【新教材】5.2.1 三角函数的概念 导学案-人教A版高中数学必修第一册

合集下载

2020高中数学A版新教材必修1学案导学案 第五章 5.2 5.2.1 第一课时 三角函数的定义

2020高中数学A版新教材必修1学案导学案 第五章 5.2 5.2.1 第一课时 三角函数的定义

2
2
x
ห้องสมุดไป่ตู้
基础达标
一、选择题
- 3,-1 1.已知角α的终边与单位圆交于点 2 2 ,则 sin α的值为( )
A.- 3 2
B.-1 2
C. 3
D.1
2
2
解析 由定义知 r=1,∴sin α=-1,故选 B. 2
答案 B
2.已知角α的终边经过点 P(3,-4),则 sin α+ 1 =( ) cos α
∴-2<a≤3.
答案 (-2,3]
5.已知角α的终边在射线 y= 3x(x>0)上,求角α的正弦、余弦和正切值.
解 设角α的终边与单位圆的交点为 P(x,y),
则 x2+y2=1,
又 y= 3x(x>0),
x=1, 2
解得 y=
3.
2
于是 sin α=y= 3,cos α=x=1,tan α=y= 3.
5.2 三角函数的概念
5.2.1 三角函数的概念
第一课时 三角函数的定义
课标要求
素养要求
1.借助单位圆理解任意角的三角函数定 通过对正弦函数、余弦函数、正切函数
义.
定义的理解,重点提升学生的数学抽象
2.能利用定义解决相关问题.
和直观想象素养.
教材知识探究
如图所示是光明游乐场的一个摩天轮示意图,它的中心离地面的高度为 h0,它的 直径为 2R,逆时针方向匀速运动,转动一周需要 360 秒.
B.11
4
4
C.-4
D.4
解析 cos α= m =-4,解得 m=-4(m=4 不合题意,舍去). m2+9 5
答案 C
4.点 P 从(1,0)出发,沿单位圆逆时针方向运动2π弧长到达 Q 点,则 Q 点的坐标 3

【教案】三角函数的概念课时设计-2022-2023学年高一上学期数学人教A版(2019)必修第一册

【教案】三角函数的概念课时设计-2022-2023学年高一上学期数学人教A版(2019)必修第一册

普通高中教科书人教A 版数学第一册(必修)5.2三角函数的概念(3课时,单元教学设计)一.单元内容和内容解析1.内容三角函数的概念,三角函数的基本性质:三角函数的符号、公式一、同角三角函数的基本关系.本单元的知识结构:本单元建议用3课时.第1课时.三角函数的概念;第2课时,三角函数的基本性质;第3课时,概念和性质的简单应用.2.内容解析(1)内容的本质三角函数是一类最典型的周期函数,是解决实际问题的重要工具,是学习数学、物理和天文等其他学科的重要基础.(2)蕴含的数学思想和方法研究思路如下:背景——研究对象——对应关系的本质——定义的过程.本单元的学习中,学生在经历这个过程而形成三角函数的同时,“顺便”就可得到值域、函数值的符号、公式一即同角三角函数的基本关系等性质.(3)知识的上下位关系传统上,人们习惯把三角函数看成是锐角三角函数的推广,利用象限角终边上点的坐标比定义三角函数.任意三角函数的现实背景是周期变化现象,是“周而复始”变化规律的数学课话.因此,整体上,任意角三角函数知识体系的建立,应与其他基本初等函数类似.(4)育人价值 单位圆上点的运动规律三角函数的概念三角函数的基本性质三角函数的符号公式一同名三角函数的基本关系本节课从生活中存在“周而复始”的现象引入周期函数中最典型——三角函数的数学刻画,通过在平面直角坐标系中单位圆的建立,逐步实现本节课的教学目标.在此过程中培养了学生的数学想象、数学抽象、数学建模、数学运算等数学学科核心素养(5)教学重难点根据上述分析,可以确定本单元的教学重点:正弦函数、余弦函数、正切函数的定义,公式一,同角三角函数的基本关系.其中,正弦函数、余弦函数的定义是重中之重.二.单元目标和目标解析1.目标(1)了解三角函数的背景,体会三角函数与现实世界的密切联系.(2)经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,发展数学抽象素养.(3)掌握三角函数数值的符号.(4)掌握公式一,初步体会三角函数的周期性.,sin2x+cos2x=1,体会三角(5)理解同角三角函数的基本关系式:tan x=sin xcos x函数的内在联系,通过运用基本关系进行三角恒等变换,发展数学运算素养.2.目标解析达成上述目标的标志是:(1)学生能如了解线性函数、反比例函数、二次函数、幂函数、指数函数、对数函数的现实背景那样,知道三角函数是刻画现实世界中“周而复始”变化规律的数学工具,能体会到匀速圆周运动在周而复始变化现象中的代表性.(2)学生在经历“周期现象—圆周运动—单位圆上点的旋转运动”的抽象活动中,明确研究的问题(单位圆上的点P以A为起点做旋转运动,建立一个数学模型,刻画点P的位置变化情况),使研究对象简单化、本质化;学生能分析单位圆上点的旋转中涉及的量及其相互关系,获得对应关系并抽象出三件函数概念;能根据定义求给定角的三角函数值.(3)学生根据定义得出三角函数在各象限取值的符号规律.(4)学生能根据定义,结合终边相同的角的表示,得出公式一,并能根据此描述三角函数周而复始的取值规律,求某些角(特殊角)的三角函数值.(5)学生能利用定义以及单位圆上点的横、纵坐标之间的关系,发现并得出“同角三角函数的基本关系”,并能用于三角恒等变换.三.单元教学问题诊断分析三角函数概念的学习,其认知基础是函数的一般观念以及对幂函数、指数函数和对数函数的研究经验,另外还有圆的有关知识.这些认知准备对于分析“周而复始”变化现象中涉及的量及其关系、认识其中的对应关系并给出定义等都能起到思路引领作用.然而,前面学习的基本初等函数,涉及的量(常量与变量)较少,解析式都有明确的运算含义,在三角函数中,影响单位圆上点的坐标变化的因素较多,对应关系不以“代数运算”为媒介,是“α与x,y直接对应”,无须计算,虽然α,x,y都是实数,但实际上是“集合元素间的对应”.所以,三角函数中的对应关系,与学生的已有经验距离较大,由此产生第一个学习难点;理解三角函数的对应关系,包括影响单位圆上点的坐标变化的因素分析,以及三角函数的定义方式的理解.为了破除学生在对应关系认识上的定势,帮助他们搞清楚三角函数的“三要素”,应该根据一般函数概念引导下的下位学习的特点,先让学生明确“给定一个角,如何得到对应的函数值”的操作过程,然后再下定义.这样不仅使三角函数定义的引入更自然,而且由三角函数对应关系的独特性,可以使学生再一次认识函数的本质.具体地,可以先让学生完成“时,让学生找给定一个特殊角,求它的终边与单位圆交点的坐标”的任务,例如,当α=π6出相应点P的坐标,并体会到点P的坐标的唯一确定想;在借助信息技术,让学生观察任意给定一个角α∈R,它的终边与单位圆的交点坐标是否唯一,从而为理解三角函数的对应关系奠定基础.利用信息技术,可以很容易地建立单位圆上点地横坐标、纵坐标、角、弧之间地联系,并且可以在角地变化过程中进行观察,发现其中地规律性.所以,信息技术可以帮助学生更好地理解三角函数的本质.对于三角函数的定义,可以通过以下几点帮助学生理解.第一,α是一个任意角,同时也是一个实数(弧度数),所以“设α是一个任意角”的意义实际上是“对于R中的任意一个数α”.第二,“它的终边OP与单位圆相交于点P(x,y)”实际上给出了两个对应关系,即(1)实数α(弧度)对应点P的纵坐标y;(2)实数α(弧度)对应点P的纵坐标x,其中y,x∈[−1,1].因为y对于R中的任意一个数α,它的终边唯一确定,所以交点P(x,y)也唯一确定,也就是纵坐标y和横坐标x都有α唯一确定,所以对应关系(1)(2)分别确定了一个函数,这是理解三角函数定义的关键.第三,引进sinα,cosα分别表示“α的终边与单位圆交点的纵坐标”“α的终边与单位圆交点的横坐标”,故对于任意一个实数α,按对应关系(1),在集合B={z|-1≤z≤1}中都拥有唯一确定的数sinα与之对应;按对应关系(2),在集合B中都有唯一确定的数cosα与之对应.所以,sinα,cosα都是一个由α所唯一确定的实数.这里,对符号sinα,cosα和tanα的认识是第二难点.可以通过类比引进符号log a b表示a x=b中的x,说明引进这些符号的意义.本单元的第三个学习难点是对于三件函数内在联系行的认识.出现这个难点的主要原因在于三角函数联系方式的特殊性,学生在已有的基本初等函数学习中没有这个经验,以及学生从联系的观点看问题的经验不足,对“如何返现函数的性质”的认识不充分等而导致的发现和提出性质的能力不强.为此,教学中应在思想方法上加强引导.例如,可以通过问题“对于给定的角α,点P(sinα,cosα)是α的终边与单位圆的交点,而tanα则是点P的纵坐标与横坐标之比,因此这三个函数之间一定有内在联系.你能从定义出发,研究一下他们有怎样的联系吗”引导学生探究同角三角函数的基本关系.四.单元教学支持条件分析为了加强学生对单位圆上点的坐标随角(圆心角)的变化而变化的直观感受,需要利用信息技术建立任意角、角的终边与单位圆的交点、角的旋转量、交点坐标等之间的关联.教学中,可以动态改变角α的终边OP(P为终边与单位圆的交点)的位置,引导学生观察OP位置的变化所引起的点P坐标的变化规律,感受三角函数的本质,同时感受终边相同的角具有相同的三角函数值,以及各三角函数在合象限中符号的变化情况.五.单元教学设计安排本单元共两个课时,具体分配如下:第1课时:三角函数的概念;第2课时:三角函数的基本性质;第3课时:概念和性质的简单应用.PA第一课时(一)课时教学内容在一般函数概念的指导下,按“概念形成”的方式展开形成三角函数的概念(二) 课时教学目标(1)了解三角函数的背景,并借助单位圆理解任意角三角函数的定义(2)掌握三角函数值的符号(3)掌握公式一,初步体会三角函数的周期性(三)教学重点与难点重点:任意角的三角函数(正弦、余弦、正切)的定义难点:任意角的三角函数概念的构建过程(四)教学过程设计1.创设问题情境,提出研究问题引导语:我们知道,现实世界中存在着各种各样的“周而复始”的变化现象,圆周运动是这类现象的代表.如图1所示,圆O 上的点P 以A 为起点做逆时针方向的旋转.在把角的范围推广到任意角后,我们可以借助角α的大小刻画点P 的位置变化.又根据弧度制的定义,角α的大小与圆O 的半径无关.因此,不失一般性,我们可以先研究单位圆上点的运动,现在的任务是:如图1所示,单位圆O 上的点P 以点A 为起点做逆时针方向旋转,建议一个函数模型,刻画点P 的位置变化情况.图一问题1:根据已有的研究函数的经验,你认为可以按怎样的路径研究上述问题? 师生活动:学生在独立思考的基础上进行交流,通过讨论得出研究路径是:明确研究背景——对应关系的特点分析——下定义——研究性质设计意图:明确研究的内容、过程和基本方法,为具体研究指明方向2.分析具体事例,归纳共同特征 O引导语:下面我们利用直角坐标系来研究上述问题.如图2所示,以单位圆的圆心O 为原点,以射线OA 为x 轴的非负半轴,建立直角坐标系,以点A 的坐标(1,0),点P 的坐标(x ,y ).射线OA 从x 轴的非负半轴开始,绕点O 按逆时针方向旋转角α,终止位置为OP.问题2:当α=π6时,点P 的坐标时什么?当α=π6或2π3时,点P 的坐标又是什么?他们是唯一确定的吗?一般的,任意给定一个角α,它的终边OP 于单位圆交点P的坐标能唯一确定吗?师生互动:在学生求出当α=π6时点P 的坐标后追问以下问题.追问:(1)求点P 的坐标要用到什么知识?(直角三角形的性质)(2)求点P 的坐标步骤是什么?点P 的坐标唯一吗?(画出π6的终边OP ,过点P 做x 轴的垂线交x 轴于M ,在R t ΔOMP 中,利用直角三角形的性质可地得到点P 的坐标是(√32,12).) (3)如何利用上述经验求当α=2π3时点P 的坐标?(可以发现,∠MOP=π3,而点P 在第二象限,可得点P 的坐标是(-12,√32).)(4)利用信息技术,刻画一个角α,观察它的终边OP 语单位圆交点P 的坐标,你有什么发现?你能用函数的语言刻画这种对应关系吗?(对于R 中的任意一个角α,它的终边OP 与单位圆交点为P (x,y ),无论是横坐标x 还是纵坐标y ,都是唯一确定的,这里有两个对应关系:f :实数α(弧度)对应于点P 的纵坐标yg :实数α(弧度)对应于点P 的横坐标x根据上述分析,f :R →[-1,1]和g :R →[-1,1]都是从集合R 到集合[-1,1]的函数.) 设计意图:以函数的对应关系为指向,从特殊到一般,使学生确认相应的对应关系满足函数的定义,角的终边与单位圆交点的横坐标、纵坐标都是圆心角α(弧度)的函数,为给出三角函数的定义做好准备.3.任意角三角函数的定义与辨析问题3:请同学们先阅读教科书第177-178页,再回答如下问题:(1)正弦函数、余弦函数和正切函数的对应关系各是什么?(2)符号sin α,cos α和tan α分别表示什么?在你以往的学习中有类似的引入特定符号表示一种量的经历吗? 图2(3)为什么说当α≠π2+kπ时,tanα的值是唯一确定的?(4)为什么说正弦函数、余弦函数的定义域是R?而正切函数的定义域是{x |x≠π2+kπ,k∈Z}?师生活动:学生独立阅读教科书,再回答上述问题.设计意图:在问题引导下,通过阅读教科书、辨析关键词等,使学生明确三角函数的“三要素”;引导学生类比已有知识(引入符号log a b表示a x=b中的x),理解三角函数符号的意义.4.任意角三角函数与锐角三角函数的联系问题4:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数,设x∈(0,π2),把锐角三角函数定义求得的锐角x的正弦记为z1,并把本节三角函数定义求得的x的正弦记作y1.z1和y1相等吗?对于余弦、正切也有相同的结论吗?师生活动:教师引导学生作出R tΔABC,其中∠A=x,∠C=90o,再把它放入直角坐标系中,使点A与原点重合,AC在x轴的正半轴上,得出y1=z1的结论.设计意图:建立锐角三角函数与任意角三角函数的联系,使学生体会两个定义的和谐性.5.任意角三角函数概念的初步应用例1:利用三角函数的定义求5π3的正弦、余弦和正切值师生活动:先由学生发言,再总结出从定义出发求三角函数值的基本步骤,并求出答案.设计意图:通过概念的简单应用,明确用定义求三角函数值的基本步骤,进一步理解定义的内涵.课堂练习:(1)利用三角函数的定义,求π,3π2的三个三角函数值(2)说出几个使cosα=1的α的值.师生活动:由学生逐题给出答案,并要求学生说出解答步骤,最后可以总结为“画终边,找交点坐标,算比值(对正切函数)”.设计意图:检验学生对定义的理解情况.例2:如图3所示,设α是一个任意角,它的终边上任意一点P(不与原点O重合)的坐标(x,y),点P与原点的距离为r,求证:sinα=yr ,cosα=xr,tanα=yx师生活动:给出问题后,教师可以引导学生思考如下问题,再让学生给出证明:(1)你能根据三角函数的定义作图表示sinα,cosα吗?(2)在你所作图形中yr ,xr,yx各表示什么,你能找到它们与任意角α的三角函数的关系吗设计意图:通过问题引导,使学生找到△OMP,△O M O P O,并利用它们的相似关系,根据三角函数的定义得到证明.追问:例2实际上给出了证明三角函数的另外一种定义,而且这种定义与已有的定义是等价的.你能用严格的数学语言叙述一下这种定义吗?师生活动:可以由几个学生分别给出定义的表述,在交流的基础上得出准确的定义.设计意图:加深学生对三角函数定义的理解.课堂练习:已知点P在半径为2的圆上按顺时针方向做匀速圆周运动,角速度为1rad/s,求2s时点P所在的位置,师生活动:由学生独立完成后,学生代表展示作业.设计意图:三角函数是刻画匀速圆周运动的数学模型,通过练习使学生从另一个角度理解三角函数的定义.(五)目标检测设计1.利用三角函数的定义,求7π6的三个三角函数值.2.已知角θ的终边多点P(-12,5),求角θ的三角函数值.设计意图:考查学生对三角函数定义的理解情况。

