Matlab 曲面插值和拟合

合集下载

Matlab曲线拟合与插值运算

Matlab曲线拟合与插值运算

第五次课Matlab曲线拟合与插值运算一、本次课学习要点1、Matlab曲线拟合与插值运算2、符号表达式二、本次课教学重点利用M文件的Matlab曲线拟合与插值运算三、教学基本内容1、曲线拟合在许多应用领域中,人们经常需要从一系列已知离散点上的数据集[(x1,y1),(x2,y2)],…(x n,y n)]得到一个解析函数y=f (x)。

得到的解析函数f(x)应当在原离散点x i上尽可能接近给定的y i的值。

这一过程称为曲线拟合。

最常用的曲线拟合是最小二乘法曲线拟合。

似合结果可使误差的平方和最小,MATLAB提供的函数polyfit,根据给定的自变量数组x和函数数组y,按照拟合的阶数要求自动求解满足最小二乘意义的一阶或高阶解析函数f(x),使用很方便。

为了说明这个问题,我们取以下函数为例:2-=y⨯25.0xx=0:0.1:1;for i=1:length(x);y(i)=0.5-2*x(i)^2;end显示为:将y值进行一定的修改,输入如下的程序y=[0.52 0.45 0.4 0.35 0.18 0.02 -0.25 -0.4 -0.81 -1.1 -1.5]m=1;fxy1=polyfit(x,y,m)m=2;fxy2=polyfit(x,y,m)y1=polyval(fxy1,x) %多项式求值,x为输入值,fx1为一次拟合出来的多项式y2=polyval(fxy2,x)plot(x,y,'o',x,y1,'k:',x,y2,'k')显示为:2、插值运算与曲线拟合不同,插值运算不是试图找出适合于所有自变量数组x的全局最优拟合函数Y=f(x〕,而是要找到一个解析函数连接自变量相邻的两个点(xi,xi十1),由此还可以找到两点间的数值。

根据自变量的维数不同,插值方法可以分为一维插值y=f(x)和二维插值z=f(x,y)等。

在许多工程问题上,我们只能获得无规律的离散点上的数值,插值可以帮助我们得到近似的连续过程,便于用数学的解析方法对已有数据进行处理和运算,因此是一个很有用的工具。

matlab插值法拟合曲线

matlab插值法拟合曲线

matlab插值法拟合曲线
在MATLAB中,一维插值函数为interp1(),其调用格式为:
Y1=interp1(X,Y,X1,method)。

其中,X、Y是两个等长的已知向量,分别表示采样点和采样值;X1是一个向量或标量,表示要插值的点;method参数用于指定插值方法,常用的取值有以下四种:
1. linear:线性插值,默认方法。

将与插值点靠近的两个数据点用直线连接,然后在直线上选取对应插值点的数据。

2. nearest:最近点插值。

选择最近样本点的值作为插值数据。

3. pchip:分段3次埃尔米特插值。

采用分段三次多项式,除满足插值条件,还需满足在若干节点处相邻段插值函数的一阶导数相等,使得曲线光滑的同时,还具有保形性。

4. spline:3次样条插值。

每个分段内构造一个三次多项式,使其插值函数除满足插值条件外,还要求在各节点处具有连续的一阶和二阶导数。

曲线拟合可以使用cftool工具,首先导入X和Y的数据,然后可以选择残差图和置信区间分布图。

(完整版)Matlab学习系列13.数据插值与拟合

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合实际中,通常需要处理实验或测量得到的离散数据(点)。

插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。

1.如果要求近似函数经过所已知的所有数据点,此时称为插值问题(不需要函数表达式)。

2.如果不要求近似函数经过所有数据点,而是要求它能较好地反映数据变化规律,称为数据拟合(必须有函数表达式)。

插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。

区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。

【拟合】要求得到一个具体的近似函数的表达式。

因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。

当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值)(2)分段线性插值(3)Hermite(4)三次样条插值Matlab 插值函数实现:(1)interp1( ) 一维插值(2)intep2( ) 二维插值(3)interp3( ) 三维插值(4)intern( ) n维插值1.一维插值(自变量是1维数据)语法:yi = interp1(x0, y0, xi, ‘method’)其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。

注:(1)要求x0是单调的,xi不超过x0的范围;(2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;默认为分段线性插值。

例1 从1点12点的11小时内,每隔1小时测量一次温度,测得的温度的数值依次为:5,8,9,15,25,29,31,30,22,25,27,24.试估计每隔1/10小时的温度值。

MATLAB中的曲线拟合与插值

MATLAB中的曲线拟合与插值

MATLAB 中的曲线拟合和插值在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。

对这个问题有两种方法。

在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。

这种方法在下一节讨论。

这里讨论的方法是曲线拟合或回归。

人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。

图11.1说明了这两种方法。

标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。

11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。

所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。

数学上,称为多项式的最小二乘曲线拟合。

如果这种描述使你混淆,再研究图11.1。

虚线和标志的数据点之间的垂直距离是在该点的误差。

对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。

这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。

最小二乘这个术语仅仅是使误差平方和最小00.20.40.60.81-2024681012xy =f (x )Second O rder C urv e Fitting图11.1 2阶曲线拟合在MATLAB 中,函数polyfit 求解最小二乘曲线拟合问题。

