高效液相色谱HPLC

合集下载

hplc高效液相色谱

hplc高效液相色谱

hplc高效液相色谱HPLC高效液相色谱简介高效液相色谱(High Performance Liquid Chromatography,HPLC),也被称为液相色谱法(Liquid Chromatography),是一种广泛应用于药物分析、环境监测、食品检测等领域的分离技术。

HPLC色谱技术通过物质在液体流动相和固定相之间的相互作用,实现对分子化合物的分离、检测和定量。

相对于传统的柱层析技术,HPLC具有分离效率高、分析灵敏度高、分析速度快等特点,被广泛应用于科学研究和工业生产。

HPLC的基本原理HPLC色谱技术是建立在分配系数理论的基础上。

它通过固定填料上溶解物质与流动相中溶解物质之间的分配与再分配,实现目标化合物在固定相中的分离。

HPLC色谱法的基本步骤包括:样品制备、装柱、选择流动相、进样、洗脱分离、检测及数据处理等。

HPLC的主要组成部分HPLC主要由一系列组成部分组成,包括:溶剂输送系统、无菌进样器、色谱柱、检测器和数据处理系统等。

其中,溶剂输送系统用于控制流动相的输送速率和压力,确保流动相以一定速率通过色谱柱;无菌进样器用来将样品进样并转送到色谱柱中;色谱柱是分离目标化合物的关键组成部分,根据所分离物质的化学性质和目标要求选择合适的色谱柱;检测器用来检测溶质的浓度,并将信号转换为电信号输出;数据处理系统用来处理和分析检测到的信号,得出结果。

HPLC的种类和应用领域根据不同的分离机制和柱填料,HPLC可以分为很多不同的类型,包括:反相色谱、离子交换色谱、分子筛色谱等。

反相色谱是最常用的一种HPLC技术,其应用领域非常广泛。

例如,在药物研究领域,HPLC被广泛应用于药物分析、药代动力学研究、质量控制等方面。

在环境监测领域,HPLC被用来检测土壤和水体中的有机污染物、重金属和农药等化学物质。

在食品安全检测领域,HPLC被用来检测食品中的添加剂、农药残留和重金属等有害物质。

HPLC的发展和进展自HPLC技术在20世纪60年代首次提出以来,随着科学技术的不断发展,HPLC技术也在不断进步和改进。

高效液相色谱法 HPLC

高效液相色谱法 HPLC
点是固定液层的耐溶剂冲刷性能差,固 定液易流失,从而导致柱效降低,被键 合相填料所取代。 3.正相色谱-固定液极性 > 流动相极性(NLLC) 极性小的组分先出柱,极性大的组分后出柱, 适于分离极性组分。 反相色谱-固定液极性 < 流动相极性(RLLC) 极性大的组分先出柱,极性小的组分后出柱适 于分离非极性组分。
1)硅胶: <>无定型硅胶 最早使用,传质慢、柱效低 <>薄壳型硅胶 直径为30~40μm的玻璃珠表面涂布一层1~2μm 厚的硅胶微粒,孔径均一、渗透性好、传质 快,但柱容量有限。 <>全多孔球型硅胶 粒度一般为5~10μm,颗粒和孔径的均一性都比 前两种好,柱容量大,为当今液固色谱固定相 的主体,也是键合固定相的主要基质。
2.进样系统 a 隔膜进样(高分子有机硅胶垫→进样室) >GC系统压力较小,可以 >HPLC系统压力太大,须停泵进样(早期) b 阀进样:不必停泵,六通阀
3.分离系统-色谱柱 >直径4~6mm,柱长10~30cm,多为不锈钢材料 >柱效评价:色谱系统适应性试验 R,n,fs(拖尾因子) >色谱柱维护 >预柱和预饱和柱
(二)反相键合相固定相
1.分离机制:疏溶剂理论 正相——流动相与溶质排斥力强, 作用时间↑, k↑,组分tR↑ 反相——流动相与溶质排斥力弱, 作用时间↓, k↓,组分tR↓

二、HPLC与GC差别
1.分析对象的区别 GC:
适于能气化、热稳定性好、且沸点较低的样品; 但对高沸点、挥发性差、热稳定性差、离子型 及高聚物的样品,尤其对大多数生化样品不可 检测。(占有机物的20%)
HPLC: 适于溶解后能制成溶液的样品(包括有机介质溶 液),不受样品挥发性和热稳定性的限制,对分 子量大、难气化、热稳定性差的生化样品及高分 子和离子型样品均可检测用途广泛。(占有机物 的80%)

高效液相色谱-HPLCppt课件.ppt

高效液相色谱-HPLCppt课件.ppt

色谱法的分类
按固定相的形态分:
平面色谱 o 纸色谱
o 薄层色谱
柱色谱
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
色谱法的分类示意图
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
▪ 高压梯度洗脱(高压混合,高压进柱,2个 泵。)
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
▪安捷伦泵:小视频 ▪色谱学堂:泵
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
色谱法原理及分类
什么是色谱法 色谱法溯源 Tswett(茨维特)的实验 色谱法原理 色谱法的分类
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
什么是色谱法
色谱法是一种现代的分离分析方法 1906年正式命名(见诸文献) 20世纪30年代开始广泛研究和应用 高效液相色谱法的广泛应用始于20世纪70年代
1. 紫外—可见光度检测器:
①固定波长:254nm , 低压汞 灯。
② 可 调 波 长 : 190 ~ 800mm , 钨灯,氘灯。
UV
③光电二极管矩阵检测器: 190~700nm。
接色谱柱 石英窗 光电倍增管
废液
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