5.2.1三角函数的概念课件高一数学(人教A版必修第一册)

5.2.1三角函数的概念课件高一数学(人教A版必修第一册)
【解析】射线 = − 3 < 0 经过第二象限,
在射线上的取点 −1, 3 ,
即角 的终边经过点 −1, 3 ,
则 =
−1
2
+
3
2
= 2,
利用三角函数定义可得
sin =


=
3
,cos
2
tan =


=
3
−1
3
2
所以sin =
=


=
−1
2
1
=− ,
2
= − 3;
1
, cos = − 2 , tan = − 3.

(3)在角− 的终边上取一点 , − ,即 = , = −, = ,



= − , −




(4)在角 的终边上取一点

则 −
则 =



,


=−
=

,




= −;
−, ,即 = −, = , = ,


当 = 或



时,点的坐标是(, )和(− , )



一般地,任意给定一个角,它的终边与单位圆交点的坐标能唯一确定吗?
∀ ∈ , 其终边与单位圆交点的横坐标, 纵坐标唯一确定.
新知1:三角函数的定义
(1)把点的纵坐标叫做的正弦函数,记作 ,
即 = .
π

转 3 弧度,滚珠 按顺时针方向每秒钟转 6 弧度,相遇后发生碰撞,各自按照原来的速度大小反向运动.
(1)求滚珠 , 第一次相遇时所用的时间及相遇点的坐标;

【2019版新教材】高中数学A版必修第一册第五章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【2019版新教材】高中数学A版必修第一册第五章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【新教材】人教统编版高中数学A版必修第一册第五章教案教学设计+课后练习及答案5.1.1《任意角和弧度制---任意角》教案教材分析:学生在初中学习了o 0~o 360,但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.教学目标与核心素养:课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.教学重难点:重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程:一、情景导入初中对角的定义是:射线OA 绕端点O 按逆时针方向旋转一周回到起始位置,在这个过程中可以得到o 0~o 360范围内的角.但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.请学生思考,如何定义角才能解决这些问题呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本168-170页,思考并完成以下问题1.角的概念推广后,分类的标准是什么?2.如何判断角所在的象限?3.终边相同的角一定相等吗?如何表示终边相同的角?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角2.象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与 x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.四、典例分析、举一反三题型一任意角和象限角的概念例1(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°,②855°,③-510°.【答案】(1)①(2)图略,①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.【解析】(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.(2) 作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.解题技巧:(任意角和象限角的表示)1.判断角的概念问题的关键与技巧.(1)关键:正确的理解角的有关概念,如锐角、平角等;(2)技巧:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.2.象限角的判定方法.(1)图示法:在坐标系中画出相应的角,观察终边的位置,确定象限.(2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.跟踪训练一1.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是( )A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C【答案】D【解析】由已知得B C,所以B∪C⊆C,故D正确.2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有( )A.1个 B.2个 C.3个 D.4个【答案】D【解析】-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-315°=-360°+45°且0°<45°<90°.所以这四个命题都是正确的.题型二终边相同的角的表示及应用例2(1)将-885°化为k·360°+α(0°≤α<360°,k∈Z)的形式是________.(2)写出与α=-910°终边相同的角的集合,并把集合中适合不等式-720°<β<360°的元素β写出来.【答案】(1)(-3)×360°+195°,(2)终边相同的角的集合为{β|β=k·360°-910°,k∈Z},适合不等式-720°<β<360°的元素-550°、-190°、170°.【解析】(1)-885°=-1 080°+195°=(-3)×360°+195°.(2)与α=-910°终边相同的角的集合为{β|β=k·360°-910°,k∈Z},∵-720°<β<360°,即-720°<k·360°-910°<360°,k∈Z,∴k取1,2,3.当k=1时,β=360°-910°=-550°;当k=2时,β=2×360°-910°=-190°;当k=3时,β=3×360°-910°=170°.解题技巧:(终边相同的角的表示)1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到所求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.跟踪训练二1.下面与-850°12′终边相同的角是( )A .230°12′B .229°48′C .129°48′D .130°12′【答案】B【解析】与-850°12′终边相同的角可表示为α=-850°12′+k ·360°(k ∈Z),当k =3时,α=-850°12′+1 080°=229°48′.2.写出角α的终边落在第二、四象限角平分线上的角的集合为________.【答案】{α|α=k ·180°+135°,k ∈Z}.【解析】落在第二象限时,表示为k ·360°+135°.落在第四象限时,表示为k ·360°+180°+135°,故可合并为{α|α=k ·180°+135°,k ∈Z}. 题型三 任意角终边位置的确定和表示例3 (1)若α是第一象限角,则α2是( )A .第一象限角B .第一、三象限角C .第二象限角D .第二、四象限角(2)已知,如图所示.①分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.【答案】(1)B (2) ①终边落在OA 位置上的角的集合为{α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z}.②故该区域可表示为{γ|-30°+k ·360°≤γ≤135°+k ·360°,k ∈Z}.【解析】(1) 因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+45°,k ∈Z ,当k 为偶数时,α2为第一象限角;当k 为奇数时,α2为第三象限角.所以α2是第一、三象限角.(2) ①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{β|β=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{γ|-30°+k·360°≤γ≤135°+k·360°,k∈Z}.解题技巧:(任意角终边位置的确定和表示)1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.提醒:表示区间角时要注意实线边界与虚线边界的差异.2.nα或所在象限的判断方法:的范围;(1)用不等式表示出角nα或αn所在象限.(2)用旋转的观点确定角nα或αn跟踪训练三1.如图所示的图形,那么终边落在阴影部分的角的集合如何表示?【答案】角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.【解析】在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k·360°+60°≤β<k·360°+105°,k∈Z}∪{β|k·360°+240°≤β<k·360°+285°,k∈Z}={β|2k·180°+60°≤β<2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β<(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β<n·180°+105°,n∈Z}.故角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本171页练习及175页习题5.1 1、2、7题.教学反思:本节课主要采用讲练结合与分组探究的教学方法,让学生从旋转方向和旋转度数熟悉角的概念,象限角,终边相同的角等,并且掌握其应用.5.1.2《任意角和弧度制---弧度制》教案教材分析:前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养:课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点:重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

最新人教版高中数学必修第一册第5章三角函数5.2.1 三角函数的概念

最新人教版高中数学必修第一册第5章三角函数5.2.1 三角函数的概念
+cos(-3×360°+60°)sin(2×360°+30°)
=sin 45°cos 30°+cos 60°sin 30°

= ×




+× =




+=
+

.
(2)原式=sin - + +cos +






=sin +cos
·tan 0= .


·tan(4π+0)
提示:与点P的纵坐标和横坐标的符号有关.

(2)如何判断正弦函数、余弦函数、正切函数的值在各象限
的符号?


提示:由三角函数的定义,可知sin α=y,cos α=x,tan α= (x≠0).
当α为第一象限角时,y>0,x>0,故sin α>0,cos α>0,tan α>0;同理
可得当α在其他象限时三角函数值的符号,如图所示.

5.2.1
三角函数的概念

课标定位
素养阐释
1.借助单位圆理解三角函数(正弦、余弦、正切)
的定义.
2.掌握三角函数在各象限的符号.
3.掌握诱导公式一,并会应用.
4.体会数学抽象的过程,提高逻辑推理和直观想
象素养.
自主预习·新知导学
合作探究·释疑解惑
易 错 辨 析
随 堂 练 习

自主预习·新知导学
所以sin θ<0,cos θ<0.所以sin θcos θ>0.

