已知,36ππα⎛⎫∈- ⎪⎝⎭,29cos 2610απ⎛⎫+= ⎪⎝⎭,则sin 6πα⎛⎫+= ⎪⎝⎭( )ABC5.(多选)(2022·全国·高三专题练习)已知cos()αβ+=5cos213α=-,其中α,β为锐角,以下判断正确的是( ) A .sin 21312α=B.cos()αβ-C.cos cos αβ=.11tan tan 8αβ=6.(2022·广东湛江·二模)若()3tan 2αβ-=,tan 2β=,则tan α=___________. 7.(2022·全国·高三专题练习)已知02πα<<,4sin 5α,1tan()3αβ-=-,则tan β=_______;sin())4βππβ+=+_______.8.(2022·山东烟台·高三期末)已知π(0,)2α∈,cos()4πα+=cos α的值为______.9.(2022·江苏·模拟预测)已知1sin(),(0,)43x x ππ+=∈,则sin x =_________.10.(2022·广东·三模)已知tan 2α=,则sin 24πα⎛⎫-= ⎪⎝⎭___________.11.(2022·广东韶关·一模)若()()1sin 0,,tan 22ππαααβ⎛⎫-=∈+= ⎪⎝⎭,则tan β=__________.12.(2022·全国·高三专题练习)已知α,β为锐角,25sin 5α=,()10sin 10αβ-=-. (1)求sin 2α的值; (2)求()tan αβ+的值第24讲 两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β. C (α+β):cos(α+β)=cos αcos β-sin_αsin β. S (α+β):sin(α+β)=sin αcos β+cos_αsin β. S (α-β):sin(α-β)=sin αcos β-cos αsin β.T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎫α,β,α+β≠π2+k π,k ∈Z . T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎫α,β,α-β≠π2+k π,k ∈Z . 2.二倍角的正弦、余弦、正切公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠π4+k π2,且α≠k π+π2,k ∈Z .➢考点1 公式的直接应用[名师点睛]应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. 1.(2022·福建厦门·模拟预测)已知(),0,αβπ∈,且cos21tan 2sin 2βαβ-==,则()cos αβ-=( ) A .45-B .35C .35D .45【答案】C 【解析】2cos 212sin tan sin 22sin cos ββββββ--==-,tan 2α∴=,tan 2β=-,(),0,αβπ∈,0,2πα⎛⎫∴∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,25sin α∴=,5cos α=,25sin β=5cos β=, ()5525253cos cos cos sin sin 5αβαβαβ⎛∴-=++= ⎝⎭. 故选:C.2.(2022·湖南·宁乡市教育研究中心模拟预测)若3sin ,(,)52πααπ=∈,则sin()3πα-=( )ABC【答案】D 【解析】解:因为2απ<<π,3sin 5α=,所以4cos 5α=-,所以sin()sin cos cos sin 333αααπππ-=-=314525⨯+=故选:D .3.(2022·江苏·高三专题练习)()cos cos 24πθπθθ⎛⎫-+= ⎪⎝⎭,且sin 0θ≠,则tan 6πθ⎛⎫+ ⎪⎝⎭的值为( )A.2D.2+【答案】D【解析】()cos cos 24πθπθθ⎛⎫-+= ⎪⎝⎭,22cos cos sin )(cos )cos sin 44ππθθθθθ--=-,即(sin cos )(cos )(cos sin )(cos sin )θθθθθθθ--=-+,sin (cos sin )0θθθ-=, ∵sin 0θ≠,∴cos sin 0θθ-=,即tan 1θ=,∴tan tan16tan 261tan tan 6πθπθπθ++⎛⎫+=== ⎪⎝⎭-.故选:D .4.(2022·江苏徐州·模拟预测)已知tan 2α=,则1sin 2cos 2αα+=( )A .3-B .13-C .3D .13【答案】A【解析】2221sin 2(sin cos )cos sin 1tan 123cos2cos sin cos sin 1tan 12αααααααααααα+++++=====-----. 故选:A .[举一反三]1.(2022·北京四中高三阶段练习)角θ的终边过点()2,4P ,则tan 4πθ⎛⎫+= ⎪⎝⎭( )A .13-B .3-C .13D .3【答案】B【解析】角θ的终边过点()2,4P ,tan 2θ∴=,tan tan214tan 34121tan tan 4πθπθπθ++⎛⎫∴+===- ⎪-⎝⎭-. 故选:B.2.(2022·广东肇庆·模拟预测)已知4cos 5α=,02πα<<,则sin 4πα⎛⎫+= ⎪⎝⎭( )AC..【答案】B 【解析】由4cos 5α=,02πα<<,得3sin 5α=,所以34sin 455πααα⎛⎫+== ⎪⎝⎭故选:B.3.(2022·福建南平·三模)在单位圆中,已知角α的终边与单位圆交于点12P ⎛ ⎝⎭,现将角α的终边按逆时针方向旋转3π,记此时角α的终边与单位圆交于点Q ,则点Q 的坐标为( )A.21⎛⎫ ⎪ ⎪⎝⎭B.12⎛-⎝⎭C .()1,0D .()0,1 【答案】B【解析】由三角函数定义知:1sin 2αα==,将角α的终边按逆时针方向旋转3π,此时角变为3πα+,故点Q 的横坐标为1cos()cos cos sin sin 3332πππααα+=-=-,点Q的纵坐标为sin()sin cos cos sin 333πππααα+=+=,故点Q 的坐标为13,22⎛⎫- ⎪ ⎪⎝⎭.故选: B.4.(2022·江苏扬州·模拟预测)已知sin sin 62ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则tan2α=( )A .3-B .33-C .3±D .33± 【答案】A【解析】由两角差的正弦公式展开可得:13cos sin cos 22ααα-=,则3tan 3α=-, 所以2232tan 3tan2321tan 3ααα-===--. 故选:A.5.(2022·湖南师大附中二模)中国古代数学家赵爽绘制“勾股圆方图”证明了勾股定理(西方称之为“毕达哥拉斯定理”).如图,四个完全相同的直角三角形和中间的小正方形拼接成一个大正方形,角α为直角三角形中的一个锐角,若该勾股圆方图中小正方形的面积1S 与大正方形面积2S 之比为1:25,则sin 4πα⎛⎫+= ⎪⎝⎭( )A .210B .2.7210D .72【答案】C【解析】如图所示,由图中小正方形的面积1S 与大正方形面积2S 之比为1:25,可得5DC EH =,因为sin CE DC α=,可得1cos sin 5DE DC EC EH DC DC αα==-=-,所以1sin cos 5αα-=,所以112sin cos 25αα-=,所以242sin cos 25αα=,所以()249sin cos 12sin cos 25αααα+=+=, 因为0,2πα⎛⎫∈ ⎪⎝⎭,所以7sin cos 5αα+=,所以()272sin sin cos cos sin sin cos 444210πππααααα⎛⎫+=+=+=⎪⎝⎭. 故选:C.6.(2022·海南海口·模拟预测)若tan tan 2αβ⋅=,则()()cos cos αβαβ-+的值为( )A .3-B .13-C .13D .3【答案】A【解析】由题意得,()()cos cos cos sin sin cos cos sin sin cos αβαβαβαβαβαβ-+=-+1tan tan 1231tan tan 12αβαβ++===---. 故选:A7.(多选)(2022·重庆巴蜀中学高三阶段练习)已知()54cos cos 25αβα+==-,其中,αβ为锐角,则以下命题正确的是( ) A .3sin 25α=B .()25cos αβ-=C .3cos cos αβ=.1tan tan 3αβ=【答案】AB【解析】因为4cos 25α=-,π0,02π2αα<<∴<<,所以23sin 21cos 25αα=-=,故A 正确;因为()5cos αβ+=ππ0,0,0π22αβαβ<<<<∴<+<,所以()()225sin 1cos αβαβ+=-+=所以cos()cos[2()]cos2cos()sin 2sin()αβααβααβααβ-=-+=+++ ⎛⎛⎫=-⨯+= ⎪ ⎝⎭⎝⎭453252555,故B 正确;cos()cos cos sin sin αβαβαβ-=+=,cos()cos cos sin sin αβαβαβ+=-=②, 由+①②得,2cos co s αβ=,解得cos cos αβ=C 不正确; 由①-②得,2sin sin αβ=,解得sin sin αβ=sin sin tan tan 3cos c os αβαβαβ===,故D 不正确.故选:AB.8.(2022·浙江绍兴·模拟预测)已知tan 2α=,则tan2α=________,2sin 2cos αα+=__________.【答案】 43- 1【解析】22tan 4tan 2,1tan 3ααα==--222222sin cos cos 2tan 1sin 2cos 1sin cos tan 1ααααααααα+++===++故答案为:43-,1.9.(2022·山东淄博·模拟预测)已知()0,απ∈,tan 2α,则cos 4πα⎛⎫-= ⎪⎝⎭______.【解析】由tan 2α得sin 2cos αα=-,又22sin cos 1αα+=,所以21cos 5α=,因为()0,απ∈,tan 2α,,2παπ⎛⎫∈ ⎪⎝⎭,所以cos αα==因为πππcos()cos cos sin sin 444ααα-=+,所以cos()4πα-=22=.10.(2022·湖南·长沙一中高三阶段练习)已知1cos cos 5αβ=,2sin sin 5αβ=,则()cos βα-的值为________.【答案】35【解析】解:∵12cos cos ,sin sin 55αβαβ==,∴3cos()cos cos sin sin 5βααβαβ-=+=.故答案为:35.➢考点2 三角函数公式的逆用与变形用1.(2022·浙江·高三专题练习)sin 45cos15cos225sin15︒︒-︒︒的值为( )A .B .12-C .12D 【答案】D【解析】原式=sin 45cos15cos 45sin15sin(4515)sin 60︒︒+︒︒=︒+︒=︒=故选:D.2.(2022·福建泉州·模拟预测)已知090α︒≤<︒,且()2sin361sin 22cos 18cos2αα︒+=︒,则α=( )A .18︒B .27︒C .54︒D .63︒【答案】B【解析】因为()()sin361sin 22sin18cos181sin 2αα︒+=︒︒+所以()22cos 18cos22sin18cos181sin 2αα︒=︒︒+,整理得:cos18cos2sin18sin 2sin18αα︒=︒+︒,cos18cos2sin18sin 2sin18αα︒-︒=︒()cos 218sin18α+︒=︒因为090α︒≤<︒, 所以18218198α︒≤+︒<︒, 所以2189018α+︒=︒-︒, 解得:27α=︒ 故选:B3.(2022·江苏苏州·模拟预测)已知sin20tan203m +=,则实数m 的值为( ) A.2C .4D .8 【答案】C【解析】解:∵tan20°+msin20°=∴msin20cos20sin20︒︒==︒=12sin2021sin402⎫︒-︒⎪⎝⎭=︒ ()2sin 60201sin402︒-︒==︒ 4 故选:C4.(2022·全国·高三专题练习)在△ABC 中,tan A +tan BA ·tanB ,则C 的值为( ) A .23π-B .3π-C .3πD .23π【答案】C【解析】由已知可得tan A +tan BA ·tanB -1), ∴ tan(A +B )=tan tan1tan tan A BA B+-又0<A +B <π,∴ A +B =23π,∴ C =3π.故选:C [举一反三]1.(2022·江苏·高三专题练习)cos15cos75sin15sin75︒︒+︒︒的值为( ) A .1B .0C .-0.5D .0.5 【答案】D【解析】()1cos15cos75sin15sin 75cos 1575cos(60)2︒︒+︒︒=︒-︒=-︒=. 故选:D.2.(2022·重庆八中高三阶段练习)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点()cos15sin15,cos15sin15P ︒-︒︒+︒,则tan α=( )A .2B .2【答案】D【解析】cos15sin1515)︒-︒=︒+︒=cos15sin1515)︒+︒=︒-︒=,即(2P ,则tan α= 故选:D.3.(2022·全国·高三专题练习)已知黄金三角形是一个等腰三角形,其底与腰的长度的比值,该值恰好等于2sin18︒),则sin100cos26cos100sin 26︒︒+︒︒=( )A .. 【答案】D【解析】由已知可得2sin18︒=,故sin18︒=则()sin100cos26cos100sin 26sin126sin 3690cos36︒︒+︒︒=︒=︒+︒=︒ 2212sin 1812=-︒=-⨯=⎝⎭. 故选:D.4.(2022·浙江·高三专题练习)tan1tan 441tan1tan 44︒︒︒︒+=-( )A .1B .1-C .2D .2- 【答案】A【解析】tan1tan 44tan 4511tan1tan 44︒︒︒︒+==-.故选:A.5.