第九章 一元气体动力学基础要点

合集下载

流体力学_龙天渝_一元气体动力学原理

流体力学_龙天渝_一元气体动力学原理

第九章 一元气体动力学基础一、学习指导 1. 基本参数 (1) 状态方程气体的压强p ,密度ρ以及温度(绝对)T 满足状态方程p RT ρ=式中,R 为气体常数,对于空气,287/()R J kg K =⋅。

(2) 绝热指数k/p v k c c =式中,c p 和c v 分别是等压比热和等容比热,他们与气体参数地关系为1p k c R k =-,11p c R k =-(3) 焓和熵焓h 的定义是ph e ρ=+式中,e 是气体内能,v e c T =。

h 可一表示为 p h c T =熵的表达式为ln()kps cv c ρ=+常数(4) 音速cc =(5) 马赫数马赫数M 的定义是uM c =式中,u 是气流速度;c 是音速。

2. 一元恒定流动的运动方程 (1) 气体一元定容流动ρ=常数22pv g γ+=常数 (2) 气体一元等温流动T =常数,pRT cρ==2ln 2v c p +=常量2ln 2v RT p +=常量(3) 气体一元绝热流动k p cρ= 212k p v k ρ⋅+-=常量3. 滞止参数气流在某断面的流速,设想以无摩擦绝热过程降低至零时,断面各参数所达到的值,称为气流在该断面的滞止参数。

用p 0、ρ0、T 0、i 0、c 0表示滞止压强、滞止密度、滞止温度、滞止焓值、滞止音速。

0/T T ,0/p p ,0/ρρ,0/c c 与马赫数M 的函数关系:20112T k M T -=+11200112k kk k p T k M p T ---⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭1111200112k k T k M T ρρ---⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭1122200112c T k M c T -⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭4. 气体一元恒定流动的连续性方程2(1)dA dv M A v =-(1) M<1为亚音速流动,v<c ,因此dv 与dA 正负号相反,速度随断面面积增大而减慢;随断面面积减小而加快。

一元气体动力学基础

一元气体动力学基础

p0、T0 p、T
5.气体按不可压缩处理的极限
空气k=1.4 取M=0.2
0 0 1 2.1% 密度相对变化
取M=0.4
0 8.2%
一般取M=0.2
t=15℃时,v≤M· c=0.2×340=68m/s
第三节 气体一元恒定流动 的连续性方程
1.气流参数与变截面的关系 由连续性方程
k k 1
k 1 2 1 M 2 k 1 2 1 M 2
1 2
k k 1
0 T0 T
1 k 1
1 k 1
c0 T0 k 1 2 1 M c T 2
2.讨论
一元等熵气流各参数沿程的变化趋势 M<1 渐缩管 渐扩管 M>1 渐缩管 渐扩管
流动参数
流速v
压强p 密度ρ 温度T
增大
减小 减小 减小
减小
增大 增大 增大
减小
增大 增大 增大
增大
减小 减小 减小
dv与dp、dρ、dT异号
(1)亚音速流动:A↑→v↓(p,ρ,T)↑
2 由于 M 1 1
气体:视作等熵过程
p

k
c
微分: dp k
p

dp c k
p

kRT
讨论: (1)音速与本身性质有关 (2) c
1 d dp
d / dp 越大,越易压缩,c越小
音速是反映流体压缩性大小的物理参数 (3) c f T f p,V , T (4)空气 c 1.4 287T 当地音速
压强下降
扩压管
解题思路:状态(过程)方程、 连续性方程、能量方程

流体力学_09一元气体动力学基础

流体力学_09一元气体动力学基础
第九章 一元气体动力学
§9-2音速、滞止参数、马赫数 §9-3气体一元恒定流动的连续性方程
§9-2音速、滞止参数、马赫数
1.音速 流体中某处受外力作用,使其压力发生变化,称为压力 扰动,压力扰动就会产生压力波,向四周传播。微小扰动在 流体中的传播速度,就是声音在在流体中的传播速度,以符 号C表示。C是气体动力学的重要参数。 2.滞止参数 气流某断面的流速,设想以无摩擦绝热过程降低至零时, 断面各参数所达到的值,称为气流在该断面的滞止参数。滞 止参数以下标“0”表示。
§9-3气体一元恒定流动的连续性方程
一、连续性微分方程
第三章已给出了连续性方程 对管流任意两断面
A 常量
1v1 A1 2v2 A2
为了反映流速变化和断回变化的相互关系,对上式微分
d ( A) dA Ad Ad 0 d d dA 0 A
由欧拉运动微分方程:
2 消去密度 ,并将 c
dp

d 0
dp ,M 代入,则断面A与气流速度 d c
之间的关系式为:
dA d 2 ( M 1) A
二、气流反映气体可压缩大小。当气流速 度越大,则音速越小,压缩现象越显著。马赫数首先将有关影 响压缩效果的的v和c两个参数联系起来,指指定点的当地速度 v与该点当地音速c的比值为马赫数M。
v M c
M>1,v>c,即气流本身速度大于音速,则气流中参数 的变化不能向上游传播。这就是超音速流动。 M<1,v<c,即气流本身速度小于音速,则气流中参数 的变化能够向上游传播。这就是亚音速流动。 M数是气体动力学中一个重要无因次数,它反映惯性力 与弹性力的相对比值。如同雷诺数一样,是确定气体流动状 态的准则数。

