外文文献附翻译---数字图像处理与边缘检测
外文文献翻译译稿和原文
外文文献翻译译稿1卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,通过对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。
在很多工程应用(如雷达、计算机视觉)中都可以找到它的身影。
同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要课题。
例如,对于雷达来说,人们感兴趣的是其能够跟踪目标。
但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。
卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。
这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。
命名[编辑]这种滤波方法以它的发明者鲁道夫.E.卡尔曼(Rudolph E. Kalman)命名,但是根据文献可知实际上Peter Swerling在更早之前就提出了一种类似的算法。
斯坦利。
施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。
卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑便使用了这种滤波器。
关于这种滤波器的论文由Swerling(1958)、Kalman (1960)与Kalman and Bucy(1961)发表。
目前,卡尔曼滤波已经有很多不同的实现。
卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。
除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton开发的平方根滤波器的变种。
也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。
以下的讨论需要线性代数以及概率论的一般知识。
卡尔曼滤波建立在线性代数和隐马尔可夫模型(hidden Markov model)上。
其基本动态系统可以用一个马尔可夫链表示,该马尔可夫链建立在一个被高斯噪声(即正态分布的噪声)干扰的线性算子上的。
系统的状态可以用一个元素为实数的向量表示。
外文翻译---MATLAB 在图像边缘检测中的应用
英文资料翻译MATLAB application in image edge detection MATLAB of the 1984 countries MathWorks company to market since, after 10 years of development, has become internationally recognized the best technology application software. MATLAB is not only a kind of direct, efficient computer language, and at the same time, a scientific computing platform, it for data analysis and data visualization, algorithm and application development to provide the most core of math and advanced graphics tools. According to provide it with the more than 500 math and engineering function, engineering and technical personnel and scientific workers can integrated environment of developing or programming to complete their calculation.MATLAB software has very strong openness and adapt to sex. Keep the kernel in under the condition of invariable, MATLAB is in view of the different application subject of launch corresponding Toolbox (Toolbox), has now launched image processing Toolbox, signal processing Toolbox, wavelet Toolbox, neural network Toolbox and communication tools box, etc multiple disciplines special kit, which would place of different subjects research work.MATLAB image processing kit is by a series of support image processing function from the composition, the support of the image processing operation: geometric operation area of operation and operation; Linear filter and filter design; Transform (DCT transform); Image analysis and strengthened; Binary image manipulation, etc. Image processing tool kit function, the function can be divided into the following categories: image display; Image file input and output; Geometric operation; Pixels statistics; Image analysis and strengthened; Image filtering; Sex 2 d filter design; Image transformation; Fields and piece of operation; Binary image operation; Color mapping and color space transformation; Image types and type conversion; Kit acquiring parameters and Settings.1.Edge detection thisUse computer image processing has two purposes: produce more suitable for human observation and identification of the images; Hope can by the automatic computer image recognition and understanding.No matter what kind of purpose to, image processing the key step is to contain a variety of scenery of decomposition of image information. Decomposition of the end result is that break down into some has some kind of characteristics of the smallest components, known as the image of the yuan. Relative to the whole image of speaking, this the yuan more easily to be rapid processing.Image characteristics is to point to the image can be used as the sign of the field properties, it can be divided into the statistical features of the image and image visual, two types of levy. The statistical features of the image is to point to some people the characteristics of definition, through the transform to get, such as image histogram, moments, spectrum, etc.; Image visual characteristics is refers to person visual sense can be directly by the natural features, such as the brightness of the area, and texture or outline, etc. The two kinds of characteristics of the image into a series of meaningful goal or regional p rocess called image segmentation.The image is the basic characteristics of edge, the edge is to show its pixel grayscale around a step change order or roof of the collection of those changes pixels. It exists in target and background, goals and objectives, regional and region, the yuan and the yuan between, therefore, it is the image segmentation dependent on the most important characteristic that the texture characteristics of important information sources and shape characteristics of the foundation, and the image of the texture characteristics and the extraction of shape often dependent on image segmentation. Image edge extraction is also the basis of image matching, because it is the sign of position, the change of the original is not sensitive, and can be used for matching the feature points.The edge of the image is reflected by gray not continuity. Classic edge extraction method is investigation of each pixel image in an area of the gray change, use edge first or second order nearby directional derivative change rule,with simple method of edge detection, this method called edge detection method of local operators.The type of edge can be divided into two types: (1) step representation sexual edge, it on both sides of the pixel gray value varies significantly different; (2) the roof edges, it is located in gray value from the change of increased to reduce the turning point. For order jump sexual edge, second order directional derivative in edge is zero cross; For the roof edges, second order directional derivative in edge take extreme value.If a pixel fell in the image a certain object boundary, then its field will become a gray level with the change. The most useful to change two features is the rate of change and the gray direction, they are in the range of the gradient vector and the direction to said. Edge detection operator check every pixel grayscale rate fields and evaluation, and also include to determine the directions of the most use based on directional derivative deconvolution method for masking.Digital image processing technique has been widely applied to the biomedical field, the use of computer image processing and analysis, and complete detection and recognition of cancer cells can help doctors make a diagnosis of tumor cancers. Need to be made in the identification of cancer cells, the quantitative results, the human eye is difficult to accurately complete such work, and the use of computer image processing to complete the analysis and identification of the microscopic images have made great progress. In recent years, domestic and foreign medical images of cancer cells testing to identify the researchers put forward a lot of theory and method for the diagnosis of cancer cells has very important meaning and practical value.Cell edge detection is the cell area of the number of roundness and color, shape and chromaticity calculation and the basis of the analysis their test results directly affect the analysis and diagnosis of the disease. Classical edge detection operators such as Sobel operator, Laplacian operator, each pixel neighborhood of the image gray scale changes to detect the edge. Although these operators is simple, fast, but there are sensitive to noise, get isolated or in short sections of acontinuous edge pixels, overlapping the adjacent cell edge defects, while the optimal threshold segmentation and contour extraction method of combining edge detection, obtained by the iterative algorithm for the optimal threshold for image segmentation, contour extraction algorithm, digging inside the cell pixels, the last remaining part of the image is the edge of the cell, change the processing order of the traditional edge detection algorithm, by MATLAB programming, the experimental results that can effectively suppress the noise impact at the same time be able to objectively and correctly select the edge detection threshold, precision cell edge detection.2.Edge detection of MATLABMATLAB image processing toolkit defines the edge () function is used to test the edge of gray image.(1) BW = edge (I, "method"), returns and I size binary image BW, includingelements of 1 said is on the edge of the point, 0 means the edge points.Method for the following a string of:1) soble: the default value, with derivative Sobel edge detectionapproximate measure, to return to a maximum gradient edge;2) prewitt: with the derivative prewitt approximate edge detection, amaximum gradient to return to edge;3) Roberts: with the derivative Roberts approximate edge detection margins,return to a maximum gradient edge;4) the log: use the Laplace operation gaussian filter to I carry filtering,through the looking for 0 intersecting detection of edge;5) zerocross: use the filter to designated I filter, looking for 0 intersectingdetection of edge.(2) BW = edge (I, "method", thresh) with thresh designated sensitivitythreshold value, rather than the edge of all not thresh are ignored.(3) BW = edge (I, "method" thresh, direction, for soble and prewitt methodspecified direction, direction for string, including horizontal level said direction; Vertical said to hang straight party; Both said the two directions(the default).(4) BW = edge (I, 'log', thresh, log sigma), with sigma specified standarddeviation.(5) [BW, thresh] = edge (...), the return value of a function in fact have multiple(" BW "and" thresh "), but because the brace up with u said as a matrix, and so can be thought a return only parameters, which also shows the introduction of the concept of matrix MATLAB unity and superiority.st wordMATLAB has strong image processing function, provide a simple function calls to realize many classic image processing method. Not only is the image edge detection, in transform domain processing, image enhancement, mathematics morphological processing, and other aspects of the study, MATLAB can greatly improve the efficiency rapidly in the study of new ideas.MATLAB 在图像边缘检测中的应用MATLAB自1984年由国MathWorks公司推向市场以来,历经十几年的发展,现已成为国际公认的最优秀的科技应用软件。
基于数字图像在医学病灶检测方法的比较孔银昌
Value Engineering 行SA 协商。
密钥的周期性决定了超过一定时间限制,一定会生成新的密钥,这便大大增强了密钥的健壮性与可靠性。
这也是在云计算中使用密钥交换的一个重要原因。
建立通信:CE 之间的连接通过标签边缘路由进行建立。
在MPLS 网络中,LSP (Labelb Switch Path ,标签交换路径)是由两个端点间的标记所决定的,分为动态LSP 和静态LSP 两类。
动态LSP 是由路由信息生成的,而静态LSP 是指定的。
逻辑分区使用AES 算法对数据进行加密这种加密是基于ECB (Electronic Code Book ,电子源码书)模式的,通过这种模式,数据流会快速传送给云用户。
加密使用的是一次性密钥,即使数据包被探测到也很难对其解密,使得数据的安全性得到充分保证。
会话终止:当云用户结束通信时,会话会自动终止,云供应商将根据云用户在会话期间使用的服务进行收费。
同时,MPLS 网络中的通信资源及虚拟处理器中的缓存数据将会释放。
(图2)4总结和展望安全性是企业是否选择移师云计算所要考虑的首要问题。
我们通过在IaaS 层中增加CaaS 子层来预防这些潜在的安全隐患,包括对DDoS 攻击的预防。
CaaS 层也是按服务使用量来计费的,它用于保障云计算的服务质量及数据传输可靠性。
目前,云安全仍处在发展阶段,相信随着云安全体系的不断发展及各大安全厂商的技术创新,云安全会进一步发展以满足用户的安全需求。
参考文献:[1]刘鹏.云计算(第二版).北京:电子工业出版社,2011.5.P1-3.[2]Lawrence,J.(2001)."Designing multiprotocol label switching networks."Communications Magazine,IEEE 39(7):134-142.[3]周景耀.多协议标签交换技术的发展[A].新世纪新机遇新挑战———知识创新和高新技术产业发展(上册)[C].2001.0引言随着医疗成像设备的广泛应用,医学图像信息在医疗诊断中有越来越重要的意义。
数字图像处理研究性实验教学的改革与实践——基于分数阶偏微分的图像边缘检测
Re f o r m a n d p r a c t i c e o f r e s e a r c h - s t y l e e x p e r i me n t a l
t e a c h i n g b y d i g i t a l i ma g e p r o c e s s i n g :
实验 教学体 系 的建设 , 体 系建设 的核 心 内容是创 新 , 最 终 目的就是 培养 学生 的创 新思维 能力 和解 决实 际 问题
的能 力[ 4 - 5 ] 。作为信 息科 学 的重要 组成部 分 , 数字 图像 处理 是实 验性极 强 的学科 之一 。由于“ 数 字 图像 处 理” 涉及 的 内容 多 、 运算设 计 复杂等 特点 , 学生 在学 习这 门
( 1 .S c h o o l o f S i e n c e , C h o n g q i n g J i a o t o n g Un i v e r s i t y,Ch o n g q i n g 4 0 0 0 7 4,Ch i n a ;
2 .S c h o o 1 o f I n f o r ma t i o n S c i e n c e a n d En g i n e e r i n g,Ch o n g q i n g 4 0 0 0 7 4。Ch i n a )
I ma g e e d g e d e t e c t i o n b a s e d o n f r a c t i o n a l _ 0 r d e r p a r t i a l d i f f e r e n t i a l
J i a n g We i ,Ya n g Ti n g t i n g ,Li u Ya we i ,Go n g Li 。
matlab图像处理外文翻译外文文献