反思感悟
判断三角函数值正负的两个步骤

5.2三角函数的概念 教案——高一上学期数学人教A版必修第一册

5.2三角函数的概念 教案——高一上学期数学人教A版必修第一册

5.2 三角函数的概念教案一、内容和内容解析1.内容三角函数的概念;三角函数的基本性质:三角函数值的符号、诱导公式一、同角三角函数的基本关系.本单元的知识结构:本单元建议用3课时:第一课时,三角函数的概念;第二课时,三角函数的基本性质;第三课时,概念和性质的简单应用.2.内容解析三角函数是一类最典型的周期函数,是解决实际问题的重要工具,是学习数学和物理、天文等其他学科的重要基础.传统上,人们习惯把三角函数看成是锐角三角函数的推广,利用象限角终边上点的坐标比定义三角函数.由于这一定义方法出自欧拉,因此更显出它的权威性.然而,锐角三角函数的研究对象是三角形,是三角形中边与角的定量关系(三角比)的反映;而任意角三角函数的现实背景是周期变化现象,是“周而复始”变化规律的数学刻画.如果以锐角三角函数为基础进行推广,那么三角函数概念发生发展过程的完整性将受到破坏.因此,整体上,任意角三角函数知识体系的建立,应与其他基本初等函数类似,强调以周期变化现象为背景,构建从抽象研究对象(即定义三角函数概念)到研究它的图象、性质再到实际应用的过程,与锐角三角函数的联系可以在给出任意角三角函数定义后再进行考察.一般地,概念的形成应按“事实—概念”的路径,即学生要经历“背景—研究对象—对应关系的本质—定义”的过程.本单元的学习中,学生在经历这个过程而形成三角函数概念的同时,“顺便”就可得到值域、函数值的符号、诱导公式一及同角三角函数的基本关系等性质.根据上述分析,确定本单元的教学重点是:正弦函数、余弦函数、正切函数的定义,诱导公式一,同角三角函数的基本关系.其中,正弦函数、余弦函数的定义是重中之重.二、目标和目标解析1.目标(1)了解三角函数的背景,体会三角函数与现实世界的密切联系;(2)经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,发展数学抽象素养;(3)掌握三角函数值的符号;(4)掌握诱导公式一,初步体会三角函数的周期性;(5)理解同角三角函数的基本关系式:,体会三角函数的内在联系性,通过运用基本关系式进行三角恒等变换,发展数学运算素养.2.目标解析达成上述目标的标志是:(1)学生能像了解线性函数、反比例函数、二次函数、幂函数、指数函数、对数函数的现实背景那样,知道三角函数是刻画现实世界中“周而复始”变化规律的数学工具,能体会到匀速圆周运动在“周而复始”变化现象中的代表性.(2)学生在经历“周期现象—圆周运动—单位圆上点的旋转运动”的抽象活动中,明确研究的问题(单位圆⊙O上的点P以A为起点作旋转运动,建立一个数学模型,刻画点P的位置变化情况),使研究对象简单化、本质化;学生能分析单位圆上点的旋转中涉及的量及其相互关系,获得对应关系并抽象出三角函数概念;能根据定义求给定角的三角函数值.(3)学生能根据定义得出三角函数在各象限取值的符号规律.(4)学生能根据定义,结合终边相同的角的表示,得出诱导公式一,并能据此描述三角函数周而复始的取值规律,求某些角(特殊角)的三角函数值.(5)学生能利用定义以及单位圆上点的横、纵坐标之间的关系,发现并提出“同角三角函数的基本关系”,并能用于三角恒等变换.三、教学问题诊断分析三角函数概念的学习,其认知基础是函数的一般观念以及对幂函数、指数函数和对数函数的研究经验,另外还有圆的有关知识.这些认知准备对于分析“周而复始”变化现象中涉及的量及其关系、认识其中的对应关系并给出定义等都能起到思路引领作用.然而,前面学习的基本初等函数,涉及的量(常量与变量)较少,解析式都有明确的运算含义,而三角函数中,影响单位圆上点的坐标变化的因素较多,对应关系不以“代数运算”为媒介,是“α与x,y直接对应”,无须计算.虽然α,x,y 都是实数,但实际上是“几何元素间的对应”.所以,三角函数中的对应关系,与学生的已有经验距离较大,由此产生第一个学习难点:理解三角函数的对应关系,包括影响单位圆上点的坐标变化的因素分析,以及三角函数的定义方式的理解.为了破除学生在“对应关系”认识上的定势,帮助他们搞清三角函数的“三要素”,应该根据一般函数概念引导下的“下位学习”的特点,先让学生明确“给定一个角,如何得到对应的函数值”的操作过程,然后再下定义,这样不仅使三角函数定义的引入更自然,而且由三角函数对应关系的独特性,可以使学生再一次认识函数的本质.具体的,可让学生先完成“给定一个特殊角,求它的终边与单位圆交点坐标”的任务.例如“当时,找出相应点P的坐标”并让学生明确点P的坐标的唯一确定性,再借助信息技术,让学生观察任意给定一个角α∈R,它的终边与单位圆的交点坐标是否唯一,从而为理解三角函数的对应关系奠定基础.利用信息技术,可以很容易地建立单位圆上点的横坐标、纵坐标、角、弧之间的联系,并且可以在角的变化过程中进行观察,发现其中的规律性.所以,信息技术可以帮助学生更好地理解三角函数的本质.对于定义“设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦函数,记作sinα,即y= sinα;x叫做α的余弦函数,记作cosα,即x= cosα”,可以通过如下几点帮助学生理解:第一,α是一个任意角,同时也是一个实数(弧度数),所以“设α是一个任意角”的意义实际上是“对于R中的任意一个数”;第二,“它的终边与单位圆交于点P(x,y)”,实际上给出了两个对应关系,即(1)实数α(弧度)对应于点P的纵坐标y,(2)实数α(弧度)对应于点P的横坐标x,其中y,x∈[-1,1].因为对于R中的任意一个数α,它的终边唯一确定,所以交点P(x,y)也唯一确定,也就是纵坐标y和横坐标x都由α唯一确定,所以对应关系(1)(2)分别确定了一个函数,这是理解三角函数定义的关键.第三,引进符号sinα,cosα分别表示“α的终边与单位圆交点的纵坐标”、“α的终边与单位圆交点的横坐标”,于是:对于任意一个实数α,按对应关系(1),在集合B={z|-1≤z≤1}中都有唯一确定的数sinα与之对应;按对应关系(2),在集合B中都有唯一确定的数cosα与之对应.所以,sinα,cosα都是一个由α所唯一确定的实数.这里,对符号sinα,cosα和tanα的认识是第二个难点.可以通过类比引进符号logab表示ax=b 中的x,说明引进这些符号的意义.本单元的第三个学习难点是对三角函数内在联系性的认识.出现这个难点的主要原因在于三角函数联系方式的特殊性,学生在已有的基本初等函数学习中没有这种经验,以及学生从联系的观点看问题的经验不足,对“如何发现函数的性质”的认识不充分等而导致的发现和提出性质的能力不强.为此,教学中应在思想方法上加强引导。

教学设计1:5.2.1 三角函数的概念

教学设计1:5.2.1  三角函数的概念

5.2.1三角函数的概念【课标要求】课程标准:1.借助单位圆理解三角函数(正弦、余弦、正切)的定义.2.掌握正弦、余弦、正切函数在各象限内的符号.3.理解终边相同的角的同一三角函数值相等.教学重点:三角函数的定义;三角函数在各象限内的符号.教学难点:任意角的三角函数的定义的建构过程.【知识导学】知识点一三角函数的概念(1)单位圆中三角函数的定义(2)三角函数的定义域知识点二三角函数值的符号规律:一全正、二正弦、三正切、四余弦.知识点三诱导公式(一)【新知拓展】(1)三角函数值是比值,是一个实数,这个实数的大小与点P(x,y)在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.(2)终边相同的角的同名三角函数值相等.【基础自测】1.判一判(正确的打“√”,错误的打“×”)(1)若α=β+720°,则cosα=cosβ.()(2)若sinα=sinβ,则α=β.()(3)已知α是三角形的内角,则必有sinα>0.()答案(1)√(2)×(3)√2.做一做(1)若sinα<0,且tanα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限(2)若角α的终边经过点P(5,-12),则sinα=________,cosα=________,tanα=________.(3)tan405°-sin450°+cos750°=________.(4)sin2·cos3·tan4的值的符号为________.答案 (1)D (2)-1213 513 -125 (3)32(4)负 【题型探究】题型一 三角函数的定义例1 已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值.[解] r =(-4a )2+(3a )2=5|a |,若a >0,则r =5a ,角α在第二象限,sin α=y r =3a 5a =35,cos α=x r =-4a 5a =-45,tan α=y x =3a -4a =-34; 若a <0,则r =-5a ,角α在第四象限,sin α=-35,cos α=45,tan α=-34. [条件探究] 在本例中,若将题设条件改为:已知角α的终边在直线y =3x 上,问题不变,怎样求解?解 因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点.则r = a 2+(3a )2=2|a |(a ≠0).若a >0,则α为第一象限角,r =2a ,sin α=3a 2a =32, cos α=a 2a =12,tan α=3a a= 3. 若a <0,则α为第三象限角,r =-2a ,sin α=3a -2a =-32,cos α=a -2a=-12,tan α=3a a = 3. 金版点睛利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:方法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.方法二:在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=y r ,cos α=x r.已知α的终边求α的三角函数值时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.(3)若终边在直线上时,因为角的终边是射线,应分两种情况处理.[跟踪训练1] (1)设a <0,角α的终边与单位圆的交点为P (-3a,4a ),那么sin α+2cos α的值等于( )A.25 B .-25 C.15 D .-15(2)已知角α终边上的点P (4,3m ),且sin α=22m ,求m 的值. 答案 (1)A (2)见解析解析 (1)∵点P 在单位圆上,则|OP |=1.即(-3a )2+(4a )2=1,解得a =±15. ∵a <0,∴a =-15,∴P 点的坐标为⎝⎛⎭⎫35,-45, ∴sin α=-45,cos α=35, ∴sin α+2cos α=-45+2×35=25. (2)∵P (4,3m ),∴r =16+9m 2,∴sin α=y r =3m 16+9m 2=22m , 两边平方,得9m 216+9m 2=12m 2. ∴m 2(9m 2-2)=0,∴m =0或m =±23. 题型二 三角函数值的符号例2 (1)若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角(2)判断下列各式的符号:①tan120°·sin269°;②cos4·tan ⎝⎛⎭⎫-23π4. [解析] (1)由sin αtan α<0可知sin α,tan α异号,从而α为第二、三象限角.由cos αtan α<0可知cos α,tan α异号,从而α为第三、四象限角. 综上可知,α为第三象限角.(2)①∵120°是第二象限角,∴tan120°<0.∵269°是第三象限角,∴sin269°<0,∴tan120°·sin269°>0.②∵π<4<3π2,∴4弧度是第三象限角,∴cos4<0. ∵-23π4=-6π+π4,∴-23π4是第一象限角, ∴tan ⎝⎛⎭⎫-23π4>0,∴cos4·tan ⎝⎛⎭⎫-23π4<0. [答案] (1)C (2)见解析金版点睛判断给定角的三角函数值正负的步骤(1)确定α的终边所在的象限;(2)利用三角函数值的符号规律,即“一全正、二正弦、三正切、四余弦”来判断.[跟踪训练2] (1)若三角形的两内角A ,B 满足sin A ·cos B <0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都有可能(2)点P (tan α,cos α)在第三象限,则α是第________象限角.答案 (1)B (2)二解析 (1)三角形内角的取值范围是(0,π),故sin A >0.因为sin A cos B <0,所以cos B <0,所以B 是钝角,故三角形是钝角三角形.(2)因为点P (tan α,cos α)在第三象限,所以tan α<0,cos α<0,则角α的终边在第二象限. 题型三 与三角函数有关的定义域问题例3 求下列函数的定义域:(1)y =sin x +cos x tan x; (2)y =-cos x +sin x .[解] (1)要使函数有意义,需tan x ≠0,∴x ≠k π+π2,且x ≠k π,k ∈Z ,∴x ≠k π2,k ∈Z . 于是函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪ x ∈R ,x ≠k π2,k ∈Z . (2)要使函数有意义,需⎩⎪⎨⎪⎧-cos x ≥0,sin x ≥0,即⎩⎪⎨⎪⎧ 2k π+π2≤x ≤2k π+3π2(k ∈Z ),2k π≤x ≤2k π+π(k ∈Z ),解得2k π+π2≤x ≤2k π+π(k ∈Z ), ∴函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π2≤x ≤2k π+π,k ∈Z . 金版点睛求解函数定义域的解题策略(1)求函数的定义域,就是求使解析式有意义的自变量的取值范围,一般通过解不等式或不等式组求得,对于与三角函数有关的函数定义域问题,还要考虑三角函数自身定义域的限制.(2)要特别注意求一个固定集合与一个含有无限多段的集合的交集时,可以取特殊值把不固定的集合写成若干个固定集合再求交集.[跟踪训练3] 求下列函数的定义域:(1)y =sin x +tan x ;(2)y =sin x +tan x .解 (1)依题意,得⎩⎪⎨⎪⎧ x ∈R ,x ≠k π+π2(k ∈Z ), ∴函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x ≠k π+π2,k ∈Z . (2)当sin x ≥0且tan x 有意义时,函数才有意义,∴⎩⎪⎨⎪⎧2k π≤x ≤(2k +1)π,x ≠k π+π2(k ∈Z ). ∴函数的定义域为{ x | 2k π≤x <2k π+π2或2k π+π2<x ≤2k π+π,k ∈Z }. 题型四 诱导公式(一)的应用例4 计算:(1)sin ⎝⎛⎭⎫-11π6+cos 12π5tan4π; (2)sin1140°cos(-690°)+tan1845°.[解] (1)原式=sin ⎝⎛⎭⎫-2π+π6+cos 12π5tan0=sin π6+0=12. (2)原式=sin(3×360°+60°)cos(-2×360°+30°)+tan(5×360°+45°)=sin60°cos30°+tan45°=32×32+1=74. 金版点睛利用诱导公式化简的步骤(1)将已知角化为k ·360°+α(k 为整数,0°≤α<360°)或2k π+β(k 为整数,0≤β<2π)的形式.(2)将原三角函数值化为角α的同名三角函数值.(3)借助特殊角的三角函数值或任意角的三角函数的定义达到化简求值的目的.[跟踪训练4] 求下列各式的值: (1)cos 25π3+tan(-15π4)); (2)sin810°+tan1125°+cos420°.解 (1)原式=cos ⎝⎛⎭⎫8π+π3+tan ⎝⎛⎭⎫-4π+π4 =cos π3+tan π4=12+1=32. (2)原式=sin(2×360°+90°)+tan(3×360°+45°)+cos(360°+60°)=sin90°+tan45°+cos60°=1+1+12=52. 【随堂达标】1.如果角α的终边过点P (2sin30°,-2cos30°),则sin α的值等于( ) A.12B .-12C .-32D .-33 答案 C解析 由题意得P (1,-3),它与原点的距离r =12+(-3)2=2,所以sin α=-32. 2.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( ) A .1B .0C .2D .-2 答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0,∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2. 3.在△ABC 中,若sin A cos B tan C <0,则△ABC 是( )A .锐角三角形B .直角三角形C.钝角三角形D.锐角或钝角三角形答案C解析因为sin A>0,所以cos B,tan C中一定有一个小于0,即B,C中有一个钝角.4.若750°角的终边上有一点(4,a),则a=________.答案43 3解析tan750°=tan(360°×2+30°)=tan30°=33=a4,解得a=433.5.计算sin810°+tan765°+tan1125°+cos360°.解原式=sin(2×360°+90°)+tan(2×360°+45°)+tan(3×360°+45°)+cos(360°+0°)=sin90°+tan45°+tan45°+cos0°=1+1+1+1=4.。