一元气体动力学基础讲解学习

一元气体动力学基础讲解学习

解:喷口处 akRT 31.5m 2/s
Mv 2500.8 a 31.25
k
1 .4
p 0 p 1 k2 1 M 2 k 1 1 1 0 1 .0 4 2 1 0 .8 2 1 .4 1 1.4 5 k2 P pa
h u p ——焓
(4)多变过程
p c n
n c cp c cv
——多变指数
n p v2 c
n1 2
可压缩理想气体的能量方程
n=0
等压过程
n=1
等温过程
n=k
绝热过程
n→±∞ 等容过程
例1:文丘里流量计,进口直径d1=100mm,温度 t1=20℃,压强p1=420kPa,喉管直径d2=50mm,压强 p2=350kPa,已知当地大气压pa=101.3kPa,求通过空 气的质量流量
一元气体动力学基础
安徽建筑工业学院环境工程系 王造奇
INDEX 理想气体一元恒定流动的基本方程 可压缩气流的几个基本概念 变截面的等熵流动 可压缩气体的等温管道流动 可压缩气体的绝热管道流动
理想气体一元恒定流动的基本方程
可压缩气体 密度变化 1.连续性方程
积分形式 vAc 微分形式 ddvdA0
可压缩气流的几个基本概念
1.音速 声音的传播是一种小扰动波 连续性方程
aA d d ta dA vdt
略去高阶微量,得
addv
动量方程
pdA pp A aAdv
得 dpadv
解得 a dp d
——音速定义式
液体: E dpa E
d
气体:视作等熵过程
p k
c
微分: dpkpdpa kp kRT
p k
c
k cp cv

气体动力学

气体动力学

dp C1 k
dp k p
p1 k k 1
能量方程为
k p v2 C
k1 2
多种形式的气体等熵过程能量方程
k p v2 C
k1 2
kRT v2 C
k1 2 c2 v2 C
k1 2
1 p p v2 C
k1 2
气体等熵过程能量方程的物理意义
1 p p v2 C
k1 2
二、马赫数
气体流速v与当地 c
根据它的大小,可将气体的流动分为: Ma<1,即v<c,亚声速流动; Ma=1,即v=c,声速流动(Ma≈1,为跨声速流 动); Ma>1,即v>c,超声速流动。
微弱扰动波在不同流场中的传播
v=0
2c 3c 4c c o
4c
3c
v <c
2c
c
o
(a)
v=c o
4c 3c 2c c
v 2v
3v 4v
(c)
v
2v
3v
A
4v
(b)
4c
3c
v>c
2c
o
c
α
v
2v
3v
4v
B
(d)
(1)静止流场(v=0) 在静止流场中,微弱扰动波声速c向四周传播,形成以o点 为中心的同心球面波。
(2)亚声速流场(v<c)
在亚声速流场中,微弱扰动波仍能逆流向上游传播。
第九章 气体动力学基础
不可压缩流体
液体 低速气体
可压缩流体
高速气体
气体动力学就是研究可压缩气体运动规律及 其在工程中应用的科学。
§9.1 声速与马赫数 §9.2 气体一维恒定流动的基本方程 §9.3 气体一维恒定流动的参考状态 §9.4 气流参数与通道截面积的关系 §9.5 喷管

第九章 一元气体动力学基础

第九章 一元气体动力学基础


C p Cv R
vCC
dp 第一项积分: =C
p

p

u2 C 2
p (代入运动微分方程) C

k p p dp = k -1 Cp
Cp
2、气体一元等温过程:

C
Cv Cv k p u2 u2 u2 C RT C RT C 得: Cp C p Cv 2 2 k 1 2 1 Cv Cv
§ 9- 2 音速、滞止参数、马赫数
微弱扰动波面
§ 9- 2 音速、滞止参数、马赫数
由( 1)式和( 2)式得:
a
p, , u 0
du
p dp
d
du
在相对坐标系中取图(b)中虚线所示的控制 体,设管道截面积为 A,对控制体应用连续 方程:
a2
dp d
或 a
dp d
du 1 p X dt x u u dx 1 p X t x dt x 1 dp du u 0 dx dx dp u2 d 2 0
微分形式的气体运动方程,称为欧 拉运动微分方程
§ 9- 1 理想气体一元恒定流动的运动方程 以一元气体欧拉运动微分方程为基础,按照气体运动经历的不同的热力过程,利用 热力过程方程式,可得到几种具体的气体一元流动的运动方程积分式: 1、气体一元定容过程:
以上表达式说明: (1)等熵流动中,各断面滞止参数不变,其中 T 0 , h 0 , a 0 反映了热能在内的气流 全部能量。 (2)等熵流动中,气流速度若沿流增大,则气流温度 T 降低。 ,焓 h ,音速 a ,沿程
T
u T0 2C p
2
( 3)由于当地气流速度 u的存在,同一气流中当地音速

