中考数学模拟题及答案1(共8套)

合集下载

备战2023年北京市中考数学全真模拟试卷一(含解析)

备战2023年北京市中考数学全真模拟试卷一(含解析)

黄金卷1(满分100分,考试用时120分钟)一、选择题(本大题共8小题,每小题2分,共16分) 1.下列立体图形中,从正面看得到的图形是圆的是( )A .B .C .D .【答案】D【详解】解:从正面看选项A 中的图形是两个长方形, 从正面看选项B 中的图形是长方形, 从正面看选项C 中的图形是三角形, 从正面看选项D 中的图形是圆, 故选D2.2022年12月28日,第26届长春冰雪节开幕.长春市重点打造的世界级冰雪主题乐园-“长春冰雪新天地”流光溢彩,该园占地超1560000平方米.数字1560000用科学记数法可以表示为( ) A .51.5610⨯ B .61.5610⨯C .415610⨯D .515.610⨯【答案】B【详解】解:61560000 1.5610=⨯, 故选:B .3.如图,AB CD P ,若165∠=︒,则2∠的度数是( )A .65︒B .105︒C .115︒D .125︒【答案】C【详解】解:如图,AB CD ∥Q ,23180∴∠+∠=︒,1365∠=∠=︒Q , 265180∴∠+︒=︒,218065115∴∠=︒−︒=︒,故选:C .4.实数a ,b 在数轴上对应点的位置如图所示,下列结论中正确的是( )A .a b <B .0a b +<C .0a b −>D .0ab >【答案】A【详解】解:根据题意,得21a −<<−,23b <<, ∴12a <<,23b <<,∴a b <,0a b +>,0a b −<,0ab <, ∴选项A 正确,选项B 、C 、D 错误. 故选:A .5.学校新开设了航模、彩绘两个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( ) A .23B .12C .13D .14【答案】B【详解】解:由题意,画树状图如图所示:由图可知,征征和舟舟选择社团共有4种等可能的结果,其中,征征和舟舟选到同一社团的有2种情况,则征征和舟舟选到同一社团的概率是2142P ==. 故选:B .6.若关于x 的方程20x mx n ++=有两个相等的实数根,则方程21x mx n ++=−的根的情况是( ) A .只有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根【答案】D【详解】Q 20x mx n ++=有两个相等的实数根, 24=0m n ∴−,一元二次方程21x mx n ++=−,即2+10x mx n ++=,()222=4=4+1=44=04=40b ac m n m n ∆−−⨯−−−−<,使用方程21x mx n ++=−没有实数根. 故选:D .7.下列图形中,既是中心对称图形又是轴对称图形,且对称轴条数最多的是( )A .B .C .D .【答案】C【详解】解:A .既是中心对称图形又是轴对称图形,有2条对称轴; B .既是中心对称图形又是轴对称图像,有2条对称轴; C .既是中心对称图形又是轴对称图形,有4条对称轴; D .不是中心对称图形,是轴对称图形,有3条对称轴 故选:C8.下面的四个选项中都有两个变量,其中变量y 与变量x 之间的函数关系可以用如图所示的图像表示的是( )A .圆的面积y 与它的半径x ;B .正方形的周长y 与它的边长x ;C .用长度一定的铁丝围成一个矩形,矩形的面积y 与一边长x ;D .小明从家骑车去学校,路程一定时,匀速骑行中所用时间y 与平均速度x ; 【答案】C【详解】解:A 、圆的面积y 与它的半径x 的关系式为2y x π=,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意;B 、正方形的周长y 与它的边长x 的关系式为4y x =,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意;C 、设铁丝的长度为a ,则矩形的面积22122a xy x x ax −=⋅=−+,变量y 与变量x 之间的函数关系可以用如图所示的图像表示,故此选项符合题意;D 、设路程为s ,则所用时间y 与平均速度x 的关系式为sy x=,变量y 与变量x 之间的函数关系不可以用如图所示的图像表示,故此选项不符合题意, 故选:C .二、填空题(本大题共8小题,每小题2分,共16分) 9x 的取值范围是___________. 【答案】2x ≤【详解】解:根据题意,得20x −≥, 解得2x ≤. 故答案为:2x ≤.10.把多项式22369a b ab b −+分解因式的结果是________. 【答案】2(3)b a b −【详解】解:22369a b ab b −+ ()2269b a ab b =−+2(3)b a b =−.故答案为:2(3)b a b −. 11.分式方程3122x xx x−+=−−的解是_____. 【答案】x 53=【详解】解:3122x xx x−+=−−, 去分母得:3﹣x ﹣x =x ﹣2, 解得:x 53=,经检验x 53=是分式方程的解.故答案为:x 53=.12.如图,平面直角坐标系中,若反比例函数()0ky k x=≠的图象过点A 和点B ,则a 的值为______.【答案】32##1.5【详解】解:依题意,将点()1,3A −代入ky x=,得出3k =−, ∴反比例数解析式为3y x =−,当2x =−时,32y =, 即32a =, 故答案为:32.13.为了落实“双减”政策,东营市某学校对初中学生的课外作业时长进行了问卷调查,15名同学的作业时长统计如下表,则这组数据的众数是____________分钟.【答案】70【详解】解:由表可知: ∵6>4>2>2>1,∴这组数据的众数是70分钟.故答案为:70.14.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.【答案】5【详解】解:如图,过D作DE⊥AB于E,△DAE和△DAC中,AD平分∠BAC,则∠DAE=∠DAC,∠DEA=∠DCA=90°,DA=DA,∴△DAE≌△DAC(AAS),∴DE=DC=2,∴△ABD的面积=12×AB×DE=12×5×2=5,故答案为:5;15.如图,ABCD中,连接BD,E是BD上一点,连接AE并延长交CD于F,交BC延长线于点G,若2,3EF FG==,则AE=________.