为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

» x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; » y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];为了用polyfit ,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。

如果我们选择n=1作为阶次,得到最简单的线性近似。

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。

在Matlab 中,有许多工具和函数可用于处理这些技术。

本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。

一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。

在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。

1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。

它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。

例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。

可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。

polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。

2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。

与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。

例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。

插值是通过已知数据点之间的数值来估计未知位置的数值。

而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。

插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。

interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。

2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。

lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。

3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。

spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。

拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。

polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。

函数返回一个多项式的系数向量p,从高次到低次排列。

通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。

2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。

fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。

MATLAB中的数据插值与拟合方法介绍

MATLAB中的数据插值与拟合方法介绍

MATLAB中的数据插值与拟合方法介绍概述数据处理是科学研究和工程实践中的重要环节之一。

对于实验或观测数据,我们常常需要通过插值和拟合方法来获取更加精确和连续的函数或曲线。

在MATLAB中,有多种方法和函数可以用于实现数据插值和拟合,本文将介绍其中的一些常用方法。

一、数据插值数据插值是指利用有限个数据点,通过某种方法构建一个连续的函数,以实现在这些点之间任意位置的数值估计。

在MATLAB中,常用的数据插值方法有线性插值、多项式插值、三次样条插值等。

1. 线性插值线性插值是最简单的插值方法之一,假设我们有两个数据点 (x1, y1) 和 (x2, y2),要在这两个点之间插值一个新的点 (x, y),线性插值即为连接 (x1, y1) 和 (x2, y2) 这两个点的直线上的点(x, y)。

在MATLAB中,可以通过interp1函数进行线性插值。

2. 多项式插值多项式插值是使用一个低次数的多项式函数来拟合数据的方法。

在MATLAB 中,可以通过polyfit函数进行多项式拟合,然后利用polyval函数来进行插值。

具体的插值效果与所选用的多项式阶数有关。

3. 三次样条插值三次样条插值算法利用相邻数据点之间的三次多项式来拟合数据,从而构成一条光滑的曲线。

在MATLAB中,可以通过spline函数进行三次样条插值。

二、数据拟合除了插值方法外,数据拟合也是处理实验或观测数据的常见方法之一。

数据拟合是指通过选择一个特定的数学模型,使该模型与给定的数据点集最好地拟合。

在MATLAB中,常用的数据拟合方法有多项式拟合、指数拟合、非线性最小二乘拟合等。

1. 多项式拟合在MATLAB中,可以使用polyfit函数进行多项式拟合。

该函数通过最小二乘法来拟合给定数据点集,并得到一个多项式函数。

根据所选用的多项式阶数,拟合效果也会有所不同。

2. 指数拟合指数拟合常用于具有指数关系的数据。

在MATLAB中,可以通过拟合幂函数的对数来实现指数拟合。

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍

Matlab中的插值与拟合方法介绍在数据分析与处理的过程中,插值与拟合是非常重要的工具。

Matlab作为一种常用的数据处理与分析工具,提供了许多插值与拟合函数,方便用户进行数据处理和分析。

本文将介绍Matlab中的插值和拟合方法,并提供相应的示例和应用场景。

一、插值方法1. 线性插值线性插值是最简单的插值方法之一,通过连接已知数据点的直线进行插值。

在Matlab中,可以使用interp1函数进行一维线性插值。

下面以一个简单的例子来说明线性插值的应用:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi)```在这个例子中,已知一组数据点(x, y),要求在x=2.5处的插值结果。

通过interp1函数,可以得到插值结果yi=5。

线性插值适用于数据点较少且近邻点的变化趋势比较明显的情况。

2. 三次样条插值三次样条插值是一种更精确的插值方法,它利用多个小区间的三次多项式进行插值。

在Matlab中,可以使用interp1函数的'spline'选项进行三次样条插值。

以下是一个示例:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi, 'spline')```通过设置'spline'选项,可以得到插值结果yi=5.125。

三次样条插值适用于数据点较多且变化较为复杂的情况。

3. 二维插值除了一维插值,Matlab还提供了二维插值函数interp2,用于处理二维数据的插值问题。

以下是一个简单的二维插值示例:```x = 1:4;y = 1:4;[X, Y] = meshgrid(x, y);Z = X.^2 + Y.^2;xi = 2.5;yi = 2.5;zi = interp2(X, Y, Z, xi, yi)```在这个例子中,首先生成一个二维数据矩阵Z,然后利用interp2函数在给定的坐标(xi, yi)处进行插值,得到插值结果zi=12.25。