matlab图像处理外文翻译外文文献附录A 英文原文Scene recognition for mine rescue robotlocalization based on visionCUI Yi-an(崔益安), CAI Zi-xing(蔡自兴), WANG Lu(王璐)Abstract:A new scene recognition system was presented based on fuzzy logic and hidden Markov model(HMM) that can be applied in mine rescue robot localization during emergencies. The system uses monocular camera to acquire omni-directional images of the mine environment where the robot locates. By adopting center-surround difference method, the salient local image regions are extracted from the images as natural landmarks. These landmarks are organized by using HMM to represent the scene where the robot is, and fuzzy logic strategy is used to match the scene and landmark. By this way, the localization problem, which is the scene recognition problem in the system, can be converted into the evaluation problem of HMM. The contributions of these skills make the system have the ability to deal with changes in scale, 2D rotation and viewpoint. The results of experiments also prove that the system has higher ratio of recognition and localization in both static and dynamic mine environments.Key words: robot location; scene recognition; salient image; matching strategy; fuzzy logic; hidden Markov model1 IntroductionSearch and rescue in disaster area in the domain of robot is a burgeoning and challenging subject[1]. Mine rescue robot was developed to enter mines during emergencies to locate possible escape routes for those trapped inside and determine whether it is safe for human to enter or not. Localization is a fundamental problem in this field. Localization methods based on camera can be mainly classified into geometric, topological or hybrid ones[2]. With its feasibility and effectiveness, scene recognition becomes one of the important technologies of topological localization.Currently most scene recognition methods are based on global image features and have two distinct stages: training offline and matching online.。
c语言数字图像处理(九):边缘检测
c语⾔数字图像处理(九):边缘检测背景知识边缘像素是图像中灰度突变的像素,⽽边缘是连接边缘像素的集合。
边缘检测是设计⽤来检测边缘像素的局部图像处理⽅法。
孤⽴点检测输出图像为卷积模板之前有过代码实现,这篇⽂章中不再进⾏测试基本边缘检测图像梯度梯度向量⼤⼩在图像处理过程中,因平⽅和和开⽅运算速度较慢,因此简化为如下计算⽅法梯度向量⽅向与x轴夹⾓对应与不同的偏导数计算⽅法,得出边缘检测的不同模板检测垂直或⽔平边缘原图使⽤Sobel模板检测⽔平边缘使⽤Sobel模板检测垂直边缘两者相加代码实现1void edge_detection(short** in_array, short** out_array, long height, long width)2 {3short gx = 0, gy = 0;4short** a_soble1;5short** a_soble2;67 a_soble1 = allocate_image_array(3, 3);8 a_soble2 = allocate_image_array(3, 3);9for (int i = 0; i < 3; i++){10for (int j = 0; j < 3; j++){11 a_soble1[i][j] = soble1[i][j];12 a_soble2[i][j] = soble2[i][j];13 }14 }15for (int i = 0; i < height; i++){16for (int j = 0; j < width; j++){17 gx = convolution(in_array, i, j, height, width, a_soble1, 3);18 gy = convolution(in_array, i, j, height, width, a_soble2, 3);19// out_array[i][j] = gx;20// out_array[i][j] = gy;21 out_array[i][j] = gx + gy;22if (out_array[i][j] < 0)23 out_array[i][j] = 0;24else if (out_array[i][j] > 0xff)25 out_array[i][j] = 0xff;26 }27 }28 free_image_array(a_soble1, 3);29 free_image_array(a_soble2, 3);30 }检测对⾓边缘Sobel 45°检测模板Sobel -45°检测模板两者相加代码实现通上,只需替换模板值即可Marr-Hildreth边缘检测算法1. 对⼆维⾼斯函数进⾏取样,得⾼斯低通滤波器,对输⼊图像滤波,滤波器模板⼤⼩为⼤于等于6*σ的最⼩奇整数算法实现1void generate_gaussian_filter(double** gaussian_filter, long sigma)2 {3double x, y;4long filter_size = 6 * sigma + 1;56for (int i = 0; i < filter_size; i++){7for (int j = 0; j < filter_size; j++){8 x = i - filter_size / 2;9 y = j - filter_size / 2;10 gaussian_filter[i][j] = exp(-1.0 * ((pow(x, 2) + pow(y, 2)) / 2 * sigma * sigma));11 }12 }13 }2. 计算第⼀步得到图像的拉普拉斯,利⽤如下模板算法实现1void laplace(short** in_array, short** out_array, long height, long width)2 {3short** a_sharpen;45 a_sharpen = allocate_image_array(3, 3);6for (int i = 0; i < 3; i++){7for (int j = 0; j < 3; j++){8 a_sharpen[i][j] = sharpen[i][j];9 }10 }11for (int i = 0; i < height; i++){12for (int j = 0; j < width; j++){13 out_array[i][j] = convolution(in_array, i, j, height, width, a_sharpen, 3);14 }15 }16 free_image_array(a_sharpen, 3);17 }运⾏结果3. 寻找零交叉,对任意像素p,测试上/下,左/右,两个对⾓线四个位置,当有两对符号不同并且绝对值差⼤于某⼀阈值时为零交叉点算法实现1int is_cross(short** in_array, long row, long column)2 {3int cross_num = 0;45if (in_array[row-1][column-1] * in_array[row+1][column+1] < 0 &&6 abs(abs(in_array[row-1][column-1]) - abs(in_array[row+1][column+1])) > 0x66)7 cross_num++;8if (in_array[row-1][column] * in_array[row+1][column] < 0&&9 abs(abs(in_array[row-1][column]) - abs(in_array[row+1][column])) > 0x66)10 cross_num++;11if (in_array[row-1][column+1] * in_array[row+1][column-1] < 0&&12 abs(abs(in_array[row-1][column+1]) - abs(in_array[row+1][column-1])) > 0x66)13 cross_num++;14if (in_array[row][column-1] * in_array[row][column+1] < 0&&15 abs(abs(in_array[row][column-1]) - abs(in_array[row][column+1])) > 0x66)16 cross_num++;1718if (cross_num >= 2)19return1;20else21return0;22 }1void marr(short** in_array, short** out_array, long height, long width)2 {3long sigma = 2;4long filter_size = 6 * sigma + 1;5double** gaussian_filter;6short **gauss_array, **laplace_array;78 gaussian_filter = allocate_double_array(filter_size, filter_size);9 gauss_array = allocate_image_array(height, width);10 laplace_array = allocate_image_array(height, width);11 generate_gaussian_filter(gaussian_filter, sigma);1213for (int i = 0; i < height; i++){14for (int j = 0; j < width; j++){15 gauss_array[i][j] = convolutiond(in_array, i, j, height, width, gaussian_filter, filter_size);16 }17 }18 printf("Gasuuian filter done\n");19 laplace(gauss_array, laplace_array, height, width);20 printf("Laplace done\n");21 zero_cross(laplace_array, out_array, height, width);22 printf("Zero cross done\n");2324 free_double_array(gaussian_filter, filter_size);25 free_image_array(gauss_array, height);26 free_image_array(laplace_array, height);27 }最终运⾏结果可以看出,该算法检测出的边缘更加符合物体的真实边缘,但是这些边缘是由离散的点构成的,因此需要进⾏边缘连接来进⼀步加⼯,本⽂对此不再进⾏详述,读者有兴趣可以进⾏更加深⼊的研究。
数字图像处理英文文献翻译参考 精品
…………………………………………………装………………订………………线…………………………………………………………………Hybrid Genetic Algorithm Based Image EnhancementTechnologyMu Dongzhou Department of the Information Engineering XuZhou College of Industrial TechnologyXuZhou, China ****************.cnXu Chao and Ge Hongmei Department of the Information Engineering XuZhou College of Industrial TechnologyXuZhou, China ***************.cn,***************.cnAbstract—in image enhancement, Tubbs proposed a normalized incomplete Beta function to represent several kinds of commonly used non-linear transform functions to do the research on image enhancement. But how to define the coefficients of the Beta function is still a problem. We proposed a Hybrid Genetic Algorithm which combines the Differential Evolution to the Genetic Algorithm in the image enhancement process and utilize the quickly searching ability of the algorithm to carry out the adaptive mutation and searches. Finally we use the Simulation experiment to prove the effectiveness of the method.Keywords- Image enhancement; Hybrid Genetic Algorithm; adaptive enhancementI. INTRODUCTIONIn the image formation, transfer or conversion process, due to other objective factors such as system noise, inadequate or excessive exposure, relative motion and so the impact will get the image often a difference between the original image (referred to as degraded or degraded) Degraded image is usually blurred or after the extraction of information through the machine to reduce or even wrong, it must take some measures for its improvement.Image enhancement technology is proposed in this sense, and the purpose is to improve the image quality. Fuzzy Image Enhancement situation according to the image using a variety of special technical highlights some of the information in the image, reduce or eliminate the irrelevant information, to emphasize the image of the whole or the purpose of local features. Image enhancement method is still no unified theory, image enhancement techniques can be divided into three categories: point operations, and spatial frequency enhancement methods Enhancement Act. This paper presents an automatic adjustment according to the image characteristics of adaptive image enhancement method that called hybrid genetic algorithm. It combines the differential evolution algorithm of adaptive search capabilities, automatically determines the transformation function of the parameter values in order to achieve adaptive image enhancement.…………………………………………………装………………订………………线…………………………………………………………………II. IMAGE ENHANCEMENT TECHNOLOGYImage enhancement refers to some features of the image, such as contour, contrast, emphasis or highlight edges, etc., in order to facilitate detection or further analysis and processing. Enhancements will not increase the information in the image data, but will choose the appropriate features of the expansion of dynamic range, making these features more easily detected or identified, for the detection and treatment follow-up analysis and lay a good foundation.Image enhancement method consists of point operations, spatial filtering, and frequency domain filtering categories. Point operations, including contrast stretching, histogram modeling, and limiting noise and image subtraction techniques. Spatial filter including low-pass filtering, median filtering, high pass filter (image sharpening). Frequency filter including homomorphism filtering, multi-scale multi-resolution image enhancement applied [1].III. DIFFERENTIAL EVOLUTION ALGORITHMDifferential Evolution (DE) was first proposed by Price and Storn, and with other evolutionary algorithms are compared, DE algorithm has a strong spatial search capability, and easy to implement, easy to understand. DE algorithm is a novel search algorithm, it is first in the search space randomly generates the initial population and then calculate the difference between any two members of the vector, and the difference is added to the third member of the vector, by which Method to form a new individual. If you find that the fitness of new individual members better than the original, then replace the original with the formation of individual self.The operation of DE is the same as genetic algorithm, and it conclude mutation, crossover and selection, but the methods are different. We suppose that the group size is P, the vector dimension is D, and we can express the object vector as (1):xi=[xi1,xi2,…,xiD] (i =1,…,P)(1) And the mutation vector can be expressed as (2):()321rrriXXFXV-⨯+=i=1,...,P (2) 1rX,2rX,3rX are three randomly selected individuals from group, and r1≠r2≠r3≠i.F is a range of [0, 2] between the actual type constant factor difference vector is used to control the influence, commonly referred to as scaling factor. Clearly the difference between the vector and the smaller the disturbance also smaller, which means that if groups close to the optimum value, the disturbance will be automatically reduced.DE algorithm selection operation is a "greedy " selection mode, if and only if the new vector ui the fitness of the individual than the target vector is better when the individual xi, ui will be retained to the next group. Otherwise, the target vector xi individuals remain in the original group, once again as the next generation of the parent vector.