新人教A版新教材学高中数学必修第一册第五章三角函数三角函数的概念教案

新人教A版新教材学高中数学必修第一册第五章三角函数三角函数的概念教案

考点学习目标核心素养三角函数的概念理解三角函数的概念,会求给定角的三角函数值数学抽象、数学运算三角函数值的符号判断掌握各象限角的三角函数值的符号规律逻辑推理诱导公式一及应用掌握三角函数诱导公式一的简单应用逻辑推理、数学运算问题导学预习教材P177—P181,并思考以下问题:1.任意角的三角函数的定义是什么?2.如何判断三角函数值在各象限内的符号?3.诱导公式一是什么?1.任意角的三角函数的定义前提如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)定义正弦纵坐标y叫做α的正弦函数,记作sin α,即sin α=y余弦横坐标x叫做α的余弦函数,记作cos α,即cos α=x正切比值错误!叫做α的正切,记作tan α,即tan α=错误!(x≠0)三角函数正弦、余弦、正切都是以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,将正弦函数、余弦函数和正切函数统称为三角函数(1)在任意角的三角函数的定义中,应该明确:α是一个任意角,其范围是使函数有意义的实数集.(2)要明确sin α是一个整体,不是sin与α的乘积,它是“正弦函数”的一个记号,就如f(x)表示自变量为x的函数一样,离开自变量的“sin”“cos”“tan”等是没有意义的.2.三角函数值的符号如图所示:正弦:一二象限正,三四象限负;余弦:一四象限正,二三象限负;正切:一三象限正,二四象限负.简记口诀:一全正、二正弦、三正切、四余弦.3.公式一终边相同的角的同一三角函数的值相等,由此得到一组公式(公式一):sin(α+k·2π)=sin__α,cos(α+k·2π)=cos__α,tan(α+k·2π)=tan__α,其中k∈Z.■名师点拨(1)公式一的实质公式一的实质是终边相同的角,其同名三角函数值相等.因为这些角的终边是同一条射线,所以根据三角函数的定义可知,这些角的三角函数值相等.(2)公式一的作用利用公式一可以把任意角的三角函数值化为0°~360°范围内与其终边相同的角的三角函数值(方法是先在0°~360°的范围内找出与所给角终边相同的角,再把它写成公式一的形式,最后得出结果).判断正误(正确的打“√”,错误的打“×”)(1)已知α是三角形的内角,则必有sin α>0,cos α≥0.()(2)若sin α·cos α>0,则角α为第一象限角.()(3)对于任意角α,三角函数sin α、cos α、tan α都有意义.()(4)三角函数值的大小与点P(x,y)在终边上的位置无关.()(5)同一个三角函数值能找到无数个角与之对应.()答案:(1)×(2)×(3)×(4)√(5)√已知sin α=错误!,cos α=—错误!,则角α所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案:B已知角α的终边经过P(—b,4),且cos α=—错误!,则b的值为()A.3B.—3C.±3D.5解析:选A.由x=—b,y=4,得r=错误!,所以cos α=错误!=—错误!,解得b=3(b=—3舍去).sin 780°=________.cos错误!=________.答案:错误!错误!求任意角的三角函数值(1)已知角α的终边与单位圆的交点为P错误!(y<0),求tan α的值.(2)已知角α的终边落在射线y=2x(x≥0)上,求sin α,cos α的值.【解】(1)因为点P错误!(y<0)在单位圆上,则错误!+y2=1,所以y=—错误!,所以tan α=—错误!.(2)设射线y=2x(x≥0)与单位圆的交点为P(x,y),则错误!解得错误!即P错误!,所以sin α=y=错误!,cos α=x=错误!.1.(变条件)本例(2)中条件“角α的终边落在射线y=2x(x≥0)上”变为“角α的终边为射线y=—错误!x(x≥0)”,求角α的正弦、余弦和正切值.解:由错误!得x2+错误!x2=1,即25x2=16,即x=错误!或x=—错误!.因为x≥0,所以x=错误!,从而y=—错误!.所以角α的终边与单位圆的交点坐标为(错误!,—错误!).所以sin α=y=—错误!,cos α=x=错误!,tan α=错误!=—错误!.2.(变条件)本例(2)中条件“α的终边落在射线y=2x(x≥0)上”变为“α的终边落在直线y =2x上”,其他条件不变,其结论又如何呢?解:(1)若α终边在第一象限内,解答过程同本例(2).(2)若α终边在第三象限内,设点P(x,2x)(x<0)是其终边上任意一点,因为r=|OP|=错误!=—错误!x(x<0),所以sin α=错误!=错误!=—错误!,cos α=错误!=错误!=—错误!.综上可知,sin α=±错误!,cos α=±错误!.错误!已知α终边上任意一点的坐标求三角函数值的方法(1)先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.(2)在α的终边上任选一点P(x,y),P到原点的距离为r(r>0),则sin α=错误!,cos α=错误!.已知α的终边求α的三角函数值时,用这几个公式更方便.(3)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为错误!,则tan α=________.解析:设点A的横坐标为x,则由错误!=1,解得x=±错误!,因为角α为第二象限角,所以x=—错误!,cos α=—错误!,所以tan α=错误!=—错误!.答案:—错误!三角函数值符号的判定判断下列各式的符号:(1)tan 120°sin 269°;(2)cos 4tan错误!.【解】(1)因为120°角是第二象限角,所以tan 120°<0.因为269°角是第三象限角,所以sin 269°<0.所以tan 120°sin 269°>0.(2)因为π<4<错误!,所以4弧度角是第三象限角,所以cos 4<0,因为—错误!=—6π+错误!,所以—错误!是第一象限角,所以tan错误!>0,所以cos 4tan错误!<0.错误!正弦、余弦函数值的正负规律1.若—错误!<α<0,则点(tan α,cos α)位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:选B.由—错误!<α<0知α为第四象限角,则tan α<0,cos α>0,点在第二象限.2.(2019·安徽太和中学第一次教学质量检测)已知sin θcos θ<0,且|cos θ|=cos θ,则角θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:选D.由|cos θ|=cos θ,可知cos θ≥0,结合sin θcos θ<0,得sin θ<0,cos θ>0,所以角θ是第四象限角,故选D.公式一的简单应用求下列各式的值:(1)cos错误!+tan错误!;(2)sin 810°+tan 1125°+cos 420°.【解】(1)原式=cos错误!+tan错误!=cos 错误!+tan错误!=错误!+1=错误!.(2)原式=sin(2×360°+90°)+tan(3×360°+45°)+cos(360°+60°)=sin 90°+tan 45°+cos 60°=1+1+错误!=错误!.错误!利用公式一求解任意角的三角函数的步骤1.sin 585°的值为()A.—错误!B.错误!C.—错误!D.错误!解析:选A.sin 585°=sin(360°+225°)=sin 225°.由于225°是第三象限角,且终边与单位圆的交点为错误!,所以sin 225°=—错误!.2.tan错误!的值为()A.错误!B.错误!C.错误!D.1解析:选B.tan错误!=tan错误!=tan错误!=错误!.3.sin错误!+cos 错误!·tan 4π=________.解析:原式=sin错误!+cos错误!·tan(4π+0)=sin 错误!+cos 错误!×0=错误!.答案:错误!1.若角α是第三象限角,则点P(2,sin α)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限解析:选D.由α是第三象限角知,sin α<0,因此P(2,sin α)在第四象限,故选D.2.若cos α=—错误!,且角α的终边经过点P(x,2),则P点的横坐标x是()A.2错误!B.±2错误!C.—2错误!D.—2错误!解析:选D.r=错误!,由题意得错误!=—错误!,所以x=—2错误!.故选D.3.cos 1470°=____________.解析:cos 1470°=cos(4×360°+30°)=cos 30°=错误!.答案:错误!4.求下列三角函数值:(1)sin 错误!π+cos 错误!π;(2)sin2错误!+tan2错误!tan 错误!.解:(1)sin 错误!π+cos 错误!π=sin错误!+cos错误!=sin 错误!+cos 错误!=错误!+错误!=1.(2)原式=sin2错误!+tan2错误!·tan错误!=sin2错误!+tan2错误!·tan 错误!=错误!错误!+错误!错误!×1=错误!+错误!=错误!.[A 基础达标]1.(2019·陕西山阳中学期末考试)点A(x,y)是60°角的终边与单位圆的交点,则错误!的值为()A.错误!B.—错误!C.错误!D.—错误!解析:选A.因为tan 60°=错误!,所以错误!=错误!,故选A.2.如果α的终边过点(2sin 30°,—2cos 30°),那么sin α=()A.错误!B.—错误!C.错误!D.—错误!解析:选D.依题意可知点(2sin 30°,—2cos 30°),即(1,—错误!),则r=错误!=2,因此sin α=错误!=—错误!.3.已知角α的终边经过点P(m,—6),且cos α=—错误!,则m=()A.8 B.—8C.4D.—4解析:选B.由题意得r=|OP|=错误!=错误!,故cos α=错误!=—错误!,解得m=—8.4.给出下列函数值:1sin(—1000°);2cos错误!;3tan 2,其中符号为负的个数为()A.0 B.1C.2D.3解析:选B.因为—1000°=—3×360°+80°,所以—1000°是第一象限角,则sin(—1000°)>0;因为—错误!是第四象限角,所以cos错误!>0;因为2rad≈2×57°18′=114°36′是第二象限角,所以tan 2<0.故符号为负的个数为1.5.若tan α<0,且sin α>cos α,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限解析:选B.由tan α<0知,α是第二、四象限角,若α是第二象限角,则sin α>0,cos α<0,满足sin α>cos α;若α是第四象限角,则sin α<0,cos α>0,不满足sin α>cos α,故选B.6.计算sin(—1410°)=________.解析:sin(—1410°)=sin(—4×360°+30°)=sin 30°=错误!.答案:错误!7.若sin α·cos α<0,则α在第________象限.解析:由sin α·cos α<0,知sin α>0且cos α<0或sin α<0且cos α>0.若sin α>0且cos α<0,则α在第二象限,若sin α<0且cos α>0,则α在第四象限.答案:二或四8.已知角α的终边经过点P(3,—4t),且sin(2kπ+α)=—错误!,其中k∈Z,则t的值为____________.解析:因为sin(2kπ+α)=—错误!(k∈Z),所以sin α=—错误!.又角α的终边过点P(3,—4t),故sin α=错误!=—错误!,解得t=错误!错误!.答案:错误!9.计算:(1)sin 390°+cos(—660°)+3tan 405°—cos 540°;(2)sin错误!+tan π—2cos 0+tan 错误!—sin 错误!.解:(1)原式=sin(360°+30°)+cos(—2×360°+60°)+3tan(360°+45°)—cos (360°+180°)=sin 30°+cos 60°+3tan 45°—cos 180°=错误!+错误!+3×1—(—1)=5.(2)原式=sin错误!+tan π—2cos 0+tan错误!—sin错误!=sin 错误!+tan π—2cos 0+tan 错误!—sin 错误!=1+0—2+1—错误!=—错误!.10.已知角α的终边上一点P(m,错误!),且cos α=错误!,求sin α,tan α的值.解:由题意得x=m,y=错误!,所以r=|OP|=错误!,所以cos α=错误!=错误!=错误!,解得m=错误!(负值舍去),则r=2错误!,所以sin α=错误!=错误!=错误!,tan α=错误!=错误!=错误!.[B 能力提升]11.函数y=错误!+错误!+错误!的值域是()A.{—1,0,1,3} B.{—1,0,3}C.{—1,3} D.{—1,1}解析:选C.当x是第一象限角时,y=3;当x是第二象限角时,y=—1;当x是第三象限角时,y=—1;当x是第四象限角时,y=—1.故函数y=错误!+错误!+错误!的值域是{—1,3}.12.(2019·重庆一中期末)已知α是第三象限角,且cos错误!>0,则错误!的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限解析:选D.由α是第三象限角知:2kπ+π<α<2kπ+错误!(k∈Z).所以kπ+错误!<错误!<kπ+错误!(k∈Z).因此,当k是偶数时,错误!是第二象限角;当k是奇数时,错误!是第四象限角.又cos 错误!>0,因此错误!是第四象限角,故选D.13.(2019·四川南充期末考试)已知角α的终边经过点P(3,4).(1)求tan(—6π+α)的值;(2)求错误!·sin(α—2π)·cos(2π+α)的值.解:设x=3,y=4则r=错误!=5,所以sin α=错误!=错误!,cos α=错误!=错误!,tan α=错误!=错误!,(1)tan(—6π+α)=tan α=错误!.(2)原式=错误!·sin α·cos α=sin2α=错误!错误!=错误!.14.已知错误!=—错误!,且lg(cos α)有意义.(1)试判断角α的终边所在的象限;(2)若角α的终边与单位圆相交于点M错误!,求m的值及sin α的值.解:(1)由错误!=—错误!,可知sin α<0,由lg(cos α)有意义可知cos α>0,综上可知角α的终边在第四象限内.(2)因为点M错误!在单位圆上,所以错误!错误!+m2=1,解得m=±错误!.又由(1)知α是第四象限角,所以m<0,所以m=—错误!.由正弦函数的定义可知sin α=—错误!.[C 拓展探究]15.已知角α的终边上的点P与点A(a,b)关于x轴对称(a≠0,b≠0),角β的终边上的点Q 与点A关于直线y=x对称,求错误!+错误!+错误!的值.解:由题意可知P(a,—b),则sin α=错误!,cos α=错误!,tan α=—错误!;由题意可知Q(b,a),则sin β=错误!,cos β=错误!,tan β=错误!,所以错误!+错误!+错误!=—1—错误!+错误!=0.。