【详解】解:如图,过点E作EH AD∥,∴EFH AFD ∽V V , ∴EH EF AD AF =,即22EH AD AE =+, ∵四边形ABCD 是平行四边形, ∴AD BC ∥,AD BC =, ∴EH BC ∥, ∴DEH DBC ∽V V , ∴EH DEBC BD=, ∵AD BC ∥,∴ADE GBE ∽V V, ∴AE AD DE EG BG BE==, ∴DE AEBD AG=, ∴AE EH AG BC =,即23AE EHAE AD=++, ∴2232AE AE AE =+++,解得:AE =,16.某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】160180【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分) 17.(5分)计算:()20233tan 4512sin 60−+︒+−−︒.【答案】3【详解】解:()20233tan 4512sin 60−+︒+−−︒31122=+−−⨯3=18.(5分)解不等式组()815171062x x x x ⎧+>−⎪⎨−−≤⎪⎩.【答案】2523x −≤< 【详解】8(1)5171062x x x x +−⎧⎪⎨−−≤⎪⎩>①②, 由①式得:253x ≥−; 由②式得:2x ≤; ∴不等式组的解集为:2523x −≤< 19.(5分)先化简,再求值:()()()212323x x x +−+−,其中x 满足23220320x x −−=. 【答案】23210x x −++,2022− 【详解】解:()()()212323x x x +−+−222149x x x =++−+ 23210x x =−++, ∵23220320x x −−=,∴2322032x x −=,即2322032x x −+=−, ∴当23220320x x −−=时, 原式2032102022=−+=−.20.(5分)(1)如图1,三角形ABC 中,试用平行线的知识证明180A B C ∠+∠+∠=︒;(2)如图2,将线段BC折断成BDC的形状,证明D A B C∠=∠+∠+∠.【答案】(1)见解析;(2)见解析【详解】(1)证明:如图,延长BC到D,过点C作CE∥BA,∵BA∥CE,∴∠B=∠1(两直线平行,同位角相等),∠A=∠2(两直线平行,内错角相等),又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).(2)证明:连接AD并延长,如图1,∵∠2=∠1+∠B,∠4=∠3+∠C,∴∠2+∠4=∠1+∠B+∠3+∠C,∴∠BDC=∠A+∠B+∠C.即∠D=∠A+∠B+∠C.∠=∠,21.(6分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE DF=,A D =.AB DC(1)求证:四边形BFCE 是平行四边形;(2)如果7AD =,2DC =,60EBD ∠=︒,那么当四边形BFCE 为菱形时BE 的长是多少? 【答案】(1)见解析 (2)3【详解】(1)证明:AB DC =Q ,AC DB ∴=,在AEC △和DFB △中,AC DB A D AE DF =⎧⎪∠=∠⎨⎪=⎩, ()SAS AEC DFB ∴V V ≌,BF EC ACE DBF ∴=∠=∠,, EC BF ∴∥,∴四边形BFCE 是平行四边形;(2)当四边形BFCE 是菱形时,BE CE =,722AD DC AB CD ====Q ,,, 7223BC ∴=−−=, 60EBD ∠=︒Q ,BE CE =, BEC ∴V 是等边三角形,3BE BC ∴==,∴当四边形BFCE 是菱形时,BE 的长是3.22.(5分)如图,已知直线,5y x =+与x 轴交于点A ,直线y kx b =+与x 轴交于点()10B ,,且与直线5y x =+交于第二象限点()C m n ,.若ABC V 的面积为12.(1)求点A 、点C 的坐标;(2)写出关于x 的不等式5x kx b +>+的解集. 【答案】(1)()5,0A −;点C 坐标为()1,4− (2)1x >−【详解】(1)解:在直线5y x =+中,令0y =,则50x += 解得:5x =−,()5,0A ∴−; ()1,0B Q ,()156AB ∴=−−=, ()C m n Q ,,11631222ABC C S AB y n n =⋅=⨯==V Q . 4n ∴=,Q 点(),C m n 在直线AB 上,54m n ∴+==,1m ∴=−,∴点C 坐标为()1,4−;(2)解:由图象可知,不等式5x kx b +>+的解集为1x >−.23.(6分)某校举办了一次 “成语知识竞赛”,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组各10名学生成绩分布的折线统计图和成绩统计分析表如图所示.(1) =a _____,b =_____;(2)小军同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上”观察表格试分析判断,小军是哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组,但乙组同学不同意他的说法,认为乙组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由. 【答案】(1)6.8,7.5 (2)小军属于甲组学生(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定【详解】(1)解:由题意,得()131657192101 6.810a =⨯⨯+⨯+⨯+⨯+⨯=; 把乙组成绩从低到高排在中间的两个数为7分,8分,故()7827.5b =+÷=. 故答案为:6.8,7.5;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小军的成绩位于小组中上游 ∴小军属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高; ②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.24.(6分)如图,ABC V 是O e 的内接三角形,CD 是O e 的直径,AB CD ⊥于点E ,过点A 作O e 的切线交CD 的延长线于点F ,连接FB .(1)求证:FB 是O e 的切线.(2)若AC =1tan 2ACD ∠=,求O e 的半径. 【答案】(1)见解析 (2)O e 的半径为5.【详解】(1)证明:连接OA OB 、,∵在O e 中,OA OB =,AB CD ⊥于点E , ∴AOF BOF =∠,在OAF △和OBF V 中,OA OB AOF BOF OF OF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS OAF OBF ≌△△. ∴OAF OBF ∠=∠.