液相色谱仪、高效液相色谱仪、超高效液相色谱仪的关系

液相色谱仪、高效液相色谱仪、超高效液相色谱仪的关系

液相色谱仪、高效液相色谱仪、超高效液相色谱仪的关系液相色谱仪、高效液相色谱仪和超高效液相色谱仪之间的关系如下:
1. 高效液相色谱仪(HPLC)是一种将固相和液相结合运用的液相色谱技术。

其基本原理是将试样通过一根固定相注射器注入高压泵,再通过一定的流路进入色谱柱中,由于流动相对固相有较大的亲和力,所以运行过程中,固相和液相间的交换反应将会发生在色谱柱内,这对分离有很大帮助。

高效液相色谱技术主要应用在生化、制药、食品质量检测和环境检测等领域。

2. 超高效液相色谱仪(UPLC)则是在HPLC技术基础上发展而来的一种新型的液相色谱技术。

它在分离效率、分离速度、峰形对称性、响应灵敏度等方面较HPLC 有很大的提升,能够更快地完成复杂样品的分离和检测。

UPLC在制药、食品质量检测和环境检测等领域也有着广泛的应用。

综上所述,超高效液相色谱仪是液相色谱仪的一种,而高效液相色谱仪又是超高效液相色谱仪的一种特殊形式。

20-高效液相色谱

20-高效液相色谱
16
5. 离子色谱
其分离原理与离子交换色谱原理一样, 电导检测器检测。 问题:由于流动相都是强电解质,其电导率比 待测离子约高 2 个数量级,这种强背景电导会完
全掩盖待测离子信号。
1975年Small提出,在离子交换柱之后,再串结一根
抑制柱。该柱装填与分离柱电荷完全相反的离子交 换树脂。通过分离柱后的样品再经过抑制柱,使具 有高背景电导的流动相转变为低背景电导的流动相, 从而可用电导检测器检测各种离子的含量。
在反相色谱法中,通过调节流动相的pH,抑制样品组 分的解离,增加它在固定相中的溶解度,以达到分离 有机弱酸、弱碱的目的,称为离子抑制色谱法(ISC)
(1)适用范围 弱酸 3.0≤pKa≤ 7.0 弱碱 7.0≤pKa≤ 8.0
(2)抑制剂 弱酸(乙酸)、弱碱(氨水)或缓冲盐 (3)影响k的因素 a.与流动相的极性有关(同反相色谱) b.与流动相pH有关:弱酸 pH≤pKa k↑, tR↑ 弱碱 反之
由苯乙烯与二乙烯苯交联而成
21
20.4.2 化学键合相
化学键合固定相: 目前应用最广、性能最佳的固定相; 一般的键合相用硅胶为载体: a. 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C (ODS)
1. 非极性键合相 键合相表面基团为非极性烃基, 如C18 、C8、 C1 和苯基等。一般用于反相色谱
33
选择流动相时应注意的几个问题
(1)尽量使用高纯度试剂作流动相,防止微量杂质长期累 积损坏色谱柱和使检测器噪声增加。 (2)使用前需要用微孔滤膜过滤,除去固体颗粒。
(3)流动相使用前最好脱气。
34
20.6 高效液相色谱仪
35
记录系统
输液系统

高效液相色谱法的原理

高效液相色谱法的原理

高效液相色谱法的原理高效液相色谱法(HPLC)是一种常用的分离和分析技术,它是在液相色谱法的基础上发展起来的,具有高效、灵敏、准确、快速等特点。

其原理是利用液相在固定填料上的分配作用,通过样品在流动相中的分配系数不同,实现对混合物中各成分的分离和检测。

HPLC的原理主要包括样品的进样、流动相的选择、填料的选择和柱温控制等几个方面。

首先是样品的进样。

样品通过进样装置进入流动相中,然后被输送到填料柱中进行分离。

在进样过程中,要求样品能够均匀、快速地进入流动相中,以保证分析结果的准确性。

其次是流动相的选择。

流动相是HPLC分离的关键,它可以是有机溶剂、水、缓冲液等。

不同的流动相对于不同的样品具有不同的适用性,因此在选择流动相时需要考虑样品的性质和分离的要求。

填料的选择也是HPLC分离的重要因素。

填料是HPLC柱中的固定相,它的种类和粒径大小直接影响到分离的效果。

常用的填料有C18、C8、SiO2等,它们具有不同的分离机理和适用范围,需要根据具体的分析要求进行选择。

此外,柱温的控制也对HPLC分离有着重要的影响。

柱温的升高可以提高分离效率和分辨率,减少分离时间,但也会增加柱的压力和流动相的挥发,因此在实际应用中需要综合考虑。

总的来说,HPLC的原理是通过样品在流动相和固定相之间的分配作用,实现对混合物中各成分的分离和检测。

在实际应用中,需要根据具体的分析要求选择合适的进样方式、流动相、填料和柱温控制,以达到最佳的分离效果。

通过对HPLC原理的深入了解,可以更好地应用HPLC技术进行分离和分析,为科研和生产提供准确、可靠的数据支持。

同时,不断探索和创新HPLC技术,将有助于提高其分离效率和应用范围,推动科学研究和工程技术的发展。

高效液相色谱法(HPLC)