一元气体动力学基础

一元气体动力学基础

0 8.2%
一般取M=0.2
t=15℃时,v≤M·c=0.2×340=68m/s
第三节 气体一元恒定流动 的连续性方程
1.气流参数与变截面的关系
由连续性方程
d dv dA 0 vA
9-3-2
欧拉微分方程 dp vdv 0
9-1-1
及 c2 dp
d
M v c
p RT
p
k
常数
得 dA M 2 1 dv
A
v
dA M 2 1 dp
A
kM2 p
dA M 2 1 d
A
M2
dA
M 2 1 dT
A k 1M 2 T
9-3-3
2.讨论 一元等熵气流各参数沿程的变化趋势
M<1 流动参数
渐缩管 渐扩管
流速v 压强p 密度ρ 温度T
增大 减小 减小 减小
减小 增大 增大 增大
M>1
渐缩管 渐扩管
减小 增大 增大 增大
3000m高空的温度为 T 269K 所以驻点温度为
T
T
1
k
1 2
M
2 a
269 1

声音的传播是一种小扰动波
连续性方程
cAdt d c dvAdt
略去高阶微量,得
cd dv
动量方程
p dpA pA cAdv
得 dp cdv
解得 c dp
d
——音速定义式
液体: E dp c E
d
气体:视作等熵过程
p
k
c
微分: dp k p dp c k p kRT
解:空气k=1.4,R=287J/kg·K,Cp=7R/2=1004.5J/kg·K

第9章 气体动力学基础(6)(1)

第9章 气体动力学基础(6)(1)

+ ������g∆������ + ������sh
对单位质量气体而言,即有
������
=
∆ℎ
+
∆������2 2
+
∆������

g
+
������sh
(9-13)
式中 ∆������2 = ������22 − ������12,∆ℎ = ∆������ + ∆(������������)
在流体机械中,∆������ ∙ g项完全可以忽略,所以在以后的表示中我们一
保持不变。如果气体焓减小(表现为温度下降),则气体的动能增大(表
现为速度增大),反之亦然。
9.2 一元定常可压缩流动的基本方程
转变为机械能都只能通过气体的膨胀(或压缩)才能得以实现。对
于液体介质,正是因为假定了������
=
1为常数,从而使热量不可能实
υ
现与机械功的转换。
9.1 气体介质的状态参数
3.熵 熵S也是一个导出的状态参数,比熵s以J/(kg ∙ K)为单位,
其表达式为
������������ = ������������+������������������
������ ������
由式(1-4)可得
������ = ������������������
(9-5)
对式(9-5)取对数并微分,便可得到完全气体状态方程式的
微分形式,即
d������ ������ = d������ ������ + d������ ������
(9-6)
第9章 气体动力学基础
������—系统中气体的质量。
将式(9-9)各项除以������,得

流体力学第九章 一元气体动力学基础

流体力学第九章  一元气体动力学基础

声 速 传 播 物 理 过 程
波峰所到之处,液体压强变为p+dp,密度变为 d ,
波峰未到之处,流体仍处于静止,压强、密度仍为静止时 的 p,
设管道截面积为A,对控制体写出连续性方程: 展开: c A (c-dv)( +d)A (9-20) d dv c 由流体的弹性模量与压缩系数的关系推导出:
第二节
声速、制止参数、马赫数
一、声速 流体中某处受外力作用,使其压力发生变化,称为压力扰动,压力 扰动就会产生压力波,向四周传播。传播速度的快慢,与流体内在 性质---压缩性(或弹性)和密度有关。微小扰动在流体中的传播速 度,就是声音在流体中的传播速度,以符号表示c声速。 取等断面直管,管中充满静止的可压缩气体。活塞在力的作用下,有一 微小速度向右移动,产生一个微小扰动的平面波。
(9-4)
上式为单位质量理想气体的能量方程式.
二.气体一元等温流动
热力学中等温过程系指气体在温度T不变的条件下所进
行的热力过程.等温流动则是指气体温度T保持不变的流 p (9-5) 动. T 常量, RT C

v2 RT ln p 常量 2
(9-6)
三.气体一元绝热流动
从热力学中得知,在无能量损失且与外界又无热量交换 的情况下,为可逆的绝热过程,又称等熵过程.这样理想 气体的绝热流动即为等墒流动,气体参数服从等墒过程方 p 程式: C (9-7) k
2 c c2 v2 k 1 k 1 2
(9-30)
三、马赫数Ma
马赫数Ma取指定点的当地速度v与该点当地声速c的比值;
不能向上游传播,这就是超声速流动. Ma<1,v<c,气流本身速度小于声速,即气流中参数的变化能够 各向传播,这就是压声速流动. Ma数是气体动力学中一个重要无因次数,它反应了惯性力与弹性力的 相对比值.如同雷诺数一样,是确定气体流动状态的准则数.