数学建模 04第四章Matlab拟合与插值-Matlab教程

数学建模 04第四章Matlab拟合与插值-Matlab教程

x=0:0.1:1; y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; Z=[-0.032 1.883 3.60 5.12 6.45 7.58 8.51 9.25 9.79 10.14 10.3]
lsqcurvefit
输入格式为: (1) x = lsqcurvefit (‘fun’,x0,xdata,ydata); (2) x =lsqcurvefit (‘fun’,x0,xdata,ydata,options); (3) x = lsqcurvefit (‘fun’,x0,xdata,ydata,options,’grad’); (4) [x, options] = lsqcurvefit (‘fun’,x0,xdata,ydata,…); (5) [x, options,funval] = lsqcurvefit (‘fun’,x0,xdata,ydata,…); (6) [x, options,funval, Jacob] = lsqcurvefit (‘fun’,x0,xdata, xdata,ydata,…); 方法一:调用M文件(M文件名为:myfun.m) 1 建立以myfun.m为文件名的M文件 function F = myfun(x,xdata) F = x(1)*sin(xdata)+x(2); 2 建立main.m为文件名的M文件运行此文件 function main xdata = [5;4;6]; ydata = 3*sin([5;4;6])+6; x = lsqcurvefit('myfun',[2 7], xdata, ydata) %x = lsqcurvefit(@myfun,[2 7], xdata, ydata) 结果:x= 3.0000 6.0000

matlab插值曲线拟合解析

matlab插值曲线拟合解析

四种插值方法比较
函数
格式
zi=interp2(x,y,z,xi,yi)
功能
二维插值。Z为由已知点的值组成的 矩阵,参量x与y是与z同维的已知点 的矩阵,且必须是单调的。xi与yi为 需要插值的点。若xi与yi中有在x与y 范围之外的点,则相应地返回NaN。
zi=interp2(z,xi,yi) Interp2
包角系 数
0.91
0.92
0.93
0.95
0.96
0.98
0.99
1
>>a1=[90,100,110,120,125,130,135,140,145,150,155,160,165,170,175,180]; >>a2=[0.69,0.74,0.78,0.82,0.84,0.86,0.88,0.89,0.91,0.92,0.93,0.95,0.96,0.98,0.99 ,1]; >>ka=interp1(a1,a2,133.5) >>ka=0.8740
例4

y
1
1 x2
在[-5,
5]上,
用n=11个等距分点作分段线
性插值和三次样条插值, 用m=21个插值点作图,比较结果.
xy
y1
y2
0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000
例3. 已知实验数据如表。
x
0
0.25 0.50 0.75 1.00
y
0.9162 0.8109 0.6931 0.5596 0.4055
计算插值点x0=0.6处的函数值y0。

matlab曲线拟合,插值

matlab曲线拟合,插值
对于一维曲线的插值和拟合相对比较简单这里就不多说了对于二维曲面的插值和拟合还是比较有意思的而且正好胖子有些数据想让我帮忙处理一下就这个机会好好把二维曲面的插值和拟合总结归纳一下下面给出实例和讲解
南京航空航天大学 matlab 曲线拟合,插值
相关知识
在生产和科学实验中,自变量 与因变量 间的函数关系 有时不能写出解析表达式,而
1、 画出原始数据图; 2、 画出加密后的地貌图,并在图中标出原始数据
二、拟合 曲线拟合
已知离散点上的数据集 ,即已知在点集 上的函数值 ,构造一个解析函数(其图形为 一曲线)使 在原离散点 上尽可能接近给定的 值,这一过程称为曲线拟合。最常用的曲线拟 合方法是最小二乘法,该方法是寻找函数 使得 最小。 MATLAB 函数:p=polyfit(x,y,n)
3
南京航空航天大学 matlab 曲线拟合,插值
92 96 97 98 96 93 95 84 82 81 84 85 85 81 82 80 80 81 85 90 93 95 84 86 81 98 99 98 97 96 95 84 87 80 81 85 82 83 84 87 90 95 86 88 80 82 81 84 85 86 83 82 81 80 82 87 88 89 98 99 97 96 98 94 92 87
x=1900:2010;
y=interp1(year,product,x,'cubic');
plot(year,product,'o',x,y); 计算结果为:p1995=252.9885。
2、二维插值
1
南京航空航天大学 matlab 曲线拟合,插值
已知离散点上的数据集 ,即已知在点集 上的函数值 ,构造一个解析函数(其图形为