高效液相色谱法(HPLC)

高效液相色谱法(HPLC) High Performance LiquidChromatography§3-1 高效液相色谱法概述一、定义以高压输出液体为流动相,以小粒径填料填充色谱柱的色谱分析方法。

高效液相色谱法是继气相色谱之后,70年代初期发展起来的一种以液体做流动相的新色谱技术.二、HPLC特点1、高压经典的液相色谱法,流动相在常压下输送,所用的固定相柱效低,分析周期长。

而现代液相色谱法中,流动相改为高压输送(150~350 ⨯105 Pa,最高输送压力可达450⨯105 Pa);2、高速由于流动相流速高,分析时间大大缩短,几min、十几min可完成一个分析任务。

3、高效HPLC色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万)。

4、高灵敏度利用高灵敏度的检测器,检测灵敏度大大提高。

紫外检测器10-9g荧光检测器10-11g高效液相色谱三、液相色谱分离原理及分类液相色谱分离的实质是样品分子(以下称溶质)与溶剂(即流动相或洗脱液)以及固定相分子间的作用,作用力的大小,决定色谱过程的保留行为。

根据分离机制不同,液相色谱可分为:液固吸附色谱、液液分配色谱、化学键合相色谱、离子交换色谱以及分子排阻色谱等类型。

四、液相色谱与气相色谱的比较1、相同点(1)基本原理一致:不同组分在两相中的作用力不同。

(2)基本概念一致:基本概念:保留值、塔板数、塔板高度、分离度、选择性等与气相色谱一致。

(3)基本理论一致:塔板理论与速率方程也与气相色谱基本一致。

2、不同点由于在液相色谱中以液体代替气相色谱中的气体作为流动相,而液体和气体的有性质本质不同,因此,两种方法也有不同之处:(1)仪器设备和操作条件不同;(2)应用范围不同;气相色谱仅能分析在操作温度下能气化而不分解的物质。

对高沸点化合物、非挥发性物质、热不稳定化合物、离子型化合物及高聚物的分离、分析较为困难。

高效液相色谱HPLC基本原理

高效液相色谱HPLC基本原理

色谱柱的温度控制:优化色谱柱的 温度提高分离效率
添加标题
添加标题
添加标题
添加标题
色谱柱的维护:定期清洗和维护色 谱柱保证其性能稳定
色谱柱的填充:优化色谱柱的填充 方式提高分离效果
流动相的组成:有机溶剂和水
流动相的选择原则:根据样品性质和检测器类型选择
流动相的优化方法:通过改变有机溶剂和水的比例、改变有机溶剂的种类、改变有机 溶剂的浓度等方法进行优化
流动相的优化效果:提高分离效果、提高检测灵敏度、降低检测时间等
固定相的选择: 根据样品性质 和分离要求选 择合适的固定

固定相的粒径: 粒径越小分离 效果越好但会 增加压力和延
长分析时间
固定相的表面 处理:表面处 理可以提高固 定相的稳定性
和选择性
固定相的填充: 填充方式会影 响柱效和分离 效果常用的填 充方式有轴向 填充、径向填 充和螺旋填充
汇报人:
智能化:I技术在HPLC中的应用提 高分析效率和准确性
高通量:高通量HPLC技术的发展提 高分析速度和通量
添加标题
添加标题
添加标题
添加标题
微型绿色环保:环保型HPLC技术的发展 降低对环境的影响和污染
气相色谱-质 谱联用:提高 检测灵敏度和
准确性
样品采集:选择合适的样品采 集方法如抽样、取样等
样品预处理:对样品进行预处 理如过滤、离心、稀释等
样品保存:选择合适的样品保 存方法如冷藏、冷冻等
样品分析:对样品进行分析如 定性、定量等
进样器选择:根据样品性质 和实验要求选择合适的进样 器
样品准备:选择合适的样品 进行适当的处理和稀释
进样操作:将样品注入进样 器确保样品完全进入色谱柱