同济 流体力学 第九章1

同济 流体力学 第九章1

(
)
等温管路中的流动(等截面 §9-4等温管路中的流动 等截面、有摩擦 等温管路中的流动 等截面、有摩擦)
总结
dv与dp、dρ异号;
M<
1 增速减压,体积膨胀,温度下降,需外界输入能量,T0↑ k
M>
1 减速增压,体积收缩,温度上升,向外界输出能量,T0↓ k
1 是临界值,临界值只能是出口断面 M= k
(3)极限管长
v1 M1 = = 0.0885 kRT
代入极限管长公式
l max = 948m > 600m
见书P264例题
§9-5绝热管路中的流动 绝热管路中的流动
气体管路运动微分方程
dp
ρ
+ vdv + dh f g = 0
2
dl v dh f = λ D 2g
2dp dv λ + 2 + dl = 0 2 ρv v D
以滞止参数点为参考点 滞止参数点为参考点: 点为参考点 由M1=0.4及M2=0.9 根据等熵流动方程计算可 = 及 = 得
To k −1 2 = 1+ M , (T1.M 1 → To ; To .M 2 → T2 ) 2 T
k po ρ o To k −1 = =( ) p ρ T k
用 c 2 = k 代替
ρ
p
dv dv λdl dv kM 2 λdl − + kM 2 + kM 2 =0→ = v v 2D v 1 − kM 2 2 D
dp dρ dv − =− = p ρ v
等温管路中的流动(等截面 §9-4等温管路中的流动 等截面、有摩擦 等温管路中的流动 等截面、有摩擦)

流体力学课后答案第九章一元气体动力学基础

流体力学课后答案第九章一元气体动力学基础

一元气体动力学基础1.若要求22v p ρ∆小于0.05时,对20℃空气限定速度是多少? 解:根据220v P ρ∆=42M 知 42M < 0.05⇒M<0.45,s m kRT C /3432932874.1=⨯⨯== s m MC v /15334345.0=⨯==即对20℃ 空气限定速度为v <153m/s ,可按不压缩处理。

2.有一收缩型喷嘴,已知p 1=140kPa (abs ),p 2=100kPa (abs ),v 1=80m/s ,T 1=293K ,求2-2断面上的速度v 2。

解:因速度较高,气流来不及与外界进行热量交换,且当忽略能量损失时,可按等熵流动处理,应用结果:2v =2121)(2010v T T +-,其中T 1=293K1ρ=11RT p =1.66kg/m 3. k P P 11212)(ρρ==1.31kg/m 3. T 2=RP 22ρ=266 K 解得:2v =242m/s3.某一绝热气流的马赫数M =0.8,并已知其滞止压力p 0=5×98100N/m 2,温度t 0=20℃,试求滞止音速c 0,当地音速c ,气流速度v 和气流绝对压强p 各为多少?解:T 0=273+20=293K ,C 0=0KRT =343m/s根据 20211M K T T -+=知 T=260 K ,s m kRT C /323==,s m MC v /4.258==100-⎪⎭⎫ ⎝⎛=k k T T p p解得:2/9810028.3m N p ⨯=4.有一台风机进口的空气速度为v 1,温度为T 1,出口空气压力为p 2,温度为T 2,出口断面面积为A 2,若输入风机的轴功率为N ,试求风机质量流量G (空气定压比热为c p )。

解:由工程热力学知识:⎪⎪⎭⎫ ⎝⎛+=22v h G N ∆∆,其中PAGRT T c h P ==,pA GRT A G v ==ρ ∴⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+-⎥⎦⎤⎢⎣⎡+=)2()(2121122222v T c A p GRT T c G N P P 由此可解得G5.空气在直径为10.16cm 的管道中流动,其质量流量是1kg/s ,滞止温度为38℃,在管路某断面处的静压为41360N/m 2,试求该断面处的马赫数,速度及滞止压强。