MATLAB拟合和插值

MATLAB拟合和插值

MATLAB拟合和插值定义插值和拟合:曲线拟合是指您拥有散点数据集并找到最适合数据⼀般形状的线(或曲线)。

插值是指您有两个数据点并想知道两者之间的值是什么。

中间的⼀半是他们的平均值,但如果你只想知道两者之间的四分之⼀,你必须插值。

拟合我们着⼿写⼀个线性⽅程图的拟合:y=3x^3+2x^2+x+2⾸先我们⽣成⼀组数据来分析:x=-5:0.5:5;e=50*rand(1,length(x))-25;%制造[-25,25]的随机数作为误差y=3*x.^3+2*x.^2+x+2+e;%得到y值plot(x,y,'.')x =Columns 1 through 6-5.0000 -4.5000 -4.0000 -3.5000 -3.0000 -2.5000Columns 7 through 12-2.0000 -1.5000 -1.0000 -0.5000 0 0.5000Columns 13 through 181.0000 1.50002.0000 2.50003.0000 3.5000Columns 19 through 214.0000 4.50005.0000y =Columns 1 through 6-350.0110 -248.6360 -169.3421 -89.5653 -88.2298 -57.7238Columns 7 through 12-32.5505 2.3308 11.5861 9.0123 -0.4538 5.7254Columns 13 through 18-2.1840 30.3596 20.4478 73.2138 88.1756 152.0492Columns 19 through 21236.2809 334.3864 411.0563这时候x,y作为已知数据存在,要求我们拟合x,y的散点图,这时候会⽤到这个函数。

语法p = polyfit(x,y,n)[p,S] = polyfit(x,y,n)[p,S,mu] = polyfit(x,y,n)说明p = polyfit(x,y,n) 返回阶数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最⼩⼆乘⽅式中)。

MATLAB中的插值与拟合方法详解

MATLAB中的插值与拟合方法详解

MATLAB中的插值与拟合方法详解篇一:介绍插值与拟合的概念及应用领域在科学研究和工程应用中,我们经常会遇到需要通过有限个已知数据点来推算出其它位置或数值的问题。

这种问题的解决方法通常可以分为两种:插值和拟合。

插值是指根据已知的离散数据点,在未知位置或数值上推算出一个函数值;而拟合则是根据已知的离散数据点,寻找一个函数模型来近似表示这些数据。

插值方法适用于数据点之间具有明显的数值关系的情况,如各种物理现象的测量数据、曲线绘制等。

拟合方法则适用于数据点之间存在较大离散度或复杂的关联关系的情况,例如统计分析、数据回归、信号处理等。

MATLAB作为一种强大的数值计算和可视化工具,提供了丰富的插值和拟合方法函数,使得我们能够更加高效地进行数据处理和分析。

接下来我们将详细介绍MATLAB中常用的插值和拟合方法。

篇二:插值方法详解插值方法在MATLAB中有多种实现方式,常用的有线性插值、多项式插值和样条插值。

1.线性插值线性插值是一种简单直接的插值方法,在已知的数据点间通过直线的插值来估计未知点的数值。

在MATLAB中,可以使用interp1函数来进行线性插值的计算。

该函数利用输入的数据点和未知点的坐标,返回未知点的插值结果。

2.多项式插值多项式插值是一种通过多项式函数来拟合数据点的插值方法。

MATLAB中的polyfit函数可以用来进行多项式的拟合计算。

这个函数通过最小二乘法来寻找一个多项式函数,使得该函数与给定的数据点最为接近。

3.样条插值样条插值是一种更加精确的插值方法,在MATLAB中可以使用interp1函数的'spline'选项来进行样条插值的计算。

样条插值通过分段函数形式来拟合数据,可以得到更加平滑和连续的插值结果。

篇三:拟合方法详解拟合方法主要有线性拟合、非线性拟合以及多项式拟合等。

1.线性拟合线性拟合是一种基于线性模型的拟合方法,它适用于数据点之间存在明确线性关系的情况。

在MATLAB中,可以使用polyfit函数来进行线性拟合计算。

Matlab插值与拟合教程

Matlab插值与拟合教程

也可由函数给出数据。 例 3:x=1:20,y=x+3*sin(x) 程序: x=1:20; y=x+3*sin(x); p=polyfit(x,y,6) xi=1inspace(1,20,100); z=poyval(p,xi); %多项式求值函数 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’6 阶曲线’) 结果: p= 0.0000 -0.0021 0.0505 -0.5971 3.6472 -9.7295 11.3304
分析:稳健拟合(实线)对数据的拟合程度好些,忽略了异常值。最小二乘拟合(点线)则
受到异常值的影响,向异常值偏移。 6. 6. 向自定义函数拟合 对于给定的数据,根据经验拟合为带有待定常数的自定义函数。 所用函数:nlinfit( ) 调用格式: [beta,r,J]=nlinfit(X,y,’fun’,betao) 说明:beta 返回函数’fun’中的待定常数;r 表示残差;J 表示雅可比矩阵。X,y 为数据; ‘fun’自定义函数;beta0 待定常数初值。 例 6:在化工生产中获得的氯气的级分 y 随生产时间 x 下降,假定在 x≥8 时,y 与 x 之间有如下形式的非线性模型:
MATLAB插值与拟合
§1 曲线拟合
实例:温度曲线问题 气象部门观测到一天某些时刻的温度变化数据为: t 0 1 2 3 4 5 6
7
8
9
10
T 13 15 17 14 16 19 26 24 26 27 29 试描绘出温度变化曲线。 曲线拟合就是计算出两组数据之间的一种函数关系, 由此可描绘其变化曲线及估计非采 集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟 合,最后给出拟合的多项式系数。 1. 1. 线性拟合函数:regress() 调用格式: b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回 X 处 y 的最小二乘拟合值。该函数求解线性模型: y=Xβ+ε β是 p1 的参数向量;ε是服从标准正态分布的随机干扰的 n1 的向量;y 为 n1 的向 量;X 为 np 矩阵。 bint返回β的 95%的置信区间。 r中为形状残差, rint中返回每一个残差的 95%置信区间。 2 Stats向量包含R 统计量、回归的F值和p值。 例 1:设 y 的值为给定的 x 的线性函数加服从标准正态分布的随机干扰值得到。即 y=10+x+ε ;求线性拟合方程系数。 程序: x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1) [b,bint]=regress(y,x,0.05) 结果: x = 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 y = 10.9567 11.8334