(多选)(2022·全国·高三专题练习)下列等式成立的是( ) A .1sin21cos81sin69cos92-=-B .223cos 75cos 152-= C .2cos10sin203cos20-=D .()sin5013tan101+= 【答案】CD【解析】因为sin21cos81sin69cos9sin21cos81cos 21sin81-=-︒︒()sin 2181=︒-︒= 故选项A 错误;因为221cos1501cos30cos 75cos 1522+︒+︒-=-=, 故选项B 错误;因为()1cos10cos 3020sin 202︒=︒-︒︒+︒,所以()3cos 20sin 20sin202cos10sin203cos20cos20︒+︒--==故选项C 正确;因为()2sin 301011cos10︒+︒︒==︒, 所以()2sin 402sin 40cos 401cos10s sin5013tan10s in80in50︒+=︒︒⨯==︒︒,故选项D 正确;故选:CD.6.(2022·重庆·三模)cos40cos80cos50sin100︒︒-︒︒=___________. 【答案】12-【解析】解:原式=1cos 40cos80sin 40sin80cos(4080)cos1202︒︒-︒︒=+==-.故答案为:12-7.(2022·全国·高三专题练习)2cos16cos29cos13︒︒-︒的值等于_________. 【解析】()2cos16cos29cos132cos16cos16cos13sin16sin13cos13︒︒-︒=︒︒︒-︒︒-︒cos32cos13sin32sin13cos 45=︒︒-︒︒=︒=8.(2022·江苏南通·高三期末)写出一个满足tan20°+4cosθθ=_________. 【答案】70︒(答案不唯一). 【解析】由题意sin 60sin 20sin 60cos 20cos60sin 204cos tan 20tan 60tan 20cos60cos 20cos60cos 20θ︒︒︒︒-︒︒=︒=︒-︒=-=︒︒︒︒sin 402sin 20cos 204sin 204cos701cos60cos 20cos 202︒︒︒===︒=︒︒︒︒, 因此70θ=︒(实际上36070,k k Z θ=⋅︒±︒∈). 故答案为:70︒(答案不唯一).9.(2022·山东·青岛二中高三开学考试)tan10tan35tan10tan35︒+︒+︒︒=______. 【答案】1【解析】因为()tan10tan 351tan 45tan 10351tan10tan 35︒+︒=︒=︒+︒=-︒︒,所以tan35tan10tan10tan351︒+︒+︒︒=. 故答案为:110.(2022·全国·高三专题练习)()()1tan 201tan 25︒︒+⋅+=________.【答案】2【解析】因为()()1tan 201tan 251tan 25tan 20tan 20tan 25︒︒︒︒︒︒+⋅+=+++,又tan 25tan 20tan 4511tan 20tan 25︒︒︒︒︒+==-,所以tan 25tan 201tan 20tan 25︒︒︒︒+=-, 所以()()1tan 201tan 251tan 25tan 20tan 20tan 252︒︒︒︒︒︒+⋅+=+++=.故答案为:2.➢考点3 角的变换与名的变换1.(2022·河北唐山·二模)已知02αβπ<<<,函数()5sin 6f x x π⎛⎫- ⎝=⎪⎭,若()()1f f αβ==,则()cos βα-=( ) A .2325B .2325-C .35D .35【答案】B【解析】解:令()5sin 06f x x π⎛⎫-= ⎪⎝⎭=,02x π<<,则6x π=或76x π=,令()5sin 56f x x π⎛⎫-= ⎪⎝⎭=,02x π<<,则23x π=,又02αβπ<<<,()()1f f αβ==, 所以263ππα<<,2736ππβ<<,1sin 65πα⎛⎫-= ⎪⎝⎭,1sin 65πβ⎛⎫-= ⎪⎝⎭,因为062ππα<-<,26ππβπ<-<,所以cos 6πα⎛⎫-= ⎪⎝⎭cos 6πβ⎛⎫-= ⎪⎝⎭所以()cos cos cos cos sin sin 666666ππππππβαβαβαβα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=---=--+-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11235525⨯=-=+, 故选:B.2.(2022·江苏·华罗庚中学高三阶段练习)已知cos α=,()sin βα-=,,αβ均为锐角,则β=( ) A .12πB .6πC .4πD .3π【答案】C【解析】,αβ均为锐角,即,0,2παβ⎛⎫∈ ⎪⎝⎭,,22ππβα⎛⎫∴-∈- ⎪⎝⎭,()cos βα∴-=sin α= ()()()cos cos cos cos sin sin ββααβααβαα∴=-+=---⎡⎤⎣⎦⎛=-= ⎝⎭, 又0,2πβ⎛⎫∈ ⎪⎝⎭,4πβ∴=.故选:C.3.(2022·海南·模拟预测)设α为第一象限角,若1cos 65πα⎛⎫+= ⎪⎝⎭,则sin α=( )A B 【答案】A【解析】1cos 65πα⎛⎫+= ⎪⎝⎭,且2π2π,Z 2k k k πα<<+∈,得π22π2π,663k k k Z ππα+<+<+∈, 则sin 0α>,sin()06πα+>,sin()6πα+=,sin sin ()sin()cos cos()sin 666666ππππππαααα⎡⎤=+-=+-+⎢⎥⎣⎦1152=⨯=故选:A4.(2022·全国·高三专题练习)已知(),0,παβ∈,πcos 2αβ⎛⎫-+ ⎪⎝⎭()tan π7β-=,则tan α=( )A .3-B .139-C .3D .139【答案】B【解析】∵(),0,παβ∈,πcos 2αβ⎛⎫-+= ⎪⎝⎭∴()()ππcos cos =sin 22αβαβαβ⎛⎫⎛⎫-+=--- ⎪ ⎪⎝⎭⎝⎭∵()tan π7β-=,∴tan 7β=-,又()0,πβ∈,∴,π2πβ⎛∈⎫⎪⎝⎭∵()0,πα∈,∴π,2αβπ⎛⎫ ⎪⎝-∈⎭-∵()sin 0αβ-=>,∴π0,2αβ⎛⎫-∈ ⎪⎝⎭,∴()cos αβ-=()()()sin 1tan cos 2αβαβαβ--==- ∴()()()()17tan tan 132tan tan 11tan tan 9172αββααββαββ--+=-+===---⨯-⨯-. 故选:B. [举一反三]1.(2022·全国·高三专题练习)已知3,2παπ⎛⎫∈ ⎪⎝⎭,若tan 23πα⎛⎫+=- ⎪⎝⎭,则cos 12πα⎛⎫+= ⎪⎝⎭( )AB..【答案】C【解析】因为3,2παπ⎛⎫∈ ⎪⎝⎭,则411,336παππ⎛⎫+∈ ⎪⎝⎭,又tan 203πα⎛⎫+=-< ⎪⎝⎭,故311,326παππ⎛⎫+∈ ⎪⎝⎭,则cos 33ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭故cos cos cos cos sin sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎛=+= ⎝⎭故选:C.2.(2022·湖南·模拟预测)我国古代数学家僧一行应用“九服晷影算法”在《大衍历》中建立了晷影长l 与太阳天顶距()0180θθ︒≤≤︒的对应数表,这是世界数学史上较早的一张正切函数表.根据三角学知识可知,晷影长度l 等于表高h 与太阳天顶距θ正切值的乘积,即tan l h θ=.对同一“表高”两次测量,第一次和第二次太阳天顶距分别为α,β,若第一次的“晷影长”是“表高”的3倍,且()1tan 2αβ-=,则第二次的“晷影长”是“表高”的( )倍. A .1B .23C .52D .72【答案】A【解析】解:由题意可得tan 3α=,1tan()2αβ-=, 所以[]13tan tan()2tan tan ()111tan tan()132ααββααβααβ---=--===+-+⨯, 即第二次的“晷影长”是“表高”的1倍. 故选:A.3.(2022·湖南株洲·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,sin 4πθ⎛⎫-= ⎪⎝⎭tan θ=( )A .2B .12C .3D .13【答案】C【解析】因为0,2πθ⎛⎫∈ ⎪⎝⎭,则444πππθ-<-<,故cos 4πθ⎛⎫- ⎪⎝⎭,所以,sin sin sin cos 4444ππππθθθθ⎡⎤⎤⎛⎫⎛⎫⎛⎫=-+=-+-= ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦故cos θ=sin tan 3cos θθθ==. 故选:C.4.(2022·浙江·高三专题练习)已知,36ππα⎛⎫∈- ⎪⎝⎭,29cos 2610απ⎛⎫+= ⎪⎝⎭,则sin 6πα⎛⎫+= ⎪⎝⎭( )A B C 【答案】A【解析】解:由已知可得29cos 2cos 12132610παπα⎛⎫⎛⎫+=+-=⨯-= ⎪ ⎪⎝⎭⎝⎭45,,36ππα⎛⎫∈- ⎪⎝⎭,0,32ππα⎛⎫∴+∈ ⎪⎝⎭,3sin 35πα⎛⎫∴+= ⎪⎝⎭,sin sin sin cos cos sin 6363636πππππππαααα⎛⎫⎛⎫⎛⎫⎛⎫∴+=+-=+⋅-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A.5.(多选)(2022·全国·高三专题练习)已知cos()αβ+=5cos213α=-,其中α,β为锐角,以下判断正确的是( )A .sin 21312α=B .cos()αβ-C .cos cos αβ=.11tan tan 8αβ=【答案】AC【解析】解:因为cos()αβ+=5cos213α=-,其中α,β为锐角,所以:12sin 213α,故A 正确;因为sin()αβ+, 所以cos()cos[2()]cos2cos()sin 2sin()αβααβααβααβ-=-+=+++512()(1313=-⨯+B 错误;可得11cos cos [cos()cos()](22αβαβαβ=++-==C 正确;可得11sin sin [cos()cos()](22αβαβαβ=--+=-所以21tan tan 8αβ=,故D 错误.故选:AC .6.(2022·广东湛江·二模)若()3tan 2αβ-=,tan 2β=,则tan α=___________. 【答案】74-【解析】因为()3tan 2αβ-=,tan 2β=, 所以()()()32tan tan 72tan tan 31tan tan 4122αββααββαββ+-+=-+===-⎡⎤⎣⎦--⋅-⨯, 故答案为:74-7.(2022·全国·高三专题练习)已知02πα<<,4sin 5α,1tan()3αβ-=-,则tan β=_______;sin())4βππβ+=+_______. 【答案】 332【解析】因为02πα<<,4sin 5α,所以3cos 5α==, 所以sin 4tan cos 3ααα==,因为1tan()3αβ-=-,所以tan tan()tan tan[()]1tan tan()ααββααβααβ--=--=+- 41533335411933⎛⎫-- ⎪⎝⎭===⎛⎫+⨯- ⎪⎝⎭所以sin()sin tan 33cos sin 1tan 1324βπββπββββ+---====---⎛⎫+ ⎪⎝⎭,故答案为:3;32.8.(2022·山东烟台·高三期末)已知π(0,)2α∈,cos()4πα+=cos α的值为______.【解析】因π(0,)2α∈,即3444πππα<+<,又cos()4πα+=sin()4πα+==所以cos cos[()]cos()cos sin()sin 444444ππππππαααα=+-=+++==.9.(2022·江苏·模拟预测)已知1sin(),(0,)43x x ππ+=∈,则sin x =_________.【解析】由(0,)x π∈,可得5(,)444x πππ+∈,因为1sin()sin 434x ππ+=<=,所以3(,)422x πππ+∈,所以cos()4x π+=又由sin sin[()]))4444x x x x ππππ=+-=++13==10.(2022·广东·三模)已知tan 2α=,则sin 24πα⎛⎫-= ⎪⎝⎭___________.【解析】原式αα=()222sin cos cos sin αααα⎤--⎦2222222sin cos cos sin cos sin cos sin αααααααα⎤⎛⎫-=-⎢⎥ ⎪++⎝⎭⎣⎦2222tan 1tan 1tan 1tan αααα⎤⎛⎫-=-⎢⎥ ⎪++⎝⎭⎣⎦=.11.(2022·广东韶关·一模)若()()1sin 0,,tan 22ππαααβ⎛⎫-=∈+= ⎪⎝⎭,则tan β=__________.【答案】17【解析】因为()sin 0,2ππαα⎛⎫-=∈ ⎪⎝⎭,所以sin α=所以cos α==,所以sin 1tan cos 3ααα==. ()()()11tan tan 123tan tan .111tan tan 7123αβαβαβααβα-+-=+-===⎡⎤⎣⎦+++⨯又 故答案为:1712.(2022·全国·高三专题练习)已知α,β为锐角,sin α=,()sin αβ-=. (1)求sin 2α的值; (2)求()tan αβ+的值.【解】(1)因为α为锐角,sin α=所以cos α=,所以4sin 22sin cos 25ααα===; (2)因为α,β为锐角,所以π02α<<,π02β<<,所以π02β-<-<,所以ππ22αβ-<-<, 因为()sin 0αβ-=<,所以π02αβ-<-<,所以()cos αβ-=, 所以()()()sin sin sin cos cos sin βααβααβααβ⎡⎤=--=---⎣⎦10⎛= ⎝⎭=,所以cos 10β==所以tan 2cos sin ααα===,tan 7cos sin βββ===, 所以()tan tan 279tan 1tan tan 12713αβαβαβ+++===---⨯。