第9章 一元气体动力学基础

第9章 一元气体动力学基础
dp p = k = kRT ρ dρ
a= dp p = k = kRT dρ ρ
整理
再代入状态方程
得气体中的声速公式
9.2.2 滞止参数 滞止参数—气流某断面的流速以无摩擦绝热过程降至零时, 滞止参数 气流某断面的流速以无摩擦绝热过程降至零时, 气流某断面的流速以无摩擦绝热过程降至零时 断面各参数所达到得值 根据绝热流动能量方程等
+ k+1 Q2 v2 λ k −1 kk1 c k p1 − p2k = m ln + l 2 k +1 A v1 2D
对于长管道
k+1 k 1
v2 λ 2ln < < l v1 D
p
解得质量流量
−p
k+1 k 2
k +1 1 λlQ2 m = ck k 2DA2
2 4
不可压缩时, 不可压缩时,按伯努利方程计算
p Hale Waihona Puke p+' 0
ρv2
2
' 0
绝对误差 相对误差
∆p0 = p0 − p =
∆p0 M 4 a = ρv2 4 2
ρv2 M 4 a
2 4
如果要求相对误差小于 1%
对于 15oC 的空气
M4 a < 0.01 4
M< a 0.2
M< a 0.2
v = 68m/s
p
积分微分形式的伯努利方程
ρ
= RT = c
v2 RT ln p + = c 2
9.1.3 气体一元绝热流动 根据等熵过程方程式
p
ρ

k
=c
1 k
p ρ = c

第九章气体动力学基础

第九章气体动力学基础

第九章气体动力学基础第九章气体动力学基础一、微弱扰动在气流中的传播1、音速和马赫数音速是微弱扰动在流场中的传播速度。

微弱扰动通常是流场中某个位置上的压强产生了微小的变化。

在不可压缩流动中,任何扰动总是立即传播到整个流场,但是在可压缩流里,不是在任何情况下都能传播到整个流场,微弱扰动在流场中是按一定的速度传播的,这个速度就是音速。

一个直圆管,里面充满了压强为p、密度为ρ、温度为T的静止气体。

活塞以dv速度运动,将压缩(或膨胀)最相邻的气体层,致使那层气体的压强升高(或降低)、温度升高(或降低)。

这层气体又去压缩另外的气体层。

这样将在管道内形成微弱扰动的压缩波(或膨胀波),波面的传播速度假设为c,气体本身也将随活塞一起运动,其运动速度将和活塞的运动速度一致,是dv。

请注意,压缩(或膨胀)波的波面速度与活塞(因而是气体)的运动速度不一致的!现在来推导音速公式。

由于微弱扰动在管道里的传播是一个非定常运动,因此假设研究者和波面一同运动。

这样,波面是相对静止的,而波前气流速度为c,波后气流速度为c-dv,同时压强密度和温度分别由p、ρ和T升到p+dp、ρ+dρ和T+dT。

在波面附近取一个微元体,有连续方程:动量方程:因为我们讨论的是微弱扰动,故高阶项可忽略。

把dv消去,得到音速为弱扰动的过程可以认为是一个等熵过程,即有对于微弱扰动,其热力学过程接近于绝热的可逆过程,即等熵过程。

对完全气体,(1)音速的的大小是和流体介质有关:可压缩性大的介质,微弱扰动传播的速度慢、音速就小。

在20度的空气中,音速为343(m/s);在20度的水里,音速为1478(m/s)。

(2)音速是状态参数的函数。

在相同介质中,不同点的音速也不同。

提到音速,总是指当地音速。

(3)同一气体中,音速随气体温度的升高而升高马赫数的定义在音速定义后,可以定义马赫数1)马赫数是判断气体压缩性的标准, 它是个无量纲量,也是气体动力学的一个重要参数(2)按马赫数,可以将气流分成亚音速、音速和超音速流动。

气体动力学基础分析ppt课件

气体动力学基础分析ppt课件

写成
dA(Ma2 1)dv
A
v
14.10.2020
37
10.3.2 气流速度与断面间的关系
dA(Ma2 1)dv
A
v
①Ma<1,v<c,亚声速流动。此时Ma2–1<0,则有
dA dv Av
当dA>0(或<0)时,dv<0(或>0)。与不可压缩流体类似。
②Ma>1,v>c,超声速流动。此时Ma2–1>0,则有
k p0 k pv2
k10 k1 2
kk1R0Tkk1RT v22
i0
i
v2 2
又c kRT 称为当地声速,c0 kRT0 称为滞止声速。
则有
c02 c2 v2 k1 k1 2
14.10.2020
28
IV. 关于滞止状态下的能量方程的说明
i. 等熵流动中,各断面滞止参数不变,其中T0、i0、 c0反映了包括热能在内的气流全部能量,p0反映 机械能;
ii. 等熵流动中,气流速度v增大,则T、i、c沿程降 低;
iii. 由于v存在,同一气流中,c c0,cmax=c0。 iv. 气流绕流中,驻点的参数就是滞止参数;
v. 摩阻绝热气流中, p0沿程降低; vi. 摩阻等温气流中,T0沿程变化。
14.10.2020
29
②最大速度状态及其参数
Ⅰ最大速度状态
略去二阶小量,则有
d dv c
对控制体建立动量方程,且忽略切应力作用
p ( A p d ) A p c [c A ( d ) c v ]