…………………………………………………装………………订………………线…………………………………………………………………IV. HYBRID GA FOR IMAGE ENHANCEMENT IMAGEenhancement is the foundation to get the fast object detection, so it is necessary to find real-time and good performance algorithm. For the practical requirements of different systems, many algorithms need to determine the parameters and artificial thresholds. Can use a non-complete Beta function, it can completely cover the typical image enhancement transform type, but to determine the Beta function parameters are still many problems to be solved. This section presents a Beta function, since according to the applicable method for image enhancement, adaptive Hybrid genetic algorithm search capabilities, automatically determines the transformation function of the parameter values in order to achieve adaptive image enhancement.The purpose of image enhancement is to improve image quality, which are more prominent features of the specified restore the degraded image details and so on. In the degraded image in a common feature is the contrast lower side usually presents bright, dim or gray concentrated. Low-contrast degraded image can be stretched to achieve a dynamic histogram enhancement, such as gray level change. We use Ixy to illustrate the gray level of point (x, y) which can be expressed by (3).Ixy=f(x, y) (3) where: “f” is a linear or nonline ar function. In general, gray image have four nonlinear translations [6] [7] that can be shown as Figure 1. We use a normalized incomplete Beta function to automatically fit the 4 categories of image enhancement transformation curve. It defines in (4):()()()()10,01,111<<-=---⎰βαβαβαdtttBufu(4) where:()()⎰---=1111,dtttBβαβα(5) For different value of α and β, we can get response curve from (4) and (5).The hybrid GA can make use of the previous section adaptive differential evolution algorithm to search for the best function to determine a value of Beta, and then each pixel grayscale values into the Beta function, the corresponding transformation of Figure 1, resulting in ideal image enhancement. The detail description is follows:Assuming the original image pixel (x, y) of the pixel gray level by the formula (4),denoted byxyi,()Ω∈yx,, here Ω is the image domain. Enhanced image is denoted by Ixy. Firstly, the image gray value normalized into [0, 1] by (6).minmaxminiiiig xyxy--=(6)where:maxi andm ini express the maximum and minimum of image gray relatively.Define the nonlinear transformation function f(u) (0≤u≤1) to transform source image…………………………………………………装………………订………………线…………………………………………………………………Finally, we use the hybrid genetic algorithm to determine the appropriate Beta function f (u) the optimal parameters αand β. Will enhance the image Gxy transformed antinormalized.V. EXPERIMENT AND ANALYSISIn the simulation, we used two different types of gray-scale images degraded; the program performed 50 times, population sizes of 30, evolved 600 times. The results show that the proposed method can very effectively enhance the different types of degraded image.Figure 2, the size of the original image a 320 × 320, it's the contrast to low, and some details of the more obscure, in particular, scarves and other details of the texture is not obvious, visual effects, poor, using the method proposed in this section, to overcome the above some of the issues and get satisfactory image results, as shown in Figure 5 (b) shows, the visual effects have been well improved. From the histogram view, the scope of the distribution of image intensity is more uniform, and the distribution of light and dark gray area is more reasonable. Hybrid genetic algorithm to automatically identify the nonlinear…………………………………………………装………………订………………线…………………………………………………………………transformation of the function curve, and the values obtained before 9.837,5.7912, from the curve can be drawn, it is consistent with Figure 3, c-class, that stretch across the middle region compression transform the region, which were consistent with the histogram, the overall original image low contrast, compression at both ends of the middle region stretching region is consistent with human visual sense, enhanced the effect of significantly improved.Figure 3, the size of the original image a 320 × 256, the overall intensity is low, the use of the method proposed in this section are the images b, we can see the ground, chairs and clothes and other details of the resolution and contrast than the original image has Improved significantly, the original image gray distribution concentrated in the lower region, and the enhanced image of the gray uniform, gray before and after transformation and nonlinear transformation of basic graph 3 (a) the same class, namely, the image Dim region stretching, and the values were 5.9409,9.5704, nonlinear transformation of images degraded type inference is correct, the enhanced visual effect and good robustness enhancement.Difficult to assess the quality of image enhancement, image is still no common evaluation criteria, common peak signal to noise ratio (PSNR) evaluation in terms of line, but the peak signal to noise ratio does not reflect the human visual system error. Therefore, we use marginal protection index and contrast increase index to evaluate the experimental results.Edgel Protection Index (EPI) is defined as follows:…………………………………………………装………………订………………线…………………………………………………………………(7)Contrast Increase Index (CII) is defined as follows:minmaxminmax,GGGGCCCEOD+-==(8)In figure 4, we compared with the Wavelet Transform based algorithm and get the evaluate number in TABLE I.Figure 4 (a, c) show the original image and the differential evolution algorithm for enhanced results can be seen from the enhanced contrast markedly improved, clearer image details, edge feature more prominent. b, c shows the wavelet-based hybrid genetic algorithm-based Comparison of Image Enhancement: wavelet-based enhancement method to enhance image detail out some of the image visual effect is an improvement over the original image, but the enhancement is not obvious; and Hybrid genetic algorithm based on adaptive transform image enhancement effect is very good, image details, texture, clarity is enhanced compared with the results based on wavelet transform has greatly improved the image of the post-analytical processing helpful. Experimental enhancement experiment using wavelet transform "sym4" wavelet, enhanced differential evolution algorithm experiment, the parameters and the values were 5.9409,9.5704. For a 256 × 256 size image transform based on adaptive hybrid genetic algorithm in Matlab 7.0 image enhancement software, the computing time is about 2 seconds, operation is very fast. From TABLE I, objective evaluation criteria can be seen, both the edge of the protection index, or to enhance the contrast index, based on adaptive hybrid genetic algorithm compared to traditional methods based on wavelet transform has a larger increase, which is from This section describes the objective advantages of the method. From above analysis, we can see…………………………………………………装………………订………………线…………………………………………………………………that this method.From above analysis, we can see that this method can be useful and effective.VI. CONCLUSIONIn this paper, to maintain the integrity of the perspective image information, the use of Hybrid genetic algorithm for image enhancement, can be seen from the experimental results, based on the Hybrid genetic algorithm for image enhancement method has obvious effect. Compared with other evolutionary algorithms, hybrid genetic algorithm outstanding performance of the algorithm, it is simple, robust and rapid convergence is almost optimal solution can be found in each run, while the hybrid genetic algorithm is only a few parameters need to be set and the same set of parameters can be used in many different problems. Using the Hybrid genetic algorithm quick search capability for a given test image adaptive mutation, search, to finalize the transformation function from the best parameter values. And the exhaustive method compared to a significant reduction in the time to ask and solve the computing complexity. Therefore, the proposed image enhancement method has some practical value.REFERENCES[1] HE Bin et al., Visual C++ Digital Image Processing [M], Posts & Telecom Press,2001,4:473~477[2] Storn R, Price K. Differential Evolution—a Simple and Efficient Adaptive Scheme forGlobal Optimization over Continuous Space[R]. International Computer Science Institute, Berlaey, 1995.[3] Tubbs J D. A note on parametric image enhancement [J].Pattern Recognition.1997,30(6):617-621.[4] TANG Ming, MA Song De, XIAO Jing. Enhancing Far Infrared Image Sequences withModel Based Adaptive Filtering [J] . CHINESE JOURNAL OF COMPUTERS, 2000, 23(8):893-896.[5] ZHOU Ji Liu, LV Hang, Image Enhancement Based on A New Genetic Algorithm [J].Chinese Journal of Computers, 2001, 24(9):959-964.[6] LI Yun, LIU Xuecheng. On Algorithm of Image Constract Enhancement Based onWavelet Transformation [J]. Computer Applications and Software, 2008,8.[7] XIE Mei-hua, WANG Zheng-ming, The Partial Differential Equation Method for ImageResolution Enhancement [J]. Journal of Remote Sensing, 2005,9(6):673-679.…………………………………………………装………………订………………线…………………………………………………………………基于混合遗传算法的图像增强技术Mu Dongzhou 徐州工业职业技术学院信息工程系 XuZhou, China****************.cnXu Chao and Ge Hongmei 徐州工业职业技术学院信息工程系 XuZhou,********************.cn,***************.cn摘要—在图像增强之中,塔布斯提出了归一化不完全β函数表示常用的几种使用的非线性变换函数对图像进行研究增强。
数字图像处理论文中英文对照资料外文翻译文献
第 1 页中英文对照资料外文翻译文献原 文To image edge examination algorithm researchAbstract :Digital image processing took a relative quite young discipline,is following the computer technology rapid development, day by day obtains th widespread application.The edge took the image one kind of basic characteristic,in the pattern recognition, the image division, the image intensification as well as the image compression and so on in the domain has a more widesp application.Image edge detection method many and varied, in which based on brightness algorithm, is studies the time to be most long, the theory develo the maturest method, it mainly is through some difference operator, calculates its gradient based on image brightness the change, thus examines the edge, mainlyhas Robert, Laplacian, Sobel, Canny, operators and so on LOG 。
实验9图像边缘检测
实验9图像边缘检测实验9 图像边缘检测⼀、实验⽬的通过本实验使学⽣掌握图像边缘检测的基本⽅法,加深对图像分割的理解。
⼆、实验原理本实验师基于数字图像处理课程中的图像分割理论来设计的。
三、实验内容(⼀)图像锐化读取lena_gray.bmp图像,(1)使⽤prewitt算⼦对图像进⾏锐化,同屏显⽰原图像和锐化后的图像,并解释结果。
(2)使⽤sobel算⼦对图像进⾏锐化,同屏显⽰原图像和锐化后的图像,并解释结果。
(3)使⽤LoG算⼦对图像进⾏锐化,同屏显⽰原图像和锐化后的图像,并解释结果。
(4)对⽐上述锐化结果,说明三个算⼦的优缺点。
程序:close allclearclc%程序如下所⽰:?J=imread('F:\lena_gray.bmp');subplot(2,3,1);imshow(J);title('(a)原始图像');subplot(2,3,2);imshow(J);title('(b)灰度图');K=imadjust(J,[40/255 1]);%调整灰度值?subplot(2,3,3)imshow(K);title('(c)调整灰度后的图');I1=edge(K,'sobel');subplot(2,3,4);imshow(I1);title('(d)Sobel算⼦');I2=edge(K,'prewitt');subplot(2,3,5);imshow(I2);title('(e)Prewitt算⼦');I4=edge(K,'log');subplot(2,3,6);imshow(I4);title('(g)Laplace算⼦');(a)原始图像(b)灰度图(c)调整灰度后的图(d)Sobel算⼦(e)Prewitt算⼦(g)Laplace算⼦实验结果分析:由实验结果可知,prewitt和sobel算⼦能提取对⽐度强的边缘,⽽LOG算⼦能提取对⽐度较弱的边缘,边缘定位精度⾼。
数字图像处理英文原版及翻译
数字图象处理英文原版及翻译Digital Image Processing: English Original Version and TranslationIntroduction:Digital Image Processing is a field of study that focuses on the analysis and manipulation of digital images using computer algorithms. It involves various techniques and methods to enhance, modify, and extract information from images. In this document, we will provide an overview of the English original version and translation of digital image processing materials.English Original Version:The English original version of digital image processing is a comprehensive textbook written by Richard E. Woods and Rafael C. Gonzalez. It covers the fundamental concepts and principles of image processing, including image formation, image enhancement, image restoration, image segmentation, and image compression. The book also explores advanced topics such as image recognition, image understanding, and computer vision.The English original version consists of 14 chapters, each focusing on different aspects of digital image processing. It starts with an introduction to the field, explaining the basic concepts and terminology. The subsequent chapters delve into topics such as image transforms, image enhancement in the spatial domain, image enhancement in the frequency domain, image restoration, color image processing, and image compression.The book provides a theoretical foundation for digital image processing and is accompanied by numerous examples and illustrations to aid understanding. It also includes MATLAB codes and exercises to reinforce the concepts discussed in each chapter. The English original version is widely regarded as a comprehensive and authoritative reference in the field of digital image processing.Translation:The translation of the digital image processing textbook into another language is an essential task to make the knowledge and concepts accessible to a wider audience. The translation process involves converting the English original version into the target language while maintaining the accuracy and clarity of the content.To ensure a high-quality translation, it is crucial to select a professional translator with expertise in both the source language (English) and the target language. The translator should have a solid understanding of the subject matter and possess excellent language skills to convey the concepts accurately.During the translation process, the translator carefully reads and comprehends the English original version. They then analyze the text and identify any cultural or linguistic nuances that need to be considered while translating. The translator may consult subject matter experts or reference materials to ensure the accuracy of technical terms and concepts.The translation process involves several stages, including translation, editing, and proofreading. After the initial translation, the editor reviews the translated text to ensure its coherence, accuracy, and adherence to the target language's grammar and style. The proofreader then performs a final check to eliminate any errors or inconsistencies.It is important to note that the translation may require adapting certain examples, illustrations, or exercises to suit the target language and culture. This adaptation ensures that the translated version resonates with the local audience and facilitates better understanding of the concepts.Conclusion:Digital Image Processing: English Original Version and Translation provides a comprehensive overview of the field of digital image processing. The English original version, authored by Richard E. Woods and Rafael C. Gonzalez, serves as a valuable reference for understanding the fundamental concepts and techniques in image processing.The translation process plays a crucial role in making this knowledge accessible to non-English speakers. It involves careful selection of a professional translator, thoroughunderstanding of the subject matter, and meticulous translation, editing, and proofreading stages. The translated version aims to accurately convey the concepts while adapting to the target language and culture.By providing both the English original version and its translation, individuals from different linguistic backgrounds can benefit from the knowledge and advancements in digital image processing, fostering international collaboration and innovation in this field.。