初中数学 函数模块3-5--锐角三角函数讲义(含答案解析)

初中数学 函数模块3-5--锐角三角函数讲义(含答案解析)

锐角三角函数题型一:正切的概念在直角三角形ABC 中,90C ∠=︒,A ∠,B Ð,C ∠所对应的边分别是a ,b ,c ,则正弦值等于对边与邻边的比值.即tan aA b=,根据直角三角形三边关系易证,0tan A <,()090︒<∠<︒A ①角的正切值例1.1如图,点E 在正方形ABCD 的边AB 上,若1EB =,2EC =,则tan DCE ∠为()A .12B .2C D 【详解】∵四边形ABCD 是正方形,∴90B ∠=︒,//AB CD ∴DCE BEC ∠=∠,∵1EB =,2EC =,∴BC ==,∴tan tan ∠=∠==BCDCE BEC BE;故答案选D .变式1.11.如图,在直角BAD 中,延长斜边BD 到点C ,使12DC BD =,连接AC ,若tanB=53,则tan CAD ∠的值()A.3B.5C.13D.15【答案】D 【解析】【分析】延长AD ,过点C 作CE AD ⊥,垂足为E ,由5tan 3B =,即53AD AB =,设5AD x =,则3AB x =,然后可证明CDE BDA ∆∆∽,然后相似三角形的对应边成比例可得:12CE DE CD AB AD BD ===,进而可得32CE x =,52DE x =,从而可求1tan 5EC CAD AE ∠==.【详解】解:如图,延长AD ,过点C 作CE AD ⊥,垂足为E ,5tan 3B =,即53AD AB =,∴设5AD x =,则3AB x =,CDE BDA ∠=∠Q ,CED BAD ∠=∠,CDE BDA ∴∆∆∽,∴12CE DE CD AB AD BD ===,32CE x ∴=,52DE x =,152AE x ∴=,1tan 5EC CAD AE ∴∠==.故选:D .【点睛】本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将CAD ∠放在直角三角形中.②网格图中求正切值例1.2如图,ABC 的顶点在正方形网格的格点上,则tan A 的值为________.【详解】解:如图,由格点知:AB ==,AC ∵12=⋅⋅ ABC S BC AE 1432=⨯⨯6=,12=⋅⋅ ABC S AB CD 12=⨯=,6=,∴CD =.∴AD ==.∴tan 2==CDA AD.故答案为:2.变式1.22.如图,小正方形的边长均为1,A 、B 、C 分别是小正方形的三个顶点,则sin BAC ∠的值为()A.12B.2C.1D.【答案】B 【解析】【分析】连接BC ,先根据勾股定理求得AB 、BC 、AC 的长,然后再利用勾股定理逆定理证得ABC ∆是直角三角形,最后根据正弦的定义解答即可【详解】解:如图:连接BC ,每个小正方形的边长均为1,AB ∴==BC ==AC ==,222AB BC AC += ,ABC ∆∴是直角三角形,sin2BC BAC AC ∴∠===.故答案为B .【点睛】本题主要考查了勾股定理、勾股定理逆定理以及正弦的定义,根据题意证得ABC ∆是直角三角形是解答本题的关键.③利用图形的变换求正切值例1.3如图,矩形ABCD 中,5AB =,3BC =,E 为边AB 上一点,且3BE =,DAE△沿DE 翻折得到DFE △,连接BF ,tan ∠EFB 的值为________.【详解】解:过点F 作FO AO ⊥于点O ,作FH AB ⊥于点H ,过B 作BG FE ⊥于点G ,∵折叠∴90DAE DFE ∠=∠=︒∴180︒∠=-∠ADF AEF ∵180∠=︒-∠FEB AEF ∴ADF FEB∠=∠∵90∠=∠=︒EGB DOF ,3DF AD ==,3BE =∴DF BE=∴() ≌DOF EGB AAS ∴=GB OF532AE AB BE =-=-=∵13112222=⋅==⋅=⋅= FEB S BE FH FH FE GB AE GB GB ∴32GB FH =∵四边形OAHF 中,四个内角均为90︒,∴四边形OAHF 是矩形,∴=FH AO ∵=GB FO ∴32=FO AO3=∴22(3)9+-=FO AO ∴2413=AO 或0AO =(舍去)∴241531313==-=OD EG ∴3243621313==⨯=FO GB Rt FGB V 中,363613tan 1511213GB GFB GF ∠===-∴36tan 11∠=EFB 故答案为:3611.变式1.33.如图,在菱形纸片ABCD 中,3AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则tan EFG ∠的值为________.【答案】3【解析】【分析】连接AE 交GF 于O ,连接BE ,BD ,则△BCD 为等边三角形,设AF=x=EF ,则BF=3-x ,依据勾股定理可得Rt △BEF 中,BF 2+BE 2=EF 2,解方程(3-x )2+2=x 2,即可得到EF=218,再根据Rt △EOF 中,=即可得出tan ∠EFG=EO FO =.【详解】解:如图,连接AE 交GF 于O ,连接BE ,BD ,则△BCD 为等边三角形,∵E 是CD 的中点,∴BE ⊥CD ,∴∠EBF=∠BEC=90°,Rt △BCE 中,CE=cos60°×3=1.5,∴Rt △ABE 中,由折叠可得,AE ⊥GF ,EO=12,设AF=x=EF ,则BF=3-x ,∵Rt △BEF 中,BF 2+BE 2=EF 2,∴(3-x )2+)2=x 2,解得x=218,即EF=218,∴Rt △EOF 中,=,∴tan ∠EFG=EO FO =【点睛】本题考查了菱形的性质、解直角三角形以及折叠的性质:折叠是一种对称变换,对应边和对应角相等.解题时,常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.题型二:正弦的概念在直角三角形ABC 中,90C ∠=︒,A ∠,B Ð,C ∠所对应的边分别是a ,b ,c ,则正弦值等于对边与斜边的比值.即sin aA c=,根据直角三角形三边关系易证,0sin 1A <<,()090︒<∠<︒A ①角的正弦值例2.1在ABC 中,90C ∠=︒,2BC =,2sin 3A =,则边AC 的长是()A B .3C .43D 【详解】解答:在Rt ABC △中,∵22sin 3===BC A AB AB ,∴3AB =,∴根据勾股定理,得AC =故选A .变式2.14.在Rt ABC ∆中,90C ∠=︒,1BC =,4AB =,则sin B 的值是()A.5B.14C.13D.4【答案】D 【解析】【分析】首先根据勾股定理求得AC 的长,然后利用正弦函数的定义即可求解.【详解】∵∠C=90°,BC=1,AB=4,∴AC ===∴4AC sinB AB ==,故选:D .【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.②网格图中求正弦值例2.2如图,ABC 的顶点是正方形网格的格点,则sin A 的值为()A .12B C .10D 【详解】解:如图所示,取格点D ,连接DC ,由网格可得出DC =,AC =,AD =,∵222+=∴222DC AD AC =+,则:90CDA ∠=︒,故sin5===DCA AC .故选:B .变式2.25.正方形网格中,∠AOB 如图放置,则sin ∠AOB 的值为()A.2B.2C.3D.1【答案】B【解析】【分析】如图,连接AD ,CD ,根据勾股定理可以得到OD=AD ,则OC 是等腰三角形底边上的中线,根据三线合一定理,可以得到△ODC 是直角三角形.根据三角函数的定义就可以求解.【详解】解:如图,连接AD ,CD ,设正方形网格的边长是1,则根据勾股定理可以得到:,,∠OCD=90°.则=∴sin ∠AOB=2CD OD ==,故选:B .【点睛】本题考查锐角三角函数的概念,注意到图中的等腰三角形是解决本题的关键.③利用图形的变换求正弦值例2.3如图,Rt ABC 中,90ACB ∠=︒,D 是AC 上一点,连接BD ,将ABC 沿BD翻折,点C 落在边AB 的点C '处,连接CC '.若15AB =,4sin 5A =,则CC '长________.【详解】如图,设BD 与CC '的交点为点O ,∵在Rt ABC 中,90ACB ∠=︒,15AB =,4sin 5A =,∴45BC AB =,即4155BC =,解得12BC =,∴9==AC ,由翻折的性质得:12'==BC BC ,C D CD '=,90'∠=∠=︒BC D ACB ,∴15123''=-=-=AC AB BC ,设AD x =,则9C D CD AC AD x '==-=-,在Rt AC D ' 中,222AC C D AD ''+=,即2223(9)x x +-=,解得5x =,∴5AD =,4CD =,在Rt BCD 中,BD ==又∵BC BC '=,C D CD '=,∴BD 是CC '的垂直平分线,∴BD CC '⊥,2'=CC OC ,∴Rt 1122=⋅=⋅ BCD S BC CD BD OC ,即1112422⨯⨯=⨯,解得5OC =,∴25'==CC OC ,故答案为:5.变式2.36.如图,将矩形ABCD 沿对角线BD 对折,点C 落在E 处,BE 与AD 相交于点F .(1)求证:BFD △是等腰三角形;(2)若4BC =,2CD =,求AFB ∠的正弦值.【答案】(1)见解析;(2)45【解析】【分析】(1)根据矩形性质和平行线的性质得∠ADB =∠CBD ,结合折叠性质得出∠ADB =∠DBF ,再根据等腰三角形的判定即可证得结论;(2)设BF=DF =x ,则AF=4﹣x ,利用勾股定理求解x 值,再根据正弦定义求解即可.【详解】解:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠ADB =∠CBD ,由折叠性质得:∠DBF =∠CBD ,∴∠ADB =∠DBF ,∴BF=DF ,∴△BFD 是等腰三角形;(2)∵四边形ABCD 是矩形,∴AD=BC =4,AB=CD =2,∠A =90°,设BF=DF =x ,则AF=4﹣x ,在Rt △ABF 中,由勾股定理得:22+(4﹣x )2=x 2解得:x =52,∴sin ∠AFB =24552AB BF ==,即AFB ∠的正弦值为45.【点睛】本题考查矩形性质、折叠性质、平行线的性质、等腰三角形的判定、勾股定理、正弦定义、解一元一次方程,熟练掌握相关知识的联系与运用是解答的关键.题型三:余弦的概念在直角三角形ABC 中,90C ∠=︒,A ∠,B Ð,C ∠所对应的边分别是a ,b ,c ,则正弦值等于邻边与斜边的比值.即cos b A c=,根据直角三角形三边关系易证,0cos 1A <<,()090︒<∠<︒A 角的余弦值例3.1如图,在Rt ABC 中,90C ∠︒=,13AB =,5AC =,则cos A 的值是________.【详解】解:在Rt ABC 中,5cos 13AC A AB ==,故答案为:513.变式3.17.在Rt △ABC 中,∠C =90°,AB =10,AC =8,则cos A =_____.【答案】45【解析】【分析】根据勾股定理求出边BC 的长,利用余弦定理cos A=A A ∠∠的临边的斜边即可解得.【详解】Rt △ABC 中,∠C =90°,AB =10,AC =8,所以所以cos A =AC AB =810=45.【点睛】本题考查勾股定理以及余弦定理.②网格图中求余弦值例3.2如图,已知ABC 的三个顶点均在正方形网格的格点上,则cos A 的值为________.【详解】解:如图所示:连接BD ,可得:90CDB ∠=︒,BD =,AD =AB ,故cos5AD A AB ===..变式3.28.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则∠BAC 的余弦值是____.【答案】5【解析】【分析】先根据勾股定理的逆定理判断出△ABC 的形状,再由锐角三角函数的定义即可得出结论.【详解】解:∵AB 2=32+42=25、AC 2=22+42=20、BC 2=12+22=5,∴AC 2+BC 2=AB 2,∴△ABC 为直角三角形,且∠ACB =90°,则cos ∠BAC 5AC AB ==,.【点睛】本题考查的是锐角三角函数的定义,勾股定理及其逆定理,熟知在一个三角形中,如果两条边长的平方之和等于第三边长的平方,那么这个三角形是直角三角形是解答此题的关键.③利用图形的变换求余弦值例3.3如图,在菱形纸片ABCD 中,2AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos EFG ∠的值为________.【详解】过点A 作AP CD ⊥,交CD 延长线于P ,连接AE ,交FG 于O ,∵四边形ABCD 是菱形,∴2AD AB ==,∵将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,∴∠=∠AFG EFG ,FG AE ⊥,∵//CD AB ,AP CD ⊥,∴AP AB ⊥,∴90∠+∠=︒PAE EAF ,∵90∠+∠=︒EAF AFG ,∴∠=∠PAE AFG ,∴∠=∠EFG APE ,∵//CD AB ,60DAB ∠=︒,∴60PDA ∠=︒,∴sin 6022=⋅︒=⨯=AP AD ,1cos60212=⋅︒=⨯=PD AD ,∵E 为CD 中点,∴112DE AD ==,∴2=+=PE DE PD ,∴==AE ,∴cos cos7∠=∠===AP EFG PAE AE .故答案为7变式3.39.如图,在菱形ABCD 中,4AB =,B Ð是锐角,AE BC ⊥于点E ,M 是AB 的中点,连接MD ,ME .若90EMD ∠=︒,则cos B 的值为___________.【答案】12【解析】【分析】延长DM 交CB 的延长线于点H .首先证明△ADM ≌△BHM ,得出AD=HB=4,MD=MH ,由线段垂直平分线的性质得出EH=ED ,设BE=x ,利用勾股定理构建方程求出x ,即BE ,结合AB 得出cosB 的值.【详解】解:延长DM 交CB 的延长线于点H .如图所示:∵四边形ABCD 是菱形,∴AB=BC=AD=4,AD ∥CH ,∴∠ADM=∠H ,∵M 是AB 的中点,∴AM=BM ,在△ADM 和△BHM 中,AMD BMH ADM H AM BM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADM ≌△BHM (AAS ),∴AD=HB=4,MD=MH ,∵∠EMD=90°,∴EM ⊥DH ,∴EH=ED ,设BE=x ,∵AE ⊥BC ,∴AE ⊥AD ,∴∠AEB=∠EAD=90°,∵AE 2=AB 2-BE 2=DE 2-AD 2,∴42-x 2=(4+x )2-42,解得:x=2-,或x=2--(舍),∴BE=2,∴cosB=2142BE AB-==.故答案为:12-.【点睛】本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.题型四:同角三角函数关系(拓展)1.若90A B ∠+∠=︒,则sin cos A B =,sin cos B A =,tan tan 1A B ⋅=2.平方关系:22sin cos 1A B +=3.比值关系:sin tan cos =AA A例4若α是锐角,tan tan501⋅︒=α,则α的值为()A .20︒B .30°C .40︒D .50︒【详解】解:∵tan tan501⋅︒=α∴5090+︒=︒α∴40α=︒.故选C .变式410.比较大小:sin81︒________tan 47︒;cos30︒________tan 60︒.(填“>,<或=”)【答案】①.<②.<【解析】【分析】①把sin81︒、tan 47︒分别与1进行比较,即可得到答案;②分别求出cos30︒、tan 60︒的值,然后进行比较即可.【详解】解:∵sin811︒<,tan 47tan 451︒>︒=,∴sin81tan 47︒<︒;∵cos302=°,tan 60︒=又∵2<,∴0cos30tan 6︒<︒;故答案为:<;<;【点睛】本题考查了三角函数的比较大小,解题的关键是正确的掌握三角函数的值,然后进行比较.题型五:特殊角的三角函数值①特殊角的三角函数值的混合运算例5.1计算:sin 30cos 601sin 60cos 45tan 60sin452︒︒+︒-︒︒+︒.【详解】原式1122=+,===,=;变式5.111.计算:(1)28sin 60tan 454cos30︒+︒-︒;(2)222tan 60cos 30sin 45tan 45︒+︒-︒︒.【答案】(1)7-;(2)134.【解析】【分析】(1)根据特殊锐角三角函数值代入计算即可;(2)根据特殊锐角三角函数值代入计算即可.【详解】解:(1)原式281422⎛⎫=⨯+-⨯ ⎪ ⎪⎝⎭3814=⨯+-7=-;(2)原式222122⎛⎫⎛⎫=+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭31342=+-134=.【点睛】本题考查了特殊角的三角函数值,掌握特殊锐角的三角函数值是解决问题的关键.②由特殊角的三角函数值判断三角形的形状例5.2在ABC 中2(2cos |1tan |0-+-=A B ,则ABC 一定是()A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【详解】解:由2(2cos |1tan |0-+-=A B ,得2cos A =,1tan 0B -=.解得45A ∠=︒,45B ∠=︒,则ABC 一定是等腰直角三角形,故选:D .变式5.212.在ABC 中,若tanA=1,cosB=2,则下列判断最确切的是()A.ABC 是等腰三角形B.ABC 是等腰直角三角形C.ABC 是直角三角形D.ABC 是一般锐角三角形【答案】B【解析】【分析】先根据正切值、余弦值求出A ∠、B Ð的度数,再根据三角形的内角和定理可得C ∠的度数,然后根据等腰直角三角形的定义即可得.【详解】A ∠、B Ð是ABC 的内角,且tan 1A =,cos 2B =,45A ∴∠=︒,45B ∠=︒,18090C A B ∴∠=︒-∠-∠=︒,ABC ∴ 是等腰直角三角形,故选:B .【点睛】本题考查了特殊角的正切值与余弦值、三角形的内角和定理、等腰直角三角形的定义,熟记特殊角的正切值与余弦值是解题关键.③根据特殊角三角函数值求角的度数例5.3在ABC 1cos 02+-=C ,且B Ð,C ∠都是锐角,则A ∠的度数是()A .15︒B .60︒C .75︒D .30°1cos 02+-=C ,∴sin 02-=B ;1cos 02-=C .即sin 2B =;1cos 2C =.∴45B ∠=︒,60C ∠=°.∴180180456075∠=︒-∠-∠=︒-︒-︒=︒A B C .故选:C .变式5.313.已知tan tan tan()1tan tan αβαβαβ++=-⋅,22tan tan 21tan ααα=-α和β都表示角度),比如求tan105︒,可利用公式得()tan105tan 60452︒=︒+︒==-,又如求tan120︒,可利用公式得()()22tan120tan 2601︒=⨯︒==-,请你结合材料,若()tan 1203λ︒+=-(λ为锐角),则λ的度数是__________.【答案】30°【解析】【分析】设tan λx =,先根据公式可得到一个关于x 的分式方程,解方程可求出x 的值,再根据特殊角的正切函数值即可得出答案.【详解】设tan λx=由题意得:()tan120tan tan 1201tan120tan λλλ︒+︒+=-︒⋅()tan120tan ,tan 1203λx λ︒==︒+=-3=-解得3x =经检验,3x =是分式方程的根即tan 3λ=λQ 为锐角30λ∴=︒故答案为:30°.【点睛】本题考查了分式方程的解法、特殊角的正切函数值,熟记特殊角的正切函数值是解题关键.④三角函数值的大小例5.4如图所示的网格是正方形网格,则AOB ∠________COD ∠.(填“>”,“=”或“<”)【详解】解:根据题意可知tan 2AOB ∠=,tan 2∠=COD ,∴AOB COD ∠=∠,故答案为=.变式5.4.114.如果α是锐角,则下列成立的是()A.sin αcos α1+= B.sin αcos α1+> C.sin αcos α1+< D.sin αcos α1+≤【答案】B【解析】【分析】根据正弦函数是对边比斜边,余弦函数是邻边比斜边,三角形的两边之和大于第三边,可得答案.【详解】解:∵a 、b 是直角边,c 是斜边,∴sin α+cos α=a c +bc =a b c +,∵a+b>c ,∴a b c+>1,∴sin αcos α1+>.