高效液相色谱法

高效液相色谱法

(2)化学键合固定相 ) B. 极性键合相 极性键合相指键合有机分子 中含某些极性基团,与空白硅胶相比, 中含某些极性基团,与空白硅胶相比,其极性 键合相表面能量分布均匀,是一种改性的硅胶, 键合相表面能量分布均匀,是一种改性的硅胶, 常用的极性键合相有氨基、氰基等。 常用的极性键合相有氨基、氰基等。氨基键合 相是分离糖类最常用的固定相,常用乙腈-水 相是分离糖类最常用的固定相,常用乙腈 水
二、液相色谱的流动相
1. 流动相特性
(mobile phases of LC) )
(2)化学键合固定相 )
化学键合固定相是应用最广的色谱法。 化学键合固定相是应用最广的色谱法。将固定液的官能团键
合在载体上形成的固定相称为化学键合相,其特点是不流失, 合在载体上形成的固定相称为化学键合相,其特点是不流失, 一般认为有分配与吸附两种功能。 一般认为有分配与吸附两种功能。 a. 硅氧碳键型: 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C 硅氧硅碳键型: 稳定,耐水、耐光、耐有机溶剂,应用最广 稳定,耐水、耐光、耐有机溶剂, c. 硅碳键型: 硅碳键型: d. 硅氮键型: 硅氮键型: ≡Si—C ≡Si—N
4.6
高效液相色谱法
高效液相色谱法(high pressure Liquid 高效液相色谱法 chromatography,HPLC)是利用物质在两 , 是利用物质在两 相之间吸附或分配的微小差异达到分离的目的。 相之间吸附或分配的微小差异达到分离的目的。 当两相作相对移动时, 当两相作相对移动时,被测物质在两相之间做 反复多次的分配, 反复多次的分配,这样使原来微小的差异产生 了很大的分离效果,达到分离、 了很大的分离效果,达到分离、分析和测定一 些理化常数的目的。 些理化常数的目的。

高效液相色谱-电化学法_概述及解释说明

高效液相色谱-电化学法_概述及解释说明

高效液相色谱-电化学法概述及解释说明1. 引言1.1 概述高效液相色谱-电化学法(简称HPLC-EC)是一种常用的分析技术,利用高效液相色谱技术和电化学检测原理相结合,实现对样品中化合物的分离和定量分析。

此方法具有灵敏度高、选择性好、重复性好等优点,因而在环境科学、生物医药和食品安全等领域得到广泛应用。

1.2 文章结构本文共分五个部分进行阐述。

引言部分是对整篇文章的概述,介绍了HPLC-EC 技术的背景和研究意义。

第二部分将对HPLC技术和电化学法以及它们之间的结合进行简要介绍。

接下来一节将详细讨论HPLC-EC的实验原理与分析过程。

第四部分将探讨HPLC-EC在环境污染物、生物医药和食品安全领域中的应用案例。

最后一节是总结与展望,回顾整篇文章所提到的内容,并展望该技术在未来发展中可能取得的进展。

1.3 目的本文旨在全面介绍高效液相色谱-电化学法的相关知识,深入探讨其原理及其在环境科学、生物医药和食品安全领域的应用。

通过文章阐述,读者可以对HPLC-EC技术有一个全面的了解,并且了解到该技术在不同领域的实际应用和发展趋势。

2. 高效液相色谱-电化学法概述:2.1 高效液相色谱技术简介高效液相色谱(HPLC)是一种广泛应用于分析化学领域的分离技术。

它基于物质在溶剂流动下通过固定相的不同速率进行分离,可用于分析和检测各种化合物。

HPLC技术具有分离效果好、选择性强、重复性好等特点,因此被广泛应用于环境、生物医药和食品安全等领域的样品分析中。

2.2 电化学法简介电化学法是利用电极与溶液中存在的化学反应产生的电流或电势来检测或测定物质的一种方法。

根据所使用的电极类型和测量参数,常见的电化学方法包括极谱法、电化学滴定法、恒定电位法等。

这些方法可以实现对不同种类和浓度范围内的物质进行快速准确的检测和分析。

2.3 结合应用优势高效液相色谱-电化学法(HPLC-EC)是将HPLC技术与电化学方法相结合而形成的一种分析技术。

高效液相色谱法(hplc)

高效液相色谱法(hplc)