《5.2 三角函数的概念》导学案最新版(统编人教A版高中必修第一册)

《5.2 三角函数的概念》导学案最新版(统编人教A版高中必修第一册)

【新教材】5.2.1 三角函数的概念(人教A版)1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.3.掌握公式一并会应用.1.数学抽象:理解任意角三角函数的定义;2.逻辑推理:利用诱导公式一求三角函数值;3.直观想象:任意角三角函数在各象限的符号;4.数学运算:诱导公式一的运用.重点:①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;②掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.难点:理解任意角三角函数(正弦、余弦、正切)的定义.一、预习导入阅读课本177-180页,填写。

1.单位圆在直角坐标系中,我们称以原点O为圆心,以__________为半径的圆为单位圆.2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,它的终边与__________交于点P(x,y),那么:图1­2­1(2)结论①y叫做α的__________,记作__________,即sin α=y;②x叫做α的__________,记作__________,即cos α=x;③yx叫做α的__________,记作__________,即tan α=yx(x≠0).(3)总结正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.思考:若已知α的终边上任意一点P的坐标是(x,y),则其三角函数定义为?在平面直角坐标系中,设α的终边上任意一点P的坐标是(x,y),它与原点O的距离是r(r=x2+y2>0).三角函数定义名称sinα__________ 正弦cosα__________ 余弦tanα__________ 正切正弦函数、余弦函数、正切函数统称三角函数.3.正弦、余弦、正切函数在弧度制下的定义域三角函数定义域sin α__________cos α__________tan α__________4.正弦、余弦、正切函数值在各象限内的符号(1)图示:图1­2­2(2)口诀:“一全正,二__________,三__________,四__________”.5.诱导公式一1.若角α的终边经过点P (2,3),则有( )A .sin α=21313B .cos α=132C .sin α=31313D .tan α=232.已知sin α>0,cos α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.sin 253π= .4.角α终边与单位圆相交于点M ⎝⎛⎭⎫32,12,则cos α+sin α的值为 .题型一 三角函数的定义及应用例1 在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值. 跟踪训练一1.已知角θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. 题型二 三角函数值的符号例2 (1)若α是第四象限角,则点P (cos α,tan α)在第________象限.(2)判断下列各式的符号: ①sin 183°;②tan 7π4;③cos 5. 跟踪训练二1.确定下列式子的符号:(1) tan 108°·cos 305°;(2)cos 5π6·tan11π6sin2π3;(3)tan 120°·sin 269°.题型三 诱导公式一的应用例3 求值:(1)tan 405°-sin 450°+cos 750°;(2)sin 7π3cos ⎝⎛⎭⎫-23π6+tan ⎝⎛⎭⎫-15π4cos 13π3. 跟踪训练三 1.化简下列各式:(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)sin ⎝⎛⎭⎫-11π6+cos 125π·tan 4π.1.有下列说法:①终边相同的角的同名三角函数的值相等; ②sin α是“sin”与“α”的乘积;③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-. 其中正确的个数是( ) A .0 B .1 C .2 D .32.如果α的终边过点(2sin 30°,-2cos 30°),那么sin α=( )A. 12B .-12 C. 32 D .-323.若sin θ·cos θ>0,则θ在( )A .第一或第四象限B .第一或第三象限C .第一或第二象限D .第二或第四象限4.若cos α=-32,且角α的终边经过点P (x ,2),则P 点的横坐标x 是( )A .2B .±2C .-2D .-25.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称,若sin α=51,则sin β= .6.求值:(1)sin 180°+cos 90°+tan 0°;(2)cos 25π3+tan15π4.答案小试牛刀 1.C 2.B 3.32 4.3+12. 自主探究例1 【答案】当α的终边在第二象限时,sin α=255,cos α=-55,tan α=-2.当α的终边在第四象限时, sin α=-255,cos α=55,tan α=-2.【解析】当α的终边在第二象限时,在α终边上取一点P (-1,2),则r =-12+22=5,所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时, 在α终边上取一点P ′(1,-2), 则r =12+-22=5,所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.跟踪训练一1.【答案】当x =1时,sin θ=31010,tan θ=3;当x =-1时,此时sin θ=31010,tan θ=-3.【解析】由题意知r =|OP |=x 2+9,由三角函数定义得cos θ=x r =xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x .∵x ≠0,∴x =±1. 当x =1时,P (1,3),此时sin θ=312+32=31010,tan θ=31=3.当x =-1时,P (-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3. 例2 【答案】(1)四; (2) ①sin 183°<0;②tan 7π4<0;③cos 5>0. 【解析】(1)∵α是第四象限角,∴cos α>0,tan α<0,∴点P (cos α,tan α)在第四象限. (2) ①∵180°<183°<270°,∴sin 183°<0;②∵3π2<7π4<2π,∴tan 7π4<0;③∵3π2<5<2π,∴cos 5>0.跟踪训练二1.【答案】(1) tan 108°·cos 305°<0;(2) cos 5π6·tan11π6sin2π3>0;(3)tan 120°sin 269°>0.【解析】(1)∵108°是第二象限角,∴tan 108°<0.∵305°是第四象限角,∴cos 305°>0.从而tan 108°·cos 305°<0. (2)∵5π6是第二象限角,11π6是第四象限角,2π3是第二象限角,∴cos 5π6<0,tan 11π6<0,sin 2π3>0.从而cos 5π6·tan11π6sin2π3>0.(3)∵120°是第二象限角,∴tan 120°<0,∵269°是第三象限角,∴sin 269°<0.从而tan 120°sin 269°>0.例3 【答案】(1)32;(2)54. 【解析】 (1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°) =tan 45°-sin 90°+cos 30°=1-1+32=32. (2)原式=sin ⎝⎛⎭⎫2π+π3cos ⎝⎛⎭⎫-4π+π6+tan ⎝⎛⎭⎫-4π+π4·cos ⎝⎛⎭⎫4π+π3 =sin π3cos π6+tan π4cos π3=32×32+1×12=54.跟踪训练三1.【答案】(1)(a -b )2 ; (2)12.【解析】(1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°)=a 2sin 90°+b 2tan 45°-2ab cos 0° =a 2+b 2-2ab =(a -b )2. (2)sin ⎝⎛⎭⎫-116π+cos 125π·tan 4π =sin ⎝⎛⎭⎫-2π+π6+cos 125π·tan 0=sin π6+0=12. 当堂检测1-4. BDBD5.−156.【答案】(1) 0;(2) 32 .【解析】 (1)sin 180°+cos 90°+tan 0°=0+0+0=0.(2) cos25π3+tan15π4=cos π3+tan π4 =12+1=32.。

