深圳杯数学建模A题获奖论文

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网络侧估计终端用户视频体验建模

摘要

现代社会,使用手机APP观看视频已经成为当代社会的一种普遍形式,本文依据统计回归方法,对网络侧变量和用户体验变量之间的函数关系进行拟合,令其余无关变量均近似地服从正态分布。采用多重拟合方式拟合出不同的评价函数,并进行误差检验。选择误差最小的评价函数。并基于评价函数,两个用户体验变量进行预测。

同时对用户观看视频体验进行综合评价,采用多级指标,运用AHP及模糊综合评价法评价用户观看视频的满意度。求出权重,建立评价矩阵。得到用户观看视频满意度处在较满意和一般满意之间。

最后,由于多种原因,本文建立的用户体验变量评价函数具有一定程度的误差,因此基于原有数据,建立灰色系统模型,再次进行预测,比较结果。建立GM(1,1)模型对相关指标进行预测,取预测区间长度为100,得出预测值,并绘制残差图对预测值进行检验。并与评价函数预测结果进行对比。验证评价函数的正确性。同时得到结论,基于原始数据直接建立灰色系统,预测相对更加准确。关键词:统计回归;综合评价;灰色预测;残差检验

一.问题重述

随着科技的日益进步,无线宽带网络也随之无限升级。智能终端在大众生活中普及,越来越多的用户选择在智能终端上(以手机为主)应用客户端APP来观看网络视频,这是一种基于TCP(是一种面向连接的、可靠的、基于字节流的传输层通信协议)的视频传输以及播放。在观看网络视频时,有很多因素指标会影响用户对于视频的观看体验,而其中两个关键指标是初始缓冲等待时间和卡顿缓冲时间,我们可以用初始缓冲时延和卡顿时长占比(卡顿时长占比=卡顿时长/视频播放时长)来定量评价用户体验。研究表明影响初始缓冲时延和卡顿时长占比的主要因素有初始缓冲峰值速率、播放阶段平均下载速率、端到端环回时间(E2ERTT)以及视频参数。然而这些因素和初始缓冲时延以及卡顿时长占比之间的关系并不明确。本文拟通过数学建模的方式对网络端视频用户体验做综合评价和预测,以采取针对性的措施提高网络端视频用户体验的满意程度。本文尝试解决以下问题:

1、根据实验数据建立起用户体验评价变量和网络侧变量之间的函数关系。

2、对网络侧终端用户体验进行定量的综合评价。

3、针对网络侧用户体验进行预测。

二.问题分析与思考

本题目附件中提供试验数据共89266组,由于希望提高问题分析的准确性,首先要对数据进行考察,并将不合理数据予以剔除,因此,进行数据的信度与效度检验就必不可少。

2.1数据信度检验

信度检验为判断分析数据结果准确性,即数据结果的可靠性检验。常用的方法有:拉以达准则,Dixon准则以及Crubbs准则法等,然这三种方法都是基于样本大致服从正态分布而给出的,因此,我们采取最常见也是最可信的拉以达准则进行数据的信度检验。

拉以达准则又称3原则,是先假设一组检测数据只含有随机误差,对其进行计

算处理得到标准偏差,按一定概率确定一个区间,认为凡超过这个区间的误差,就不属于随机误差而是粗大误差,含有该误差的数据应予以剔除。这种判别处理原理及方法仅局限于对正态或近似正态分布的样本数据处理,它是以测量次数充分大为前提的,由于本模型中测量次数较多,因此拉以达原则在合理范围之内。

图1:统计数据分析结构图

本文利用Matlab软件,将附件中的各指标数据利用程序进行分析以及剔除(详见附录1)。共剔除数据7713组,剩余81553组数据。剔除数据总数小于,

在合理范围之内。

图2:剔除异常数据后的数据分布结构图

在此后的建模过程中,只针对这81553组数据进行分析。

拉依达准则判断粗大误差的基本思想是以给定的置信概率99.73%为标准,以三

倍测量列的标准偏差限为依据,凡超过此界限的误差,就认为它不属于随机误差的范畴,而是粗大误差。含有粗大误差的测量值称为异常值,异常值是不可取的,应该从测量数据中剔除。

用拉依达准则判断和剔除含有粗大误差的异常值时,应先算出等精度独立测量列Xi(i=1,2,…,n)的平均值,残余误差,并按贝塞尔公式算出该测量列的标准偏差S,如果某测量值的残余误差,满足下式,则认为是含有误差的异常值,须剔除不要。该判别式即为拉依达准则

2.2相关方法

评价是基于研究对象的某些属性(指标),将之变为客观客观定量计值或者主观效度的行为。本文介绍几种本文涉及的方法:

(1)统计回归分析法

由于客观事物内部规律的复杂性以及人们认识程度的限制,无法准确的分析实际对象内在的因果关系,因此需要建立合乎机理规律的数学模型。动态测量数据的数学处理问题大多可以转化为回归分析问题。确定变量之间的数学关系式并对其进行可信度检验。根据所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值。并给出这种预测却控制的精确程度。

(2)层次分析法(AHP)

层次分析法指的是将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。它的特点是对复杂决策问题的本质、影响因素及内在关系等进行深入分析后,构建层次结构模型,把决策的思维过程数学化,进而提供一种简单的决策方法。层次分析法的结果合理性较大,在本文中也会有涉及,用以权重的求解。

(3)模糊综合评价法

客观世界中,存在着许多不确定的现象,这种不确定性主要表现在两个方面:一是随机性,二是模糊性。在概率论研究中,通常以在上的取值的分布函数来描述这种随机性。同样,在上取值的隶属函数就描述了事件的模糊性。

模糊数学是描述模糊问题的不可或缺的工具。模糊综合评价同时可以实现模糊识别,模糊分析,模糊聚类以及预测的功能,是一种非常优越的分析方式。由于本题中各指标之间的关系并不明确,其具有模糊性,因此本文主要采用模糊分析来对该问题进行综合评价。

(4)灰色预测法

灰色预测是通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型从而预测事物未来发展趋势的状况。预测某一特征量或达到此特征量的经历时间。

三.模型基本假设

1,假设用户观看视频时,在网络传输速率基本一致的情况下,视频卡顿的出现是随机的;

2,假设卡顿时长与在同一网络环境下,使用客户端观看视频的人数基本成线性的正比关系;

3,经过剔除后的统计数据真实可信且抽样样本能够完全反应总体的特征;

4,假设除网络侧变量和用户体验变量外的其余变量均近似地服从正态分布。

四.基本符号说明

:自变量与因变量间的回归模型系数,;

:子变量与子变量间的回归模型系数,;

模糊综合评价因素集,,各因素,;

相关文档
最新文档