Matlab数学建模学习笔记——插值与拟合

Matlab数学建模学习笔记——插值与拟合

Matlab数学建模学习笔记——插值与拟合⽬录插值与拟合插值和拟合的区别图⽚取⾃知乎⽤户yang元祐的回答插值:函数⼀定经过原始数据点。

假设f(x)在某区间[a,b]上⼀系列点上的值y_i=f(x_i),i=0,1,\dots,n。

插值就是⽤较简单、满⾜⼀定条件的函数\varphi(x)去代替f(x)。

插值函数满⾜条件\varphi(x_i)=y_i,i=0,1,\dots,n拟合:⽤⼀个函数去近似原函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最⼩。

插值⽅法分段线段插值分线段插值就是将每两个相邻的节点⽤直线连起来,如此形成的⼀条折线就是就是分段线性插值函数,记作I_n(x),它满⾜I_n(x_i)=y_i,且I_n(x)在每个⼩区间[x_i,x_{i+1}]上是线性函数(i=0,1\dots,n-1)。

I_n(x)可以表⽰为I_n(x)=\sum_{i=0}^n y_il_i(x),其中l_i(x)= \begin{cases} \frac{x-x_{i-1}}{x_i-x_{i-1}},&x\in [x_{i-1},x_i],i \neq 0,\\ \frac{x-x_{i+1}}{x_i-x_{i+1}},&x\in [x_i,x_{i+1}],i \neq n,\\ 0,&其他 \end{cases}I_n(x)有良好的收敛性,即对x\in [a,b],有\lim _{n \rightarrow \infin}I_n(x)=f(x)⽤I_n(x)计算x点的插值的时候,只⽤到x左右的两个点,计算量与节点个数n⽆关。

但是n越⼤,分段越多,插值误差越⼩。

拉格朗⽇插值多项式朗格朗⽇(Lagrange)插值的基函数为\begin{aligned} l_i(x)&=\frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)}\\ &= \prod_{j=0\\j\neq i}^{n} \frac{x-x_j}{x_i -x_j},i=0,1,\cdots,n。

Matlab 曲面插值和拟合

Matlab 曲面插值和拟合

Matlab 曲面插值和拟合插值和拟合都是数据优化的一种方法,当实验数据不够多时经常需要用到这种方法来画图。

在matlab 中都有特定的函数来完成这些功能。

这两种方法的确别在于:当测量值是准确的,没有误差时,一般用插值;当测量值与真实值有误差时,一般用数据拟合。

插值:对于一维曲线的插值,一般用到的函数yi=interp1(X,Y,xi,method) ,其中method包括nearst,linear,spline,cubic。

对于二维曲面的插值,一般用到的函数zi=interp2(X,Y,Z,xi,yi,method),其中method也和上面一样,常用的是cubic。

拟合:对于一维曲线的拟合,一般用到的函数p=polyfit(x,y,n)和yi=polyval(p,xi),这个是最常用的最小二乘法的拟合方法。

对于二维曲面的拟合,有很多方法可以实现,但是我这里自己用的是Spline Toolbox里面的函数功能。

具体使用方法可以看后面的例子。

对于一维曲线的插值和拟合相对比较简单,这里就不多说了,对于二维曲面的插值和拟合还是比较有意思的,而且正好胖子有些数据想让我帮忙处理一下,就这个机会好好把二维曲面的插值和拟合总结归纳一下,下面给出实例和讲解。

原始数据x=[1:1:15];y=[1:1:5];z=[0.2 0.24 0.25 0.26 0.25 0.25 0.25 0.26 0.26 0.29 0.25 0.29;0.27 0.31 0.3 0.3 0.26 0.28 0.29 0.26 0.26 0.26 0.26 0.29;0.41 0.41 0.37 0.37 0.38 0.35 0.34 0.35 0.35 0.34 0.35 0.35;0.41 0.42 0.42 0.41 0.4 0.39 0.39 0.38 0.36 0.36 0.36 0.36;0.3 0.36 0.4 0.43 0.45 0.45 0.51 0.42 0.4 0.37 0.37 0.37];z是一个5乘12的矩阵。