高效液相色谱法(HPLC)一.概述色谱法是一种应用范围相当广泛的分离分析技术,它已有近百年的发展史。

二十世纪五、六十年代石油及石油化工的突起促使了GC技术大发展,而七、八十年代生命科学、生化、制药工业的发展推动了HPLC的迅速发展。

目前除分析化学外,生物化学,石油化学,有机化学,无机化学等学科都普遍采用色谱技术。

现代高效液相色谱仪,以其高效,快速和自动化等特点成为当代分析仪器中发展最快的仪器。

HPLC已成为操作方便、准确、快速并能解决困难分离问题的强有力的分析手段。

1.HPLC的特点(1)适用范围广已知有机物中仅20%不经预先化学处理,可用GC分析;而其余80%有机物可用HPLC分析。

HPLC适于分离生物、医学大分子和离子化合物,不稳定的天然产物,种类繁多的其它高分子及不稳定化合物。

(2)流动相及固定均与样品分子作用,而GC仅固定相与样品分子作用。

(3)具有独特性能的柱填料(固定相)种类较多,具有多种分离方式,适于各种化合物分析。

(4)分离温度较低,提高了分离效率。

(5)具有一些独特的检测器:电化学,示差折光,可见紫外吸收及荧光检测器等。

(6)样品易回收。

2.HPLC分类按分离机理分为四类:吸附色谱(液固):通过试样组分对活性固体表面吸附亲合力的不同实现分离。

对具有不同官能团的化合物和异构体有较高选择性,早期应用较多,现在大多可用正相键合相色谱替代,常用硅胶柱。

分配色谱:不同溶质分子按其在固定相和流动相中分配系数不同得到分离。

现代分配色谱即化学键合相色谱,是将各种不同的有机基团通过化学反应键合到硅胶表面,具有很好的化学稳定性和热稳定性。

大部分分离问题都可用键合相色谱解决。

离子交换色谱:以离子交换剂为固定相,试样中电离组分与交换剂基体相反电荷的离解部位亲合力不同而分离。

用于分离无机或有机离子。

固定相为阴(阳)离子交换树脂,流动相为电解质溶液。

分子排阻色谱:按物质分子量大小进行分离。

不仅对高聚物,对分子量差别较大的低聚物或小分子化合物也可进行分离。

高效液相色谱HPLC简介.ppt

高效液相色谱HPLC简介.ppt

种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不
同而引起的排阻作用的差别使不同溶质得以分离。
2
操作过程图示
3
色谱分离的机理
分离是一个 物理的过程。
固定相(Stationary Phase) 流动相(Mobile Phase) 样品 (溶解于流动相中的溶质)
4
项目 进样方式 流动相 分离原理 检测器
14
液-液分配色谱
固定相与流动相均为液体(互不相溶); 基本原理:组分在固定相和流动相上的分配; 流动相:对于亲水性固定液,采用疏水性流动相,即流动相的极性小于固定 液的极性(正相 normal phase),反之,流动相的极性大于固定液的极性 (反相 reverse phase)。正相与反相的出峰顺序相反; 固定相:早期涂渍固定液,固定液流失,较少采用; 化学键合固定相:将各种不同基团通过化学反应键合到硅胶(担体)表面的 游离羟基上。反相键合相色谱柱最常用的就是ODS柱,也就是C18柱。
15
液相色谱类型
• 正相色谱:固定相为极性,流动相为非极性。 • 反相色谱:固定相为非极性,流动相为极性。用的最多,约占60~70%。
16
色谱柱简介
• 正相柱------固定相通常为硅胶以及其他具有极性官能团胺基团,如(NH2) 和氰基团(CN)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他极性基团极性较强,因此,分离 的次序是依据样品中各组分的极性大小,即极性较弱的组份最先被冲洗出色 谱柱。正相色谱使用的流动相极性相对比固定相低,如正已烷,氯仿,二氯 甲烷等。
9
检测器简介(二)
◆ 电导检测器(ECD) 原理:监测溶液的电导率变化的检测器。 特点:选择性检测器、测量时要求恒温、对流动相的组成变化有明显响应、 灵敏度低(10-3g)。适用于离子型化合物。

高效液相色谱法HPLC

高效液相色谱法HPLC

VS
报告结果
整理分析数据,撰写分析报告,提供各组 分的浓度、纯度等相关信息,为科研或生 产提供决策依据。
THANKS FOR WATCHING
感谢您的观看
实验操作步骤
流动相的准备与平衡
根据实验要求配制流动相,通过泵以适宜的流速 通过色谱柱进行平衡。
洗脱与检测
流动相带着样品经过色谱柱洗脱,各个组分依次 流出并进入检测器进行检测。
ABCD
进样
将样品注入进样器,通过压力将样品送入色谱柱 进行分离。
数据处理与结果分析
对检测器输出的信号进行处理,得到各组分的峰 形和峰面积,进行定性和定量分析。
01
02
03
04
进样
将样品注入色谱柱。
分离
在流动相的带动下,样品中的 组分在色谱柱中进行分离。
检测
检测器对分离后的组分进行检 测,并记录信号。
数据处理
对采集到的数据进行处理、分 析和存储。
高效液相色谱仪的维护和保养
定期清洗色谱柱
使用适当的溶剂清洗色谱柱, 以去除残留物和杂质。
维护和检查检测器
定期检查检测器的性能和准确 性,确保其正常运行。
数据处理系统
用于采集、处理、分析和存储色谱数据,通常采用色谱工 作站。
高效液相色谱仪的操作流程
01
02
03
样品准备
将样品进行适当处理,以 便注入色谱柱。
流动相制备
根据实验要求,选择合适 的流动相,并进行过滤和 脱气处理。
系统平衡
在进样之前,确保色谱系 统达到平衡状态,以提高 分离效果。
高效液相色谱仪的操作流程
样品的预处理
分离
对于复杂样品,需要进行分离操 作以去除杂质或提取目标成分。 常用的分离方法包括离心、过滤、

高效液相色谱(HPLC)简介

高效液相色谱(HPLC)简介

2. 流动相类别
按流动相组成分:单组分和多组分;
按极性分:极性、弱极性、非极性;
按使用方式分:固定组成淋洗和梯度淋洗。
常用溶剂: 己烷、四氯化碳、甲苯、乙酸乙酯、乙醇、
乙腈、水。
采用二元或多元组合溶剂作为流动相可以灵活调节流动
相的极性或增加选择性,以改进分离或调整出峰时间。
3. 流动相选择
在选择溶剂时,溶剂的极性是选择的重要依据。
(1)尽量使用高纯度试剂作流动相,防止微量杂质长期累 积,损坏色谱柱和使检测器噪声增加。 (2)避免流动相与固定相发生作用而使柱效下降或损坏柱 子。如使固定液溶解流失,酸性溶剂破坏氧化铝固定相等。 (3)试样在流动相中应有适宜的溶解度,防止产生沉淀并 在柱中沉积。 (4)流动相同时还应满足检测器的要求。当使用紫外检测 器时,流动相不应有紫外吸收。
高效液相色谱(HPLC)简介