又∵AF 切O e 于点A ,OA 为O e 半径, ∴OA FA ⊥, ∴90OAF ∠=︒. ∴90OBF ∠=︒. ∴OB FB ⊥于点B . ∴FB 是O e 的切线;(2)解:∵AB CD ⊥,1tan 2ACD ∠=, ∴1tan 2AE ACD CE ∠==, ∴2CE AE =,∵AC =∴222AE CE AC +=,即()(2222AE AE +=,∴4AE =,8CE =,设O e 的半径为r ,则OA OC r ==,8OE r =−, 在Rt AOE △中,222AE EO AO +=,即()22248r r +−=, 解得=5r , ∴O e 的半径为5.25.(5分)跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =−++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______; (2)求满足的函数关系2116y x bx c =−++; (3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离. 【答案】(1)()0,70A ,()40,30P ; (2)21370162y x x =−++; (3)18m【详解】(1)解:70m OA =Q ,落点P 的水平距离是40m ,竖直高度是30m , ()0,70A ∴,()40,30P ;(2)解:把()0,70A ,()40,30P 代入2116y x bx c =−++ 得,270130404016c b c =⎧⎪⎨=−⨯++⎪⎩, 解得,3270b c ⎧=⎪⎨⎪=⎩, 21370162y x x ∴=−++; (3)解:60m OC =Q ,∴设直线BC 的表达式为()600y kx k =+≠,把()40,30P 代入,得304060k =+,解得,34k =−,3604y x ∴=−+,设213,70162M m m m ⎛⎫−++ ⎪⎝⎭到BC 竖直方向上的距离最大,作MN y ∥轴交抛物线和直线BC 于点M 、N ,∴3,604N m m ⎛⎫−+ ⎪⎝⎭,213370601624MN m m m ⎛⎫∴=−++−−+ ⎪⎝⎭21910164m m =−++ ()22213618181016m m =−−+−+ ()21811810164m =−−++ ()2112118164m =−−+ ()2118016m −−≤Q , ∴当18m =时,MN 最大,即水平距离为18m 时,运动员与着陆坡BC 竖直方向上的距离达到最大.26.(6分)在平面直角坐标系xOy 中,点(1,)m −,(4,)n −在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为x t =.(1)当2c =,m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点()()00,1x m x ≠−在抛物线上.若m n c <<,求t 的取值范围及0x 的取值范围. 【答案】(1)抛物线与y 轴的交点坐标为:()0,2, 52x t ==−.(2)522t −<<−,0x 的取值范围043x −<<−.【详解】(1)解:∵2c =,∴抛物线为:22(0)y ax bx a =++>, ∴当0x =,则2y =,∴抛物线与y 轴的交点坐标为:()0,2,∵m n =,∴点(1,)m −,(4,)n −关于抛物线的对称轴对称, ∴抛物线的对称轴为直线14522x t −−===−. (2)∵m n c <<,∴164a b c a b c c −+<−+<, 解得45a b a <<,∴54a b a −<−<−, 而2>0a , ∴5222b a −<−<−,即522t −<<−, ∵点(1,)m −,()()00,1x m x ≠−在抛物线上, ∴抛物线的对称轴为直线012x x −=, ∴015222x −−<<−, 解得:043x −<<−, ∴0x 的取值范围043x −<<−.27.(7分)在Rt ABC V 中,90BAC ∠=︒,AB AC =,P 是直线AC 上的一点,连接BP ,过点C 作CD BP ⊥,交直线BP 于点D .(1)当点P 在线段AC 上时,如图①,求证:BD CD −=;(2)当点P 在直线AC 上移动时,位置如图②、图③所示,线段CD ,BD 与AD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明. 【答案】(1)见解析(2)如图②CD BD −=,如图③CD BD += 【详解】(1)证明:如图1,在BD 上截取BE CD =,90BAC BDC ∠︒∠==Q ,90ABP APB ∴∠+∠=︒,90ACD DPC ∠+∠=︒.APB DPC ∠=∠Q ,ABP ACD ∴∠=∠.又AB AC =,(SAS)ABE ACD ∴V V ≌,AE AD ∴=,BAE CAD ∠=∠.90EAD EAP CAD EAP BAE ∴∠=∠+∠=∠+∠=︒.在Rt AED V 中,22222DE AE AD AD =+=,∴DE =∴BD CD BD BE ED −=−==;(2)解:如图2,CD BD −=. 在CD 上截取CE BD =,连接AE ,由(1)可知△≌△ADB AEC , AE AD ∴=,BAD CAE ∠=∠,90EAD BAE BAD BAE CAE ∴∠=∠+∠=∠+∠=︒,在Rt AED V 中,22222DE AE AD AD =+=,DE ∴=,CD BD CD CE DE ∴−=−==,CD BD ∴−=.如图3,CD BD +=.延长DC 至点E ,使得CE BD =,连接AE ,90BAC BDC ∠︒∠==Q ,180ABD ACD ∴∠+∠=︒,180ACD ACE ∠+∠=︒, ABD ACE ∴∠=∠,在ABD △和ACE △中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩, (SAS)ADB AEC ∴V V ≌,AE AD ∴=,BAD CAE ∠=∠,90EAD CAE CAD BAD CAD ∴∠=∠+∠=∠+∠=︒,在Rt AED V 中,22222DE AE AD AD =+=,DE ∴=,CD BD CD CE DE ∴+=+==.28.(7分)在平面直角坐标系中,对点(),P a b 作如下变换:若a b ≥,作点P 关于y 轴的对称点;若a b <,作点P 关于x 轴的对称点,我们称这种变换为“YS 变换”.