故选B.【点睛】本题考查了同角三角函数关系,利用正弦函数是对边比斜边,余弦函数是邻边比斜边是解题关键.变式5.4.215.如图,将ABC 绕点B 顺时针旋转()90αα︒<得到A BC ''△.请比较大小:sin ABA '∠______tan CBC '∠.【答案】<【解析】【分析】由旋转可得:ABA CBC α''∠=∠=<90,︒如图,构建直角三角形,ABA '且,ABA CBC ''∠=∠再利用锐角三角函数的定义可得:sin ,tan tan ,AA AA ABA CBC ABA AB A B'''''∠=∠=∠='由A B '<,AB 从而可得答案.【详解】解:由旋转可得:ABA CBC α''∠=∠=<90,︒如图,构建直角三角形,ABA '且,ABA CBC ''∠=∠由三角函数定义可得:sin ,tan tan ,AA AA ABA CBC ABA AB A B'''''∠=∠=∠='A B ' <,AB AA AB '∴<,AA A B''sin ABA '∴∠<tan .CBC '∠故答案为:<.【点睛】本题考查旋转的性质,锐角三角函数的定义,掌握以上知识是解题的关键.题型五:解直角三角形①解直角三角形1.解直角三角形的概念:在直角三角形中除直角外一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形.2.理论依据:①三边关系:勾股定理222+=a b c ②两锐角互余:90A B ∠+∠=︒③边角之间的关系:tan a A b =,sin a A c=,cos a A c =3.常见类型:①已知两条边,先利用边角关系求出两个角,再利用勾股定理求出另一条边②已知一边一角,先求出另一角,再利用边角关系求出其余的边长例5.1已知2sin 3α=,其中α为锐角,求cos α、tan α、cot α的値.【详解】∵2sin 3α=∴设α的对边2k =,直角三角形的斜边3=k ,由勾股定理求出α的邻边=,∴cos α33k ==,tan 5α===,cot 22k α==.变式5.116.(1)在△ABC 中,∠B =45°,cosA 12=.求∠C 的度数.(2)在直角三角形ABC 中,已知sinA 45=,求tanA 的值.【答案】(1)75°;(2)43.【解析】【分析】(1)由条件根据∠A 的余弦值求得∠A 的值,再根据三角形的内角和定理求∠C 即可;(2)根据角A 的正弦设BC=4x ,AB=5x ,得AC 的长,根据三角函数的定义可得结论.【详解】解:(1)∵在△ABC 中,cosA 12=,∴∠A =60°∵∠B =45°,∴∠C =180°﹣∠B ﹣∠A =75°;(2)∵sinA 45BC AB ==,∴设BC =4x ,AB =5x ,∴AC =3x ,∴tanA 4433BC x AC x ===.【点睛】本题主要考查了锐角三角函数的知识以及三角形的内角和定理,属基础题.②构造直角三角形例5.2在ABC 中,8AB =,6BC =,B Ð为锐角且1cos 2B =.(1)求ABC 的面积;(2)求tan C .【详解】(1)如图,过点A 作AH BC ⊥于H .∵1cos 2B =,∴60B ∠=︒,∴1cos 842=⋅=⨯=BH AB B ,sin 82=⋅=⨯=AH AB B ,∴11622=⋅⋅=⨯⨯= ABC S BC AH (2)在Rt ACH 中,∵90AHC ∠=︒,AH =742=-=-=CH BC BH ,∴tan 2===AH C CH.变式5.217.如图,在△ABC ,∠A=30°.(1)求BD 和AD 的长;(2)求tan C 的值.【答案】(1)BD =3,AD =(2)tan C =2.【解析】【详解】(1)∵BD ⊥AC ,∴∠ADB =∠BDC =90°.在Rt △ADB 中,AB =6,∠A =30°,∴BD =AB·sin30°=3,∴ꞏcos30AD AB =︒=.(2)CD AC AD =-==在Rt △BDC 中,tan2BD C CD ∠===.视频题型六:解直角三角形的实际应用①方位角问题从标准方向的北端起,顺时针方向到直线的水平角,称为该直线的方位角,方位角的取值范围是0360︒-︒.例6.1如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30°方向上,若AP =千米,则点AB 两点的距离为()千米.A .4B .C .2D .6【详解】解:由题意可知,30︒∠= PAC ,60PBC ∠=︒,∵AP =,∴1sin 302PC AP =︒=⨯=cos 609AC AP =︒==,∴3tan 60PC BC ===︒,∴936AB AC BC =-=-=,故选:D .变式6.118.如图,在一条笔直的海岸线上有A ,B 两个观测站,A 在B 的正东方向.有一艘小船从A 处沿北偏西60︒方向出发,以每小时20海里速度行驶半小时到达P 处,从B 处测得小船在它的北偏东45︒的方向上.(1)求AB 的距离;(2)小船沿射线AP 的方向继续航行一段时间后,到达点C 处,此时,从B 测得小船在北偏西15︒的方向.求点C 与点B 之间的距离.(上述两小题的结果都保留根号)【答案】(1)(5AB =+海里;(2)52+海里.【解析】【分析】(1)过点P 作PD AB ⊥于点D ,利用余弦定义解出AP 、AD 的长,再由直角三角形中,30°角所对的直角边等于斜边的一半解得PD 的长,最后根据等腰直角三角形两直角边相等的性质解题即可;(2)过点B 作BF AC ⊥于点F ,根据直角三角形中30°角所对的直角边等于斜边的一半,解得BF 的长,在Rt BCF 中,由勾股定理解得BC 的长即可.【详解】解:(1)如图,过点P 作PD AB ⊥于点D ,在Rt PAD V 中,90ADP ∠=︒,906030PAD ∠=︒-︒=︒,∵cos AD PAD AP∠=,200.510AP ⨯==∴cos 102PA A D D AP =⋅=⨯=∠152PD AP ==在Rt PBD 中,90BDP ∠=︒,904545PBD ∠=︒-︒=︒,∴5BD PD ==.∴(5AB =+海里(2)如图,过点B 作BF AC ⊥于点F ,在Rt ABF 中,90AFB ∠=︒,30BAF ∠=︒,∴(11522BF AB ==+在ABC 中,18045C BAC ABC ∠=︒-∠-∠=︒.在Rt BCF 中,90BFC ∠=︒,45C ∠=︒,∴52C B ==海里.∴点C 与点B 之间的距离为52海里.【点睛】本题考查解直角三角形的应用之方向角的问题,其中涉及含30°角的直角三角形的性质、余弦、三角形内角和、勾股定理等知识,是重要考点,难度较易,正确作出辅助线,构造直角三角形、掌握相关知识是解题关键.②仰角俯角问题仰角:视线在水平线上方的角.俯角:视线在水平线下方的角.例6.2如图,护林员在离树8m 的A 处测得树顶B 的仰角为45︒,已知护林员的眼睛离地面的距离AC 为1.6m ,则树的高度BD 为()A .8mB .9.6mC . 1.6)mD . 1.6)m +【详解】解:过点C 作CE BD ⊥于E ,∵45BCE ∠=︒,∴CEB △是等腰直角三角形,∴8==CE BE ,四边形ACED 是矩形,∴ 1.6==AC DE ,∴8 1.69.6=+=BD 米,故选B .变式6.219.如图,某飞机在空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角为α,飞行高度AC a =,则飞机到目标B 的距离AB 为()A.sin a α⋅B.sin a αC.cos a α⋅ D.cos a α【答案】B 【解析】【分析】由题意得∠ABC=α,然后根据解直角三角形,即可求出AB 的长度.【详解】解:在Rt △ABC 中,∠ABC=α,AC a =,∵sin ACABα=,∴sin a AB α=.故选:B .【点睛】本题考查了解直角三角形的应用——仰角俯角问题,解题的关键是掌握正弦的定义进行解题.③坡度与坡比问题坡面的铅直高度h 与水平宽度l 的比叫做坡度,也称之为坡比,用字母i 表示坡比.即=hi l.坡度一般写成:a b 的形式,如1:5i =等.把坡面与水平面的夹角记作α,α叫做坡角,有tan ==hi lα.例6.3我市里运河有一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,文化墙PM 在天桥底部正前方8米处(PB 的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为.有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM 是否需要拆除?请说明理由. 1.414=,1.732=)【详解】解:该文化墙PM 不需要拆除,理由:设新坡面坡角为α,新坡面的坡度为,∴3tan α==,∴30α=︒.作CD AB ⊥于点D ,则6CD =米,∵新坡面的坡度为,∴6tanCD CAD AD AD ∠===解得,AD =BC 的坡度为1:1,6CD =米,∴6BD =米,∴6)=-=-AB AD BD 米,又∵8PB =米,∴86)14146 1.732 3.6=-=--=-≈-⨯≈PA PB AB 米3>米,∴该文化墙PM 不需要拆除.变式6.320.如图,在市区A 道路上建造一座立交桥,要求桥面的高度h 为4.8米,引桥的坡角为14°,则引桥的水平距离l 为____米(结果精确到0.1m ,参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25).【答案】19.2【解析】【分析】根据题意利用正切列式进行求解即可.【详解】解:由题意可得:tan14°=4.80.24h l l=≈,解得:l =19.2,故答案为:19.2.【点睛】本题主要考查解直角三角形,熟练掌握利用三角函数进行求解问题是解题的关键.④利用三角函数测量高度例6.4如图所示,某建筑物楼顶有信号塔EF ,卓玛同学为了探究信号塔EF 的高度,从建筑物一层A 点沿直线AD 出发,到达C 点时刚好能看到信号塔的最高点F ,测得仰角60ACF ∠=︒,AC 长7米.接着卓玛再从C 点出发,继续沿AD 方向走了8米后到达B 点,此时刚好能看到信号塔的最低点E ,测得仰角30B ∠=︒.(不计卓玛同学的身高)求信号塔EF 的高度(结果保留根号).【详解】解:在Rt △ACF 中,∵60ACF ∠=︒,7AC =米,∴tan 60=⋅︒=AF AC ∵8BC =米,∴15AB =米,在Rt ABE △中,∵30B ∠=︒,∴tan30153=⋅︒=⨯=AE AB 米,∴=-=-=EF AF AE ,答:信号塔EF 的高度为变式6.421.如图,AB 和CD 是同一地面上的两座相距36米的楼房,在楼AB 的楼顶A 点测得楼CD 的楼顶C 的仰角为45°,楼底D 的俯角为30°,求楼CD 的高.【答案】楼CD 的高是(【解析】【分析】在题中两个直角三角形中,知道已知角和其邻边,只需根据正切值求出对边后相加即可.【详解】延长过点A 的水平线交CD 于点E则有AE ⊥CD ,四边形ABDE 是矩形,AE=BD=36∵∠CAE=45°∴△AEC 是等腰直角三角形∴CE=AE=36在Rt △AED 中,tan ∠EAD=EDAE∴∴答:楼CD 的高是()米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.实战练22.在Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是()A.sin B =23B.cos B =23C.tan B =23D.tan B =32【答案】C 【解析】【详解】∵∠C =90°,AC =2,BC =3,∴,∴sinB=13AC AB ==,cosB=13BC AB ==,tanB=23AC BC =,故选C.23.如果把∠C 为直角的Rt ABC 各边的长都扩大到原来的2倍,那么锐角A 的各三角比的值()A.都扩大到原来的2倍B.都缩小到原来的一半C.都没有变化D.有些有变化【答案】C 【解析】【分析】根据正弦、余弦、正切的定义即可得.【详解】 在Rt ABC 中,90C ∠=︒,sin ,cos ,tan a b aA A A c c b ∴===,222sin ,cos ,tan 222a a b b a aA A A c c c c b b∴======,则当Rt ABC 各边的长都扩大到原来的2倍,锐角A 的各三角比的值都没有变化,故选:C .【点睛】本题考查了正弦、余弦、正切的定义,熟记定义是解题关键.24.在Rt △ABC 中,∠C =90°,BC =5,AC =12,则sinB 的值是()A.512B.125C.513D.1213【答案】D 【解析】【分析】直接利用勾股定理得出AB 的长,再利用锐角三角函数得出答案.【详解】解:如图所示:∵∠C =90°,BC =5,AC =12,∴13AB ==,∴12sin 13AC B AB ==.故选:D .【点睛】本题考查勾股定理的应用和锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,解题的关键是理解三角函数的定义.25.若锐角A 、B 满足条件4590A B <<< 时,下列式子中正确的是()A.sin sin A B > B.cot cot B A> C.tan tan A B> D.cos cos A B>【答案】D 【解析】【分析】根据锐角三角函数的增减性进行判断即可.【详解】∵4590A B <<< ,∴sin sin A B <,cot cot B A <,tan tan A B <,cos cos A B >.故只有D 选项正确.故选D.【点睛】本题考查锐角三角函数的增减性,锐角的余弦值和余切值是随着角度的增大而减小,锐角的正弦值和正切值随着角度的增大而增大.26.如图,在菱形ABCD 中,∠ABC =120°,对角线AC ABCD 的周长为()A. B.20C. D.16【答案】D 【解析】【分析】连接BD 交AC 于点O ,由菱形的性质得出AB =BC =CD =AD ,AC ⊥BD ,OA =OC =12AC ,∠ABD =∠CBD =12∠ABC =60°,求出∠BAO =30°,由直角三角形的性质得OB =3OA =2,AB =2OB =4,即可得出答案.【详解】解:连接BD 交AC 于点O ,如图:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,AC ⊥BD ,OA =OC =12AC ,∠ABD =∠CBD =12∠ABC =60°,∴∠BAO =30°,∴OB =OA tan 30⋅︒=3⨯,AB =2OB =4,∴菱形ABCD 的周长=4AB =16;故选:D .【点睛】本题考查了菱形的性质,解直角三角形,含30°角的直角三角形的性质等知识;熟练掌握菱形的性质是解题的关键.27.如图,在△ABC 中,sinB=13,tanC=2,AB=3,则AC 的长为()A.B.C.D.2【答案】B 【解析】【分析】过A 点作AH ⊥BC 于H 点,先由sin ∠B 及AB=3算出AH 的长,再由tan ∠C 算出CH 的长,最后在Rt △ACH 中由勾股定理即可算出AC 的长.【详解】解:过A 点作AH ⊥BC 于H 点,如下图所示:由1sin =3∠=AH B AB ,且=3AB 可知,=1AH ,由tan =2∠=AHC CH ,且=1AH 可知,12CH =,∴在Rt ACH ∆中,由勾股定理有:2===AC .故选:B .【点睛】本题考查了解直角三角形及勾股定理等知识,如果图形中无直角三角形时,可以通过作垂线构造直角三角形进而求解.28.如图,点A ,B ,C 在正方形网格的格点上,则sin BAC ∠等于()A.3B.5C.10D.5【答案】D 【解析】【分析】连接格点CD ,根据勾股定理求出三角形的边长,再利用勾股定理的逆定理判断出直角三角形,最后由三角函数的意义求解即可.【详解】解:如图,连接格点CD ,∵AD 2=22+22=8,CD 2=12+12=2,AC 2=12+32=10,∴AD 2+CD 2=AC 2,∴∠ADC =90°,由勾股定理得,AC ,CD ,∴sin ∠BAC =CDAC 5 ,故选:D .【点睛】本题考查了三角函数的意义,勾股定理等知识,根据网格构造直角三角形和利用勾股定理求边长是解决问题的关键.29.如图,△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上),那么△ABC 与△DEF 的周长比为()A. B.1:2 C.1:3 D.1:4【答案】A 【解析】【分析】设正方形网格的边长为1,根据勾股定理求出△EFD 、△ABC 的边长,运用三边对应成比例,则两个三角形相似这一判定定理证明△BAC ∽△EDF ,即可解决问题.【详解】解:如图,设正方形网格的边长为1,由勾股定理得:DE 2=22+22,EF 2=22+42,∴DE =,EF =同理可求:AC ,BC ,∵DF =2,AB =2,∴BC AB AC EF DE DF ===,∴△BAC ∽△EDF ,∴C △ABC :C △DEF =1,故选A .【点睛】本题主要考查了勾股定理和相似三角形的判定及其性质定理的应用问题,熟练掌握相似三角形的判定与性质是解题的关键.30.如图,在等腰ABC ∆中,AB AC =.若BAC α∠=,AB m =,则底边BC =()A.sin m α⋅B.2sin m α⋅C.2sin2m α⋅ D.sin2m α⋅【答案】C 【解析】【分析】首先如图过点A 作AD ⊥BC 交BC 于D 点,据此接着利用等腰三角形性质可以得出∠BAD=12∠BAC=12α,BC=2BD ,然后在Rt △ABD 中,根据sin ∠=BDBAD AB求出BD ,最后利用BC=2BD 求出答案即可.【详解】如图,过点A 作AD ⊥BC 交BC 于D 点,则△ABD 是直角三角形,∵△ABC 为等腰三角形,AD ⊥BC ,∴∠BAD=12∠BAC=12α,BC=2BD ,在Rt △ABD 中,sin sin2BD BDBAD AB mα===∠,∴sin2BD m α=⋅,∴22sin 2BC BD m α==⋅⋅,故选:C .【点睛】本题主要考查了解直角三角形的综合运用,熟练掌握相关方法是解题关键.31.如图,在高楼前D 点测得楼顶A 的仰角为30°,向高楼前进60m 到达C 点,又测得楼顶A 的仰角为45°,则该高楼的高度大约为()A.82mB.160mC.52mD.30m【答案】A【解析】【分析】【详解】解:Rt△ABC中,∠ACB=45°,∴BC=AB,Rt△ABD中,∠ADB=30°,∴BD=AB÷tan AB,∴DC=BD-BC=)AB=60米,≈82米,即楼的高度约为82.0米,∴AB故选A.32.如图,河坝横断面迎水坡AB的坡比为1,坝高BC=3m,则AB的长度为()A.6mB.mC.9mD.【答案】A【解析】【分析】根据坡比的概念求出AC,根据勾股定理求出AB.【详解】解:∵迎水坡AB的坡比为1,∴BC AC =3AC =解得,AC =,由勾股定理得,AB ==6(m ),故选:A .【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键.33.在△ABC 中,∠C 90°,sinA 1213,BC 12,那么AC ______.【答案】5【解析】【分析】先根据正切的定义得到sinA=BC AB =1213,则可得到AB=13,然后根据勾股定理计算AC 的长.【详解】在△ABC 中,∠C=90°,∵sinA=BC AB =1213,BC=12,∴AB=13,∴.故答案为5.【点睛】本题考查锐角三角函数的定义,勾股定理.解此题的关键在于熟练掌握其知识点.34.cos45°-12tan60°=________;【答案】12-【解析】【分析】根据特殊角的三角函数值进行计算.【详解】解:原式11222=-=-.故答案是:12-.【点睛】本题考查特殊角的三角函数值,解题的关键是记住特殊角的三角函数值.35.在ABC 中,2cos (1cot )0A B +-=,则ABC ∆的形状是__________.【答案】钝角三角形【解析】【分析】根据非负数的性质得到cos =02-A ,1cot =0-B ,从而求出∠A 与∠B 的度数,即可判断△ABC 的形状.【详解】∵2cos (1cot )0A B -+-=∴cos =02-A ,1cot =0-B即cos =2A ,cot =1B ∴=30A ∠︒,=45∠︒B ∴=1803045=105∠︒-︒-︒︒C ∴ABC ∆是钝角三角形故答案为:钝角三角形【点睛】本题考查了非负数的性质,三角形的分类与特殊角度的三角函数值,熟记特殊角度的三角函数值是解题的关键.36.如图,在Rt △ABC 中,∠C =90°,b =20,c =,则∠B 的度数为_______.【答案】45°【解析】。