matlab 插值拟合

matlab 插值拟合

matlab 插值拟合插值拟合是一种数值分析方法,用于找到一条通过给定数据点的曲线或曲面。

这个曲线或曲面可以通过插值拟合来近似描述数据点之间的关系。

MATLAB是一个强大的数值计算工具,它提供了一些内置的函数和工具箱来进行插值拟合。

在MATLAB中,可以使用interp1函数进行一维插值拟合,使用interp2函数进行二维插值拟合,使用interp3函数进行三维插值拟合。

这些函数的基本用法如下:1. 一维插值拟合:```x = 0:0.1:1; % 自变量 x 的取值范围y = sin(x); % 因变量 y 的取值xq = 0:0.01:1; % 插值点的取值范围yq = interp1(x, y, xq, 'spline'); % 三次样条插值拟合plot(x,y,'o',xq,yq) % 绘制原始数据点和拟合曲线```2. 二维插值拟合:```[X,Y] = meshgrid(-2:0.25:2); % 自变量 x 和 y 的取值范围Z = X.*exp(-X.^2-Y.^2); % 因变量 z 的取值[Xq,Yq] = meshgrid(-2:0.1:2); % 插值点的取值范围 Zq = interp2(X,Y,Z,Xq,Yq,'cubic'); % 立方插值拟合surf(X,Y,Z); % 绘制原始数据点的三维图像hold on;surf(Xq,Yq,Zq) % 绘制插值拟合的三维图像```3. 三维插值拟合:```[X,Y,Z,V] = flow; % 通过内置的流动数据生成示例数据Xq = -2:0.1:2; % 插值点的取值范围Yq = -2:0.1:2;Zq = -2:0.1:2;Vq = interp3(X,Y,Z,V,Xq,Yq,Zq,'spline'); % 三次样条插值拟合slice(X,Y,Z,V,[-2,0,2], [-2,0,2],[-2,0,2]); % 绘制原始数据点的切片图hold on;slice(Xq,Yq,Zq,Vq,[-2,0,2], [-2,0,2],[-2,0,2]) % 绘制插值拟合的切片图```除了上述基本的插值函数,MATLAB还提供了一些其他的插值拟合函数和工具箱,如scatteredInterpolant、griddedInterpolant和Curve Fitting Toolbox等,用于处理更复杂的插值拟合问题。

曲线的插值与拟合matlab

曲线的插值与拟合matlab

在数学和统计学领域中,曲线的插值与拟合是一项重要的技术,它在数据分析、图像处理、工程计算等领域都有着广泛的应用。

曲线的插值与拟合可以帮助我们从有限的数据点中还原出连续的曲线,以便更好地理解数据的规律和特性。

1. 插值与拟合的概念在开始深入探讨曲线的插值与拟合之前,让我们先来了解一下这两个概念的含义。

插值是指通过已知数据点之间的连续函数,以得到介于已知数据点之间的数据点的值。

而拟合则是指通过已知数据点,找到拟合曲线以最好地逼近这些数据点。

2. 曲线插值的方法在实际操作中,我们可以使用不同的方法进行曲线的插值。

常见的方法包括线性插值、多项式插值、样条插值等。

在Matlab中,有丰富的函数库可以用来进行不同类型的曲线插值,例如interp1, interp2, interpn等,这些函数可以很方便地实现曲线的插值操作。

(1)线性插值线性插值是一种简单直接的插值方法,它通过已知的两个数据点之间的直线来逼近新的数据点。

虽然线性插值操作简单,但在一些情况下并不能很好地逼近数据的真实规律。

(2)多项式插值多项式插值是一种常用的插值方法,它通过已知数据点构造一个多项式函数来逼近数据。

在Matlab中,可以使用polyfit和polyval函数来实现多项式插值操作,通过调整多项式的阶数可以得到不同精度的逼近结果。

(3)样条插值样条插值是一种更加复杂但精确度更高的插值方法,它通过已知的数据点构造出一系列的局部插值函数来逼近数据。

在Matlab中,可以使用spline函数来进行样条插值操作,通过调整插值节点的数量和类型可以得到不同精度的逼近结果。

3. 曲线拟合的方法除了插值方法之外,曲线的拟合也是一种常用的数据处理方法。

在实际操作中,我们可以使用不同的方法来进行曲线的拟合。

常见的方法包括最小二乘法拟合、多项式拟合、非线性拟合等。

在Matlab中,有丰富的函数库可以用来进行不同类型的曲线拟合,例如polyfit, lsqcurvefit, nlinfit等,这些函数可以很方便地实现曲线拟合操作。