(1)点()1,0作“YS 变换”后的坐标为___________;点()3,4−作“YS 变换”后的坐标为___________;(2)已知点()1,2A m m ++,(),1B m ,()1,1C m +,其中01m <<,且点A ,B 作“YS 变换”后对应的点分为M ,N 两点,74MNC S =△,求m 的值. (3)已知点()1,5E ,()5,5F ,在EF 即所在直线上方作等腰直角三角形EFG ,若点1,2P a b ⎛⎫− ⎪⎝⎭,()1,Q a b −作“YS 变换”后对应的点分别为P ',Q ',其中a b <,若点G 在线段P Q ''上,求a 的取值范围. 【答案】(1)()1,0−,()3,4−− (2)12m =(3)322a ≤≤或1162a ≤≤或742a ≤≤【详解】(1)解:∵10> ∴作点关于y 轴轴的对称点∴点()1,0作“YS 变换”后的坐标为()1,0− ∵34−<∴作点关于x 轴轴的对称点∴点()3,4−作“YS 变换”后的坐标为()3,4−−; 故填:()1,0−,()3,4−−. (2)解:∵01m <<,∴()1,2A m m ++作YS -变换后的点为()1,2M m m +−−,(),1B m 作YS -变换后的点为(),1N m − ∴()173124MNC S m =+⨯=△ ∴12m =; (3)解:∵a b <,∴点1,2P a b ⎛⎫− ⎪⎝⎭作YS 变换后的点为1,2P a b ⎛⎫'−− ⎪⎝⎭,点()1,Q a b −作YS 变换后的点为()1,Q a b '−−, ∵在EF 上方作等腰直角三角形EFG V ∴()1,8G 或()5,8G 或()3,7G , 分类讨论如下:①当()1,8G 在线段P Q ''上时,则11112a a −≤⎧⎪⎨−≥⎪⎩, ∴322a ≤≤, ②当()5,8G 在线段P Q ''上时,则15152a a −≤⎧⎪⎨−≥⎪⎩,∴1162a ≤≤,②当()3,7G ,在线段P Q ''上时,则13132a a −≤⎧⎪⎨−≥⎪⎩, ∴742a ≤≤ ∴322a ≤≤或1162a ≤≤或742a ≤≤.。

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1 C.πD.﹣52.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣13.下列图形中,属于轴对称图形的是()A. B. C. D.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A .35° B.30° C.25° D.65°6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元7.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是 DF上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.69.如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.610.已知,矩形ABCD中,E为AB上一定点,F为BC上一动点,以EF为一边作平行四边形EFGH,点G,H分别在CD和AD上,若平行四边形EFGH的面积不会随点F的位置改变而改变,则应满足()A.4AD AE =B.2=AD ABC.2AB AE =D.3AB AE=二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.13.因式分解:322x y xy -=________________.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒--.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.21.求不等式组74252154x x x x -<+⎧⎨-<-⎩的整数解.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:分组频数6070x <≤47080x <≤128090x <≤1690100x <≤请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414)25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(2,0),B(0,1),交反比例函数y=mx(x>0)的图象于点C(3,n),点E是反比例函数图象上的一动点,横坐标为t(0<t<3),EF∥y轴交直线AB于点F,D是y轴上任意一点,连接DE、DF.(1)求一次函数和反比例函数的表达式;(2)当t为何值时,△DEF为等腰直角三角形.26.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线:(2)连接BE,若⊙O的半径长为5,OF=3,求EF的长,27.我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形;(2)理解运用:如图2,已知△ABC为直角三角形,∠ACB=90°,以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG.求证:△ABC与△AEG为偏等积三角形;(3)如图3,四边形ABED△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),已知BE=60m,△ACD的面积为2100m2.计划修建一条经过点C的笔直的小路CF,F 在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.28.如图,二次函数y=﹣16x2+bx+4的图象与x轴交于点A、B与y轴交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A 的对称点为点G,点E运动时,当点G恰好落在直线BC上时,求E点的坐标.答案与解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1C.πD.﹣5【答案】A【解析】【分析】先找出无理数,再比较大小即可求解.【详解】选项中的和π,<2<3<π,,故选:A .【点睛】本题考查了无理数的概念以及实数比较大小的知识,找出选项中的无理数是解答本体的关键.2.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣1【答案】A【解析】【分析】根据同底数幂的除法法则进行计算.