图像处理中的边缘检测算法及其应用
图像处理中的边缘检测算法及其应用一、引言图像处理是指利用计算机对数字图像进行编辑、处理和分析的过程,具有广泛的应用领域。
在图像处理中,边缘检测是一项最为基础的任务,其目的是通过识别图像区域中像素强度突变处的变化来提取出图像中的边缘信息。
本文将介绍边缘检测算法的基本原理及其应用。
二、基本原理边缘是图像中像素值发生跳变的位置,例如黑色区域与白色区域的交界处就可以看作是一条边缘。
边缘检测的主要任务是将这些边缘信息提取出来。
边缘检测算法一般可以分为基于梯度的算法和基于二阶导数的算法。
其中基于梯度的算法主要包括Sobel算子、Prewitt算子和Canny算子;而基于二阶导数的算法主要包括Laplacian算子、LoG(Laplacian of Gaussian)算子和DoG(Difference of Gaussian)算子。
1.Sobel算子Sobel算子是一种常用的边缘检测算法,是一种基于梯度的算法。
该算法在x方向和y方向上都使用了3x3的卷积核,它们分别是:Kx = |-2 0 2|-1 0 1-1 -2 -1Ky = | 0 0 0|1 2 1Sobel算子的实现可以通过以下步骤:①将输入图像转为灰度图像;②根据以上卷积核计算x方向和y方向的梯度;③根据以下公式计算梯度幅值和方向:G = sqrt(Gx^2 + Gy^2) (梯度幅值)θ = atan(Gy/Gx) (梯度方向)其中Gx和Gy分别为x方向和y方向上的梯度。
可以看到,Sobel算子比较简单,对噪声具有一定的抑制作用,但是在边缘细节处理上不够精细。
2.Prewitt算子Prewitt算子也是一种基于梯度的边缘检测算法。
其卷积核如下: -1 0 1-1 0 1-1 -1 -1Ky = | 0 0 0|1 1 1实现方法与Sobel算子类似。
3.Canny算子Canny算子是一种基于梯度的边缘检测算法,是目前应用最广泛的边缘检测算法之一。
《数字图像处理》研究生双语课教学思路与实践
《数字图像处理》研究生双语课教学思路与实践数字图像处理是一个重要的跨学科领域,涉及计算机科学、数学、物理学和工程学等多个学科的知识。
随着社会的科学技术的发展,数字图像处理在医学影像、卫星图像、遥感图像等领域扮演着重要的角色。
数字图像处理的研究和教育变得愈发重要。
本文将从研究生双语课的角度出发,探讨数字图像处理的教学思路与实践。
一、教学目标数字图像处理是一门专业性强、应用性广的学科,因此教学目标的制定显得尤为重要。
在研究生双语课教学中,我们可以根据学生的实际情况和研究方向,制定相应的教学目标。
例如:提高学生对数字图像处理基本概念和算法的理解;培养学生在图像处理方面的创新能力;提高学生的英语听说读写能力,使其能够阅读相关领域的国际学术论文。
二、教学内容数字图像处理的教学内容通常包括数字图像的获取与表示、数字图像的增强与复原、数字图像的压缩与编码、数字图像的分割与识别等方面。
在研究生双语课教学中,我们可以结合教学目标,采取灵活多样的教学方式,比如讲授理论知识的可以引入部分国外学者的专业论文,进行分析和讨论。
可以邀请行业专家来讲解数字图像在实际应用中的案例,加强学生对专业知识的理解和应用能力。
三、教学方法为了提高教学效果,我们需要采取多种适合研究生双语课的教学方法。
在授课过程中,可以引入案例式教学法,让学生通过分析和解决实际问题来掌握知识。
可以采用课堂讨论和小组合作学习的方式,激发学生的学习兴趣,增强他们的团队合作能力。
结合专业知识,加强学生的英语听说读写能力培养,提高他们的国际交流能力。
四、教学手段数字图像处理是一个理论与实践相结合的学科,所以在教学手段上,我们可以引入一些实践性的教学活动。
在实验课上,可以设计一些实际图像处理的案例,让学生动手操作,巩固理论知识。
还可以结合实际应用需求,开展一些实验课外的项目,让学生在实际任务中学以致用,提高他们的实际操作能力。
可以借助多媒体教学手段,如PPT、教学视频等,提升教学效果。
数字图像处理-边缘检测算子与锐化算子(含MATLAB代码)
数字图像处理实验五15生医一、实验内容对某一灰度图像,进行如下处理:(1)分别用Roberts、Prewitt和Sobel边缘检测算子进行边缘检测;(2)将Roberts、Prewitt和Sobel边缘检测算子修改为锐化算子,对原图像进行锐化,同屏显示原图像、边缘检测结果和锐化后图像,说明三者之间的关系。
一灰度图像的二值化。
二、运行环境MATLAB R2014a三、运行结果及分析运行结果如图所示:可以观察出原图像、边缘检测结果和锐化后图像三者之间的关系为:原图像+边缘检测结果=锐化后图像四、心得体会通过MATLAB编程更加熟悉了课本上关于锐化与边缘检测的相关知识点,对二者的关系也有了具体的认识。
同时,对MATLAB图像导入函数、图像边缘检测函数、锐化窗口矩阵卷积函数的调用及实现机理也有所掌握,比如后边附的程序中会提到的“%”标注的思考。
五、具体程序size=512;Img_rgb=imread('E:\lena.jpg'); %读取图像Img_gray=rgb2gray(Img_rgb); %进行RGB到灰度图像的转换(虽然原来在网上下载的lena就是黑白图像,但是这一步必须要有!否则处理结果不正确)figure(1);subplot(2,3,1);imshow(Img_gray);title('原图像');Img_edge=zeros(size);a={'roberts','prewitt','sobel'};for i=1:3Img_edge=edge(Img_gray,a{i});figure(1);subplot(2,3,i+1);imshow(Img_edge);axis image;title(a(i));endA=imread('E:\lena.jpg');B=rgb2gray(A);B=double(B);Window=[-1-1-1;-19-1;-1-1-1]; %八邻域拉普拉斯锐化算子(α取1)C=conv2(B,Window,'same');Img_sharp=uint8(C);subplot(2,3,5);imshow(Img_sharp);title('sharp');THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
图像处理方面的参考文献
图像处理方面的参考文献:由整理[1] Pratt W K. Digital image processing :3rd edition [M]. New York :Wiley Inter-science ,1991.[2] HUANG Kai-qi ,WANG Qiao ,WU Zhen-yang ,et al. Multi-Scale Color Image Enhancement AlgorithmBased on Human Visual System [J]. Journal of Image and Graphics ,2003,8A(11) :1242-1247.[3] 赵春燕,郑永果,王向葵.基于直方图的图像模糊增强算法[J]. 计算机工程,2005,31(12):185-187.[4] 刘惠燕,何文章,马云飞. 基于数学形态学的雾天图像增强算法[J]. 天津工程师范学院学报, 2021.[5] Pal S K, King R A. Image enhancement using fuzzy sets[J]. Electron Lett, 1980, 16(9): 376 —378.[6] Zhou S M, Gan J Q, Xu L D, et al. Interactive image enhancement by fuzzy relaxation [J]. International Journalof Automation and Computing, 2007, 04(3): 229 —235.[7] Mir A.H. Fuzzy entropy based interactive enhancement of radiographic images [J]. Journal of MedicalEngineering and Technology, 2007, 31(3): 220 —231.[8] TAN K, OAKLEY J P. Enhancement of color images in poor visibility conditions[C] / / Proceedings of IEEEInternational Conference on Image Processing. Vancouver, Canada: IEEE press, 2000, 788 - 791.[9] TAN R T, PETTERSSON N, PETERSSON L. Visibility enhancement for roads with foggy or hazy scenes[C] / /IEEE intelligent Vehicles Symposium. Istanbul Turkey: IEEE Press, 2007: 19 - 24.[10] 祝培,朱虹,钱学明, 等. 一种有雾天气图像景物影像的清晰化方法[J ]. 中国图象图形学报, 2004, 9 (1) : 124 -128.[11] 王萍,张春,罗颖昕. 一种雾天图像低比照度增强的快速算法[J ]. 计算机应用, 2006, 26 (1) : 152 - 156.[12] 詹翔,周焰. 一种基于局部方差的雾天图像增强算法[J ]. 计算机应用, 2007, 27 (2) : 510 - 512.[13] 芮义斌,李鹏,孙锦涛. 一种图像去薄雾方法[ J ]. 计算机应用,2006, 26 (1) : 154 - 156.[14] Coltuc D ,Bolon P,Chassery J-M. Exact Histogram Specification [J]. IEEE TIP ,2006,15(05):1143-1152.[15] Menotti D. Contrast Enhancement in Digital Imaging Using Histogram Equalization [D]. Brazil :UFMGUniversidade Federal de Minas Gerais ,2021.[16] Alsuwailem A M. A Novel FPGA Based Real-time Histogram Equalization Circuit for Infrared ImageEnhancement [J]. Active and Passive Electronic Devices ,2021(03):311-321.[17] 杨必武,郭晓松,王克军,等.基于直方图的线性拉伸的红外图像增强新算法[J]. 红外与激光工程,2003,32(1):1-3,7[18] 赵立兴,唐英干,刘冬,关新平.基于直方图指数平滑的模糊散度图像分割[J].系统工程与电子技术,2005,27(7):1182-1185[19] 李忠海.图像直方图局部极值算法及其在边界检测中的应用[J]. 吉林大学学报,2003,21( 5):89-91[20] Dah-Chung Chang,Wen-Rong Wu.Image Contrast Enhancement Based on a Histogram Transformation ofLocal Standard Deviation[J].IEEE Transactions on Medical Imageing,1998,17(4):518-530[21] Andrea Polesel, Giovanni Ramponi, and V.John Mathews. Image Enhancement via Adaptive UnsharpMasking[J].IEEE Transactions on Image Processing,2000,9(3)[22] 苏秀琴,张广华,李哲. 一种陡峭边缘检测的改进Laplacian 算子[J]. 科学技术与工程,2006,6(13):1833-1835[23] 张利平,何金其,黄廉卿•多尺度抗噪反锐化淹没的医学影像增强算法[J].光电工程,2004,31( 10):53-56 ,68[24] CHENG H D, XU HU I2JUAN. A novel fuzzy logic app roach to mammogram contrast enhancement[J ].Information Sciences, 2002,148: 167 - 184.[25] Zhou S M, Gan J Q. A new fuzzy relaxation algorithm for image enhancement [J]. International Journal ofKnowledge-based and Intelligent Engineering Systems, 2006, 10(3): 181 —192.[26] 李水根,吴纪桃.分形与小波[M]. 北京:科学出版社,2002[27] 冈萨雷斯. 数字图像处理[M]. 电子工业出版社,2003.[28] Silvano Di Zenzo,Luigi Cinque.Image Thresholding Using FuzzyEntrops.IEEE TRANSACTIONSONSYSTEM,MAN,ANDCYBERNETICS-PARTB:CYBERNETICS,1998,28(1):23[29] 王保平,刘升虎,范九伦,谢维信.基于模糊熵的自适应图像多层次模糊增强算法[J].电子学报,2005,33(4):730-734[30] Zhang D,Wang Z.Impulse noise detection and removal using fuzzy techniques[J].IEEE ElectronicsLetters.1997,33(5):378-379[31] Jun Wang,Jian Xiao, Dan Hu.Fuzzy wavelet network modeling with B-spline wavelet[J].Machine Learning andCybernetics,2005:4144-4148[32] 刘国军,唐降龙,黄剑华,刘家峰.基于模糊小波的图像比照度增强算[J].电子学报,2005, 33⑷:643-646[33] 陈佳娟,陈晓光,纪寿文.基于遗传算法的图像模糊增强处理方法[J].计算机工程与应用,2001, 21:109-111[34] 汪亚明,吴国忠,赵匀•基于模糊上级遗传算法的图象增强技术[J].农业机械学报,2003,34(3):96-98[35] 赵春燕,郑永果,王向葵•基于直方图的图像模糊增强算法[J].计算机工程,2005, 31(12):185-186,222[36] Tobias,,Seara.Image segmentation by histogram thresholding using fuzzy sets[J].IEEE Transactions onImage Processing,2002 11(12):1457-1465[37] 王玉平,蔡元龙多尺度B样条小波边缘算子]J]冲国科学,A辑,1995,25⑷:426 —437.[38] 李玉,于凤琴,杨慧中等基于新的阈值函数的小波阈值去噪方法[J].江南大学学报,2006 ,5(4):476-479[39] ,,K.R.Subramanian.Low-Complexity Image Denoiseing based on Statistical Modeling of WaveletCofficients[J].IEEE Signal Process,1999,6(12):300-303[40] 朱云芳,戴朝华,陈维荣.小波信号消噪及阈值函数的一种改良方法[J].中国测试技术,2006, 32(7):28-30[41] 凌毓涛,姚远,曾竞.基于小波的医学图像自适应增强[J].华中师范大学学报(自然科学版),2004,38(1):47-51[42] 何锦平.基于小波多分辨分析的图像增强及其应用研究[D]. 西北工业大学硕士学位论文,2003,4[43] Hayit Grernspan,Charles H,Anderson.Image Enhancement by Nonlinear Extrapolation[J].IEEE Transactionson Image Processing,2000,9(6):[44] 李旭超,朱善安.基于小波模极大值和Neyman Pearson准那么阈值的图像去噪.中国图象图形学报,10(8):964-969[45] Tai-Chiu Hsung,Daniel Pak-Kong Lun,Wan-Chi Siu.Denoising by Singularity Detection[J].IEEETransactions on Signal Processing,1999,47(11)[46] Lei Zhang,Paul Bao.Denoising by Spatial Correlation Thresholding[J]. IEEE Transactions on Circuts andSystems for Video Technology,2003,13(6):535-538[47] ,Huai Li,Matthew T.Freedman Optimization of Wavelet Decomposition for ImageCompression and Feature Preservation.IEEE Transactions on Medical Imaging,2003,22(9):1141-1151 [48] Junmei Zhong,Ruola Ning.Image Denoising Based on Wavelets and Multifractals for SingularityDetection[J].IEEE Transactions on Image Processing,2005,14(10):1435-1447[49] Z Cai,T H Cheng,C Lu,, 2001,37(11):683-685[50] Ahmed,J,Jafri,Ahmad.Target Tracking in an Image Sequence Using Wavelet Features and a NeuralNetwork[J].TENCON 2005,10(11):1-6[51] Yunyi Yan,Baolong Guo,Wei Ni.Image Denoising:An Approach Based on Wavelet Neural Network andImproved Median Filtering[J].WCICA 2006:10063-10067[52] Changjiang Zhang,Jinshan Wang,Xiaodong Wang,Huajun Feng.Contrast Enhancement for Image withIncomplete Beta Transform and Wavelet Neural Network[J].Neural Networks and Brain,2005,10:1236-1241 [53] Cao Wanpeng,Che Rensheng,Ye Dong An illumination independent edge detection and fuzzy enhancementalgorithm based on wavelet transform for non-uniform weak illumination images[J]Pattern Recognition Letters 29(2021)192-199金炜,潘英俊,魏彪 .基于改良遗传算法的图象小波阈值去噪研究 [M]. 刘轩,刘佳宾.基于比照度受限自适应直方图均衡的乳腺图像增强[J].计算机工程与应 用,2021,44(10):173-175Pal S k,King R A.Image enhancement using smoothing with fuzzy sets[J].IEEE Trans,Syst,Man,Cybern, 1981,11(7):494-501徐朝伦.基于子波变换和模糊数学的图像分割研究[D]:[博士学位论文].北京:北京理工大学电子工程 系, 1998Philippe Saint-Marc,Jer-Sen Chen. Adaptive Smoothing: A General Tool for Early Vision[J].IEEE Transactionson Pattern Analysis and Machine Intelligence.2003 , 13( 6) : 514-528翟艺书柳晓鸣,涂雅瑗.基于模糊逻辑的雾天降质图像比照度增强算法 [J].计算机工程与应用,2021,3 艾明晶,戴隆忠,曹庆华.雾天环境下自适应图像增强去雾方法研究 [J].计算机仿真,2021,7 Joung - YounKim ,Lee - SupKim , Seung - HoHwang. An Advanced Contrast Enhancement Using PartiallyOverlapped Sub - Block Histogram Equalization [J]. IEEE Transactions on Circuits and Systems of VideoTechnology , 2001, 11 (4) : 475 - 484.Srinivasa G Narasimhan , Shree K. Nayar. Contrast Restoration of weather Degraded Images[ J ]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2003, 25 (6) : 713 -724陈武凡 ,鲁贤庆 . 彩色图像边缘检测的新算法 ——广义模糊算子法 [ J ]. 中国科学 (A) , 2000, 15 ( 2) : 219-224.刘博,胡正平,王成儒. 基于模糊松弛迭代的分层图像增强算法 [ J ]. 光学技术, 2021,1 黄凯奇,王桥,吴镇扬,等. 基于视觉特性和彩色空间的多尺度彩色图像增强算法 [J]. 电子学报,2004, 32(4): 673-676.吴颖谦,方涛,李聪亮,等. 一种基于小波分析和人眼视觉特性的图像增强方法 [J]. 数据采集与处理, 2003,18: 17-21.陈少卿,吴朝霞,程敬之 .骨肿瘤 X 光片的多分辨特征增强 .西安:西安交通大学校报, 2003. 周旋,周树道,黄峰. 基于小波变换的图像增强新算法 [J ] . 计算机应用 :2005 ,25 (3) :606 - 608. 何锦平. 基于小波多分辨分析的图像增强及其应用研究 [D] .西安:西北工业大学 ,2003. 张德干 .小波变换在数字图像处理中的应用研究[J]. 沈阳:东北大学, 2000. 方勇•基于软阈值的小波图像增强方法〔J 〕计算机工程与应用,2002, 23:16 一 19. 谢杰成,张大力,徐文立 .小波图像去噪综述 .中国图象图形学报,2002, 3(7), 209 一 217. 欧阳诚梓、李勇等,基于小波变换与中值滤波相结合的图像去噪处理 [J].中原工学院学报 王云松、林德杰,基于小波包分析的图像去噪处理 [J].计算技术与自动 李晓漫 , 雷英杰等,小波变换和粗糙集的图像增强方法 [J]. 电光与控制 ,2007.12 刘晨 ,候德文等 . 基于多小波变换与图像融合的图像增强方法 [J]. 计算机技术及应用 ,2021.5 徐凌,刘薇,杨光等. 结合小波域变换和空间域变换的图像增强方法 [J]. 波谱学杂志 Peli E. Cont rast in complex images [J ] . J Opt Soc Am A , 1990 , 7 (10) : 2 032 - 2 040.Huang K Q , Wu Z Y, Wang Q. Image enhancement based on t he statistics of visual representation [J ] .Image Vision Comput , 2005 , 23 (1) : 51 - 57.高彦平 .图像增强方法的研究与实现 [D]. 山东科技大学硕士学位论文, 2005, 4XIANG Q S, LI A. Water-fat imaging with direct phase encoding [J]. Magnetic ResonanceImaging,1997,7(6):1002-1015.MA J, SINGH S K, KUMAR A J, et al. Method for efficient fast spin echo Dixon imaging [J]. Magnetic Resonance in Medicine, 2002, 48(6):1021-1027. [54][55] [56] [57][58] [59][60][61] [62] [63] [64][65] [66] [67] [68] [69][70][71][72] [73] [74] [75] [76][77][78][79] [80][81] [82]。
数字图像处理 外文翻译 外文文献 英文文献 数字图像处理