MATLAB中的数据插值与曲线拟合技术

MATLAB中的数据插值与曲线拟合技术

MATLAB中的数据插值与曲线拟合技术概述:数据插值和曲线拟合是在科学研究和工程实践中常用的技术手段。

在MATLAB中,有丰富的函数库和工具箱可用于实现各种插值和拟合算法。

本文将介绍MATLAB中的一些常见的数据插值和曲线拟合技术,并分析它们的原理和适用场景。

一、数据插值技术:1. 线性插值:线性插值是最简单且常用的数据插值技术之一,它通过在已知数据点之间的直线上进行插值。

MATLAB中的interp1函数可以实现线性插值,其基本原理是根据已知数据点的横纵坐标值,计算出待插值点的纵坐标值。

2. 拉格朗日插值:在拉格朗日插值中,我们通过一个多项式函数来描述已知数据点之间的曲线。

MATLAB中的polyfit和polyval函数可以帮助我们实现拉格朗日插值。

首先,polyfit函数用于拟合一个多项式函数,然后polyval函数可以根据拟合得到的多项式计算插值点的纵坐标值。

3. 样条插值:样条插值是一种光滑插值技术,通过使用多个低次多项式来拟合数据点之间的曲线。

MATLAB中的spline函数可以实现样条插值。

该函数将已知数据点的横纵坐标传入,然后自动计算出曲线段之间的控制点,并进行插值操作。

二、曲线拟合技术:1. 多项式拟合:多项式拟合是一种常用的曲线拟合技术,它通过拟合一个多项式函数来逼近已知数据点。

MATLAB中的polyfit和polyval函数同样可以应用于多项式拟合,我们可以选择合适的多项式阶次进行拟合。

2. 非线性拟合:有些数据集并不能用简单的多项式函数进行拟合,可能需要更复杂的非线性函数来逼近。

在MATLAB中,我们可以使用curve fitting工具箱中的fit函数来实现非线性拟合。

该函数可以根据给定的模型类型和数据集,自动拟合出最优的曲线。

3. 递归最小二乘拟合:递归最小二乘拟合是一种高级的数据拟合算法,可以有效地处理大型数据集。

MATLAB中的regress函数可以进行递归最小二乘拟合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab 曲面插值和拟合插值和拟合都是数据优化的一种方法,当实验数据不够多时经常需要用到这种方法来画图。

在matlab中都有特定的函数来完成这些功能。

这两种方法的确别在于:当测量值是准确的,没有误差时,一般用插值;当测量值与真实值有误差时,一般用数据拟合。

插值:对于一维曲线的插值,一般用到的函数yi=interp1(X,Y,xi,method) ,其中method包括nearst,linear,spline,cubic。

对于二维曲面的插值,一般用到的函数zi=interp2(X,Y,Z,xi,yi,method),其中method也和上面一样,常用的是cubic。

拟合:对于一维曲线的拟合,一般用到的函数p=polyfit(x,y,n)和yi=polyval(p,xi),这个是最常用的最小二乘法的拟合方法。

对于二维曲面的拟合,有很多方法可以实现,但是我这里自己用的是Spline Toolbox里面的函数功能。

具体使用方法可以看后面的例子。

对于一维曲线的插值和拟合相对比较简单,这里就不多说了,对于二维曲面的插值和拟合还是比较有意思的,而且正好胖子有些数据想让我帮忙处理一下,就这个机会好好把二维曲面的插值和拟合总结归纳一下,下面给出实例和讲解。

原始数据x=[1:1:15];y=[1:1:5];z=[0.2 0.24 0.25 0.26 0.25 0.25 0.25 0.26 0.26 0.29 0.25 0.29;0.27 0.31 0.3 0.3 0.26 0.28 0.29 0.26 0.26 0.26 0.26 0.29;0.41 0.41 0.37 0.37 0.38 0.35 0.34 0.35 0.35 0.34 0.35 0.35;0.41 0.42 0.42 0.41 0.4 0.39 0.39 0.38 0.36 0.36 0.36 0.36;0.3 0.36 0.4 0.43 0.45 0.45 0.51 0.42 0.4 0.37 0.37 0.37];z是一个5乘12的矩阵。

直接用原始数据画图如下:surf(x,y,z)title(’Original data Plot’);xlabel(’X'), ylabel(’Y'), zlabel(’Z'),colormap, colorbar;axis([0 15 0 6 0.15 0.55])先考虑插值,需要用到的函数interp2x1=1:0.2:12;y1=1:0.2:5;[x2,y2]=meshgrid(x1,y1);t11=interp2(x,y,z,x2,y2,’cubic’);surf(x1,y1,t11)title(’After Fit data Plot’); xlabel(’X'), ylabel(’Y'), zlabel(’Z'),colormap, colorbar;axis([0 15 0 6 0.2 0.55])然后考虑拟合,这个稍微复杂一点:ky = 3; knotsy = augknt([0:2.5:13],ky);sp = spap2(knotsy,ky,y,z);yy = 0:.5:12; vals = fnval(sp,yy);coefsy = fnbrk(sp,’c');kx = 5; knotsx = augknt([1:4:5],kx);sp2 = spap2(knotsx,kx,x,coefsy.’);coefs = fnbrk(sp2,’c').’;xv = 1:.25:5; yv = 1:.5:12;values = spcol(knotsx,kx,xv)*coefs*spcol(knotsy,ky,yv).’;surf(yv,xv,values)title(’After Polynal data Plot’);xlabel(’X'), ylabel(’Y'), zlabel(’Z');colormap, colorbar;axis([0 15 0 6 0.2 0.55])图上面的小圆点使用plot3画出来的原始数据点,具体怎么添加的方法我就不多说了。