第五章第二节三角函数概念导学案 高中数学人教A版必修一

第五章第二节三角函数概念导学案 高中数学人教A版必修一

5.2.1三角函数的概念姓名:_______________【学习目标0】1.结合单位圆理解三角函数的定义,会用定义求给定角的三角函数值.2.根据任意角终边所在象限的位置,会判断任意角三角函数值的符号.3.掌握三角函数诱导公式一并会应用.【概念学习 1】三角函数的定义1.如图所示,设α是一个任意角,α∈R,它的终边OP与单位圆相交于点P(x,y).(1)把点P的叫作α的正弦值,记作sin α,即;(2)把点P的叫作α的余弦值,记作cos α,即;(3)把点P的叫作α的正切值,记作tan α,即.将正弦函数__________、余弦函数___________和正切函数___________统称为三角函数.它们的的定义域分别为:正弦函数是_____、余弦函数是_____和正切函数是_________________ 【概念引伸 2】设α是一个任意角,它的终边上任意一点P(不与原点O重合)的坐标为(x,y),点P到原点的距离为r,你能求出sin α,cos α,tan α吗?试试看.【概念巩固3】 1.判断正误.(请在括号中打“√”或“×”)(1)sin α,cos α,tan α的大小与点P(x,y)在角α的终边上的位置有关. ( )(2)若α是第二象限角,且P(x,y)是其终边与单位圆的交点,则cos α=-x.( )(3)终边落在y轴上的角的正切函数值为0.( )【概念学习4】根据任意角的三角函数值的定义可以判定其在各象限的符号口诀:一全正、二正弦、三正切、四余弦.【概念巩固5】判断正误.(请在括号中打“√”或“×”)(1)已知α是三角形的内角,则必有sin α>0,cos α>0.( )(2)若sin α<0, cos α>0,则角α为第四象限角.( )(3)已知cos α<0,则角α是第二或第三象限角.( )(4)已知α是第二象限角的充要条件是sin α>0且cos α<0.( )【举例讲解6】例1 (1)(多选题)下列选项中,符号为负的是( )A.sin(-100°)B.cos(-1800°)C.tan 10D.cos4(2) (多选题)在平面直角坐标系中,角α的顶点在原点,以x轴的非负半轴为始边,终边经过点P(1,m)(m<0),则下列各式的值一定为负的是( )A.sin α+cos αB.sin α-cos αC.sin α·cos αD.sinαcosα)在 ( )(3) 若α是第四象限角,则点P(cosα,tanα2A.第一象限B.第二象限C.第三象限D.第四象限(4)(多选题)如果实数x,y满足|cos x|+|cos y|>|cos x+cos y|,且y∈(π,π),则|cos x-cos y|=( )2A.cos x-cos yB.cos y-cos xC.cos x+cos yD.|cos y|+|cos x|【概念学习7】终边相同的角的同一三角函数的值是相等的,即sin(α+k·2π)=,cos(α+k·2π)=, tan(α+k·2π)=,其中k∈Z.【概念学习8】判断正误.(请在括号中打“√”或“×”)(1)已知sin 5.1°=m,则sin 365.1°=m.( )(2)tan(-960°)=√3.( )(3)若cos α=cos β,则α=β.( )(4)若sin α=sin β,则α=β+ k·2π.( )【学习延伸9】填写下列特殊角的弧度制和三角函数值:【举例讲解10】例2 (1)sin 405°= ( ) A .-√22B .√22C .√32D .-√32(2)cos (-17π3)= ( )A .-√32B .-12C .12D .√32(3)sin 810°+tan 1125°+cos 420°= .(4)sin 7π3cos (-23π6)+tan (-15π4)cos 13π3.例3 (1)已知角α的终边与单位圆的交点坐标为(-12,y),则sin αtan α= .变式 (1)若角α的终边在直线y=2x 上,求sin α,cos α,tan α的值.(2)已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈(π2,π),求sin α,cos α,tan α的值.例4求函数y=sinx|sinx |+|cosx |cosx +tanx|tanx |的定义域和值域.例5已知1|cosα|= − 1 cosα,且lg sin α有意义. (参考数据:lg2=0.3010)(1)试判断角α的终边所在的象限;(2)若角α的终边上有一点M (m ,4),且|OM|=5(O 为坐标原点),求m 的值及lgsin α的值.【课堂小结11】1、利用三角函数的定义求一个角的三角函数值有以下几种情况:(1)若已知角,则只需确定出该角的终边与单位圆的交点坐标,即可求出各三角函数值. (2)若已知角α终边上一点P (x ,y )(x ≠0)是单位圆上一点,则sin α=y ,cos α=x ,tan α=y x.(3)若已知角α终边上一点P (x ,y )(x ≠0)不是单位圆上一点,则先求r=√x 2+y 2,再求sin α=yr,cos α=x r,tan α=y x. (4)若已知角α终边上的点的坐标含参数,则要根据问题的实际情况对参数进行分类讨论. 2、判断三角函数值在各象限的符号的攻略: (1)基础:准确确定三角函数值中各角所在象限; (2)关键:准确记忆三角函数值在各象限的符号;(3)注意:用弧度制给出的角常常不写单位,不要误认为角度,导致象限判断错误. 3、利用公式一进行化简求值的步骤:(1)定形:将已知的任意角写成2k π+α的形式,其中α∈[0,2π),k ∈Z . (2)转化:根据公式一,转化为求角α的某个三角函数值.(3)求值:若角α为特殊角,则可直接求出该角的三角函数值(需熟记特殊角的三角函数值).【自我总结12】你觉得高中三角函数值变难了吗?变难的地方在哪?能否通过数形结合理解记忆,如三角函数值的符号特征,特殊角三角函数值,以及轴线角的三角函数值,任意角的三角函数值是如何转化研究等。

2024春新教材高中数学5.2.1三角函数的概念教案新人教A版必修第一册

2024春新教材高中数学5.2.1三角函数的概念教案新人教A版必修第一册
对于难点内容的突破,可以通过绘制三角函数的图像,观察其在不同区间的变化情况,从而理解其周期性。例如,正弦函数和余弦函数的图像都是周期性的,周期为2π;正切函数的图像不是周期性的,但是其导数正弦函数和余弦函数的图像都是周期性的,周期为π。
在解决实际问题时,可以运用三角函数的性质和周期性进行计算。例如,已知一个角的大小为π/3,可以通过查表或计算得到其正弦值为√3/2,余弦值为1/2,正切值为√3。
(4)在线课程:国内外知名大学开设的三角函数相关在线课程,如麻省理工学院的《线性代数与几何》、斯坦福大学的《数学分析》等,学生可以在线观看视频讲座、完成练习题,拓展知识视野。
2.拓展建议:
(1)阅读数学杂志:鼓励学生阅读数学杂志,了解三角函数的研究现状和发展趋势,提高学术素养。
(2)利用网络资源:引导学生利用学术网站资源,查阅三角函数相关论文和著作,加深对知识点的理解。
核心素养目标
本节课旨在培养学生的数学抽象和数学建模的核心素养。通过学习三角函数的概念,使学生能够理解从具体情境中抽象出三角函数的基本思想,提升数学抽象能力。同时,通过分析三角函数的性质和图像,使学生能够运用数学语言描述三角函数的性质,培养学生的数学建模能力。此外,通过小组讨论和自主探究的学习方式,提升学生的逻辑推理和数据分析能力,培养学生的合作交流和自主学习的能力。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示三角函数的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

人教A版(2019)高中数学必修第一册第五章5.2.1三角函数的概念(第二课时)教案

人教A版(2019)高中数学必修第一册第五章5.2.1三角函数的概念(第二课时)教案

《5.2.1 三角函数的概念(第二课时)》教学设计1.掌握三角函数值的符号;2.掌握诱导公式一,初步体会三角函数的周期性.教学重点:函数值的符号、诱导公式一.教学难点:对诱导公式的发现与认识.PPT课件.资源引用:【知识点解析】三角函数值在各象限的符号、【知识点解析】对三角函数值符号的理解(一)创设情境引导语:前面学习了三角函数的定义,根据已有的学习函数的经验,你认为接下来应研究三角函数的哪些问题?预设的师生活动:先由学生发言.一般而言,学生会直接把问题指向“图象与性质”.教师可以在肯定学生想法的基础上,指出三角函数的特殊性:预设答案:因为单位圆上点的坐标或坐标比值就是三角函数,而单位圆具有对称性,这种对称性反映到三角函数的取值规律上,就会呈现出比幂函数、指数函数和对数函数等更丰富的性质.例如,我们可以从定义出发,结合单位圆的性质直接得到一些三角函数的性质.设计意图:明确研究的问题和思考方向.一般地,学生不习惯于借助单位圆的性质研究三角函数的性质,所以需要教师的讲解和引导.(二)新知探究1.三角函数值的符号问题1:由三角函数的定义以及任意角α的终边与单位圆交点所在的象限,你能发现正弦函数、余弦函数和正切函数的值的符号有什么规律吗?如何用集合语言表示这种规律?预设的师生活动:由学生独立完成.预设答案:用集合语言表示的结果是:当α∈{β|2k π<β<2k π+π,k ∈Z }时,sin α>0;当α∈{β|2k π+π<β<2k π+2π,k ∈Z }时,sin α<0;当α∈{β|β=k π,k ∈Z }时,sin α=0.其他两个函数也有类似结果.设计意图:在直角坐标系中标出三角函数值的符号规律不难,可由学生独立完成.用集合语言表示,可以复习象限角、终边相同的角的集合表示等.例1 求证:角θ为第三象限角的充要条件是⎩⎪⎨⎪⎧sin θ<0,①tan θ>0.② 预设的师生活动:先引导学生明确问题的条件和结论,再由学生独立完成证明.预设答案:先证充分性.因为①式sin θ<0成立,所以θ角的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合;又因为②式tan θ>0成立,所以θ角的终边可能位于第一或第三象限.因为①②式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角.再证必要性.因为角θ为第三象限角,由定义①②式都成立.设计意图:通过联系相关知识,培养学生的推理论证能力.2.诱导公式一问题2:联系三角函数的定义、象限角以及终边相同的角的表示,你有发现什么? 师生活动:学生在问题引导下自主探究,发现诱导公式一.追问:(1)观察诱导公式一,对三角函数的取值规律你有什么进一步的发现?它反映了圆的什么特性?(2)你认为诱导公式一有什么作用?预设答案:(1)诱导公式一体现了三角函数周期性取值的规律,这是“单位圆上的点绕圆周旋转整数周仍然回到原来位置”的特征的反映.(2)利用公式一可以把求任意角的三角函数值,转化为求0~2π角的三角函数值.同时,由公式一可以发现,只要讨论清楚三角函数在区间[0,2π]上的性质,那么三角函数在整个定义域上的性质就清楚了.设计意图:引导学生通过建立相关知识的联系发现诱导公式一及其体现的三角函数周期性取值的规律,这是“单位圆上的点绕圆周旋转整数周仍然回到原来位置”的特征的反映.在此过程中,可以培养学生用联系的观点看待问题,发展直观想象等素养.例2 确定下列三角函数值的符号,然后用计算器验证:(1)cos 250°; (2)sin ⎪⎭⎫ ⎝⎛-4π; (3)tan (-672°); (4)tan 3π.解:(1)因为250°是第三象限角,所以cos 250°<0;(2)因为4π-是第四象限角,所以sin ⎪⎭⎫ ⎝⎛-4π<0;(3)因为tan (-672°)=tan (48°-2×360°)=tan 48°,而48°是第一象限角, 所以tan (-672°)>0;(4)因为tan 3π=tan (π+2π)=tan π,而π的终边在x 轴上,所以tan π=0.例3 求下列三角函数值:(1)sin 1 480°10′(精确到0.001);(2)cos4π9; (3)tan ⎪⎭⎫ ⎝⎛-6π11. 解:(1)sin 1480°10′=sin (40°10′+4×360°)=sin 40°10′≈0.645;(2)9πππcos cos(2π)cos 444=+==(3)11πππtan()tan(2π)tan 6663-=-==. 师生活动:以上都是教科书中的例题,难度不大,可以由学生独立完成,并作课堂展示.教师可以鼓励学生采用不同的变形方法得出答案.在用计算器验证时,提醒学生注意角度制的设置.(三)课堂练习教科书第182页练习第1,2,3,4,5题.(四)布置作业教科书习题5.2第1,3,4,5,7,8,9,10题.(五)目标检测设计1.求下列三角函数的值:(1)cos (-23π6); (2)tan 25π6.设计意图:考查诱导公式一,特殊角的三角函数值.2.角α的终边与单位圆的交点是Q,点Q的纵坐标是12,说出几个满足条件的角α.设计意图:考查正弦函数的定义,诱导公式一.3.对于①sin θ>0,②sin θ<0,③cos θ>0,④cos θ<0,⑤tan θ>0与⑥tan θ<0,选择恰当的关系式序号填空:(1)角θ为第二象限角的充要条件是________;(2)角θ为第三象限角的充要条件是________.设计意图:考查三角函数值的符号规律.。