锐角三角函数(含习题及答案)

锐角三角函数(含习题及答案)

锐角三角函数——正弦一、教学目标1.通过探究使学生知道当直角三角形的锐角固定时,它的对边与用计算器求锐角三角函数值和根据三角函数值求锐角斜边的比值都固定(即正弦值不变)这一事实.2.能根据正弦概念正确进行计算3.经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、教学重点、难点重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.三、教学过程(一)复习引入操场里有一个旗杆,老师让小明去测量旗杆高度.(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34º,并已知目高为1米.然后他很快就算出旗杆的高度了.你想知道小明怎样算出的吗?师:通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度.这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法.下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦(二)实践探索为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉.现测得斜坡与水平面所成角的度数是30º,为使出水口的高度为35m,那么需要准备多长的水管?分析:问题转化为,在Rt△ABC中,∠C=90º,∠A=30º,BC=35m,求AB根据“再直角三角形中,30o角所对的边等于斜边的一半”,即==可得AB=2BC=70m,即需要准备70m长的水管结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于如图,任意画一个Rt△ABC,使∠C=90º,∠A=45º,计算∠A的对边与斜边的比,能得到什么结论?分析:在Rt△ABC 中,∠C=90º,由于∠A=45º,所以Rt△ABC是等腰直角三角形,由勾股定理得AB2 = AC2+BC2 = 2BC2,AB =BC故===结论:在一个直角三角形中,如果一个锐角等于45º,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A’B’C’,∠C=∠C’=90º,∠A=∠A’=α,那么与有什么关系?分析:由于∠C=∠C’=90º,∠A=∠A’=α,所以Rt△ABC与Rt△A’B’C’相似,=,即=结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值.认识正弦如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别记为a、b、c.师:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦.记作sinA.板书:sinA== (举例说明:若a = 1,c = 3,则sinA=)注意:1、sinA不是 sin与A的乘积,而是一个整体;2、正弦的三种表示方式:sinA、sin56º、sin∠DEF;3、sinA 是线段之间的一个比值;sinA 没有单位.提问:∠B的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?(三)教学互动例、如图,在RtΔABC中,∠C = 90º,求sinA和sinB的值.分析:可利用勾股定理分别求出两个三角形中未知的那一边长,再根据正弦的定义求解.解答按课本.锐角三角函数——余弦和正切一、教学目标1.使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.2.逐步培养学生观察、比较、分析、概括的思维能力.二、教学重点、难点重点:理解余弦、正切的概念难点:熟练运用锐角三角函数的概念进行有关计算三、教学过程(一)复习引入1.口述正弦的定义2.如图,在Rt△ABC中,∠ACB=90º,CD⊥AB于点D.已知AC=,BC=2,那么sin∠ACD=()A. B. C.D.(二)实践探索一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A’B’C’,∠C=∠C’=90o,∠A=∠A’=α,那么与有什么关系?分析:由于∠C=∠C’=90o,∠B=∠B’=α,所以Rt△ABC与Rt△A’B’C’相似,=,即=结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的邻边与斜边的比也是一个固定值.如图,在Rt△ABC中,∠C=90o,把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA;即cosA ==类似地,把∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA =锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(三)教学互动例、如图,在RtΔABC中,∠C = 90º,BC=6,sinA =,求cosA和tanB的值.解:∵sinA =,∴AB == 6×= 10又AC === 8∴cosA ==,tanB ==30°、45°、60°角的三角函数值一、教学目标1.能推导并熟记30º、45º、60º角的三角函数值,并能根据这些值说出对应的锐角度数.2.能熟练计算含有30º、45º、60º角的三角函数的运算式二、教学重点、难点重点:熟记30º、45º、60º角的三角函数值,能熟练计算含有30º、45º、60º角的三角函数的运算式难点:30º、45º、60º角的三角函数值的推导过程三、教学过程(一)复习引入还记得我们推导正弦关系的时候所到结论吗?即sin30º =,sin45º=你还能推导出sin60º的值及30º、45º、60º角的其它三角函数值吗?(二)实践探索让学生画30º、45º、60º的直角三角形,分别求sin30º、cos45º、tan60°归纳结果(三)教学互动例1、求下列各式的值:(1) cos260º+cos245º+sin30ºsin45º(2)+解:(1)原式 = ()2+()2+××=++= 1(2)原式 =+=+= −(1+)2−(1−)2=−3−2−3+2= −6说明:本题主要考查特殊角的正弦余弦值,解题关键是熟悉并牢记特殊角的正弦余弦值.易错点因没有记准特殊角的正弦余弦值,造成计算错例2、(1)如图(1), 在RtΔABC中,∠C = 90º,AB =,BC =,求∠A的度数.(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求α.解:(1)在图(1)中,∵sinA ===,∴∠A = −45º,(2)在图(2)中,∵tanα ===,∴α = 60º用计算器求锐角三角函数值和根据三角函数值求锐角一、教学目标1.让学生熟识计算器一些功能键的使用2.会熟练运用计算器求锐角的三角函数值和由三角函数值来求角二、教学重点、难点重点:运用计算器处理三角函数中的值或角的问题难点:知道值求角的处理三、教学过程(一)复习引入通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢?我们可以用计算器来求锐角的三角函数值.(二)实践探索1.用计算器求锐角的正弦、余弦、正切值利用求下列三角函数值(这个教师可完全放手学生去完成,教师只需巡回指导)sin37º24′sin37°23′cos21º28′ cos38°12′tan52°tan36°20′ tan75°17′2.熟练掌握用科学计算器由已知三角函数值求出相应的锐角.例如:sinA=0.9816.∠A=;cosA=0.8607,∠A=;tanA=0.1890,∠A=;tanA=56.78,∠A=.典型例题1.若把ΔABC中锐角A的两边AB、AC分别缩小为原来的,已知其中∠C = 90º,则锐角A的正弦,则sinA的变化情况为( )A.nsinA B.sinA C. D.保持原值不变答案:D说明:因为当一个锐角大小不变时,其正弦值是固定的,与∠A的两边大小无关,所以正确答案为D.2.已知ΔABC中,∠C = 90º,∠A、∠B、∠C所对的边分别是a、b、c、且c = 3b,则cosA = ( )A. B. C.D.答案:C说明:因为cosA =,而c = 3b,所以cosA =,答案为C.3.a、b、c是ΔABC的三边,a、b、c满足等式(2b)2= 4(c+a)(c−a),且有5a−3c = 0,求sinA+sinB的值.分析:用正弦的定义把正弦换为边的比,再由所给的边与边的关系即可求值.解:由(2b)2 = 4(c+a)(c−a)得b2 = c2−a2,∴c2 = a2+b2,∴ΔABC是直角三角形,且∠C = 90º;由5a−3c = 0,得=,即sinA =设a = 3k,则c = 5k,∴b == 4k,∴sinB ===∴sinA+sinB =+=.4.如图,∠POQ = 90º,边长为2 cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC = 30º;分别求点A、D到OP的距离.分析:由正方形的性质可证ΔABE≌ΔBCO≌ΔCDG,再由∠OBC = 30º,即可求出OC、CG、AE的长.解:过点A、D分别作AE⊥OP、DF⊥OP,DG⊥OG,垂足分别为E、F、G.在正方形ABCD中,∠ABC =∠BCD = 90º∵∠OBC = 30º,∴∠ABE =∠BCO = 60º同理可求∠CDG = 60º,又AB = BC = CD = 2 cm,∴RtΔABE≌RtΔBCO≌RtΔCDG∴CG = AE = AB•sin∠ABE = 2•=(cm)OC = BC•sin∠OBC = 2•= 1(cm)∴DF = OG = GC+OC = (+1)(cm)即点A到OP的距离为cm,点D到OP的距离为(+1)cm.习题精选选择题:1.如图,CD是RtΔABC斜边上的高,AC = 4,BC = 3,则cos∠BCD的值是( )A.B.C. D.答案:D说明:因为CD⊥AB,所以∠BCD+∠B = 90º;又∠A+∠B = 90º,所以∠BCD =∠A;由BC = 3,AC = 4,得AB === 5,∴cos ∠BCD = cosA ==,所以答案为D.2.如图,以平面直角坐标系的原点为圆心,以1为半径作圆,若点P是该圆在第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标是( )A.(cosα,1)B.(1,sinα)C.(sinα,cosα)D.(cosα,sinα)答案:D说明:如图,作PA⊥x轴于点A;由锐角三角函数定义知,cosα =,sinα =,所以OA = OPcosα = cosα,PA = OPsinα,所以点P的坐标为(cosα,sinα),所以答案为D.3.如图,将矩形ABCD沿着对角线BD折叠,使点C落在C’处,BC’交AD于E,下列结论不一定成立的是( )A.AD = BC’B.∠EBD =∠EDBC.ΔABE与ΔBCD相似D.sin∠ABE =答案:C说明:因为ΔBC’D≌ΔBCD,所以BC’ = BC;又BC = AD,所以AD = BC’;因为AD//BC,所以∠EDB =∠CBD,而∠CBD =∠EBD,所以∠EDB =∠EBD,所以EB = ED;而sin∠ABE ==,所以A、B、D都是成立的,答案为C.4.如图,RtΔABC中,∠C = 90º,D为BC上一点,∠DAC = 30º,BD = 2,AB = 2,则AC的长是( )A. B.2 C.3D.答案:A说明:在RtΔACD中,因为∠CAD = 30º,设CD = x,因为tan∠DAC =,则AC =x,在RtΔABC中,由勾股定理得AB2= AC2+BC2= AC2+(CD+DB)2,即(2)2= (x)2+(x+2)2,∴x2+x−2 = 0,解得x1 = 1或x2 = −2(舍去),即DC = 1,AC =,答案为A.5.在RtΔABC中,∠C = 90º,如果∠A = 30º,那么sinA+cosB的值等于( )A.1 B. C.D.答案:A说明:因为在RtΔABC中,∠C = 90º,∠A = 30º,所以∠B = 60º,所以sinA = sin30º =,cosB = cos60º =,故sinA+cosB =+= 1,所以答案为A.6.在矩形ABCD中,BC = 2,AE⊥BD于E,∠BAE = 30º,那么ΔECD的面积是( )A.2 B. C.D.答案:C说明:如图,由题意得,ΔABE与ΔBDC相似,∴∠CBD =∠BAE = 30º,∴CD = BC•tan∠CBD = 2•=,AB = CD =,BE = AB•sin30º =×=,EF = BE•sin30º =×=,∴SΔECD = SΔBCD−SΔEBC =BC•CD−BC•EF =×2×−×2×=,答案为C.7.如图,两条宽度都是1的纸条,交叉重叠放在一起,且它们的夹角为α,则它们重叠部分(图中黄色部分)的面积为( )A. B.sinα C. D.cosα答案:C说明:如图,过点A作AN⊥CD于N,过点D作DM⊥BC于M,则AN = DM = 1,∠DCM =α,在RtΔDCM中,CD == ,所以S平行四边形ABCD = CD•AN =,答案为C.解答题:1.如果α是锐角,且cosα =,求sinα及tanα的值.分析:事实上,因为α为锐角,所以可构造一个RtΔABC,使∠C = 90º,∠A = α,则有AC = 4k,AB = 5k,由勾股定理得BC == 3k,从而可求sinα;还可直接用公式sinA =求解.解:构造RtΔABC,使∠A = α,∠C = 90º,如图,∵cosα = cosA =,∴可令AC = 4k,AB = 5k,∴BC == 3k,∴sinA ===,tanA ===,即sinα =,tanα =.2.若tan2x−(+1)tanx+= 0,求锐角x.分析:这是以tanx为未知数的一元二次方程,可先求出tanx,再求x.解:tan2x−(+1)tanx+= 0,(tanx−1)(tanx−) = 0,得tanx = 1或tanx =;当tanx = 1时,x = 45º;当tanx =时,x = 60º;∴x1 = 45º,x2 = 60º.。