dp cdv
14.10.2020
23
声速公式
c 2 dp d

气体动力学基础笔记手写

气体动力学基础笔记手写

气体动力学基础笔记手写一、气体动力学基本概念1. 气体:由大量分子组成的混合物,其分子在不断地运动和碰撞。

2. 温度:气体分子平均动能的量度,与分子平均动能成正比。

3. 压力:气体对容器壁的压强,由大量气体分子对容器壁的碰撞产生。

4. 密度:单位体积内的气体质量,与分子数和分子质量有关。

5. 流场:描述气体流动的空间和时间的函数,由速度、压力、密度等物理量描述。

二、理想气体状态方程1. 理想气体状态方程:pV = nRT,其中p为压力,V为体积,n为摩尔数,R为气体常数,T为温度。

2. 实际气体与理想气体的关系:实际气体在一定条件下可以近似为理想气体,但在某些情况下需要考虑分子间相互作用和分子内能等效应。

三、气体流动的基本方程1. 连续性方程:质量守恒方程,表示单位时间内流入流出控制体的质量流量相等。

2. 动量守恒方程:牛顿第二定律,表示单位时间内流入流出控制体的动量流量等于作用在控制体上的外力之和。

3. 能量守恒方程:热力学第一定律,表示单位时间内流入流出控制体的热量流量等于控制体内能的变化率加上作用在控制体上的外力所做的功。

四、一维定常流1. 一维流:流场中所有点的流速方向都在同一直线上。

2. 定常流:流场中各物理量不随时间变化而变化的流动。

3. 声速:气体中声速与温度和气体种类有关,是气体的特征速度。

4. 马赫数:流场中任意一点上流速与当地声速之比,是描述流动状态的重要参数。

五、膨胀波与压缩波1. 膨胀波:由于流体受压缩而产生的波,传播方向与流体运动方向相反,波前压力低于波后压力。

2. 压缩波:由于流体受扩张而产生的波,传播方向与流体运动方向相同,波前压力高于波后压力。

第九章一元气体动力学基础

第九章一元气体动力学基础

断面滞止参数可由方程求出:
k p0 0 k p v2
k 1 0
k 1 2
k
k 1
RT0

k
k 1
RT

v2 2
i0

i

v2 2
c02 c2 v2 k 1 k 1 2
§ 9.2音速、滞止参数、马赫数
因当地音速: c kRT
滞止音速:c0 kRT0
k k 1
d
§ 9.2音速、滞止参数、马赫数
c dp k p kRT
d
不同的气体有不同的绝热指数k,及不 同的气体常数R,所以各种气体有各自 的音速值。(空气、氢气)
同一种气体中音速也不是固定的,它 与气体的绝对温度的平方根成正比。
§ 9.2音速、滞止参数、马赫数
滞止参数
气流某断面的流速,设想以无摩擦绝热过 程降低至零时,断面各参数所达到的值, 称为气流在该断面的滞止参数。 (p,T,i,c)。滞止参数以下标“0”表示。
c dp
d E 1 dp c2
d
气体和液体都适用。
c E

§ 9.2音速、滞止参数、马赫数
音速与流体弹性模量平方根成正比,与流 体密度平方根成反比,则音速在一定程度 上反映出压缩性的大小。
音波传播速度很快,在传播过程 中与外界来不及进行热量交换, 可作为等熵过程考虑。
等断面直管,管内装静止可压缩气体,活塞 微小速度dv向右移动,产生一微小扰动平面 波。若定义扰动和未扰动的分界面为波峰, 则波峰的传播速度就是声音的传播速度。 坐标固定在波峰上
波峰右侧原来静止的流体将以速度c向左运 动,压强为p,密度为ρ。

第九章气体动力学基础

第九章气体动力学基础

热力学第一定律: ? U ? Q ? W
? U-能量增加为正; Q-增加为正; W -对外作功为正。
u
2 2
? 2
u12
dm
?
g(z2
?
z1 )dm
?
CV
(T2
?
T1 )dm
?
dQ ?
????? ??
p2
?2
?
p1
?1
???dm ?
?
dW f
? ? dW ?
?
方程两边同除以 dm ,得单位质量流体的能 量方程式
d ? ? du ? dA ? 0 ? uA 对于等断面管流, dA ? 0,则
d ? ? du ? 0 ?u
二、状态方程
理想气体状态方程 p ? ? RT dp ? d ? ? dT p?T
对于实际气体,其状态 方程为
p ? Z ? RT
Z: compressibility factor
三、能量方程
q?
? ???
p1
?1
?
p2
?2
? ??? ?
w?
wf
?
u
2 2
? u12 2
?
g(z2
?
z1 ) ?
CV (T2
? T1 )
对于理想气体,p
?
?
RT ,C p
?
Cv
?
R,i
?
C pT
p1
?1
?
p2
?2
?
R Cp
(i1 ?
i2) ?
?
R Cp
(i2
?
i1 )
q?
w?
wf