1, 液相色谱分析法的发展 2, 高效液相色谱的特点 3, 高效液相色谱仪简介 4, 液相色谱法介绍 5, 分析方法的选择 6, 实际分析操作过程

1、液相色谱分析法的发展
20世纪初: 俄国植物学家茨维特提出经典液 相色谱法。经典液相色谱法包括柱色 谱、薄层色谱、纸色谱。 20世纪60年代末: 随着色谱理论的发展、高效细微 固定相的开发、高压恒流泵及高灵敏 度检测器的应用,高效液相色谱法得 到了突破性的发展。
a. 紫外检测器
应用最广,对大部分有机 化合物有响应。 特点: 灵敏度高;
线性范围宽;
流通池可做得很小(1mm × 10mm ,容积 8μL); 对流动相的流速和温度变化不敏感; 波长可选,易于操作; 可用于梯度洗脱。
b. 光电二极管阵列检测器
紫外检测器的重要进展;

高效液相色谱

高效液相色谱

应用
由于HPLC分离分析的高灵敏度、定量的准确性、 适于非挥发性和热不稳定组分的分析,因此,在工 业、科学研究,尤其是在生物学和医学等方面应用 极为广泛。如氨基酸、蛋白质、核酸、烃、碳水化 合物、药品、多糖、高聚物、农药、抗生素、胆固 醇、金属有机物等分析,大多是通过HPLC来完成的。
液相色谱分离原理及分类
和气相色谱一样,液相色谱分离系统由 两相——固定相和流动相组成。液相色谱的 固定相可以是吸附剂、化学键合固定相(或 在惰性载体表面涂上一层液膜)、离子交换 树脂或多孔性凝胶;流动相是各种溶剂。
被分离混合物由流动相液体推动进 入色谱柱。根据各组分在固定相及流动 相中的吸附能力、分配系数、离子交换 作用或分子尺寸大小的差异进行分离。
它与经典液相色谱法的区别是填料颗粒小而均 匀,小颗粒具有高柱效,但会引起高阻力,需 用高压输送流动相,故又称高压液相色谱法 (High Pressure Liquid Chromatography,HPLC)。 又因分析速度快而称为高速液相色谱法(High Speed Liquid Chromatography,HSLP)。也称 现代液相色谱。
敏感,且不适于梯度淋洗。
平面镜
样品
透镜
遮光板
光源
参比
光学零
光电转换 调零
放大器
记录仪
荧光检测器
许多有机物具荧光活性, 尤其是芳香族化合物具有很 强的活性。荧光检测器是一 种选择性很强的检测器,其
灵敏度比UV检测器高2~个数
量级。
电导检测器
电导检测器主要用于离子色谱的检测。 原理:基于待测物在一些介质中电离后所产生的电导(电 阻的倒数)变化来测量电离物质的含量。
流程及主要部件
流程

hplc高效液相色谱

hplc高效液相色谱

hplc高效液相色谱高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种重要的分离和分析技术,广泛应用于生物、化学、制药、食品等领域。

本文将从HPLC的原理、仪器要素、常见应用以及操作注意事项等方面进行介绍。

HPLC的原理可以简单概括为将具有不同化学性质、分子大小或其他物理化学性质的样品通过高效固相填料进行分离,利用流动相的移动速度差异使其逐渐分离。

常用的固相填料包括疏水性柱、离子交换柱、手性柱等。

流动相一般由溶剂和缓冲液组成,通过泵进行稳定输送。

HPLC的仪器要素包括进样系统、色谱柱、流动相泵、检测器和数据处理系统。

其中进样系统负责将样品注入色谱柱,色谱柱是分离的关键部分,流动相泵提供稳定的流动相,检测器可以检测并记录样品组分的浓度信息,数据处理系统将检测到的信号转换为色谱图。