锐角三角函数(附答案)

锐角三角函数(附答案)

教材过关二十八 锐角三角函数一、填空题1.在直角三角形中,斜边和一直角边的比是5∶3,最小角为α,则sin α=_______________,cos α=_________________,tan α=__________________. 答案:53 54 43 提示:假如两边长分别为5、3,则另一边为4,且3所对的角最小,由此可得答案. 2.在△ABC 中,若︱sinA-21︱+(23-cosB)2=0, 则∠C=___________________. 答案:120° 提示:由sinA=21,可得∠A=30°, 由cosB=23,得∠B=30°,则∠C=120°. 3.6tan 230°-3sin60°-2cos45°=__________________. 答案:21-2 提示:tan30°=33,sin60°=23,cos45°=22. 4.等腰三角形的两条边长分别是 4 cm ,9 cm ,则等腰三角形的底角的余弦值是________________. 答案:92 提示:三角形三边只能为4,9,9.5.若∠A 为锐角,且tan 2A+2tanA-3=0,则∠A=__________________. 答案:45°提示:解这个一元二次方程,可得tanA 的值,但∠A 为锐角,所以只能取正值. 6.如图9-43,AB 、CD 是两栋楼,且AB=CD=30 m,两楼间距AC=24 m,当太阳光与水平线的夹角为30°时,AB 楼在CD 楼上的影子是m.(精确到0.1 m )图9-43答案:16.2提示:画出图形,解直角三角形. 二、选择题7.在△ABC 中,∠C=90°,下列式子正确的是A.b=atanAB.b=csinAC.a=ccosBD.c=asinA 答案:C 提示:因为cosB=ca,所以a=ccosB. 8.在Rt △ABC 中,各边都扩大四倍,则锐角A 的各三角函数值 A.没有变化 B.分别扩大4倍 C.分别缩小到原来的41D.不能确定 答案:A提示:因为各边都扩大四倍,它们的比值不变,故三角函数值也不变. 9.在Rt △ABC 中, 2sin(α+20°)=3,则锐角α的度数是A.60°B.80°C.40°D.以上结论都不对 答案:C提示:2sin(α+20°)=3,得sin(α+20°)=23, 所以α+20°=60°,α=40°.10.在Rt △ABC 中, ∠C=90°,已知tanB=25,则cosA 等于 A.25 B.35 C.552 D.32答案:B 提示:∵tanB=25,a b =25,可令b=5,a=2,则c=3,cosA=35. 11.有一个角是30°的直角三角形,斜边为1 cm ,则斜边上的高为 A.41 cm B.21cmC.43 cm D.23 cm 答案:C 提示:直角三角形中30°角所对的边等于斜边的一半,求出两直角边再利用面积或射影定理. 三、解答题12.(2010四川泸洲中考)如图9-44,在一次实践活动中,小兵从A 地出发,沿北偏东45°方向行进了53千米到达B 地,然后再沿北偏西45°方向行进了5千米到达目的地点C.图9-44(1)求A 、C 两地之间的距离;(2)试确定目的地C 在点A 的什么方向? 解:根据题意,可知∠ABC=90°,∵AB=53,BC=5, AC 2=AB 2+BC 2 =75+25 =100.∴AC=10千米.(2)在Rt △ABC 中,tan ∠BAC=AB BC =355=33, ∴∠BAC=30°.∴C 在点A 的北偏东15°.提示:根据方向角,先确定出△ABC 是直角三角形,可用勾股定理求AC,再利用三角函数求出CA.13.如图9-45,用测角仪测得铁塔顶点A 的仰角为30°,测角仪离铁塔中心线AB 的距离为40米,测角仪CD 高1.5米,求铁塔的高度.(精确到0.1米)图9-45答案:24.6米.提示:铁塔的高度AB=40tan30°+1.5≈24.6(米). 14.如图9-46,河对岸有铁塔AB ,在C 处测得塔顶A 的仰角为30°,向塔前进14米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高.图9-46解:在Rt △ABD 中, ∵tan ∠ADB=BDAB=1,∴BD=AB. 又在Rt △ABC 中,∵tanC=BC AB =33, ∴BC=30tan AB=3AB.又∵BC-BD=14,∴3AB-AB=14. ∴AB=7(3+1)(米).15.如图9-47,水面上有一浮标,在高于水面1米的地方观察,测得浮标顶的仰角30°,同时测得浮标在水中的倒影顶端俯角45°,观察时水面处于平静状态,求水面到浮标顶端的高度.(精确到0.1米)图9-47答案:3.7米.提示:过A 作AD ⊥BC 于D,则∠BAD=30°,∠DAC=45°. 设BD=x,则AD=xcot30°.又AD=DC 且BE=DC,即x+1=xcot30°. 求得x ≈2.73.∴BE=2.73+1≈3.7(米).16.如图9-48,在一次暖气管道的铺设工作中,工程是由A 点出发沿正西方向进行的,在A 点的南偏西60°的方向上有一所学校,学校占地是以B 点为中心方圆100米的圆形,当工程进行了200米时到达C 处,此时B 在C 的南偏西30°的方向上,请根据题中所提供的信息计算、分析一下,工程继续进行下去,是否会穿过学校?图9-48解:过B 作BD ⊥AC 于D,在Rt △BCD 中,∠BCD=60°,∵tan60°=CD BD ,∴CD=︒60tan BD. 同理,在Rt △BAD 中,AD=︒30tan BD,又∵AD-CD=200,∴3BD-33BD=200. ∴BD=1003>100.∴不会穿过学校.。

相似三角形及锐角三角函数

相似三角形及锐角三角函数

九年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:一、相关概念:1. 相似图形:形状相同的图形。

2. 相似多边形的性质:对应角相等,对应边成比例。

3. 相似比:相似多边形对应边的比。

二、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等三、相似三角形的判定✓通过定义(三边对应成比例,三角相等)✓平行于三角形一边的直线✓三边对应成比例(SSS)✓两边对应成比例且夹角相等(SAS)✓两角对应相等(AA)✓两直角三角形的斜边和一条直角边对应成比例(HL)四、相似三角形的性质✓对应角相等。

✓对应边成比例。

✓对应高的比等于相似比。

✓对应中线的比等于相似比。

✓对应角平分线的比等于相似比。

✓周长比等于相似比。

✓面积比等于相似比的平方。

五、位似:✓位似图形的概念:如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形, 这个点叫做位似中心, 这时的相似比又称为位似比.✓在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.考点一一、选择题(每小题3分,共24分)1.下列命题:①所有的等腰三角形都相似,②所有的等边三角形都相似,③所有的等腰直角三角形都相似,④所有的直角三角形都相似.其中,正确的是 ( )A.②③B.②③④C.③④D.②④2.有两个顶角相等的等腰三角形框架,其中一个三角形框架的腰长为6,底边长为4,另一个三角形框架的底边长为2,则这个三角形框架的腰长为 ( ) A.6 B.4 C.3 D.23.如图,点P 是△ABC 的边AB 上的一点,过点P 作直线(不与直线AB 重合)截△ABC ,使截得的三角形与原三角形相似.满足这样条件的直线最多有 ( ) A.2条 B.3条 C.4条 D.5条4.如图,E 是□ABCD 的边BC 延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形 ( )A.1对B.2对C.3对D.4对5.两个相似菱形边长的比是1:4,那么它们的面积比是 ( ) A .1:2 B .1:4 C .1:8 D .1:166.下列条件中,不能判定以A /、B /、C /为顶点的三角形与△ABC 相似的是( ) A.∠C=∠C /=90°,∠B=∠A /=50° B.AB=AC ,A /B /=A /C /,∠B=∠B /C.∠B=∠B /,////C B BC B A AB =D. ∠A=∠A /,////C B BC B A AB =7.△ABC 的周长等于16,D 是AC 的中点,DE ∥AB ,交BC 于点E ,则△DEC 的周长等于( ) A.2 B.4 C.6 D.88.在□ABCD 中,E 是BC 的中点,F 是BE 的中点,AE 与DF 相交于H ,则△EFH 的面积与△ADH 的面积的比值为 ( ) A .21 B . 81 C .161 D .41二、填空题(每小题3分,共18分)9.有一张比例尺为1∶4000的地图上,一块多边形地区的周长是60cm ,则这个地区的实际周长________。

中考数学【锐角三角函数】考点专项复习教案(含例题、习题、答案)

中考数学【锐角三角函数】考点专项复习教案(含例题、习题、答案)

8.
cos 60°= 1 ,tan 30°=
2
,∴cos 60°-tan 30°≠0,
∴(cos 60°-tan 30°)0=1, 解:原式= 例7 分析
2 +1
3
十+2
2 =3 2 +1.
1 32
1 计算 2
-(π -3.14)0-|1-tan 60°|-
3. 3 +1+ 3 +2=10.
第二十八章
本章小结 小结 1 本章概述
锐角三角函数
锐角三角函数、解直角三角形,它们既是相似三角形及函数的继 续,也是继续学习三角形的基础.本章知识首先从工作和生活中经常 遇到的问题人手, 研究直角三角形的边角关系、 锐角三角函数等知识, 进而学习解直角三角形,进一步解决一些简单的实际问题.只有掌握 锐角三角函数和直角三角形的解法, 才能继续学习任意角的三角函数 和解斜三角形等知识, 同时解直角三角形的知识有利于培养数形结合 思想,应牢固掌握. 小结 2 本章学习重难点 【本章重点】 通过实例认识直角三角形的边角关系,即锐角三 角函数(sin A,cos A,tan A),知道 30°,45°,60°角的三角函数 值,会运用三角函数知识解决与直角三角形有关的简单的实际问题. 【本章难点】 综合运用直角三角形的边边关系、边角关系来解 决实际问题. 【学习本章应注意的问题】 在本章的学习中,应正确掌握四种三角函数的定义,熟记特殊角 的三角函数值,要善于运用方程思想求直角三角形的某些未知元素, 会运用转化思想通过添加辅助线把不规则的图形转化为规则的图形 来求解, 会用数学建模思想和转化思想把一些实际问题转化为数学模 型,从而提高分析问题和解决问题的能力.
.
tan 60°=
解:原式=8-1-
专题 3 锐角三角函数与相关知识的综合运用 【专题解读】 锐角三角函数常与其他知识综合起来运用,考查 综合运用知识解决问题的能力. 例 8 如图 28-124 所示,在△ABC 中,AD 是 BC 边上的高,E 为 AC 边的中点,BC=14,AD=12,sin B =4.

锐角三角函数(含答案)

锐角三角函数(含答案)

一、基础知识1、1、利用计算器求锐角三角三角函数值。

如求sin63゜52′41″的值.(精确到0.0001)先用如下方法将角度单位状态设定为“度”:再按下列顺序依次按键:显示结果为0.897 859 012.所以sin63゜52′41″≈0.89792、利用计算器根据锐角三角函数值求锐角。

如已知tan x=0.7410,求锐角x.(精确到1′)在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4. 所以,x≈36゜32′注意:利用计算器求锐角三角函数值或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同。

二、重难点分析重点:用计算器求任意角的三角函数值。

难点:由锐角三角函数值求锐角:例1:如图,工件上有一个V形槽,测得它的上口宽20mm,深19.2mm,求V形角(∠ACB)的大小(结果精确到1°)三、中考感悟(2014•tan56°≈。

(结果精确到0.01)四、专项训练(一)基础练习1、用计算器计算cos44°的结果(精确到0.01)是()A. 0.90B. 0.72C. 0.69D. 0.66【答案】B2、按键,使科学记算器显示回后,求sin90°的值,以下按键顺序正确的是()3、用计算器求下列各式的值:(1)sin47°;(2)sin12°30′;(3)cos25°18′;(4)tan44°59′59″;(5)sin18°+cos55°-tan59°(3)cos25°18′=0.9003;(4)tan44°59′59″=1.0000;(5)sin18°+cos55°-tan59=-0.7817.4、利用计算器求下列各角(精确到1″)(1)sinA=0.75,求A;(2)cosB=0.888 9,求B;(3)tanC=45.43,求C;(4)tanD=0.974 2,求D.6、用计算器验证,下列不等式中成立的是()A.sin37°24′>cos37°24′+cos3°10′B.cos45°32′>sin45°-sin1°12′C.sin63°47′<cos18°21′-cos87°D.2sin30°12′<sin60°24′【解析】使用计算器分别对各选项进行计算,只有B正确.【答案】B(二)提升练习7、先用计算器求:sin20°≈,sin40°≈,sin60°≈,sin80°≈,再按从小到大的顺序用“<”把sin20°,sin40°,sin60°,sin80°连接起来:.归纳:正弦值,角大值。