数字图像处理外文翻译外文文献英文文献数字图像处理Digital Image Processing1 IntroductionMany operators have been proposed for presenting a connected component n a digital image by a reduced amount of data or simplied shape. In general we have to state that the development, choice and modi_cation of such algorithms in practical applications are domain and task dependent, and there is no \best method". However, it isinteresting to note that there are several equivalences between published methods and notions, and characterizing such equivalences or di_erences should be useful to categorize the broad diversity of published methods for skeletonization. Discussing equivalences is a main intention of this report.1.1 Categories of MethodsOne class of shape reduction operators is based on distance transforms. A distance skeleton is a subset of points of a given component such that every point of this subset represents the center of a maximal disc (labeled with the radius of this disc) contained in the given component. As an example in this _rst class of operators, this report discusses one method for calculating a distance skeleton using the d4 distance function which is appropriate to digitized pictures. A second class of operators produces median or center lines of the digitalobject in a non-iterative way. Normally such operators locate critical points _rst, and calculate a speci_ed path through the object by connecting these points.The third class of operators is characterized by iterative thinning. Historically, Listing [10] used already in 1862 the term linear skeleton for the result of a continuous deformation of the frontier of a connected subset of a Euclidean space without changing the connectivity of the original set, until only a set of lines and points remains. Many algorithms in image analysis are based on this general concept of thinning. The goal is a calculation of characteristic properties of digital objects which are not related to size or quantity. Methods should be independent from the position of a set in the plane or space, grid resolution (for digitizing this set) or the shape complexity of the given set. In the literature the term \thinning" is not used - 1 -in a unique interpretation besides that it always denotes a connectivity preserving reduction operation applied to digital images, involving iterations of transformations of speci_ed contour points into background points. A subset Q _ I of object points is reduced by ade_ned set D in one iteration, and the result Q0 = Q n D becomes Q for the next iteration. Topology-preserving skeletonization is a special case of thinning resulting in a connected set of digital arcs or curves.A digital curve is a path p =p0; p1; p2; :::; pn = q such that pi is a neighbor of pi?1, 1 _ i _ n, and p = q. A digital curve is called simpleif each point pi has exactly two neighbors in this curve. A digital arc is a subset of a digital curve such that p 6= q. A point of a digital arc which has exactly one neighbor is called an end point of this arc. Within this third class of operators (thinning algorithms) we may classify with respect to algorithmic strategies: individual pixels are either removed in a sequential order or in parallel. For example, the often cited algorithm by Hilditch [5] is an iterative process of testing and deleting contour pixels sequentially in standard raster scan order. Another sequential algorithm by Pavlidis [12] uses the de_nition of multiple points and proceeds by contour following. Examples of parallel algorithms in this third class are reduction operators which transform contour points into background points. Di_erences between these parallel algorithms are typically de_ned by tests implemented to ensure connectedness in a local neighborhood. The notion of a simple point is of basic importance for thinning and it will be shown in this reportthat di_erent de_nitions of simple points are actually equivalent. Several publications characterize properties of a set D of points (to be turned from object points to background points) to ensure that connectivity of object and background remain unchanged. The report discusses some of these properties in order to justify parallel thinning algorithms.1.2 BasicsThe used notation follows [17]. A digital image I is a functionde_ned on a discrete set C , which is called the carrier of the image.The elements of C are grid points or grid cells, and the elements (p;I(p)) of an image are pixels (2D case) or voxels (3D case). The range of a (scalar) image is f0; :::Gmaxg with Gmax _ 1. The range of a binary image is f0; 1g. We only use binary images I in this report. Let hIi be the set of all pixel locations with value 1, i.e. hIi = I?1(1). The image carrier is de_ned on an orthogonal grid in 2D or 3D - 2 -space. There are two options: using the grid cell model a 2D pixel location p is a closed square (2-cell) in the Euclidean plane and a 3D pixel location is a closed cube (3-cell) in the Euclidean space, where edges are of length 1 and parallel to the coordinate axes, and centers have integer coordinates. As a second option, using the grid point model a 2D or 3D pixel location is a grid point.Two pixel locations p and q in the grid cell model are called 0-adjacent i_ p 6= q and they share at least one vertex (which is a 0-cell). Note that this speci_es 8-adjacency in 2D or 26-adjacency in 3D if the grid point model is used. Two pixel locations p and q in the grid cell model are called 1- adjacent i_ p 6= q and they share at least one edge (which is a 1-cell). Note that this speci_es 4-adjacency in 2D or 18-adjacency in 3D if the grid point model is used. Finally, two 3Dpixel locations p and q in the grid cell model are called 2-adjacent i_ p 6= q and they share at least one face (which is a 2-cell). Note that this speci_es 6-adjacency if the grid point model is used. Any of these adjacency relations A_, _ 2 f0; 1; 2; 4; 6; 18; 26g, is irreexive andsymmetric on an image carrier C. The _-neighborhood N_(p) of a pixel location p includes p and its _-adjacent pixel locations. Coordinates of 2D grid points are denoted by (i; j), with 1 _ i _ n and 1 _ j _ m; i; j are integers and n;m are the numbers of rows and columns of C. In 3Dwe use integer coordinates (i; j; k). Based on neighborhood relations wede_ne connectedness as usual: two points p; q 2 C are _-connected with respect to M _ C and neighborhood relation N_ i_ there is a sequence of points p = p0; p1; p2; :::; pn = q such that pi is an _-neighbor of pi?1, for 1 _ i _ n, and all points on this sequence are either in M or all in the complement of M. A subset M _ C of an image carrier is called _-connected i_ M is not empty and all points in M are pairwise _-connected with respect to set M. An _-component of a subset S of C is a maximal _-connected subset of S. The study of connectivity in digital images has been introduced in [15]. It follows that any set hIi consists of a number of _-components. In case of the grid cell model, a component is the union of closed squares (2D case) or closed cubes (3D case). The boundary of a 2-cell is the union of its four edges and the boundary of a 3-cell is the union of its six faces. For practical purposes it iseasy to use neighborhood operations (called local operations) on adigital image I which de_ne a value at p 2 C in the transformed image based on pixel- 3 -values in I at p 2 C and its immediate neighbors in N_(p).2 Non-iterative AlgorithmsNon-iterative algorithms deliver subsets of components in specied scan orders without testing connectivity preservation in a number of iterations. In this section we only use the grid point model.2.1 \Distance Skeleton" AlgorithmsBlum [3] suggested a skeleton representation by a set of symmetric points.In a closed subset of the Euclidean plane a point p is called symmetric i_ at least 2 points exist on the boundary with equal distances to p. For every symmetric point, the associated maximal discis the largest disc in this set. The set of symmetric points, each labeled with the radius of the associated maximal disc, constitutes the skeleton of the set. This idea of presenting a component of a digital image as a \distance skeleton" is based on the calculation of a speci_ed distance from each point in a connected subset M _ C to the complement of the subset. The local maxima of the subset represent a \distance skeleton". In [15] the d4-distance is specied as follows. De_nition 1 The distance d4(p; q) from point p to point q, p 6= q, is the smallest positive integer n such that there exists a sequence of distinct grid points p = p0,p1; p2; :::; pn = q with pi is a 4-neighbor of pi?1, 1 _ i _ n.If p = q the distance between them is de_ned to be zero. Thedistance d4(p; q) has all properties of a metric. Given a binary digital image. We transform this image into a new one which represents at each point p 2 hIi the d4-distance to pixels having value zero. The transformation includes two steps. We apply functions f1 to the image Iin standard scan order, producing I_(i; j) = f1(i; j; I(i; j)), and f2in reverse standard scan order, producing T(i; j) = f2(i; j; I_(i; j)), as follows:f1(i; j; I(i; j)) =8><>>:0 if I(i; j) = 0minfI_(i ? 1; j)+ 1; I_(i; j ? 1) + 1gif I(i; j) = 1 and i 6= 1 or j 6= 1- 4 -m+ n otherwisef2(i; j; I_(i; j)) = minfI_(i; j); T(i+ 1; j)+ 1; T(i; j + 1) + 1g The resulting image T is the distance transform image of I. Notethat T is a set f[(i; j); T(i; j)] : 1 _ i _ n ^ 1 _ j _ mg, and let T_ _ T such that [(i; j); T(i; j)] 2 T_ i_ none of the four points in A4((i; j)) has a value in T equal to T(i; j)+1. For all remaining points (i; j) let T_(i; j) = 0. This image T_ is called distance skeleton. Now weapply functions g1 to the distance skeleton T_ in standard scan order, producing T__(i; j) = g1(i; j; T_(i; j)), and g2 to the result of g1 in reverse standard scan order, producing T___(i; j) = g2(i; j; T__(i; j)), as follows:g1(i; j; T_(i; j)) = maxfT_(i; j); T__(i ? 1; j)? 1; T__(i; j ? 1) ? 1gg2(i; j; T__(i; j)) = maxfT__(i; j); T___(i + 1; j)? 1; T___(i; j + 1) ? 1gThe result T___ is equal to the distance transform image T. Both functions g1 and g2 de_ne an operator G, with G(T_) = g2(g1(T_)) = T___, and we have [15]: Theorem 1 G(T_) = T, and if T0 is any subset of image T (extended to an image by having value 0 in all remaining positions) such that G(T0) = T, then T0(i; j) = T_(i; j) at all positions of T_with non-zero values. Informally, the theorem says that the distance transform image is reconstructible from the distance skeleton, and it is the smallest data set needed for such a reconstruction. The useddistance d4 di_ers from the Euclidean metric. For instance, this d4-distance skeleton is not invariant under rotation. For an approximation of the Euclidean distance, some authors suggested the use of di_erent weights for grid point neighborhoods [4]. Montanari [11] introduced a quasi-Euclidean distance. In general, the d4-distance skeleton is a subset of pixels (p; T(p)) of the transformed image, and it is not necessarily connected.2.2 \Critical Points" AlgorithmsThe simplest category of these algorithms determines the midpointsof subsets of connected components in standard scan order for each row. Let l be an index for the number of connected components in one row of the original image. We de_ne the following functions for 1 _ i _ n: ei(l) = _ j if this is the lth case I(i; j) = 1 ^ I(i; j ? 1) = 0 in row i, counting from the left, with I(i;?1) = 0 ,oi(l) = _ j if this is the lth case I(i; j) = 1- 5 -^ I(i; j+ 1) = 0 ,in row i, counting from the left, with I(i;m+ 1)= 0 ,mi(l) = int((oi(l) ?ei(l)=2)+ oi(l) ,The result of scanning row i is a set ofcoordinates (i;mi(l)) ofof the connected components in row i. The set of midpoints of all rows midpoints ,constitutes a critical point skeleton of an image I. This method is computationally eÆcient.The results are subsets of pixels of the original objects, and these subsets are not necessarily connected. They can form \noisy branches" when object components are nearly parallel to image rows. They may be useful for special applications where the scanning direction is approximately perpendicular to main orientations of object components.References[1] C. Arcelli, L. Cordella, S. Levialdi: Parallel thinning ofbinary pictures. Electron. Lett. 11:148{149, 1975}.[2] C. Arcelli, G. Sanniti di Baja: Skeletons of planar patterns. in: Topolog- ical Algorithms for Digital Image Processing (T. Y. Kong, A. Rosenfeld, eds.), North-Holland, 99{143, 1996.}[3] H. Blum: A transformation for extracting new descriptors of shape. in: Models for the Perception of Speech and Visual Form (W. Wathen- Dunn, ed.), MIT Press, Cambridge, Mass., 362{380, 1967.19} - 6 -数字图像处理1引言许多研究者已提议提出了在数字图像里的连接组件是由一个减少的数据量或简化的形状。