流体力学第9章

流体力学第9章

V
2
,对于Cp=1005
J/(kg·K)
的空气,则高出
2c p
T

T0
T

V2 2010
例如速度为100m/s的空气流,滞止温度超过气流的温度约5K,也即约5℃。 可见,将一个带小玻璃球的普通水银温度计或热电偶温度计放在气流中来 测量气流的温度,读出的温度比气流的温度T要高。但小玻璃球上驻点处 的温度虽达到滞止温度,但其上的其他各点的温度升高要小一些,所以普 通水银温度计上读出的平均温度比滞止温度稍低一些。因此用任何静止温 度计都不能直接测得气流的真实温度了,只有用与气流同样速度运动的温 度计才能直接测得 。
流体中的某个地方受到外力的作用使其压力发生变化,我们称为压力扰动, 压力扰动会产生压力波,向四周传播,这个压力波的传播速度,对不同的流 体是不同的,即流体的性质不同,密度、压缩性等不同,传播速度也就不同。
比如:在15℃,1atm下的音速 氢气:1294m/s 空气:340m/s CO2:266m/s
(2)超音速时:dv与dA成正比,速度随断面的增大而增大; 随断面的减小而减小。同不可压缩流动的不一样。
9
§9-2 音速、滞止参数、马赫数
同连续性方程联立,消掉dv,得音速方程为: c 2 dp c dp
d
d
这就是微小扰动的平面波-音速计算公式,同样适用于球面波。也适用于液体。
弹性模量和压缩系数的关系:
E 1 dp d
代入上式,得: E 1 c2 c E
i1

v12 2

i2

v
2 2
2
C pT1
v12 2
C pT2

v22 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k k 1
k 1 2 1 M 2 k 1 2 1 M 2
1 2
k k 1
0 T0 T
1 k 1
1 k 1
c0 T0 k 1 2 1 M c T 2
速度变化的绝对值大于截面的变化
(2)超音速流动:A↑→v↑(p,ρ,T)↓
M 2 1 由于 1 密度变化的绝对值大于截面的变化 2 M
vA c ,A v
(3)音速流动——临界状态(临界参数*)
最小断面才可能达到音速
拉伐尔喷管
v c v c v c
连续性方程
1v1 A1 v2 4.434v1 2 A2
能量方程
2 k p1 v12 k p2 v2 k 1 1 2 k 1 2 2
解得
v1 35.66m / s
Qm 1v1 A1 1.735kg / s
例2:理想气体在两个状态下的参数分别为T1、p1和T2、p2
解题思路:状态(过程)方程、 连续性方程、能量方程
绝热过程方程
p2 T2 T1 p 1
状态方程
k 1 k
350 101.3 293 420 101.3
1.41 1.4
281.2K
p1 1 6.199kg / m3 RT1 p2 2 5.592kg / m3 RT2
p0、T0 p、T
5.气体按不可压缩处理的极限
空气k=1.4 取M=0.2
0 0 1 2.1% 密度相对变化
取M=0.4
0 8.2%
一般取M=0.2
t=15℃时,v≤M· c=0.2×340=68m/s
第三节 气体一元恒定流动 的连续性方程
1.气流参数与变截面的关系 由连续性方程
V a, 90,
sin
M ,

a 1 V M
马赫锥外面的气体不受扰动的影响,称为“寂静 区域”.
(2)扰动源在流动气体中的传播
气体与扰动源运动速度大小相等,方向相反,扰动 源为一不动点. |V|<a, 扰动波可达到空间任何一点. |V|>a, 扰动波只能在马赫锥内顺流传播,不能逆流 传播.上游流场不受下游任何扰动的影响.
例1:文丘里流量计,进口直径d1=100mm,温度 t1=20℃,压强p1=420kPa,喉管直径d2=50mm,压强 p2=350kPa,已知当地大气压pa=101.3kPa,求通过空 气的质量流量
解:喷管——等熵过程
空气k=1.4 R=287J/kg· K p——绝对压强
T——热力学温标(K)
一元气体动力学基础

可压缩气流的几个基本概念 变截面的等熵流动 可压缩气体的等温管道流动 可压缩气体的绝热管道流动

理想气体一元恒定流动的基本方程
第一节理想气体一元恒定流动的基 本方程
1.连续性方程 积分形式 微分形式 2.状态方程 可压缩气体 密度变化
vA c
d dv dA 0 v A
2 c0 c2 v2 k 1 2 k 1
v2 h h0 2
性质:
(1)在等熵流动中,滞止参数值不变;
(2)在等熵流动中,速度增大,参数值降低;
(3)气流中最大音速是滞止音速; c kRT 0 0