专题24 解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设与面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C所对的边分别为,则实数a的取值范围是____________.【答案】.【解析】由,得,所以,则由余弦定理,得,解得,又,所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:,可知:,,,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小; (2)设向量,边长,当取最大值时,求边的长. 【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小; (2)因为由此可求当取最大值时,求边的长.(2)因为所以当时,取最大值,此时,由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*网(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值.详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当 时,由正弦定理 ,,所以,当时,综上所述,.例7.【2018届四川省资阳市高三4月(三诊)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin a b A B +- ()sin sin c C B =-.(1)求A .(2)若4a =,求22b c +的取值范围.【答案】(1)3A π=;(2)(]16,32.221616b c bc +=+>,进而可得结果.试题解析:(1)根据正弦定理得()()a b a b +- ()c c b =-,即222a b c bc -=-,则222122b c a bc +-=,即1cos 2A =,由于0πA <<,【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 例8.【2018届甘肃省张掖市高三三诊】已知3cos,cos 44x x m ⎛⎫= ⎪⎭, sin ,cos 44x x n ⎛⎫= ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 的单调增区间;(2)设ABC ∆的内角A , B , C 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【答案】(1) 424,433k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈.(2) ⎛ ⎝⎦. 【解析】试题分析:(1)由题()13cos ,cos sin ,cos sin 4444262x x x x x f x m n π⎛⎫⎛⎫⎛⎫=⋅=⋅=++ ⎪ ⎪ ⎪⎭⎝⎭⎝⎭,根据正弦函数的性质222262x k k πππππ-≤+≤+可求其单调增区间;(2)由题2b ac =可知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=, (当且仅当a c =时取等号),所以03B π<≤,6263B πππ<+≤,由此可求 ()f B 的取值范围.(当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤, ()1f B <≤,综上, ()f B的取值范围为⎛ ⎝⎦. 例9.【2018届吉林省吉林市高三第三次调研】锐角ABC ∆中, ,,A B C 对边为,,a b c ,()()()222sin cos ba c B C A C --+=+(1)求A 的大小; (2)求代数式b c a +的取值范围.【答案】(1)3π(22b ca+<≤ 【解析】试题分析:(1)由()()()222sin cos b a c B C A C --+=+及余弦定理的变形可得2cos sin B A B -,因为cos 0B ≠,故得sin A =ABC ∆中3A π=.(2)利用正弦定理将所求变形为2sin sin 32sin sin 6B B b c B a A ππ⎛⎫++ ⎪+⎛⎫⎝⎭==+ ⎪⎝⎭,然后根据6B π+的取值范围求出代数式b ca+的取值范围即可.试题解析: (1)∵2222cos b a c ac B --=-, ()()()222sin cos b a c B C A C --+=+,∴()()2cos sin cos ac B B C A C -+=+ , ∴()()2cos sin ,B A B ππ--=-∴2cos sin B A B -=,∴23sin sin sin sin sin 3222sin sin sin 6sin 3B B B Bb c B C B a A A πππ⎛⎫+++ ⎪++⎛⎫⎝⎭====+ ⎪⎝⎭,∵ABC ∆为锐角三角形,且3A π=∴02{02B C ππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+<sin 16B π⎛⎫<+≤ ⎪⎝⎭.2b c a +<≤.故代数式b c a +的取值范围2⎤⎦.点睛:(1)求b ca+的取值范围时,可根据正弦定理将问题转化为形如()sin y A x ωϕ=+的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角x ωϕ+的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得6B π+的范围,然后结合函数的图象可得sin 6B π⎛⎫+⎪⎝⎭的范围,以达到求解的目的. 例10.【2018届衡水金卷信息卷(一)】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n .(1)求角A 的值;(2)已知ABC ∆的外接圆半径为2ABC ∆周长的取值范围. 【答案】(1) 3A π=(2) (]4,6 【解析】试题分析:(1)由//m n ,得62)0c c o s A a c o s B-+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以b c +的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围.得1cos 2A =.又()0,A π∈,所以3A π=.(2)根据题意,得2sin 2a R A ===.由余弦定理,得()22222cos 3a b c bc A b c bc =+-=+-,即()223432b c bc b c +⎛⎫=+-≤ ⎪⎝⎭,整理得()216b c +≤,当且仅当2b c ==时,取等号, 所以b c +的最大值为4.又2b c a +>=,所以24b c <+≤,所以46a b c <++≤. 所以ABC ∆的周长的取值范围为(]4,6.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( )A.B.C.D. 【答案】D【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A.B.C.D.【答案】C【解析】 ,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形ABCD 中, AB =, 1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为1S 、2S ,则当2212S S +取最大值时, BD =__________.【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时BD 的值. 4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】 【解析】由+得,所以,即,再由余弦定理得 ,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和与两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2cos 2,2a C c b a +==,则ABC ∆的最大值为__________.即4bc ≤,所以ABC ∆的最大值为max 11sin 422S bc A ==⨯= 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且sin cos b A B =.(1)求角B ;(2)若b =ABC ∆面积的最大值.【答案】(1)3B π=;(2).【解析】试题分析:(1)由正弦定理边化角得到tan B =(2)由余弦定理得2222cos b a c ac B =+-, 2212a c ac =+-结合222a c ac +≥即可得最值.试题解析:(1)∵sin cos b A B =,∴由正弦定理可得sin sin cos B A A B =,即ABC ∆面积的最大值为.8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理 ,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin cos a C A =. (1)求角A 的大小;(2)若2b =,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 1⎡⎤⎣⎦.在ABC ∆中,由正弦定理,得sin sin b c B C=,∴22sin 2sin 311sin sin sin tan B C B c B B B B π⎛⎫- ⎪⎝⎭===+=+,∵43B ππ≤≤,∴1tan B ≤≤21c ≤≤,即c的取值范围为1⎡⎤⎣⎦.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知ABC ∆三个内角 ,,A B C 的对边分别为,,a b c ,ABC ∆的面积S满足222a b c =+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)(tan C =0C π<<, 23C π∴=.(2)()3cos2cos =cos2cos 2cos232A A B A A A A π⎛⎫+-+-= ⎪⎝⎭23A π⎛⎫+ ⎪⎝⎭0,2333A A ππππ<<∴<+<(203A π⎛⎫+∈ ⎪⎝⎭ 11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值;(2)若4B π=, S 为ABC ∆的面积,求cos S A C +的取值范围.【答案】(1) 4b =(2) (【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值; (2)由正弦定理1sin sin 2S bc A A C ==,故324S AcosC A π⎛⎫+=- ⎪⎝⎭限制角A的范围,求出cos S A C +的取值范围.(2)由正弦定理sin sin b c B C =得114sin 4sin sin sin 22sin4S bc A A C A C π==⋅⋅=()324S AcosC A C A π⎛⎫∴+=-=-⎪⎝⎭, 在ABC ∆中,由3040{ 202A A C A C πππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭ 320,44A ππ⎛⎫∴-∈ ⎪⎝⎭,3cos 24A π⎫⎛⎫∴-∈⎪ ⎪⎪⎝⎭⎝⎭(S AcosC ∴+∈.12.【衡水金卷信息卷 (五)】在锐角ABC ∆中,内角A , B , C 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭.(1)求角A ;(2)若a =ABC ∆周长的取值范围. 【答案】(1) 3A π=(2) (3+(3.试题解析:(1)∵252224B C sin A sin π+⎛⎫+-=- ⎪⎝⎭,∴()15224cos B C cos A -+-=-, ∴2152124cosA cos A +--=-,整理,得28210cos A cosA --=,∴14cosA =-或12cosA =, ∵02A π<<,∴12cosA =,即3A π=.(2)设ABC ∆的外接圆半径为r,则22a r sinA===,∴1r =. ∴()2b c r sinB sinC +=+ 223sinB sin B π⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦6B π⎛⎫=+ ⎪⎝⎭,∴ABC ∆周长的取值范围是(3+.。

高考数学一轮复习课件:第24课三角函数的诱导公式

高考数学一轮复习课件:第24课三角函数的诱导公式

题3:已知sin 1250 12 ,则sin 55 13
关键是:角1250 与55 之间的关系为
12 13 .
.
诊断练习
sin( ) cos( )
题4、化简:sin(2 ) cos( )
2
逐项化简,注意
名称? 符号?
诊断练习
sin(2 ) tan( )
例1、化简: cos( ) tan(3 ) tan( )
角 k 所在象限的原三角函数的值的符号。
2、
2
,3
2
的诱导公式的记忆规律是
“函数名改变,符号看象限”,“函数名改变”
即变为原来的余函数,“符号看象限”即将
看作是“锐角”后, ,3 所在象限的
原三角函数的符号。2
2
3、利用诱导公式把任意的三角函数转化为 锐角三角函数的基本步骤是:
2
sin( 3 ) ?
2
基础知识回顾与梳理
4、请推导
sin(
2
)
、cos(
2
)
.
sin( ) cos
(公式6) 2
cos( ) sin
2
思考:公式5、6与公式1、2、3、4的区 别是否有规律?如何理解和记忆呢?
基础知识回顾与梳理
5、化简:(1)sin(23 ) cos
第24讲 三角函数的诱导公式
基础知识回顾与梳理
这两个角的终边 不是在一起吗?
1、与 的终边相同的角为 2k(k ),
其三角函数与 的三角函数关系怎样?
sin(2k ) sin
(诱导公式1)ctaons((22kk
) )
cos tan
k(k Z)
与 的三角函
数关系如何?

相似三角形与三角函数

相似三角形与三角函数

初三数学---相似三角形和解直角三角形一、相似三角形1.相似三角形判定定理:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. (2)判定定理1如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.即“两角对应相等,两三角形相似”.(3)判定定理2如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.即“两边对应成比例且夹角相等,两三角形相似”.(4)判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.即“三边对应成比例,两三角形相似”.(5)若△1∽△2、△2∽△3、则△1∽△3.对于直角三角形相似,还有如下判定定理:(6)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(7)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.2.相似三角形的性质(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比;(4)相似三角形周长比等于相似比;(5)相似三角形面积的比等于相似比的平方.二、锐角三角函数1.掌握锐角三角函数的定义,准确地进行计算.2.互余角的三角函数间的关系(1)sin(90°-)=cos;(2)cos(90°-)=sin;(3).3.同角三角函数间的关系(1);(2).三、解直角三角形1.如图,在Rt△ABC中,∠C=90°,(1)三边之间的关系:a2+b2=c2;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:,,.2.如图,若直角三角形ABC中,CD⊥AB于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a2=pc;由△CAD∽△BAC,得b2=qc;由△ACD∽△CBD,得h2=pq;由△ACD∽△ABC或由△ABC的面积,得ab=ch.从三角函数的角度考虑,有由,得a2=pc;同理,得b2=qc;由,得h2=pq;由,得ab=ch.在有关直角三角形的相似问题中,可以尝试运用三角函数的知识来解题,即“三角法”.3.如图1,若CD是直角三角形ABC中斜边上的中线,则(1)CD=AD=BD=;(2)点D是Rt△ABC的外心,外接圆半径.4.如图2,若r是直角三角形ABC的内切圆半径,则.图1 图2 图3 5.直角三角形的面积:(1)如图2,S△ABC.(2)如图3,S△ABC.6B=90°-A,,,由求角A,B=90°-A,由求角A,B=90°-A例题分析例1.如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为下底BC上一点(不与B,C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B.(1)你认为图中哪两个三角形相似,为什么?(2)当点P在底边BC上自点B向C移动的过程中,是否存在一点P,使得DE∶EC=5∶3?如果存在,求BP的长;如果不存在,请说明理由.例2.如图,正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)求证:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN,并求x的值.例3.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sin B·sin C的值.例4.如图,D是AB上一点,且CD⊥AC于C,S△ACD∶S△CDB=2∶3,,AC+CD=18,求tan A的值和AB的长.5.如图,△OAB是边长为2的等边三角形,过点A的直线y=与x轴交于点E.求点E的坐标.6.已知:如图(a),梯形ABCD中,AB∥CD,∠C=90°,AB=BC=4,CD=6.(1)E为BC边上一点,EF∥AD,交CD边于点F,FG∥EA,交AD边于点G,若四边形AEFG为矩形,求BE的长;(2)如图(b),将(1)中的∠AEF绕E点逆时针旋转为∠A′EF′,EF′交CD边于F′点,且F′点与D点不重合,射线EA′交AB边于点M,作F′N∥EA′交AD边于点N,设BM为x,△NF′D中,F′D边上的高为y,求y关于x的函数解析式及自变量x的取值范围.图(a)图(b)答案例1、解:(1)△ABP∽△PCE.其理由是除∠B=∠C外,由于∠APE=∠B=60°,∠APC=∠B+∠BAP=∠APE+∠CPE,∴∠BAP=∠CPE.由“两角对应相等,两三角形相似”可得△ABP∽△PCE.说明:此图形结构可以称为“一线三等角问题”.(2)作DF⊥BC于F,由已知可得CF=,腰长AB=CD=2CF=4,这样原问题转化为在底边BC上是否存在一点P,使得CE=1.5.假设存在P点,使CE=1.5,由△ABP∽△PCE,得,可得BP·PC=AB·CE=6.设BP=x,∵BC=BP+PC=7,∴PC=7-x.∴x(7-x)=6,即x2-7x+6=0.解得x1=1,x2=6.答:当BP=1或BP=6时,使得DE∶EC=5∶3.例2、解:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°.∵AM⊥MN,∴∠AMN=90°.∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠MAB=∠CMN.∴Rt△ABM∽Rt△MCN.(2)∵Rt△ABM∽Rt△MCN,,即...当x=2时,y取最大值,最大值为10.(3)∵∠B=∠AMN=90°,∴要使△ABM ∽△AMN,只需.由(1)知.∴BM=MC.∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.例3、分析:为求sin B,sin C,需将∠B,∠C分别置于直角三角形之中,另外已知∠A的邻补角是60°,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B,C,向CA,BA的延长线作垂线段,即可顺利求解.解:过点B作BD⊥CA的延长线于点D,过点C作CE⊥BA的延长线于点E.∵∠BAC=120°,∴∠BAD=60°.;.又∵CD=CA+AD=10,,.同理,可求得..说明:由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线段等方法将其置于直角三角形中.例4、解:作DE∥AC交CB于E,则∠EDC=∠ACD=90°.∵,设CD=4k(k>0),则CE=5k,由勾股定理得DE=3k.∵△ACD和△CDB在AB边上的高相同,∴AD∶DB=S△ACD∶S△CDB=2∶3..即..∵AC+CD=18,∴5k+4k=18.解得k=2...说明:本章解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.例5、解:作AF⊥x轴于F.∴OF=OA·cos60°=1,AF=OF·.∴点A坐标为(1,).代入直线解析式,得...当y=0即时,x=4.∴点E坐标为(4,0).例6、解:(1)作AH⊥CD于点H(如图(c))可得∠1=∠2=∠D.由AB=BC=CH=4可得HD=CD-CH=2...∴BE=2,即E为BC的中点.(2)图(d),作NP⊥CD于点P,则PN=y.可得∠4=∠5=∠6,它们的正切值相等.,即.,.,,∵CD=CF′+PF′+PD,,即.整理,得.若点F′与点D重合(见图(e)),则∠BEM=∠EDC,...∴x的取值范围为。