人教A版高中数学必修第一册第五章三角函数的概念教案

人教A版高中数学必修第一册第五章三角函数的概念教案

《5.2.1 三角函数的概念(第一课时)》教学设计教学目标1.了解三角函数的背景,体会三角函数与现实世界的密切联系;2.经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,发展数学抽象素养.教学重难点教学重点:正弦函数、余弦函数、正切函数的定义.教学难点:理解三角函数的对应关系,包括影响单位圆上点的坐标变化的因素分析,以及三角函数的定义方式的理解;对符号sinα,cosα和tanα的认识.课前准备PPT课件教学过程(一)创设情境引导语:我们知道,现实世界中存在着各种各样的“周而复始”变化现象,圆周运动是这类现象的代表.如图1,⊙O上的点P以A为起点做逆时针方向的旋转.在把角的范围推广到任意角后,我们可以借助角α的大小变化刻画点P的位置变化.又根据弧度制的定义,角α的大小与⊙O的半径无关,因此,不失一般性,我们可以先研究单位圆上点的运动.现在的任务是:如图1,单位圆⊙O上的点P以A为起点做逆时针方向旋转,建立一个函数模型,刻画点P的位置变化情况.图1问题1:根据已有的研究函数的经验,你认为我们可以按怎样的路径研究上述问题? 预设的师生活动:学生在独立思考的基础上进行交流、讨论.预设答案:明确研究背景—对应关系的特点分析—下定义—研究性质.设计意图:明确研究的内容、过程和基本方法,为具体研究指明方向.(二)新知探究引导语:下面我们利用直角坐标系来研究上述问题.如图2,以单位圆的圆心O 为原点,以射线OA 为x 轴的非负半轴,建立直角坐标系,点A 的坐标为(1,0),点P 的坐标为(x ,y ).射线OA 从x 轴的非负半轴开始,绕点O 按逆时针方向旋转角α,终止位置为OP .问题2:当α=6π时,点P 的坐标是什么?当α=2π或3π2时,点P 的坐标又是什么?它们是唯一确定的吗?一般地,任意给定一个角α,它的终边OP 与单位圆交点P 的坐标能唯一确定吗? 预设的师生活动:在学生求出α=6π时点P 的坐标后追问以下问题. 追问:(1)求点P 的坐标要用到什么知识?(2)求点P 的坐标的步骤是什么?点P 的坐标唯一确定吗?(3)如何利用上述经验求α=3π2时点P 的坐标? (4)利用信息技术,任意画一个角α,观察它的终边OP 与单位圆交点P 的坐标,你有什么发现?你能用函数的语言刻画这种对应关系吗?预设答案:(1)直角三角形的性质;(2)画出6π的终边OP ,过点P 作x 轴的垂线交x 轴于M ,在Rt △OMP 中,利用直角图2三角形的性质可得点P 的坐标是⎪⎪⎭⎫ ⎝⎛2123,; (3)可以发现,∠MOP =3π,而点P 在第二象限,可得点P 的坐标是⎪⎪⎭⎫ ⎝⎛-2321,; (4)对于R 中的任意一个角α,它的终边OP 与单位圆交点为P (x ,y ),无论是横坐标x 还是纵坐标y ,都是唯一确定的.这里有两个对应关系:f :实数α(弧度)对应于点P 的纵坐标y ,g :实数α(弧度)对应于点P 的横坐标x .根据上述分析,f :R →[-1,1]和g :R →[-1,1]都是从集合R 到集合[-1,1]的函数. 设计意图:以函数的对应关系为定向,从特殊到一般,使学生确认相应的对应关系满足函数的定义,角的终边与单位圆交点的横、纵坐标都是圆心角α(弧度)的函数,为给出三角函数的定义做好准备.问题3:请同学们先阅读教科书第178~179页,再回答如下问题:(1)正弦函数、余弦函数和正切函数的对应关系各是什么?(2)符号sin α,cos α和tan α分别表示什么?在你以往的学习中有类似的引入特定符号表示一种量的经历吗?(3)为什么说当α≠2π+k π时,tan α的值是唯一确定的? (4)为什么说正弦函数、余弦函数的定义域是R ?而正切函数的定义域是{x ∈R |x ≠2π+k π,k ∈Z }?预设的师生活动:学生独立阅读课文,再举手回答上述问题.预设答案:(1)正弦函数的对应关系:sin α →点P 的纵坐标y ;余弦函数的对应关系:cos α →点P 的横坐标x ;正弦函数的对应关系:tan α →xy (2)分别表示y ,x ,;引入符号log a b 表示a x =b 中的x .(3)当α≠2π+k π时,如果α确定,那么α的终边确定,终边与单位圆的交点P 确定,P 点的横、纵坐标x 、y 就会唯一确定,因此x y 的值也是唯一确定的,所以tan α的值也是唯一确定的.(4)当α=2π+k π时,α的终边在y 轴上,这时点P 的横坐标x 等于0,所以x y =tan α无意义.除此之外,对于任意角α,P 点的横、纵坐标的值x ,y 都是存在且唯一确定的.设计意图:在问题引导下,通过阅读教科书、辨析关键词等,使学生明确三角函数的“三要素”;引导学生类比已有知识(引入符号log a b 表示a x =b 中的x ),理解三角函数符号的意义.问题5:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数.设x ∈⎪⎭⎫ ⎝⎛2π0,,把按锐角三角函数定义求得的锐角x 的正弦记为y 1,并把按本节三角函数定义求得的x 的正弦记为z 1.y 1与z 1相等吗?对于余弦、正切也有相同的结论吗?预设的师生活动:教师引导,学生作图并得出结论.预设答案:作出Rt △ABC ,其中∠A =x ,∠C =90°,再将它放入直角坐标系中,使点A 与原点重合,AC 在x 轴的正半轴上,可得出y 1=z 1的结论.对于余弦、正切也有相同的结论.设计意图:建立锐角三角函数与任意角三角函数的联系,使学生体会两个定义的和谐性. 例1 利用三角函数的定义求3π5的正弦、余弦和正切值. 预设的师生活动:先由学生发言,再总结出从定义出发求三角函数值的基本步骤,并得出答案.预设答案:在直角坐标系中,作∠AOB =3π5(图3).易知∠AOB 的终边与单位圆的交点坐标为⎪⎪⎭⎫ ⎝⎛-2321,. 所以,sin 233π5-=,cos 213π5=,tan 33π5-=. 设计意图:通过概念的简单应用,明确用定义求三角函数值的基本步骤,进一步理解定义的内涵.练习:在例1之后进行课堂练习:(1)利用三角函数定义,求π,2π3的三个三角函数值. (2)说出几个使cos α=1的α的值.预设的师生活动:由学生逐题给出答案,并要求学生说出解答步骤,最后可以总结为“画终边,找交点坐标,算比值(对正切函数)”.预设答案:(1)sin π=0,cos π=-1,tan π=0;sin2π3=-1,cos 2π3=0,tan 2π3不存在.(2)α=0,2π,-2π等.设计意图:检验学生对定义的理解情况.例2 如图4,设α是一个任意角,它的终边上任意一点P (不与原点O 重合)的坐标为(x ,y ),点P 与原点的距离为r .求证:sin α=r y ,cos α=r x ,tan α=x y . 师生活动:给出问题后,教师可以引导学生思考如下问题,再让学生给出证明:(1)你能根据三角函数的定义作图表示出sin α,cos α吗?(2)在你所作出的图形中,r y ,r x ,xy 各表示什么,你能找到它们与做任意角α的三角函数的关系吗?图3预设答案:如图5,设角α的终边与单位圆交于点P 0 (x 0,y 0).分别过点P ,P 0作x 轴的垂线PM ,P 0M 0,垂足分别为M ,M 0,则|P 0M 0|=|y 0|,|PM |=|y |,|OM 0|=|x 0|,|OM |=|x |,△OMP ∽△OM 0P 0. 于是r PM M P ||1||00 ,即|y 0|=ry ||.因为y 0与y 同号,所以y 0=r y , 即sin α=r y .同理可得cos α=r x ;tan α=x y . 设计意图:通过问题引导,使学生找到△OMP ,△OM 0P 0,并利用它们的相似关系,根据三角函数的定义得到证明.追问:例2实际上给出了任意角三角函数的另外一种定义,而且这种定义与已有的定义是等价的.你能用严格的数学语言叙述一下这种定义吗?预设的师生活动:可以由几个学生分别给出定义的表述,在交流的基础上得出准确的定义.预设答案:设α是一个任意角,它的终边上任意一点P (不与原点O 重合)的坐标为(x ,y ),点P 与原点的距离为r ,则r y 、r x 、xy 分别叫做角α的正弦、余弦、正切. 设计意图:加深学生对三角函数定义的理解.练习:在例2之后进行课堂练习:(3)已知点P 在半径为2的圆上按顺时针方向做匀速圆周运动,角速度为1rad/s .求2 s 时点P 所在的位置.图5图4预设的师生活动:由学生独立完成后,让学生代表展示作业.预设答案:以坐标原点为圆心O ,OP 所在直线为x 轴正方向建立平面直角坐标系.2 s 时点P 所在位置记为Q .因为点P 是在半径为2的圆上按顺时针方向作匀速圆周运动,角速度为1rad/s ,所以圆心角∠POQ =-2 rad .所以2 s 时,点P 在该坐标系中的位置为(2cos 2,-2sin 2).设计意图:三角函数是刻画匀速圆周运动的数学模型,通过练习使学生从另一个角度理解三角函数的定义.(三)布置作业(四)目标检测设计(1)利用三角函数定义,求6π7的三个三角函数值. (2)已知角θ的终边过点P (-12,5),求角θ的三角函数值.预设答案:(1)sin6π7=-21,cos 6π7=-23,tan 6π7=33; (2)sin θ=513,cos θ=-1213,tan θ=-512.设计意图:考查学生对三角函数定义的理解情况.1、最困难的事就是认识自己。

5.2.1三角函数的概念(二)教学设计高一上学期数学人教版(2019)必修第一册

5.2.1三角函数的概念(二)教学设计高一上学期数学人教版(2019)必修第一册

二、预习课本,引入新课阅读课本177-180页,思考并完成以下问题1.任意角三角函数的定义?2.任意角三角函数在各象限的符号?3.诱导公式一?三、新知探究1.单位圆在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆.2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:图1-2-1(2)结论①y叫做α的正弦,记作sin_α,即sin α=y;②x叫做α的余弦,记作cos_α,即cos α=x;③yx叫做α的正切,记作tan_α,即tan α=yx(x≠0).(3)总结正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.思考:若已知α的终边上任意一点P 的坐标是(x ,y ),则其三角函数定义为?在平面直角坐标系中,设α的终边上任意一点P 的坐标是(x ,y ),它与原点O 的距离是r (r =x 2+y 2>0). 三角函数定义定义域 sinα y r R cosα x r Rtanαy x错误!正弦函数、余弦函数、正切函数统称三角函数. 3.正弦、余弦、正切函数在弧度制下的定义域三角函数 定义域 sin α R cos α Rtan α⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π+π2,k ∈Z4.正弦、余弦、正切函数值在各象限内的符号 (1)图示:图1-2-2(2)口诀:“一全正,二正弦,三正切,四余弦”. 5.诱导公式一四、典例分析、举一反三题型一 三角函数的定义及应用例1 在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值.【答案】当α的终边在第二象限时,sin α=255,cos α=-55,tan α=-2. 当α的终边在第四象限时, sin α=-255,cos α=55,tan α=-2.【解析】当α的终边在第二象限时,在α终边上取一点P (-1,2),则r =-12+22=5, 所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时,在α终边上取一点P ′(1,-2),则r =12+-22=5, 所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.跟踪训练一1.已知角θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.【答案】当x =1时,sin θ=31010,tan θ=3;当x =-1时,此时sin θ=31010,tan θ=-3.【解析】由题意知r =|OP |=x 2+9,由三角函数定义得cos θ=x r =xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x .∵x ≠0,∴x =±1.当x =1时,P (1,3),此时sin θ=312+32=31010,tan θ=31=3.当x =-1时,P (-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3. 题型二 三角函数值的符号 例2 (1)若α是第四象限角,则点P (cos α,tan α)在第________象限.(2)判断下列各式的符号:①sin 183°;②tan 7π4;③cos 5.【答案】(1)四; (2) ①sin 183°<0;②tan 7π4<0;③cos 5>0.【解析】(1)∵α是第四象限角,∴cos α>0,tan α<0,∴点P (cos α,tan α)在第四象限.(2) ①∵180°<183°<270°,∴sin 183°<0;②∵3π2<7π4<2π,∴tan 7π4<0;③∵3π2<5<2π,∴cos。

数学人教A版必修第一册5.2.1三角函数的概念课件

数学人教A版必修第一册5.2.1三角函数的概念课件

(3) y 叫做的正切,记作 y tan(x 0);
x
x
注 : 当x 0,即 k (k Z )时, y tan无意义.
2
x
正弦函数 : y sin x , x R x为角的弧度
三角函数 余弦函数 : y cos x , x R y为角的三角函数值
正切函数 :
y
tan
x
,
x
2
k
(2)
cos2
1 2 sin2
的值是
___
.
分子为1
(3)5cos2 3sin2 的值是 ____ . 暗含:分母为1
1 sin2 cos2
(4)sin cos的值是 ____ . 暗含:分母为1
原式
sin cos sin2 cos2
tan tan2 1
2 5
[变式]已知 sin 2 cos 2,则sin cos的值为 ____ . sin cos
(其中k Z )
公式一(角度制)
sin( k 360) sin cos( k 360) cos tan( k 360) tan
(其中k Z )
巩固:公式一的运用(求值)
[例5]求下列三角函数值 :
(1) cos 9 ; (2) tan 3 (3)sin ( 11 ) (4) tan(1050)
新知:同角三角函数的基本关系
sin2 cos2 1 cos2 1 sin2 (1 sin )(1 sin )
tan sin cos
(sin cos )2 1 2sin cos sin4 cos4 sin2 cos2
求5cos 4 tan的值.
解 : 由sin2 cos2 1得 cos2 1 sin2 1 ( 3)2 16 .