【详解】解:原式=()3232a a a a -÷÷-==,故选:A .【点睛】本题主要考查同底数幂的除法,熟练掌握运算方法是解题的关键.3.下列图形中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故本选项不符合;B 、是轴对称图形,故本选项符合;C 、不是轴对称图形,故本选项不符合;D 、不是轴对称图形,故本选项不符合.故选:B .【点睛】本题考查了轴对称图形的概念,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠【答案】D【解析】【分析】由分式与二次根式有意义的条件得函数自变量的取值范围.【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠故选D .【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键.5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A.35°B.30°C.25°D.65°【答案】D【解析】【分析】由平行线的性质:两直线平行,内错角相等直接可得答案.【详解】解:∵m ∥n ,∴∠2=∠ABC +∠1=30°+35°=65°.故选:D .【点睛】本题主要考查平行线的性质,准确判断角的位置关系是解题的关键.6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元【答案】B【解析】【分析】设盈利60%的进价为x 元,亏损20%的进价为y 元,根据销售问题的数量关系建立方程求出其解即可.【详解】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1-20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160-150=10元.故选:B.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价-进价的运用,解答时由销售问题的数量关系建立方程是关键.7.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【答案】B【解析】【分析】连接OE,OF.求出∠EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.6【答案】C【解析】【分析】作AD⊥x轴于D,MN⊥x轴于N,设OA=a,根据题意得到OC=72-a,解直角三角形表示出A、M的坐标,根据反比例函数图象上点的坐标特征得到关于a的方程,解得a,求得A的坐标,即可求得k的值.【详解】解:作AD⊥x轴于D,MN⊥x轴于N,∵四边形OABC是平行四边形,∴OA=BC,AB=OC,OA∥BC,∴∠BCN=∠AOC=60°.设OA=a,由▱OABC的周长为7,∴OC =72-a ,∵∠AOC =60°,1,22OD a AD a ∴==,1,22A a a ⎛⎫∴ ⎪⎝⎭,∵M 是BC 的中点,BC =OA =a ,∴CM =12a ,又∠MCN =60°,1,44CN a MN a ∴==,∴ON =OC +CN =71732424a a a -+=-,7,2443M a a ⎛⎫∴- ⎪⎝⎭,∵点A ,M 都在反比例函数k y x=的图象上,31722244a a a a ⎛⎫∴⋅=-⋅ ⎪⎝⎭,解得a =2,A ∴,1k ∴=⨯=.故选:C .【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质以及解直角三角形,解本题的关键是列出方程求出a 的值.9.如图,直角三角形ACB 中,两条直角边AC =8,BC =6,将△ACB 绕着AC 中点M 旋转一定角度,得到△DFE ,点F 正好落在AB 边上,DE 和AB 交于点G ,则AG 的长为()A.1.4B.1.8C.1.2D.1.6【答案】A【解析】【分析】由勾股定理可求AB=10,由旋转的性质可得∠A=∠D,DM=AM,CM=MF,DE=AB=10,可得AM=MF=CM,可得∠AFC=90°,由锐角三角函数可求AF的长,由直角三角形的性质可求GF的长,即可求AG的长.【详解】解:如图,连接CF,∵AC=8,BC=6,∴AB=,∵点M是AC中点,∴AM=MC=4,∵将△ACB绕着AC中点M旋转一定角度,得到△DFE,∴∠A=∠D,DM=AM,CM=MF,DE=AB=10,∴AM=MF=CM,∴∠MAF=∠MFA,∠MFC=∠MCF,∵∠MAF+∠MFA+∠MFC+∠MCF=180°,∴∠MFA+∠MFC=90°,∴∠AFC=90°,∵12×AB×CF=12×AC×BC,∴CF=24 5,∴AF325 ==,∵∠A=∠D,∠A=∠AFM,∴∠D=∠AFM,又∵∠DFE=90°,∴DG=GF,∠E=∠GFE,∴GF=GE,∴GF=GD=GE=5,∴AG=AF-GF=325-5=75=1.4,故选:A.【点睛】本题考查了旋转的性质,勾股定理,三角形内角和定理,求AF 的长是本题的关键.10.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足()A.4AD AE= B.2=AD AB C.2AB AE = D.3AB AE=【答案】C【解析】【分析】设AB a =,BC b =,BE c =,BF x =,由于四边形EFGH 为平行四边形且四边形ABCD 是矩形,所以AEH CGF ≅△△,BEF DGH ≅△△,根据()2EFGH ABCD AEH EBF S S S S =-+ △△,化简后得()2a c x bc -+,F 为BC 上一动点,x 是变量,()2a c -是x 的系数,根据平EFGH S 不会随点F 的位置改变而改变,为固定值,x 的系数为0,bc 为固定值,20a c -=,进而可得点E 是AB 的中点,即可进行判断.【详解】解:∵四边形EFGH 为平行四边形且四边形ABCD 是矩形,∴AEH CGF ≅△△,BEF DGH ≅△△,设AB a =,BC b =,BE c =,BF x =,∴()2EFGH ABCD AEH EBF S S S S =-+ △△()()11222ab a c b x cx ⎡⎤=---+⎢⎥⎣⎦()ab ab ax bc cx cx =---++ab ab ax bc cx cx=-++--()2a c x bc=-+∵F 为BC 上一动点,∴x 是变量,()2a c -是x 的系数,∵EFGH S 不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴20a c -=,∴2a c =,∴E 是AB 的中点,∴2AB AE =,故选:C .