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年中考数学一轮复习:锐角三角函数(含答案)一、单选题1.如图,在ABC 中, 45B ∠=︒ , 30C ∠=︒ ,分别以 A 、 B 为圆心,大于12AB 的长为半径画弧,两弧相交于点 D 、 E .作直线 DE ,交 BC 于点 M ;同理作直线 FG 交 BC 于点 N ,若 6AB = ,则 MN 的长为( )A .1B 3C .3D .232.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin∠OMN 的值为( )A .12B .1C .2 D 33.如图,在 Rt ABC 中, 9053C AB BC ∠=︒==,, ,则 sin B 的值为( )A .45B .34C .35D .43二、填空题4.cos60︒ = .5.两块等腰直角三角形纸片 AOB 和 COD 按图1所示放置,直角顶点重合在点O 处,210AB = , 4CD = .保持纸片 AOB 不动,将纸片 COD 绕点O 逆时针旋转 α()090α<<︒ .当BD 与 CD 在同一直线上(如图2)时, α 的正切值等于 .6.在 ABC ∆ 中, 903016ACB A AB ︒︒∠=∠==,, ,点 P 是斜边 AB 上一点,过点 P 作PQ AB ⊥ ,垂足为 P ,交边 AC (或边 CB )于点 Q ,设 AP x = ,当 APQ ∆ 的面积为 3时, x 的值为 .三、综合题7.如图,在直角三角形ABC 中,∠C =90°,∠A =30°,AC =4,将∠ABC 绕点A 逆时针旋转60°,使点B 落在点E 处,点C 落在点D 处.P 、Q 分别为线段AC 、AD 上的两个动点,且AQ =2PC ,连接PQ 交线段AE 于点M .(1)AQ = ,∠APQ 为等边三角形;(2)是否存在点Q ,使得∠AQM 、∠APQ 和∠APM 这三个三角形中一定有两个三角形相似?若存在请求出AQ 的长;若不存在请说明理由; (3)AQ = ,B 、P 、Q 三点共线.8.(1)计算:3tan30°-(cos60°)-1+8 cos45°+()1tan 60-︒(2)先化简,再求代数式 221(1)122x x x --÷++ 的值,其中x=4cos30°-tan45° 9.如图,AB 是∠O 的直径,点P 在∠O 上,且PA =PB ,点M 是∠O 外一点,MB 与∠O 相切于点B ,连接OM ,过点A 作AC OM 交∠O 于点C ,连接BC 交OM 于点D .(1)求证:MC是∠O的切线;(2)若152OB=,12BC=,连接PC,求PC的长.10.如图,在∠ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形;(2)若AB=6,∠BAC=60°,∠DCB=135°,求AC的长.11.如图,∠ABC内接于∠O,AB是∠O的直径,∠O的切线AP与OC的延长线相交于点P,∠P=∠BCO.(1)求证:AC=PC;(2)若AB=6 3,求AP的长.12.(12744 sin603233-︒-(2)先化简,再求值:342111xxx x-⎛⎫+-÷⎪--⎝⎭,其中22x=.13.如图,以AB为直径作O,过点A作O的切线AC,连接BC,交O于点D,点E是BC边的中点,连结AE.(1)求证: 2AEB C ∠=∠ ; (2)若 5AB = , 3cos 5B =,求 DE 的长. 14.(1)计算: 2cos 45sin 30tan 45︒︒︒+⋅ . (2)求二次函数 21212y x x =++ 图象的顶点坐标. 15. 如图,直线y =-x +b 与反比例函数 3y x=-的图象相交于点A (a ,3),且与x 轴相交于点B .(1) 求a 、b 的值;(2) 若点P 在x 轴上,且∠AOP 的面积是∠AOB 的面积的12,求点P 的坐标. 16.如图, PA 、 PB 为O 的切线,A 、B 为切点,点C 为半圆弧的中点,连 AC 交 PO于E 点.(1)求证: PB PE = ; (2)若 3tan 5CPO ∠=,求 sin PAC ∠ 的值. 17.(120313213(202248)64---⨯--().(2)先化简,再求值:2243()22ab a ba b a b b a a b---⨯÷+-+,代入你喜欢的a ,b 值求结果. 18.矩形AOBC 中,OB =4,OA =3,分别以OB ,OA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数 ky x= (k >0)的图象与边AC 交于点E.(1)当点F 为边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值.19.如图1,已知矩形ABCD 中,AB=6,BC=8,O 是对角线AC 的中点,点E 从A 点沿AB 向点B运动,运动过程中连接OE ,过O 作OF∠OE 交BC 于F ,连接EF ,(1)当点E 与点A 重合时,如图2,求 tan OEF ∠ 的值;(2)运动过程中, tan OEF ∠ 的值是否与(1)中所求的值保持不变,并说明理由; (3)当EF 平分∠OEB 时,求AE 的长.20.如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()10A -,、()20B ,,与y 轴交于点C ,且2tan OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBCBCDSS=,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q.设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ 的值,并求PQOQ的最大值. 21.如图1,四边形 ABCD 内接于O , BD 为直径, AD 上存在点E ,满足AE CD = ,连结 BE 并延长交 CD 的延长线于点F , BE 与 AD 交于点G.(1)若 DBC α∠= ,请用含 α 的代数式表列 AGB ∠ . (2)如图2,连结 ,CE CE BG = .求证; EF DG = . (3)如图3,在(2)的条件下,连结 CG , 2AG = . ①若 3tan 2ADB ∠=,求 FGD 的周长. ②求 CG 的最小值.22.如图,直线364y x =+分别与x 轴、y 轴交于点A 、B ,点C 为线段AB 上一动点(不与A 、B 重合),以C 为顶点作OCD OAB ∠=∠,射线CD 交线段OB 于点D ,将射线OC 绕点O 顺时针旋转90︒交射线CD 于点E ,连接BE .(1)证明:CD ODDB DE=;(用图1) (2)当BDE 为直角三角形时,求DE 的长度;(用图2) (3)点A 关于射线OC 的对称点为F ,求BF 的最小值.(用图3)23.如图,在二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.其对称轴与线段BC 交于点E ,与x 轴交于点F.连接AC ,BD.(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求 OBC ∠ 的度数; (2)若 ACO CBD ∠=∠ ,求m 的值;(3)若在第四象限内二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象上,始终存在一点P ,使得 75ACP ∠=︒ ,请结合函数的图象,直接写出m 的取值范围.24.如图,已知 AB 是O 的直径,点 E 是O 上异于 A , B 的点,点 F 是 EB 的中点,连接 AE , AF , BF ,过点 F 作 FC AE ⊥ 交 AE 的延长线于点 C ,交 AB 的延长线于点 D , ADC ∠ 的平分线 DG 交 AF 于点 G ,交 FB 于点 H .(1)求证: CD 是 O 的切线;(2)求 sin FHG ∠ 的值; (3)若 GH 42=, HB 2= ,求 O 的直径.25.如图,在平面直角坐标系中,二次函数 ()240y ax bx a =++≠ 的图象经过 ()3,0A - ,()4,0B 两点,且与 y 轴交于点 C .点 D 为 x 轴负半轴上一点,且 BC BD = ,点 P ,Q 分别在线段 AB 和 CA 上.(1)求这个二次函数的表达式.(2)若线段 PQ 被 CD 垂直平分,求 AP 的长. (3)在第一象限的这个二次函数的图象上取一点 G ,使得 GCBGCASS= ,再在这个二次函数的图象上取一点 E (不与点 A , B , C 重合),使得 45GBE ∠=︒ ,求点 E 的坐标.参考答案1.【答案】A【解析】【解答】如解图,连接AM、AN,由作法可知,DE、FG分别为线段AB、AC的垂直平分线,∴AM=BM,AN=CN.∵∠B=45°,∠C=30°,∴∠BAM=45°,∠CAN=30°.∴∠AMB=∠AMC=90°.∴∠MAN=90°−∠C−∠CAN=30°.∵AB= 6,∴AM= 3,∴MN=AM·tan30°=1,故答案为:A.【分析】利用线段垂直平分线的性质得到AM=BM,AN=CN,∠BAM=45°,∠CAN=30°.求得∠MAN=90°−∠C−∠CAN=30°,利用特殊角的三角函数值即可求解。

人教版锐角三角函数

人教版锐角三角函数

新知探索:30°角的三角函数值
sin30°= A的对边 1
斜边 2
3
cos30°= A的邻边 3
斜边
2
tan30°= A的对边 3
A的邻边 3
新知探索:45°角的三角函数值
sin45°= A的对边 2
2
斜边
2
cos45°= A的邻边 2
斜边
2
tan45°= A的对边 1 A的邻边
rldmm8989889
新知探索:60°角的三角函数值
sin60°= A的对边 3
斜边
2
2
3 cos60°= A的邻边 1
斜边 2
1
tan60°= A的对边 3
A的邻边
30°、45°、60°角的正弦值、余弦值和正切值 如下表:
锐角a 三角函数
30°
45°
60°
sin a
1
2
3
2
2
2
cos a
3
2
1
2
2
2
tan a
★我们把锐角A的邻边与斜边的比叫做∠A的
余弦(cosine),记作cosA, 即
cos
A
A的邻边 斜边
b c
斜边c
B 对边a
A 邻边b C
★我们把锐角A的对边与邻边的比叫做∠A的 正切(tangent),记作tanA, 即
tan
A
A的对边 A的邻边
a b
注意
▪ cosA,tanA是一个完整的符号,它表示∠A 的余弦、正切,记号里习惯省去角的符号 “∠”;
AC DC tan 42,
D 42°
C
1.6m
AB AC CB 20 tan 42 1.6. 少呢?

高中数学第24讲(必修4)任意角的三角函数、同角公式与诱导公式

高中数学第24讲(必修4)任意角的三角函数、同角公式与诱导公式

由同角公式得
sin x cos x 2sin x cos x
=
tan x 1 2 tan x 1
=
1 3
.
4.tan300°+
cos(450 ) sin 750
的值为 2 3
.
cos(45 ) =-tan60°+ sin(30 )
cos(360 45 ) 原式=tan(360°-60°)+ sin(720 30 )
4 C.-8π+3 4
B.-6πD.-9π+
5 4 7 4
分析 (1)先变形,再对整数k的奇、偶展
开讨论,找到角终边的具体位置,用数形 结合法求解;(2)先把角度化成弧度,再写 成2kπ+α的形式,满足α、k的限制条件.
(1)因为M={x|x=(2k+1)×45°,k∈Z} 表示终边落在四个象限的平分线上的角的 集合.同理N={x|x=(k+1)×45°,k∈Z}表示 终边落在坐标轴或四个象限的平分线上的 角的集合,所以M N. (2)因为1305°=1305×
1)(k′∈Z)完全讨论,角度与弧度的互化,
除满足限制条件外,还需注意结果的纯洁
性:角度、弧度要“分家”.
题型二 三角函数的化简、求值 例2

8 已知cosα=- 17 ,且 <α<π, 2 3
2 a)
sin(2 ) cos(
tan( ) cos( )sin(
3.运用诱导公式的关键在于函数名称
与符号的正确判断和使用.
课后再做好复习巩固.
谢谢!
再见!
王新敞 特级教师 源头学子小屋
wxckt@
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 相似与锐角三角函数
第一节 图形的相似与位似
【回顾与思考】
【例题经典】
辨别图形相似与位似
例1.下列说法中不正确的是( )
A.位似图形一定是相似图形; B.相似图形不一定是位似图形;
C.位似图形上任意一对对应点到位似中心的距离之比等于位似比; D.位似图形中每组对应点所在的直线必相互平行
点评:本题考查了位似图形的性质及相似图形与位似图形的关系,A、B、C正确,因为一对位似对应点与位似中心共线,所以D错误.
会用定义判定相似多边形
例2.在AB=20m,AD=30m的矩形ABCD的花坛四周修筑小路.
(1)如果四周的小路的宽均相等,如图(1),那么小路四周所围成的矩形A′B′C′D′和矩形ABCD相似吗?请说明理由.
(2)如果相对着的两条小路的宽均相等,如图(2),试问小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?请说明理由.
点评:因为矩形每个角都为90°,所以判断矩形A′B′C′D′和矩形ABCD是否相似关键在它们的长和宽之比是否相等.灵活应用相似与位似的性质.
例3.(2006年河北省)如图所示,一段街道的两边缘所在直线分别为AB、PQ,并且AB∥PQ,建筑物的一端DE所在的直线MN⊥AB于点M,交PQ 于点N,小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等候小亮.
(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在的位置(用点C标出);
(2)已知:MN=20m,MD=8m,PN=24m.求(1)中的点C到胜利街口的距离CM.
点评:位似形的图形必相似但相似的图形不一定位似,位似对应点与位似中心共线.
【考点精练】
一、基础训练
1.如图1所示,E、F分别是平行四边形的边BC、AD的中点,且平行四边形ABFE∽平行四边形ADCB,则=_______.
(1) (2) (3)
2.如果两个相似多边形的最长边分别为35cm和14cm,那么最短边分别为5cm和_______cm.
3.在长为8cm,宽为6cm的矩形中,截去一个矩形(图2中的阴影部分),若留下的矩形与原矩形相似,那么留下的矩形面积是
_________.
4.下列说法正确的是( )
A.矩形都是相似的 B.有一个角相等的菱形都是相似的
C.梯形的中位线把梯形分成两个相似图形 D.任意两个等腰梯形相似
5.如图3所示,内外两个矩形相似,且对应边平行,则下列结论中正确的是( )
A.=1 B.= C.= D.以上答案都不对
6.(2006年扬州市)如图4所示,有两个形状相同的星星图案,则x的
值为( )
A.15 B.12 C.10 D.8
7.如图5所示,小明将一张报纸对折后,发现对折后的半张报纸与整张报纸相似,你能推算出整张报纸的长与宽的比是下面哪一个答案吗( )
A.:1 B.4:1 C.1:4 D.1:
(4) (5) (6)
8.下列说法正确的是( )
A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则△ADE是△ABC放大后的图形;
B.两位似图形的面积之比等于位似比;
C.位似多边形中对应对角线之比等于位似比;
D.位似图形的周长之比等于位似比的平方
9.若两个图形位似,则下列叙述不正确的是( )
A.每对对应点所在的直线相交于同一点;B.两个图形上的对应线段之比等于位似比
C.两个图形上对应线段必平行 D.两个图形的面积比等于位似比的平方
10.下列说法正确的是( )
A.所有的矩形都是相似形 B.所有的正方形都是相似形
C.对应角相等的两个多边形相似 D.对应边成比例的两个多边形相似
11.如图6所示,有三个矩形,其中是相似形的是( )
A.甲和乙 B.甲和丙 C.乙和丙 D.甲、乙和丙
二、能力提升:
12.按如下方法将△ABC的三边缩小来原来的:如图所示,任取一点O,连AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法中正确的个数是( )
①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;
③△ABC与△DEF是周长的比为2:1; ④△ABC与△DEF面积比为4:1
A.1个 B.2个
C.3个 D.4个
13.某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如图所示),则小鱼上的点(a,b)对应大鱼上的点.( )A.(-2a,-2b)
B.(-a,-2b)
C.(-2b,-2a)
D.(-2a,-b)
14.如图所示,点E为矩形ABCD的边AB的黄金分割点(AE>EB),且AEFD 为正方形.
问:矩形ABCD和矩形EFCB相似吗?为什么?
15.(2006年淮安市)如图所示,已知O是坐标原点,B、C两点的坐标分别为(3,-1),(2,1).
(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的位似比为2),画出图形;
(2)分别写出B,C两点的对应点B′,C′的坐标;
(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.
三、应用与探究:
16.印刷一张矩形的张贴广告,如图所示,它的印刷面积是32分米2,上下空白各1分米,两边空白各0.5分米.设印刷部分从上到下的长是x 分米,四周空白处的面积为5分米.
(1)求S与x的关系式.
(2)当要求四周空白处的面积为18分米2时,求用来印刷这张广告的纸张的长和宽各是多少?
(3)在(2)的条件下,内外两个图形是位似图形吗?
答案:
例题经典
例1:D
例2:①当x≠0时,,
故矩形A′B′C′D′和矩形ABCD不相似
②当时,是矩形A′B′C′D′和矩形ABCD相似,
所以,解得= 例3:①略 ②CM=16m
考点精练
1.1: 2.2 3.27cm2 4.B 5.B 6.D 7.A 8.C 9.C 10.B 11.B 12.D 13.A 14.相似 15.略 16.略。

相关文档
最新文档