数学人教A版必修第一册5.2.1三角函数的概念

数学人教A版必修第一册5.2.1三角函数的概念


tan = 无意义,此时 = + ( ∈ )

2
问题5:初中也有三角函数,那初高中的定义有什么区分
和联系?
初中定义
联系
函数值符号
角的范围
函数值定义
高中定义
高中三角函数的定义统一和兼容了初
中三角函数的定义


锐角

边长比值

值均为正数

任意角

终边上点的坐标

可正可负可零
知识应用 合作交流
y0
y
由相似三角形的对应边成比例,可得

1
r
y
又 y0与y同号,
y0
r
y
x
y
sin
同理可得:cos , tan
r
r
x
α
M
M0
O
P0 x0 , y0
·
P x, y
x
例2:如图,∠α是一个任意角,它的终边上任意一点P(不与原点
O重合)的坐标为(x,y),点P与原点的距离为r;
[变式 1]
已知角 α 的终边上一点 P(-15a,8a) (a∈R 且 a≠0),求 α
的三角函数值.
解 ∵x=-15a,y=8a,∴r= -15a2+8a2=17|a| (a≠0).
(1)若 a>0,则 r=17a,于是
8
15
8
sin α= ,cos α=- ,tan α=- ,
17
17
15
(2)若 a<0,则 r=-17a,于是
8
15
8
sin α=- ,cos α= ,tan α=- ,

5.2.1 三角函数的概念 导学案(2)-人教A版高中数学必修第一册

5.2.1 三角函数的概念 导学案(2)-人教A版高中数学必修第一册

【新教材】5.2.1 三角函数的概念(人教A版)1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.3.掌握公式一并会应用.1.数学抽象:理解任意角三角函数的定义;2.逻辑推理:利用诱导公式一求三角函数值;3.直观想象:任意角三角函数在各象限的符号;4.数学运算:诱导公式一的运用.重点:①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;②掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.难点:理解任意角三角函数(正弦、余弦、正切)的定义.一、预习导入阅读课本177-180页,填写。

1.单位圆在直角坐标系中,我们称以原点O为圆心,以__________为半径的圆为单位圆.2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,它的终边与__________交于点P(x,y),那么:图1­2­1(2)结论①y叫做α的__________,记作__________,即sin α=y;②x叫做α的__________,记作__________,即cos α=x;③yx叫做α的__________,记作__________,即tan α=yx(x≠0).(3)总结正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.思考:若已知α的终边上任意一点P的坐标是(x,y),则其三角函数定义为?在平面直角坐标系中,设α的终边上任意一点P的坐标是(x,y),它与原点O的距离是r(r=x2+y2>0).三角函数定义名称sinα__________ 正弦cosα__________ 余弦tanα__________ 正切正弦函数、余弦函数、正切函数统称三角函数.3.正弦、余弦、正切函数在弧度制下的定义域三角函数定义域sin α__________cos α__________tan α__________4.正弦、余弦、正切函数值在各象限内的符号(1)图示:图1­2­2(2)口诀:“一全正,二__________,三__________,四__________”.5.诱导公式一1.若角α的终边经过点P (2,3),则有( )A .sin α=21313B .cos α=132C .sin α=31313D .tan α=232.已知sin α>0,cos α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.sin 253π= .4.角α终边与单位圆相交于点M ⎝⎛⎭⎫32,12,则cos α+sin α的值为 .题型一 三角函数的定义及应用例1 在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值. 跟踪训练一1.已知角θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. 题型二 三角函数值的符号例2 (1)若α是第四象限角,则点P (cos α,tan α)在第________象限.(2)判断下列各式的符号: ①sin 183°;②tan 7π4;③cos 5. 跟踪训练二1.确定下列式子的符号:(1) tan 108°·cos 305°;(2)cos 5π6·tan11π6sin2π3;(3)tan 120°·sin 269°.题型三 诱导公式一的应用例3 求值:(1)tan 405°-sin 450°+cos 750°;(2)sin 7π3cos ⎝⎛⎭⎫-23π6+tan ⎝⎛⎭⎫-15π4cos 13π3. 跟踪训练三 1.化简下列各式:(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)sin ⎝⎛⎭⎫-11π6+cos 125π·tan 4π.1.有下列说法:①终边相同的角的同名三角函数的值相等; ②sin α是“sin”与“α”的乘积;③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-. 其中正确的个数是( ) A .0 B .1 C .2 D .32.如果α的终边过点(2sin 30°,-2cos 30°),那么sin α=( )A. 12B .-12 C. 32 D .-323.若sin θ·cos θ>0,则θ在( )A .第一或第四象限B .第一或第三象限C .第一或第二象限D .第二或第四象限4.若cos α=-32,且角α的终边经过点P (x ,2),则P 点的横坐标x 是( )A .2B .±2C .-2D .-25.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称,若sin α=51,则sin β= .6.求值:(1)sin 180°+cos 90°+tan 0°;(2)cos 25π3+tan15π4.答案小试牛刀 1.C 2.B 3.32 4.3+12. 自主探究例1 【答案】当α的终边在第二象限时,sin α=255,cos α=-55,tan α=-2.当α的终边在第四象限时, sin α=-255,cos α=55,tan α=-2.【解析】当α的终边在第二象限时,在α终边上取一点P (-1,2),则r =-12+22=5,所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时, 在α终边上取一点P ′(1,-2), 则r =12+-22=5,所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.跟踪训练一1.【答案】当x =1时,sin θ=31010,tan θ=3;当x =-1时,此时sin θ=31010,tan θ=-3.【解析】由题意知r =|OP |=x 2+9,由三角函数定义得cos θ=x r =xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x .∵x ≠0,∴x =±1. 当x =1时,P (1,3),此时sin θ=312+32=31010,tan θ=31=3.当x =-1时,P (-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3. 例2 【答案】(1)四; (2) ①sin 183°<0;②tan 7π4<0;③cos 5>0. 【解析】(1)∵α是第四象限角,∴cos α>0,tan α<0,∴点P (cos α,tan α)在第四象限. (2) ①∵180°<183°<270°,∴sin 183°<0; ②∵3π2<7π4<2π,∴tan 7π4<0;③∵3π2<5<2π,∴cos 5>0.跟踪训练二1.【答案】(1) tan 108°·cos 305°<0;(2) cos 5π6·tan11π6sin2π3>0;(3)tan 120°sin 269°>0.【解析】(1)∵108°是第二象限角,∴tan 108°<0.∵305°是第四象限角,∴cos 305°>0.从而tan 108°·cos 305°<0. (2)∵5π6是第二象限角,11π6是第四象限角,2π3是第二象限角,∴cos 5π6<0,tan 11π6<0,sin 2π3>0.从而cos 5π6·tan11π6sin2π3>0.(3)∵120°是第二象限角,∴tan 120°<0,∵269°是第三象限角,∴sin 269°<0.从而tan 120°sin 269°>0.例3 【答案】(1)32;(2)54. 【解析】 (1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°) =tan 45°-sin 90°+cos 30°=1-1+32=32. (2)原式=sin ⎝⎛⎭⎫2π+π3cos ⎝⎛⎭⎫-4π+π6+tan ⎝⎛⎭⎫-4π+π4·cos ⎝⎛⎭⎫4π+π3 =sin π3cos π6+tan π4cos π3=32×32+1×12=54.跟踪训练三1.【答案】(1)(a -b )2 ; (2)12.【解析】(1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°)=a 2sin 90°+b 2tan 45°-2ab cos 0° =a 2+b 2-2ab =(a -b )2. (2)sin ⎝⎛⎭⎫-116π+cos 125π·tan 4π =sin ⎝⎛⎭⎫-2π+π6+cos 125π·tan 0=sin π6+0=12.当堂检测1-4. BDBD 5.−156.【答案】(1) 0;(2) 32 .【解析】 (1)sin 180°+cos 90°+tan 0°=0+0+0=0.(2) cos25π3+tan15π4=cos π3+tan π4=12+1=32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2.1 三角函数的概念
1.借助单位圆理解任意角三角函数的定义;
2.根据定义认识函数值的符号。

理解诱导公式一;
3.能初步运用定义分析和解决与三角函数值有关的一些简单问题。

1.教学重点:任意角的三角函数(正弦函数、余弦函数、正切函数)的定义;
2.教学难点:任意角的三角函数概念的建构过程,解决与三角函数值有关的一些简单问题。

一、设角,
是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。

那么(1) 的正弦函数。

叫做α记作 ,;sin α=y 即
(2) 的余弦函数。

叫做α记作 ,;cos α=x 即
(3) 的正切。

叫做α记作 ;tan α=x y 即 )0(tan ≠=x x
y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。

二、三角函数的定义域。

三、诱导公式
=+)2sin(παk ;=+)2(cos παk ;
=+)2(tan παk 。

Z k ∈
一、探索新知
探究一.角α的始边在x 轴非负半轴,终边与单位圆交于点P 。

当6
πα=时,点P 的坐标是什么?当
3
22ππα或=
时,点P 的坐标又是什么?它们唯一确定吗?
探究二 :一般地,任意给定一个角α,它的终边OP 与单位圆交点P 的坐标能唯一确定吗?
1.任意角的三角函数定义
设角,
是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。

那么(1) 的正弦函数。

叫做α记作 ,;sin α=y 即
(2) 的余弦函数。

叫做α记作 ,;cos α=x 即 (3) 的正切。

叫做α记作
;tan α=x
y 即 )0(tan ≠=x x
y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。

正弦函数,余弦函数,正切函数都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将他们称为三角函数.
通常将它们记为:正弦函数 R x x y ∈=,sin
余弦函数 R x x y ∈=,c o s
正切函数 )(2,t a n Z k k x x y ∈+≠=ππ
探究三:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量。

以比值为函数值的函数,设)2,0(π
∈x ,把按锐角三角函数定义求得的锐角x 的正弦记为1z ,并把按本节三角函数定义求得的 x 的正弦记为1y 。

1z 与1y 相等吗?对于余弦、正切也有相同的结论吗?
例1. 求
3
5π的正弦、余弦和正切值.
变式:把角
35π改为6
7π呢?
例2.设α是一个任意角,它的终边上任意一点P (不与原点O 重合)的坐标为(x,y ),点P 与原点的距离为r 。

求证:.tan ,cos ,sin x y r x r y ===
ααα
探究四.1.
例3.求证:角θ为第三象限角的充要条件是⎩⎨
⎧><0
tan 0sin θθ.
思考:如果两个角的终边相同,那么这两个角的同一三角函数值有何关系?
终边相同的角的同一三角函数值相等(公式一) =+)2sin(παk ;=+)2(cos παk ;
=+)2(tan παk 。

Z k ∈
作用:利用公式一,可以把求任意角的三角函数值,转化为
求)360~0(2~0︒
︒或π角的三角函数值 .
例4 确定下列三角函数值的符号: .3tan )4();672tan()3();4
sin()2(;250cos 1ππ
︒︒--)(
例5 求下列三角函数值: ).611tan()3(;49cos 2);001.0(011480sin 1ππ-'︒
)(精确到)(
1.sin(-315°)的值是( )
A .-22
B .-12 C.22 D.12
2.已知角α终边过点P (1,-1),则tan α的值为( )
A .1
B .-1 C.22 D .-22
3.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称,
若sin α=15,则sin β=________.
4.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos 25π3+tan ⎝ ⎛⎭
⎪⎫-15π4.
这节课你的收获是什么?
参考答案:
探究一、当6π
α=时,点P 的坐标为),(2123。

当2
πα=时,点P 的坐标为),(10。

当3
2πα=时,点P 的坐标为)(23,21-。

探究二、点P 的横、纵坐标都能唯一确定。

探究三、都相等
例1.解析见教材 变式:,2
167sin -=π2367cos -=π 3367t a n =π 例2.解析见教材
探究四1.根据三角函数的定义,确定三角函数的定义域。

2.确定三角函数值在各象限的符号。

例3.例4 例5,解析见教材
达标检测
1.【答案】C
【解析】sin(-315°)=sin(-360°+45°)=sin 45°=22
2.【答案】B
【解析】由三角函数定义知tan α=-11=-1.
3.【答案】-15
【解析】设角α的终边与单位圆相交于点P (x ,y ), 则角β的终边与单位圆相交于点Q (x ,-y ),
由题意知y =sin α=15,所以sin β=-y =-15.
4.【解析】 (1)sin 180°+cos 90°+tan 0°=0+0+0=0.
(2)cos 25π3+tan ⎝ ⎛⎭
⎪⎫-15π4 =cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭
⎪⎫-4π+π4 =cos π3+tan π4=12+1=32.。

相关文档
最新文档