【点睛】本题考查了矩形的性质,平行四边形的性质,掌握矩形的性质是解决本题的关键.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.【答案】75.510⨯【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:755000000 5.510=⨯故答案为:75.510⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】5【解析】【分析】先根据平均数的定义计算出x 的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.13.因式分解:322x y xy -=________________.【答案】()()211xy x x +-【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】32222(1)2(1)(1)x y xy xy x xy x x -=-=+-,故答案为2(1)(1)xy x x +-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】()88-##(-【解析】【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离=512-即可解答.【详解】解:设腰节到脚尖的距离为x cm ,根据题意,得:11762x -=,解得:88x =-,∴腰节到脚尖的距离为(88-)cm ,故答案为:88.【点睛】本题考查黄金分割,熟知黄金分割和黄金数512-=较长线段:全线段是解答的关键.15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.【答案】12【解析】【分析】用黑色部分的总面积除以正方形的面积即可求得概率.【详解】解:∵正方形的面积为2×2=4cm 2,黑色部分的总面积为2cm 2,∴向正方形区域内随机掷点,点落入黑色部分的概率为2142=,故答案为:12.【点睛】本题考查了几何概率,解决本题的关键是掌握概率公式.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.【答案】()04,【解析】【分析】根据点B 、D 的坐标确定出平移规律,再根据平移规律解答即可.【详解】解:∵点()22B --,的对应点为()12D ,,∴平移规律为向右平移3个单位,向上平移4个单位,∴点()30A -,的对应点C 的坐标为()04,.故答案为:()04,.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.【答案】1或3【解析】【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE,∵AF 平分∠DFE,∴DA=AG=2,在Rt △ADF 和Rt △AGF 中,DA AG AF AF=⎧⎨=⎩∴Rt △ADF ≌Rt △AGF (HL)∴DF=FG,∴点E 是BC 边的中点,∴BE=CE=1,1AE GE ∴==∴==∵在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+1)2=(2-DF)2+1,解得:DF=23,∴点F (23,2)把点F 的坐标代入y kx =得:2=23k ,解得k=3②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE∴F (2,2)把点F 的坐标代入y kx =得:2=2k ,解得k=1故答案为:1或3【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质定理,及勾股定理,解题的关键是分两种情况求出k..18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).【答案】①③④【解析】【详解】根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB==4,∴cos∠ABE=ABBE=45,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=ABBE=45,∴PF=PB sin∠PBF=45t,∴当0<t≤5时,y=12BQ•PF=12t•45t=25t2,故③小题正确;当t=294秒时,点P在CD上,此时,PD=294﹣BE﹣ED=294﹣5﹣2=14,PQ=CD﹣PD=4﹣14=154,∴45415334AB BQ AE PQ ===,,∴AB BQ AE PQ=,又∵∠A =∠Q =90°,∴△ABE ∽△QBP ,故④小题正确.综上所述,正确的有①③④.三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒-+-.【答案】1【解析】【分析】先计算特殊角三角函数值,零指数幂,二次根式的化简,然后根据实数的计算法则求解即可.【详解】解:04cos 45(2022)π︒+-412=⨯-1=-1=【点睛】本题主要考查了特殊角三角函数值,零指数幂,二次根式的化简,实数的混合计算,熟知相关计算法则是解题的关键.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.【答案】2x x +;8【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将280x x +-=变形为28x x +=,即可得出值.【详解】解:232121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x ()2213112x x x x x x x 骣++÷ç=-´çç++-桫()()22112x x x x x -+=´+-2x x =+,∵280x x +-=,∴28x x +=,即原式的值为8.【点睛】本题考查了分式的化简求值,熟悉掌握分式混合运算法则是解题的关键.21.求不等式组74252154x x x x-<+⎧⎨-<-⎩的整数解.【答案】35x -<<【解析】【分析】分别求出每个不等式的解集,找出两个解集的公共部分可得不等式组的解集,进而求出不等式组的整数解即可.【详解】74252154x x x x -<+⎧⎨-<-⎩①②解不等式①得:3x >-,解不等式②得:5x <,∴不等式组的解集为:35x -<<.