介绍数字图像处理外文翻译
附录1 外文原文Source: "the 21st century literature the applied undergraduate electronic communication series of practical teaching planThe information and communication engineering specialty in English ch02_1. PDF 120-124Ed: HanDing ZhaoJuMin, etcText A: An Introduction to Digital Image Processing1. IntroductionDigital image processing remains a challenging domain of programming for several reasons. First the issue of digital image processing appeared relatively late in computer history. It had to wait for the arrival of the first graphical operating systems to become a true matter. Secondly, digital image processing requires the most careful optimizations especially for real time applications. Comparing image processing and audio processing is a good way to fix ideas. Let us consider the necessary memory bandwidth for examining the pixels of a 320x240, 32 bits bitmap, 30 times a second: 10 Mo/sec. Now with the same quality standard, an audio stereo wave real time processing needs 44100 (samples per second) x 2 (bytes per sample per channel) x 2(channels) = 176Ko/sec, which is 50 times less.Obviously we will not be able to use the same techniques for both audio and image signal processing. Finally, digital image processing is by definition a two dimensions domain; this somehow complicates things when elaborating digital filters.We will explore some of the existing methods used to deal with digital images starting by a very basic approach of color interpretation. As a moreadvanced level of interpretation comes the matrix convolution and digital filters. Finally, we will have an overview of some applications of image processing.The aim of this document is to give the reader a little overview of the existing techniques in digital image processing. We will neither penetrate deep into theory, nor will we in the coding itself; we will more concentrate on the algorithms themselves, the methods. Anyway, this document should be used as a source of ideas only, and not as a source of code. 2. A simple approach to image processing(1) The color data: Vector representation①BitmapsThe original and basic way of representing a digital colored image in a computer's memory is obviously a bitmap. A bitmap is constituted of rows of pixels, contraction of the word s “Picture Element”. Each pixel has a particular value which determines its appearing color. This value is qualified by three numbers giving the decomposition of the color in the three primary colors Red, Green and Blue. Any color visible to human eye can be represented this way. The decomposition of a color in the three primary colors is quantified by a number between 0 and 255. For example, white will be coded as R = 255, G = 255, B = 255; black will be known as (R,G,B)= (0,0,0); and say, bright pink will be : (255,0,255). In other words, an image is an enormous two-dimensional array of color values, pixels, each of them coded on 3 bytes, representing the three primary colors. This allows the image to contain a total of 256×256×256 = 16.8 million different colors. This technique is also known as RGB encoding, and is specifically adapted to human vision. With cameras or other measure instruments we are capable of “seeing”thousands of other “colors”, in which cases the RG B encoding is inappropriate.The range of 0-255 was agreed for two good reasons: The first is that the human eye is not sensible enough to make the difference between more than 256 levels of intensity (1/256 = 0.39%) for a color. That is to say, an image presented to a human observer will not be improved by using more than 256 levels of gray (256shades of gray between black and white). Therefore 256 seems enough quality. The second reason for the value of 255 is obviously that it is convenient for computer storage. Indeed on a byte, which is the computer's memory unit, can be coded up to 256 values.As opposed to the audio signal which is coded in the time domain, the image signal is coded in a two dimensional spatial domain. The raw image data is much more straightforward and easy to analyze than the temporal domain data of the audio signal. This is why we will be able to do lots of stuff and filters for images without transforming the source data, while this would have been totally impossible for audio signal. This first part deals with the simple effects and filters you can compute without transforming the source data, just by analyzing the raw image signal as it is.The standard dimensions, also called resolution, for a bitmap are about 500 rows by 500 columns. This is the resolution encountered in standard analogical television and standard computer applications. You can easily calculate the memory space a bitmap of this size will require. We have 500×500 pixels, each coded on three bytes, this makes 750 Ko. It might not seem enormous compared to the size of hard drives, but if you must deal with an image in real time then processing things get tougher. Indeed rendering images fluidly demands a minimum of 30 images per second, the required bandwidth of 10 Mo/sec is enormous. We will see later that the limitation of data access and transfer in RAM has a crucial importance in image processing, and sometimes it happens to be much more important than limitation of CPU computing, which may seem quite different from what one can be used to in optimization issues. Notice that, with modern compression techniques such as JPEG 2000, the total size of the image can be easily reduced by 50 times without losing a lot of quality, but this is another topic.②Vector representation of colorsAs we have seen, in a bitmap, colors are coded on three bytes representing their decomposition on the three primary colors. It sounds obvious to a mathematician to immediately interpret colors as vectors in athree-dimension space where each axis stands for one of the primary colors. Therefore we will benefit of most of the geometric mathematical concepts to deal with our colors, such as norms, scalar product, projection, rotation or distance. This will be really interesting for some kind of filters we will see soon. Figure 1 illustrates this new interpretation:Figure 1(2) Immediate application to filters① Edge DetectionFrom what we have said before we can quantify the 'difference' between two colors by computing the geometric distance between the vectors representing those two colors. Lets consider two colors C1 = (R1,G1,B1) and C2 = (R2,B2,G2), the distance between the two colors is given by the formula :D(C1, C2) =(R1+This leads us to our first filter: edge detection. The aim of edge detection is to determine the edge of shapes in a picture and to be able to draw a resultbitmap where edges are in white on black background (for example). The idea is very simple; we go through the image pixel by pixel and compare the color of each pixel to its right neighbor, and to its bottom neighbor. If one of these comparison results in a too big difference the pixel studied is part of an edge and should be turned to white, otherwise it is kept in black. The fact that we compare each pixel with its bottom and right neighbor comes from the fact that images are in two dimensions. Indeed if you imagine an image with only alternative horizontal stripes of red and blue, the algorithms wouldn't see the edges of those stripes if it only compared a pixel to its right neighbor. Thus the two comparisons for each pixel are necessary.This algorithm was tested on several source images of different types and it gives fairly good results. It is mainly limited in speed because of frequent memory access. The two square roots can be removed easily by squaring the comparison; however, the color extractions cannot be improved very easily. If we consider that the longest operations are the get pixel function and put pixel functions, we obtain a polynomial complexity of 4*N*M, where N is the number of rows and M the number of columns. This is not reasonably fast enough to be computed in realtime. For a 300×300×32 image I get about 26 transforms per second on an Athlon XP 1600+. Quite slow indeed.Here are the results of the algorithm on an example image:A few words about the results of this algorithm: Notice that the quality of the results depends on the sharpness of the source image. Ifthe source image is very sharp edged, the result will reach perfection. However if you have a very blurry source you might want to make it pass through a sharpness filter first, which we will study later. Another remark, you can also compare each pixel with its second or third nearest neighbors on the right and on the bottom instead of the nearest neighbors. The edges will be thicker but also more exact depending on the source image's sharpness. Finally we will see later on that there is another way to make edge detection with matrix convolution.②Color extractionThe other immediate application of pixel comparison is color extraction.Instead of comparing each pixel with its neighbors, we are going to compare it with a given color C1. This algorithm will try to detect all the objects in the image that are colored with C1. This was quite useful for robotics for example. It enables you to search on streaming images for a particular color. You can then make you robot go get a red ball for example. We will call the reference color, the one we are looking for in the image C0 = (R0,G0,B0).Once again, even if the square root can be easily removed it doesn't really improve the speed of the algorithm. What really slows down the whole loop is the NxM get pixel accesses to memory and put pixel. This determines the complexity of this algorithm: 2xNxM, where N and M are respectively the numbers of rows and columns in the bitmap. The effective speed measured on my computer is about 40 transforms per second on a 300x300x32 source bitmap.3.JPEG image compression theory(一)JPEG compression is divided into four steps to achieve:(1) Color mode conversion and samplingRGB color system is the most common ways that color. JPEG uses a YCbCr colorsystem. Want to use JPEG compression method dealing with the basic full-color images, RGB color mode to first image data is converted to YCbCr color model data. Y representative of brightness, Cb and Cr represents the hue, saturation. By the following calculation to be completed by data conversion. Y = 0.2990R +0.5870 G+0.1140 B Cb =- 0.1687R-0.3313G +0.5000 B +128 Cr = 0.5000R-0.4187G-0.0813B+128 of human eyes on the low-frequency data than high-frequency data with higher The sensitivity, in fact, the human eye to changes in brightness than to color changes should be much more sensitive, ie Y component of the data is more important. Since the Cb and Cr components is relatively unimportant component of the data comparison, you can just take part of the data to deal with. To increase the compression ratio. JPEG usually have two kinds of sampling methods: YUV411 and YUV422, they represent is the meaning of Y, Cb and Cr data sampling ratio of three components.(2)DCT transformationThe full name is the DCT-discrete cosine transform (Discrete Cosine Transform), refers to a group of light intensity data into frequency data, in order that intensity changes of circumstances. If the modification of high-frequency data do, and then back to the original form of data, it is clear there are some differences with the original data, but the human eye is not easy to recognize. Compression, the original image data is divided into 8 * 8 matrix of data units. JPEG entire luminance and chrominance Cb matrix matrix, saturation Cr matrix as a basic unit called the MCU. Each MCU contains a matrix of no more than 10. For example, the ratio of rows and columns Jie Wei 4:2:2 sampling, each MCU will contain four luminance matrix, a matrix and a color saturation matrix. When the image data is divided into an 8 * 8 matrix, you must also be subtracted for each value of 128, and then a generation of formula into the DCT transform can be achieved by DCT transform purposes. The image data value must be reduced by 128, because the formula accepted by the DCT-figure range is between -128 to +127.