需要把不等边矩阵转换成等边矩阵然后再画图。

效果从上面三个图上面已经看出来了。

基本上满足了现在画图的要求,如果测量值比较精确,我们选择第二种方法插值法来画图,如果觉得测量值不是很精确需要用拟合的方法的话,那当然用第三种方法了。

关于Spline Toolbox当然还有更多应用,还有就是里面参数设置为什么要这样设,该怎样设要写下来估计再写一整页都写不完,所以还是大家感兴趣的自己去看帮助文档好了,里面有详细介绍。

这里只是告诉大家一种可行的办法,而且经过我自己的测试也确实得到了想要达到的结果。

Matlab是个很强的数学工具,前一段时间我也提到了它在Texture里面做图的应用。

以后会有更多地方用到Matlab,感兴趣的朋友可以和我交流。

^_^附录:Matlab 样条工具箱(Spline ToolBox)【信息来源教师博客】Matlab样条工具箱中的函数提供了样条的建立,操作,绘制等功能;一. 样条函数的建立第一步是建立一个样条函数,曲线或者曲面。

这里的样条函数,根据前缀,分为4类:cs* 三次样条pp* 分段多项式样条,系数为t^n的系数sp* B样条,系数为基函数B_n^i(t)的系数rp* 有理B样条二. 样条操作样条操作包括:函数操作:求值,算术运算,求导求积分等等节点操作:主要是节点重数的调节,设定,修改等等附:样条工具箱函数1. 三次样条函数csapi 插值生成三次样条函数csape 生成给定约束条件下的三次样条函数csaps 平滑生成三次样条函数cscvn 生成一条内插参数的三次样条曲线getcurve 动态生成三次样条曲线2. 分段多项式样条函数ppmak 生成分段多项式样条函数ppual 计算在给定点处的分段多项式样条函数值3. B样条函数spmak 生成B样条函数spcrv 生成均匀划分的B样条函数spapi 插值生成B样条函数spap2 用最小二乘法拟合生成B样条函数spaps 对生成的B样条曲线进行光滑处理spcol 生成B样条函数的配置矩阵4. 有理样条函数rpmak 生成有理样条函数rsmak 生成有理样条函数5. 样条操作函数fnval 计算在给定点处的样条函数值fmbrk 返回样条函数的某一部分(如断点或系数等)fncmb 对样条函数进行算术运算fn2fm 把一种形式的样条函数转化成另一种形式的样条函数fnder 求样条函数的微分(即求导数)fndir 求样条函数的方向导数fnint 求样条函数的积分fnjmp 在间断点处求函数值fnplt 画样条曲线图fnrfn 在样条曲线中插入断点。

fntlr 生成tarylor系数或taylor多项式6. 样条曲线端点和节点处理函数augknt 在已知节点数组中添加一个或多个节点aveknt 求出节点数组元素的平均值brk2knt 增加节点数组中节点的重次knt2brk 从节点数组中求得节点及其重次knt2mlt 从节点数组中求得节点及其重次sorted 求出节点数组的元素在另一节点数组中属于第几个分量aptknt 求出用于生成样条曲线的节点数组newknt 对分段多项式样条函数进行重分布optknt 求出用于内插的最优节点数组chbpnt 求出用于生成样条曲线的合适节点数组(No Ratings Yet)Loading ...2 Responses to “Matlab 曲面插值和拟合”1. #waiting on 14 Nov 2007 at 2:22 pm非常之高手,想请教一下,如果我只有三,四个已知三维坐标的点,能不能做到拟合呢?我用你上面的方法,用surf画了一下,t=csvread(’c:/www/dat/1chang.csv’);x=[t(1,1,1),t(1,4,1),t(1,7,1),t(1,10,1)];y=[t(1,2,1),t(1,5,1),t(1,8,1),t(1,11,1)];z=[t(1,3,1),t(1,6,1),t(1,9,1),t(1,12,1)];surf(x,y,z)title(’Original data Plot’);xlabel(’X’), ylabel(’Y’), zlabel(’Z’),colormap, colorbar;axis equal结果只出来坐标轴,没有任何关于我的点的东西,不知道为什么,希望给与指点2. #yang on 14 Nov 2007 at 3:46 pm并不是数据太少,理论上3点就可以确定一个面,所以不是数据多少的问题,而是数据格式不对,你的坐标可能只是离散的坐标,这样子只能够画三维曲线出来,而不能画面。

你可以试试用plot3应该可以画出你的数据来。

如果你想画曲面,要把数据整理成固定的格式,下面一个简单的例子,希望对你有帮助,你可以看出来,只有四个点也是可以画出曲面来的。

x=[1:1:2]y=[1:1:2][xx,yy]=meshgrid(x,y)z=[4.1,4.2;4.3,4.4]surf(x,y,z)。

相关文档
最新文档