∴不等式组的整数解为:-2,-1,0,1,2,3,4,【点睛】本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F.(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.【答案】(1)见解析(2)EF 的长为3.【解析】【分析】(1)由BE ⊥AD 于点E ,CF ⊥AD 于点F 得∠AEB =∠CFA =90°,而∠BAC =90°,根据同角的余角相等可证明∠B =∠FAC ,还有AB =CA ,即可证明△ABE ≌△CAF ;(2)由△ABE ≌△CAF ,根据全等三角形的性质即可求解.【小问1详解】证明:∵BE ⊥AD 于点E ,CF ⊥AD 于点F ,∴∠AEB =∠CFA =90°,∵∠BAC =90°,∴∠B =∠FAC =90°-∠BAE ,在△ABE 和△CAF 中,AEB CFA B FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAF (AAS );【小问2详解】解:∵△ABE ≌△CAF ,CF =5,BE =2,∴AF =BE =2,AE =CF =5,∴EF =AE -AF =5-2=3,∴EF 的长为3.【点睛】此题考查同角的余角相等、全等三角形的判定与性质等知识,正确理解与运用全等三角形的判定定理是解题的关键.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.【答案】(1)40,72(2)见解析(3)小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为16.【解析】【分析】(1)由成绩在“70<x ≤80”的人数除以所占百分比得出本次知识竞答共抽取七年级同学的人数,即可解决问题;(2)根据成绩在“90<x ≤100”这一组的人数,补全数分布直方图即可解决问题;(3)画树状图,共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,再由概率公式求解即可.【小问1详解】解:本次知识竞答共抽取七年级同学为:12÷30%=40(名),则在扇形统计图中,成绩在“90<x ≤100”这一组的人数为:40-4-12-16=8(名),在扇形统计图中,成绩在“90<x ≤100”这一组所对应的扇形圆心角的度数为:360°×840=72°,故答案为:40,72;【小问2详解】解:将频数分布直方图补充完整如下:【小问3详解】解:画树状图如下:共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,∴小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为21126.【点睛】此题考查的是用树状图法求概率以及频数分布表、频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414≈1.732)【答案】(1)27cm(2)34.6cm【解析】【分析】(1)连接PO,利用垂直平分线的性质得出PA=PO,然后利用勾股定理即可求出PC;(2)过D点作DE⊥OC于E点,过D点作DF⊥PC于F点,根据矩形的性质可知DE=FC,DF=EC,分别在在Rt△DOE和Rt△PDF中利用勾股定理以及锐角三角函数即可求出DE、EO,进而求出PF,即可得解.【小问1详解】连接PO,如图,∵点D为AO中点,且PD⊥AO,∴PD是AO的垂直平分线,∴PA=PO=45cm,∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36(cm),PC===(cm),∴在Rt△POC中,27即PC长为27cm;【小问2详解】过D 点作DE ⊥OC 于E 点,过D 点作DF ⊥PC 于F 点,如图,∵PC ⊥OC ,∴四边形DECF 是矩形,即FC =DE ,DF =EC ,在Rt △DOE 中,∠DOE =180°-∠AOC =180°-120°=60°,∵DO =AD =12AO =12(cm),∴DE =·sin DO DOE ∠=·sin 60DO ︒=(cm),EO =12DO =6(cm),∴FC =DE =cm ,DF =EC =EO +OB +BC =6+24+12=42(cm),∵∠FDO =∠DOE =60°,∠PDO =90°,∴∠PDF =90°-60°=30°,在Rt △PDF 中,PF =·tan 42tan 30423DF PDF ∠=⋅=⨯=o (cm),∴PC =PF +FC =+=,∴PC 34.6cm =≈,即PC 的长度为34.6cm .【点睛】本题考查了解直角三角形的应用、线段垂直平分线的性质、勾股定理、矩形的判定与性质、锐角三角函数等知识,准确作出辅助线构造直角三角形是解题的关键.25.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (2,0),B (0,1),交反比例函数y =m x(x >0)的图象于点C (3,n ),点E 是反比例函数图象上的一动点,横坐标为t (0<t <3),EF ∥y 轴交直线AB 于点F ,D 是y 轴上任意一点,连接DE 、DF .(1)求一次函数和反比例函数的表达式;(2)当t 为何值时,△DEF 为等腰直角三角形.【答案】(1)一次函数表达式为112y x =-+,反比例函数表达式为32y x =-(2)1t =或1103【解析】【分析】(1)先用待定系数法求出一次函数的解析式,则可求出C 点坐标,再利用待定系数法求出反比例函数式即可;(2)分三种情况讨论,即①当∠FDE 为直角时,则△DEF 为等腰直角三角形,根据12DH HE HF EF ===建立方程;②当90EFD ∠=︒时,根据=EF FD 建立方程;③当∠FED 为直角时,和∠FDE 为直角时得到的等式相同;结合t 的范围,分别求出方程的解,即可解决问题.【小问1详解】解:由题意得:201a b b +=⎧⎨=⎩,解得121a b ⎧=-⎪⎨⎪=⎩,∴112y x =-+,∵C 点在一次函数图象上,∴113122n =-⨯+=-,∴132C ⎛⎫- ⎪⎝⎭,,∴13322m xy ⎛⎫==⨯-=- ⎪⎝⎭,∴32y x=-;【小问2详解】由题意得:32E y t =-,112F y t =-+,∴13122F E EF y y t t=-=-++,①如图,当FD ED =时,过D 作DH EF ⊥,∵EDF 是等腰直角三角形,∴2EF DH =,∴131222t t t-++=,整理得:25230t t --=,解得:1t =或35-,∵03t <<,∴1t =;②如图,当90EFD ∠=︒时,=EF FD ,∴13122t t t-++=,整理得:23230t t --=,解得:1103t =或1103,∵03t <<,∴1103t +=;③如图,当90FED ∠=︒时,EF ED =,∵等式同②,∴1103t +=;综上所述,当1t =或13时,DEF 为等腰直角三角形.