(3)QuantizationImage data is converted to the frequency factor, you still need to accept a quantitative procedure to enter the coding phase. Quantitative phase requires two 8 * 8 matrix of data, one is to deal specifically with the brightness of the frequency factor, the other is the frequency factor for the color will be the frequency coefficient divided by the value of quantization matrix to obtain the nearest whole number with the quotient, that is completed to quantify. When the frequency coefficients after quantization, will be transformed into the frequency coefficients from the floating-point integer This facilitate the implementation of the final encoding. However, after quantitative phase, all the data to retain only the integer approximation, also once again lost some data content.(4)CodingHuffman encoding without patent issues, to become the most commonly used JPEG encoding, Huffman coding is usually carried out in a complete MCU. Coding, each of the DC value matrix data 63 AC value, will use a different Huffman code tables, while the brightness and chroma also require a different Huffman code tables, it needs a total of four code tables, in order to successfully complete the JPEG coding. DC Code DC is a color difference pulse code modulation using the difference coding method, which is in the same component to obtain an image of each DC value and the difference between the previous DC value to encode. DC pulse code using the main reason for the difference is due to a continuous tone image, the difference mostly smaller than the original value of the number of bits needed to encode the difference will be more than the original value of the number of bits needed to encode the less. For example, a margin of 5, and its binary representation of a value of 101, if the difference is -5, then the first changed to a positive integer 5, and then converted into its 1's complement binary number can be. The so-called one's complement number, that is, if the value is 0 for each Bit, then changed to 1; Bit is 1, it becomes 0. Difference between the five should retain the median 3, the following table that lists the difference between the Bit to be retained and the difference between the number of content controls.In the margin of the margin front-end add some additional value Hoffman code, such as the brightness difference of 5 (101) of the median of three, then the Huffman code value should be 100, the two connected together shall be 100101. The following two tables are the brightness and chroma DC difference encoding table. According to these two forms content, you can add the difference for the DC value Huffman code to complete the DC coding.4. ConclusionsDigital image processing is far from being a simple transpose of audiosignal principles to a two dimensions space. Image signal has its particular properties, and therefore we have to deal with it in a specificway. The Fast Fourier Transform, for example, which was such a practical tool in audio processing, becomes useless in image processing. Oppositely, digital filters are easier to create directly, without any signal transforms, in image processing.Digital image processing has become a vast domain of modern signal technologies. Its applications pass far beyond simple aesthetical considerations, and they include medical imagery, television and multimedia signals, security, portable digital devices, video compression,and even digital movies. We have been flying over some elementarynotions in image processing but there is yet a lot more to explore. Ifyou are beginning in this topic, I hope this paper will have given you thetaste and the motivation to carry on.附录2 外文翻译文献出处:《21 世纪全国应用型本科电子通信系列实用规划教材》之《信息与通信工程专业英语》ch02_1.pdf 120-124页主编:韩定定、赵菊敏等正文:介绍数字图像处理1.导言有几个原因使数字图像处理仍然是一个具有挑战性的领域。
数字图像处理文献综述
数字图像处理文献综述摘要数字图像处理是指将数字图像与计算机进行交互,将图像进行数字化处理以获得更好的视觉效果或用于其他应用领域。
本文对数字图像处理近期的研究文献进行综述,探讨数字图像处理的基本理论和在实际应用中的应用情况。
数字图像处理基本理论数字图像通常以灰度或彩色的方式呈现。
在数字图像处理中,基本的操作包括滤波,变换和复原等。
其中,滤波是最常用的操作之一,它用于去除图像中的噪声和其它干扰项。
变换用于将图像从一种形式转换为另一种形式,包括傅里叶变换、小波变换和Hough变换等。
复原则用于恢复由噪声和失真所造成的信息丢失。
数字图像处理的另外一个重要问题是图像分割。
图像分割是将图像分成不同的区域,这些区域可以是同质的,也可以是具有不同特征的。
在数字图像中,图像分割可以用于物体识别、边缘检测和目标跟踪等应用。
数字图像处理的应用场景数字图像处理可以应用于多个领域,如医学、机器人、安全监控、虚拟现实和自动驾驶。
在医学领域,数字图像处理可以用于医学图像的增强、识别和分析。
例如,数字图像处理可以用于诊断肿瘤、分析眼底图像和检查CT扫描图像等。
在机器人领域,数字图像处理可以用于机器人感知和导航。
例如,在自主驾驶汽车中,数字图像处理可以用于识别道路标记和行人,帮助汽车进行自主导航。
在安全监控领域,数字图像处理可以用于识别和跟踪可疑人员或物品。
例如,在机场或车站,数字图像处理可以用于识别和跟踪行李和车站内的人员。
在虚拟现实领域,数字图像处理可以用于增强虚拟世界的真实感和交互性。
例如,数字图像处理可以用于识别用户手势,帮助用户进行更加自然的交互。
数字图像处理的未来发展数字图像处理的未来发展将越来越多地涉及到深度学习和人工智能的技术,这些技术将用于图像识别和分析。
随着机器学习技术的增强,数字图像处理将可以更加准确地识别和分析图像,为实际应用带来更多的价值。
除此之外,数字图像处理的实际应用将与物联网、大数据和云计算等新技术结合在一起,从而开创出更多的可能和机会。
毕业设计(论文)-零件尺寸测量中的数字图像处理技术
毕业设计(论文)-零件尺寸测量中的数字图像处理技术数字图像处理技术在工业生产和制造业中得到越来越广泛的应用。
其中,其在零件尺寸测量方面的应用,在工业生产控制和质量控制中占有重要地位。
本文就数字图像处理技术在零件尺寸测量中的应用展开阐述。
一、概述零件尺寸测量技术是工业生产控制和质量控制中的重要一环。
而传统的测量方法往往是采用量具进行测量,这种方法成本高,测量精度依赖于操作者的经验水平。
而数字图像处理技术的应用则可以简化测量过程,提高测量效率和精度。
数字图像处理技术将数字化的图像数据应用数学方法和算法处理,得到我们所需要的各种图像信息。
在零件尺寸测量领域,数字图像处理技术可以用来获得零件的轮廓、边缘、圆弧等信息,从而得到零件的尺寸和形状。
二、数字图像处理技术在零件尺寸测量中的应用1.图像预处理数字图像处理技术中的图像预处理步骤对于零件尺寸测量非常重要。
由于拍摄条件和拍摄设备的差异,获取到的图像可能会存在颜色、亮度、对比度、噪声等问题。
而这些问题将对后续处理产生严重影响。
因此,图像预处理是零件尺寸测量中的一项必须工作。
图像处理中的预处理步骤包括图像的增强、滤波和分割等。
2.图像分割图像分割是指将图像划分成若干个互不重叠的区域。
在零件尺寸测量中,图像分割的目的是将零件与背景分离开来。
图像分割技术的选择将影响到零件尺寸测量的结果。
在图像分割的选择上,可以采用灰度阈值法、区域生长法、边缘检测法等方法。
3.边缘检测在数字图像处理中边缘检测是指从图像中提取出物体边界的技术。
零件尺寸测量中的边缘检测可以通过对图像中灰度值变化的分析得到。
4.形状拟合在得到零件边缘信息后,需要对边缘信息进行分析和处理,计算出零件的尺寸和形状。
其中,形状拟合是零件尺寸测量中的一个重要环节。
形状拟合可以通过多项式曲线拟合、圆拟合、椭圆拟合等得到零件的中心点、长度、宽度等信息。
三、数字图像处理技术在零件尺寸测量中的优势1.提高测量效率数字图像处理技术可以在短时间内获取大量的数据,并且可以通过计算机程序对数据进行处理,从而提高测量效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Digital Image Processing and Edge DetectionDigital Image ProcessingInterest in digital image processing methods stems from two principal applica- tion areas: improvement of pictorial information for human interpretation; and processing of image data for storage, transmission, and representation for au- tonomous machine perception.An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point. When x, y, and the amplitude values of f are all finite, discrete quantities, we call the image a digital image. The field of digital image processing refers to processing digital images by means of a digital computer. Note that a digital image is composed of a finite number of elements, each of which has a particular location and value. These elements are referred to as picture elements, image elements, pels, and pixels. Pixel is the term most widely used to denote the elements of a digital image.Vision is the most advanced of our senses, so it is not surprising that images play the single most important role in human perception. However, unlike humans, who are limited to the visual band of the electromagnetic (EM) spec- trum, imaging machines cover almost the entire EM spectrum, ranging from gamma to radio waves. They can operate on images generated by sources that humans are not accustomed to associating with images. These include ultra- sound, electron microscopy, and computer-generated images. Thus, digital image processing encompasses a wide and varied field of applications.There is no general agreement among authors regarding where image processing stops and other related areas, such as image analysis and computer vi- sion, start. Sometimes a distinction is made by defining image processing as a discipline in which both the input and output of a process are images. We believe this to be a limiting and somewhat artificial boundary. For example, under this definition, even the trivial task of computing the average intensity of an image (which yields a single number) would not be considered an image processing operation. On the other hand, there are fields such as computer vision whose ultimate goal is to use computers to emulate human vision, including learning and being able to make inferences and take actions based on visual inputs. This area itself is a branch of artificial intelligence (AI) whose objective is to emulate human intelligence. The field of AI is in its earliest stages of infancy in terms of development, with progress having been much slower than originally anticipated. The area of image analysis (also called image understanding) is in be- tween image processing and computer vision.There are no clearcut boundaries in the continuum from image processing at one end to computer vision at the other. However, one useful paradigm is to consider three types of computerized processes in this continuum: low-, mid-, and highlevel processes. Low-level processes involve primitive opera- tions such as image preprocessing to reduce noise, contrast enhancement, and image sharpening. Alow-level process is characterized by the fact that both its inputs and outputs are images. Mid-level processing on images involves tasks such as segmentation (partitioning an image into regions or objects), description of those objects to reduce them to a form suitable for computer processing, and classification (recognition) of individual objects. A midlevel process is characterized by the fact that its inputs generally are images, but its outputs are attributes extracted from those images (e.g., edges, contours, and the identity of individual objects). Finally, higherlevel processing involves “making sense” of an ensemble of recognized objects, as in image analysis, and, at the far end of the continuum, performing the cognitive functions normally associated with vision.Based on the preceding comments, we see that a logical place of overlap between image processing and image analysis is the area of recognition of individual regions or objects in an image. Thus, what we call in this book digital image processing encompasses processes whose inputs and outputs are images and, in addition, encompasses processes that extract attributes from images, up to and including the recognition of individual objects. As a simple illustration to clarify these concepts, consider the area of automated analysis of text. The processes of acquiring an image of the area containing the text, preprocessing that image, extracting (segmenting) the individual characters, describing the characters in a form suitable for computer processing, and recognizing those individual characters are in the scope of what we call digital image processing in this book. Making sense of the content of the page may be viewed as being in the domain of image analysis and even computer vision, depending on the level of complexity implied by the statement “making sense.” As will become evident shortly, digital image processing, as we have defined it, is used successfully in a broad range of areas of exceptional social and economic value.The areas of application of digital image processing are so varied that some form of organization is desirable in attempting to capture the breadth of this field. One of the simplest ways to develop a basic understanding of the extent of image processing applications is to categorize images according to their source (e.g., visual, X-ray, and so on). The principal energy source for images in use today is the electromagnetic energy spectrum. Other important sources of energy include acoustic, ultrasonic, and electronic (in the form of electron beams used in electron microscopy). Synthetic images, used for modeling and visualization, are generated by computer. In this section we discuss briefly how images are generated in these various categories and the areas in which they are applied.Images based on radiation from the EM spectrum are the most familiar, es- pecially images in the X-ray and visual bands of the spectrum. Electromagnet- ic waves can be conceptualized as propagating sinusoidal waves of varying wavelengths, or they can be thought of as a stream of massless particles, each traveling in a wavelike pattern and moving at the speed of light. Each massless particle contains a certain amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral bands are grouped according to energy per photon, we obtain the spectrum shown in fig. below, ranging from gamma rays (highest energy) at one end to radio waves (lowestenergy) at the other. The bands are shown shaded to convey the fact that bands of the EM spectrum are not distinct but rather transition smoothly from one to the other.Image acquisition is the first process. Note that acquisition could be as simple as being given an image that is already in digital form. Generally, the image acquisition stage involves preprocessing, such as scaling.Image enhancement is among the simplest and most appealing areas of digital image processing. Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or simply to highlight certain features of interest in an image. A familiar example of enhancement is when we increase the contr ast of an image because “it looks better.” It is important to keep in mind that enhancement is a very subjective area of image processing. Image restoration is an area that also deals with improving the appearance of an image. However, unlike enhancement, which is subjective, image restoration is objective, in the sense that restoration techniques tend to be based on mathematical or probabilistic models of image degradation. Enhancement, on the other hand, is based on human subjective preferences regarding what constitutes a “good” enhancement result.Color image processing is an area that has been gaining in importance because of the significant increase in the use of digital images over the Internet. It covers a number of fundamental concepts in color models and basic color processing in a digital domain. Color is used also in later chapters as the basis for extracting features of interest in an image.Wavelets are the foundation for representing images in various degrees of resolution. In particular, this material is used in this book for image data compression and for pyramidal representation, in which images are subdivided successively into smaller regions.Compression, as the name implies, deals with techniques for reducing the storage required to save an image, or the bandwidth required to transmi it.Although storage technology has improved significantly over the past decade, the same cannot be said for transmission capacity. This is true particularly in uses of the Internet, which are characterized by significant pictorial content. Image compression is familiar (perhaps inadvertently) to most users of computers in the form of image file extensions, such as the jpg file extension used in the JPEG (Joint Photographic Experts Group) image compression standard.Morphological processing deals with tools for extracting image components that are useful in the representation and description of shape. The material in this chapter begins a transition from processes that output images to processes that output image attributes.Segmentation procedures partition an image into its constituent parts or objects. In general, autonomous segmentation is one of the most difficult tasks in digital image processing. A rugged segmentation procedure brings the process a long way toward successful solution of imaging problems that require objects to be identified individually. On the other hand, weak or erratic segmentation algorithms almost always guarantee eventual failure. In general, the more accurate the segmentation, the more likely recognition is to succeed.Representation and description almost always follow the output of a segmentation stage, which usually is raw pixel data, constituting either the bound- aryof a region (i.e., the set of pixels separating one image region from another) or all the pointsin the region itself. In either case, converting the data to a form suitable for computer processing is necessary. The first decision that must be made is whether the data should be represented as a boundary or as a complete region. Boundary representation is appropriate when the focus is on external shape characteristics, such as corners and inflections. Regional representation is appropriate when the focus is on internal properties, such as texture or skeletal shape. In some applications, these representations complement each other. Choosing a representation is only part of the solution for trans- forming raw data into a form suitable for subsequent computer processing. A method must also be specified for describing the data so that features of interest are highlighted. Description, also called feature selection, deals with extracting attributes that result in some quantitative information of interest or are basic for differentiating one class of objects from another.Recognition is the process that assigns a label (e.g., “vehicle”) to an object based on its descriptors. As detailed before, we conclude our coverage of digital image processing with the development of methods for recognition of individual objects.So far we have said nothing about the need for prior knowledge or about the interaction between the knowledge base and the processing modules in Fig2 above. Knowledge about a problem domain is coded into an image processing system in the form of a knowledge database. This knowledge may be as sim- ple as detailing regions of an image where the information of interest is known to be located, thus limiting the search that has to be conducted in seeking that information. The knowledge base also can be quite complex, such as an interrelated list of all major possible defects in a materials inspection problem or an image database containing high-resolution satellite images of a region in con- nection with change-detection applications. In addition to guiding the operation of each processing module, the knowledge base also controls the interaction between modules. This distinction is made in Fig2 above by the use of double-headed arrows between the processing modules and the knowledge base, as op- posed to single-headed arrows linking the processing modules.Edge detectionEdge detection is a terminology in image processing and computer vision, particularly in the areas of feature detection and feature extraction, to refer to algorithms which aim at identifying points in a digital image at which the image brightness changes sharply or more formally has discontinuities.Although point and line detection certainly are important in any discussion on segmentation,edge dectection is by far the most common approach for detecting meaningful discounties in gray level.Although certain literature has considered the detection of ideal step edges, the edges obtained from natural images are usually not at all ideal step edges. Instead they are normally affected by one or several of the following effects:1.focal blur caused by a finite depth-of-field and finite point spread function; 2.penumbral blur caused by shadows created by light sources of non-zero radius; 3.shading at a smooth object edge; 4.local specularities or interreflections in the vicinity of object edges.A typical edge might for instance be the border between a block of red color and a blockof yellow. In contrast a line (as can be extracted by a ridge detector) can be a small number of pixels of a different color on an otherwise unchanging background. For a line, there may therefore usually be one edge on each side of the line.To illustrate why edge detection is not a trivial task, let us consider the problem of detecting edges in the following one-dimensional signal. Here, we may intuitively say thatIf if the intensity differences between the adjacent neighbouring pixels were higher, it would not be as easy to say that there should be an edge in the corresponding region. Moreover, one could argue that this case is one in which there are several edges.Hence, to firmly state a specific threshold on how large the intensity change between two neighbouring pixels must be for us to say that there should be an edge between these pixels is not always a simple problem. Indeed, this is one of the reasons why edge detection may be a non-trivial problem unless the objects in the scene are particularly simple and the illumination conditions can be well controlled.There are many methods for edge detection, but most of them can be grouped into two categories,search-based and zero-crossing based. The search-based methods detect edges by first computing a measure of edge strength, usually a first-order derivative expression such as the gradient magnitude, and then searching for local directional maxima of the gradient magnitude using a computed estimate of the local orientation of the edge, usually the gradient direction. The zero-crossing based methods search for zero crossings in a second-order derivative expression computed from the image in order to find edges, usually the zero-crossings of the Laplacian or the zero-crossings of a non-linear differential expression, as will be described in the section on differential edge detection following below. As a pre-processing step to edge detection, a smoothing stage, typically Gaussian smoothing, is almost always applied (see also noise reduction).The edge detection methods that have been published mainly differ in the types of smoothing filters that are applied and the way the measures of edge strength are computed. As many edge detection methods rely on the computation of image gradients, they also differ in the types of filters used for computing gradient estimates in the x- and y-directions.Once we have computed a measure of edge strength (typically the gradient magnitude), the next stage is to apply a threshold, to decide whether edges are present or not at an image point. The lower the threshold, the more edges will be detected, and the result will be increasingly susceptible to noise, and also to picking out irrelevant features from the image. Conversely a high threshold may miss subtle edges, or result in fragmented edges.If the edge thresholding is applied to just the gradient magnitude image, the resulting edges will in general be thick and some type of edge thinning post-processing is necessary. For edges detected with non-maximum suppression however, the edge curves are thin by definition and the edge pixels can be linked into edge polygon by an edge linking (edge tracking) procedure. On a discrete grid, the non-maximum suppression stage can be implemented by estimating the gradient direction using first-order derivatives, then rounding off the gradient direction to multiples of 45 degrees, and finally comparing the values of thegradient magnitude in the estimated gradient direction.A commonly used approach to handle the problem of appropriate thresholds for thresholding is by using thresholding with hysteresis. This method uses multiple thresholds to find edges. We begin by using the upper threshold to find the start of an edge. Once we have a start point, we then trace the path of the edge through the image pixel by pixel, marking an edge whenever we are above the lower threshold. We stop marking our edge only when the value falls below our lower threshold. This approach makes the assumption that edges are likely to be in continuous curves, and allows us to follow a faint section of an edge we have previously seen, without meaning that every noisy pixel in the image is marked down as an edge. Still, however, we have the problem of choosing appropriate thresholding parameters, and suitable thresholding values may vary over the image.Some edge-detection operators are instead based upon second-order derivatives of the intensity. This essentially captures the rate of change in the intensity gradient. Thus, in the ideal continuous case, detection of zero-crossings in the second derivative captures local maxima in the gradient.We can come to a conclusion that,to be classified as a meaningful edge point,the transition in gray level associated with that point has to be significantly stronger than the background at that point.Since we are dealing with local computations,the method of choice to determine whether a value is “significant” or not id to use a threshold.Thus we define a point in an image as being as being an edge point if its two-dimensional first-order derivative is greater than a specified criterion of connectedness is by definition an edge.The term edge segment generally is used if the edge is short in relation to the dimensions of the image.A key problem in segmentation is to assemble edge segments into longer edges.An alternate definition if we elect to use the second-derivative is simply to define the edge ponits in an image as the zero crossings of its second derivative.The definition of an edge in this case is the same as above.It is important to note that these definitions do not guarantee success in finding edge in an image.They simply give us a formalism to look for them.First-order derivatives in an image are computed using the gradient.Second-order derivatives are obtained using the Laplacian.数字图像处理与边缘检测数字图像处理数字图像处理方法的研究源于两个主要应用领域:其一是为了便于人们分析而对图像信息进行改进:其二是为使机器自动理解而对图像数据进行存储、传输及显示。