HPLC在生物、化学等领域有着广泛的应用。

在生物分析中,HPLC可以用于多肽、核苷酸、蛋白质等生物大分子的分离和鉴定。

在制药领域,HPLC可以用于药物的分离和纯化,保证药物的质量和安全性。

在食品领域,HPLC可以用于检测食品中的添加剂、农药残留以及食品中的营养成分等。

在进行HPLC操作时,需要注意一些事项。

首先,样品的准备和处理要仔细,避免影响分析结果。

其次,选择合适的流动相和检测器,根据需要调整参数,比如流速、洗脱梯度、检测波长等。

此外,还需要进行仪器的校准和定期的维护保养,确保仪器正常工作和结果准确可靠。

总结起来,HPLC作为一种高效的分离和分析技术,在科学研究和应用中都有着重要的地位。

通过了解HPLC的原理、仪器要素以及常见应用以及操作注意事项等方面,可以更好地理解和应用HPLC技术,推动科学研究和生产应用的发展。

高效液相色谱法(HPLC)简介

高效液相色谱法(HPLC)简介

高效液相色谱法分离过程
主要在于固定相的性质、形状及粒度,其次 差别: 是检测手段和输液设备。
经典液相色谱 固定相: 粒度:60~600μm(多孔) 柱长:10~200cm(d=10~50mm) n 约为 2~50/m
流动相:靠重力输送
经典液相色谱无在线检测器
缺点:
①粒度范围宽、不规则,不易填充均匀,扩散和传质阻 力大。 ②无检测设备,分析速度慢、效率低。 只能作为分离手段
(3)不能完全替代气相色谱
(4)不适于分析受压分解、变性的具有生物活性的
Hale Waihona Puke 生化样品。高效液相色谱法与其他分析方法一样,
不是尽善尽美的。
第二节 高效液相色谱法的基本理论
一、高效液相色谱参数 1.定性参数 tR 、 t 0 、 t’ R t’R= tR- t0 2.柱效参数 σ、 W1/2 、W W=4 σ 或 w=1.699W1/2 n=( tR / σ)2 H=L/n
四、高效液相色谱法的应用范围和局限性
1.应用范围 高效液相色谱法适于分析高沸点、受热不稳定易 分解、分子量大、不同极性的有机化合物;生物活性 物质和多种天然产物;合成和天然高分子化合物。 涉及石油化工产品、食品、药品、生物化工产品 及环境污染物。约占全部有机物的80%。 2.方法的局限性
(1)使用多种溶剂为流动相,成本高,污染环境 (2)缺少通用检测器
美国药典委员会(USPC)成立于1820年,至今近200 年。出版发行了25版药典。 75年(19版)将HPLC载入药典 20版-62项;21版-363项;22版-871项;23版-1188项; 24版-含量测定法:1386项 鉴别:519项 杂质检查:206项
如今:在评价世界各国药典水平时,HPLC法成为 反映各国药典先进性的重要指标之一。

高效液相色谱的分离原理

高效液相色谱的分离原理

高效液相色谱的分离原理高效液相色谱(High Performance Liquid Chromatography,HPLC)的分离原理主要基于溶质在液相和固相之间的分配行为。

液相色谱将样品溶解在流动相中,然后将其通过填充在色谱柱中的固定相。

溶质与液相和固相之间的相互作用导致在带电痕迹下,样品分子以不同的速度从柱中通过。

分离的原理主要有以下几种方式:1. 亲水性分离:在正常相液相色谱中,固定相一般为疏水膜,溶液中的极性分子会更加倾向于溶解在溶剂中。

相反,非极性分子会更倾向于与固相相互作用。

这样的分离机制适用于众多生物大分子或通过多重氢键与固相相互作用的有机化合物。

2. 反相分离:反相液相色谱(Reverse Phase Liquid Chromatography, RPLC)使用疏水固定相和极性溶剂,溶液中的极性溶质会聚集在固相上,而非极性溶质会倾向于与溶剂混合。

反相分离常用于氢键作用或极性分子之间的相互作用较强的有机化合物。

3. 离子交换分离:它基于离子交换剂与待测物溶解在流动相中,通过与其成键分离。

该方法特别适用于离子性化合物的分离,其中固定相常常是带有交换活性基团(例如磺酸基团或羧酸基团)的阴离子交换树脂或阳离子交换树脂。

4. 大孔态或凝胶态分离:为了分离较大的生物大分子,如蛋白质或多肽,常常使用大孔体积更大的色谱柱和凝胶固相。

这种类型的色谱有助于减小溶质分子的限制,以实现更好的分离效果。

总的来说,高效液相色谱的分离原理是通过溶质与液相和固相之间的分配行为来实现的,不同的分离机制适用于不同类型的化合物和分析目的。

商业HPLC仪器通常配备了多种柱和固定相,以提供灵活的操作,以满足不同类型的分离需求。

高效液相色谱法(HPLC)的概述

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC主要内容包括:1.高效液相色谱法(HPLC)的概述2. 高效液相色谱基础知识介绍(1——13楼)3. 高压液相色谱HPLC发展概况、特点与分类4. 液相色谱的适用性5.应用高效液相色谱法(HPLC)的概述以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。

其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。

由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用X围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有50种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。