(4)在有摩擦的绝热过程中,机械能转化为
内能,总能量不变——T0,c0,h0不变,
T 288 K c 340 m / s
2.滞止参数(驻点参数) 设想某断面的流速以等熵过程减小到零,此断面的 参数称为滞止参数 v0=0——滞止点(驻点)
p0 , 0 , T0 , c0 , h0
k p v2 k p0 k 1 2 k 1 0
k v2 k RT RT0 k 1 2 k 1
h h2 h1 c p T2 T1 dQ dh dp c p 7R 2 dS dh T dp T C p dT T R dp p (4)熵的变化
T2 p2 S S 2 S1 c p ln R ln T1 p1
dh C p dT Cv dT RdT Cv dT d RT Cv dT d p
第二节音速、滞止参数、马赫 数 1.音速
声音的传播是一种小扰动波 连续性方程
cAdt d c dvAdt
略去高阶微量,得
cd dv
动量方程
p dpA pA cAdv

解得
dp cdv
dp c d
——音速定义式
dp E 液体: E c d
温过程中的能量方程
理想气体的绝热过程→等熵过程
p

k
c
k
cp cv
——绝热指数
代入积分得
k p v2 c k 1 2
证明:

1 p p v2 c k 1 2
内能u
cv p p p 1 p u cvT cv cv R c p cv c p cv k 1
d
dv dA 0 v A
9-3-2 9-1-1
欧拉微分方程
dp

vdv 0
dp 及 c d
2
v M c
p

RT
p

k
常数

ห้องสมุดไป่ตู้
dA dv 2 M 1 A v


9-3-3
dA M 2 1 dp A kM 2 p dA M 2 1 d A M2 dA M 2 1 dT k 1M 2 T A
2.讨论
一元等熵气流各参数沿程的变化趋势 M<1 渐缩管 渐扩管 M>1 渐缩管 渐扩管
流动参数
流速v
压强p 密度ρ 温度T
增大
减小 减小 减小
减小
增大 增大 增大
减小
增大 增大 增大
增大
减小 减小 减小
dv与dp、dρ、dT异号
(1)亚音速流动:A↑→v↓(p,ρ,T)↑
2 由于 M 1 1
A
l α
H 2000 t ctg ctg 41.8 4.38 s v 510
4.滞止参数与马赫数的关系
k v2 k RT RT0 由 k 1 2 k 1 T0 k 1 v2 k 1 2 1 1 M T 2 kRT 2
p0 T0 p T
dp

vdv 0 vdv c
——欧拉运动微分方程

dp

——理想气体一元恒定流的能量方程
一些常见的热力过程 (1)等容过程 积分:
v2 c 2 p
——机械能守恒
(2)等温过程
RT p
代入积分得
1
v2 RT ln p c 2
(3)绝热过程
可压缩理想气体在等
例:一飞机在A点上空H=2000m,以速度v=1836km/h (510m/s)飞行,空气温度t=15℃(288K),A点要 过多长时间听到飞机声? 解: c kRT 340m / s
v
α H
v 510 M 1.5 c 340 1 arcsin 41 .8 M l vt Hctg
p0↓,ρ0↓,但p0/ρ0=RT0不变。如有
能量交换,吸收能量T0↑,放出能量T0↓
3.马赫数
v M c
M<1 亚音速流动 M=1 音速流动 M>1 超音速流动
微小扰动在空气中的传播
马赫数的物理意义:
在可压缩流动中,马赫数是一个重要的无量
纲参数,在第六章里我们将看到马赫数表征
流体的惯性力与压缩的弹性力之比。
流动参数增加为四个:p、ρ、T、和υ, 已经有了三个基本方程,它们是:状态方程、连续方程和理想 流的动量方程(即欧拉方程)。
2
2
马赫锥 马赫角α: sin c v 1 M
3. 微弱扰动波在气体中的传播
(1). 扰动源在静止气体中的传播. ① V=0,如图,微弱扰动 波的前缘是以0为球 心的球面.
M 数很小,说明单位质量气体的动能相对于
内能而言很小,速度的变化不会引起气体温
度的显著变化 ,对不可压流体来说,不仅可
以认为密度是常值而且温度T也是常值。
马赫数还代表单位质量气体的动能和内能之比,即
动能 ( 1) 2 2 2 M 1 p 内能 cV T 2 1 M数很小,说明单位质量气体的动能相对于内能而言很小, 速度的变化不会引起气体温度的显著变化 ,对不可压流体来说, 不仅可以认为密度是常值而且温度T也是常值。
气体:视作等熵过程
p

k
c
微分: dp k
p

dp c k
p

kRT
讨论: (1)音速与本身性质有关 (2) c
1 d dp
d / dp 越大,越易压缩,c越小
音速是反映流体压缩性大小的物理参数 (3) c f T f p,V , T (4)空气 c 1.4 287T 当地音速


v2 u c 2 p
v2 c 或 h 2
可压缩理想气体在绝 热过程中的能量方程
hu
p

——焓
(4)多变过程
p

n
c
n
c cp c cv
——多变指数
n p v2 c n 1 2
n=0 n=1 n=k n→±∞ 等压过程 等温过程 绝热过程 等容过程
相关文档
最新文档