高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。

目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。

将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。

C18(ODS)为最常使用的化学键合相。

根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。

在中药制剂分析中,大多采用反相键合相色谱法。

系统组成:(一)高压输液系统由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。

1.贮液罐由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。

贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
适用:高沸点、热不稳定有机及生化 试样的高效分离
液相色谱法的分类
按流动相和固定相的相对极性分: 正相色谱(Normal Phase Chromatography) o 固定相的极性大于流动相 反相色谱(Reversed Phase Chromatography) o 固定相的极性小于流动相 有机化合物的极性 分子间作用力(静电引力,偶分子间作用力(静电引力,偶极力,色散 力,氢键力)综合表现的一种表述
什么是色谱法
色谱法是一种现代的分离分析方法 1906年正式命名(见诸文献) 20世纪30年代开始广泛研究和应用 高效液相色谱法的广泛应用始于20世纪70年代
色谱法(Chromatography)溯源
100多年前俄国植物学家Tswett(茨维特)分离植物色 素时采用的实验方法
他将植物色素的石油醚提取液倒入装有碳酸钙的直 立玻璃管,再加入石油醚使其自由流下,结果色素中 各组份互相分离形成各种不同颜色的谱带
Tswett用希腊语chroma(色)和graphos(谱)描述他的 实验方法,即现在的
Chromatography(色谱法)
Tswett(茨维特)的实验
一根长玻璃管填充碳酸钙的颗粒 将碾碎之植物叶片的提取液灌入柱中 随着石油醚提取液向下流过柱子,现出展宽的色带 分离出不同的化合物
Chromato -- 颜色 Graphy -- 图象
HPLC的组成
由五大部分组成:: 溶剂输送系统(贮液器,高压泵) 进样系统(进样阀等) 分离系统(色谱柱等) 检测系统(检测器等) 记录及数据处理系统
1. 高压输液泵
为了获得高柱效而使用粒度很小的固定相(<10μm),液体 的流动相高速通过时,将产生很高的压力,因此高压、高速 是高效液相色谱的特点之一 应具有压力平稳、脉冲小、流量稳定可调、耐腐蚀等特性
色谱法原理
是利用混合物中各组份在不同的两相中溶解,分配,吸 附等化学作用性能的差异,当两相作相对运动时,使各 组分在两相中反复多次受到上述各作用力而达到相 互分离
两相中有一相是固定的,叫作固定相(Stationary Phase) 有一相是流动的,称为流动相(Mobile Phase),流动相
色谱法的分类
按固定相的形态分: 平面色谱 o 纸色谱 o 薄层色谱 柱色谱
色谱法的分类示意图
什么是HPLC?
高效液相色谱法 –HPLC(High Performance Liquid Chromatography ) –是一种区别于经典液相色谱,基于仪器方法的 高效能分离手段: o High 高 o Performance 性能 o Liquid 液体的 o Performance 色谱
▪ 低压梯度洗脱(常压混合,高压进柱,1个 泵。)
▪ 高压梯度洗脱(高压混合,高压进柱,2个 泵。)
▪安捷伦泵:小视频 ▪色谱学堂:泵
在线脱气机
高效液相色谱仪流动相脱气的目的 1、使色谱泵输液均匀准确,减小脉动。 2、提高保留时间和色谱峰面积的重现性。 3、防止气泡引起尖峰。 4、使基线稳定,提高信噪比。 5、降低溶剂的紫外吸收本底。 6、减少死体积。 7、防止填料氧化。
高压输液泵: 恒压泵(流量随阻力变化重现性差) 恒流泵(多用):往复式 注射式
作用:将流动相在高压下连续不断地送入液路系统。 性能:①有足够的压力
②输出流量恒定,可调 ③输出压力平稳 ④泵室体积小 ⑤泵体抗腐蚀、耐酸
▪梯度洗脱装置
作用:将两种或两种以上溶剂按一定程序连续 改变配比,以改变流动相极性、离子强度、 PH值、提高分离效率。
2017年样品检测组操作技能培训
(一)高效液相基础知识 高志国
(2017.03.29)
高效液相色谱基础知识
色谱法原理与分类 HPLC的组成 HPLC的应用 HPLC色谱图名词术语 HPLC定量分析原理
色谱法原理及分类
什么是色谱法 色谱法溯源 Tswett(茨维特)的实验 色谱法原理 色谱法的分类
视频 :脱气目的 在线脱气机
2. 进样装置
▪进样视频:安捷伦 ▪进样视频:岛津
3. 分离系统
包括色谱柱、恒温器和连接管等部件。 色谱柱一般用内部抛光的不锈钢制成。其内径为2 ~ 6mm, 柱长为10 ~50cm,柱形多为直形,内部充满3~10 mm高效微 粒固定相。柱温一般为室温或接近室温
匀浆法填充柱: 将填料制成悬浮液,在高压泵的作用下压入装有洗脱 液的色谱柱。理论塔板数可达8万/米
又叫洗脱剂,溶剂
相(Phase):
物理化学术语,特指在某一系统中,具有相同成 分及相同物理、化学性质的均匀物质部分。各相 之间有明显可分的界面
色谱分离原理
色谱法的分类
按流动相的物态分:
气相色谱 (Gas Chromatography, GC) 用气体作为流动相(又叫载气)
液相色谱 (Liquid Chromatography, LC) 用液体作为流动相(又叫洗脱剂)
有机化合物ห้องสมุดไป่ตู้性示例
液相色谱法的分类
按分离过程的机理分:
1 吸附色谱(Absorption Chromatography) 根据样品组分对活性固定相表面吸附亲和力的不同实现分离 2 分配色谱(Partition Chromatography) 分离基于样品组分在固定相和流动相中的溶解度(分配系数)不同 3 离子交换色谱(Ion Exchange Chromatography) 根据样品组份离子交换亲和力的差异分离,简称离子色谱(IC) 4 体积排除色谱(Size Exclusion Chromatography) GPC(Gel Permeation Chromatography) • 固定相是疏水性凝胶,流动相是有机溶剂 GFC(Gel Filtration Chromatography) • 固定相是亲水性凝胶,流动相是水溶液
HPLC特点
特点:高压、高效、高速、高灵敏度 1. 高效分离 : n =105 /米 2. 高速 :使用高压泵,出峰时间几分钟到几十分钟 3. 高灵敏度 :检测下限:10-9-10-13g(最小检测量) 4. 自动化程度高:仪器分析、电脑控制、色谱工作站 5. 应用范围广 :可测有机物75%-80%
相关文档
最新文档