【点睛】本题主要考查了一次函数的性质、等腰直角三角形的性质、待定系数法求函数表达式等知识点,解题的关键是要注意分类求解,避免有所遗漏.26.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,∠A =2∠BDE ,点C 在AB 的延长线上,∠C =∠ABD .(1)求证:CE 是⊙O 的切线:(2)连接BE ,若⊙O 的半径长为5,OF =3,求EF 的长,【答案】(1)见解析;(2;【解析】【分析】(1)根据圆周角定理和相似三角形的判定和性质即可证明;(2)连接OE ,BE ,AE ,根据圆周角定理和等腰三角形的性质求得∠DFC =∠CBE ,从而可得∠EFB =∠EBF ,于是EF =BE ,再由OB =OE ,可证△OBE ∽△EBF ,即可解答;【小问1详解】证明:如图,连接OE ,。

精品解析:2024年济南市中考数学模拟预测题(一)(解析版)

精品解析:2024年济南市中考数学模拟预测题(一)(解析版)

2024年济南市中考数学模拟试题(一)满分:150分 时间:120分钟一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 倒数的相反数是( )A. B.C. D. 2023【答案】B 【解析】【分析】根据乘积为1的两个数互为倒数,只有符号不同的两个数互为相反数,进行求解即可.【详解】解:倒数的相反数是;故选B .2. 清明节期间某市共接待国内游客约721000人次,将721000用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】根据科学记数法的表示方法:为整数,进行表示即可,确定的值,是解题的关键.【详解】解:;故选C .3. 下列各式计算正确的是( )A. B. C. D. 【答案】A 【解析】【分析】此题考查了合并同类项,根据合并同类项法则判断即可.【详解】解:A .,故选项正确,符合题意;2023-2023-1202312023-2023-12023372110⨯472.110⨯57.2110⨯60.72110⨯10,110,na a n ⨯≤<,a n 572100072110.=⨯220m n nm -+=2242m m m +=22532m m -=2243m n m n mn-=220m n nm -+=B .,故选项错误,不符合题意;C .,故选项错误,不符合题意;D .,故选项错误,不符合题意.故选:A .4. 下列几何体中,其俯视图与左视图完全相同的是( )A. B. C. D.【答案】C 【解析】【分析】本题考查几何体的三视图.根据主视图、左视图、俯视图分别是从物体正面、左面、上面看所得的图形即可判断.【详解】A ,俯视图是带圆心的圆,左视图是等腰三角形,此选项不符合题意;B ,俯视图是矩形,左视图是圆,此选项不符合题意;C ,俯视图、左视图都是正方形,此选项符合题意;D ,俯视图是三角形,左视图是矩形,此选项不符合题意.故选:C .5. 如图,直线,,它的顶点分别在直线上,且,若,则的度数为( )A. B. C. D. 【答案】D 【解析】【分析】本题考查了平行线的性质,根据两直线平行,内错角相等得到,再结合已知即可求出的度数,再根据直角三角形两锐角互余即可求出的度数,解题的关键是熟练掌握平行线的性质:两直线平行,同位角相等; 两直线平行,内错角相等;两直线平行,同旁222m m 2m +=222532m m m -=22243m n m n m n -=a b ∥Rt ,90ABC ABC ∠=︒△A B 、,a b CAB BAE ∠=∠150∠=︒2∠75︒85︒60︒65︒150DAE ∠=∠=︒CAB BAE ∠=∠CAB ∠2∠内角互补.【详解】∵直线,∴,∵,∴,∵,∴故选:.6. 如图,直线与直线交于点,则方程组的解是( )A. B. C. D. 【答案】A 【解析】【分析】本题考查的是二元一次方程和一次函数的关系,两直线的交点就是两直线解析式所组成方程组的解.【详解】解:∵直线与直线交于点,∴方程组的解为.即:方程组的解为.故选:A .a b ∥150DAE ∠=∠=︒CAB BAE ∠=∠25CAB ∠=︒90ABC ∠=︒290902565CAB ∠=︒-∠=︒-︒=︒D 151:33l y x =-2:5l mx ny +=(1,2)A 5315x y mx ny -=⎧⎨+=⎩12x y =⎧⎨=⎩21x y =⎧⎨=⎩12x y =-⎧⎨=-⎩21x y =-⎧⎨=-⎩151:33l y x =-2:5l mx ny +=(1,2)A 51335y x mx ny ⎧=-⎪⎨⎪+=⎩12x y =⎧⎨=⎩5315x y mx ny -=⎧⎨+=⎩12x y =⎧⎨=⎩7. 现有一批苹果,从中抽取20个,测得它们的直径(单位:)如下表所示:直径/74757677787980个数1242632那么这20个苹果直径的众数和中位数分别是( )A. 77,80 B. 77,77C. 78,78D. 78,77【答案】C 【解析】【分析】本题考查了中位数和众数的定义,根据一组数据中出现次数最多的是众数,将一组数据从小到大(或从大到小)排列,处在最中间的数(或最中间两个数的平均数)是中位数,计算即可得出答案,熟练掌握中位数和众数的定义是解此题的关键.【详解】解:由表格可得:20个苹果的直径处在第和第个数据为,出现的次数最多,有次,故中位数为:,众数为,故选:C .8. 九章算术是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少天.已知快马的速度是慢马的倍,求规定时间.设规定时间为天,则可列方程为( )A. B.C.D.【答案】A 【解析】【分析】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.【详解】解:规定时间为天,慢马所需的时间为天,快马所需的时间为天,又快马速度是慢马的倍,可列出方程.故选:A .的mm mm 1011787867878782+=78《》90032x 900900213x x ⨯=+-900900213x x =⨯+-900900213x x =⨯-+900900213x x ⨯=-+ x ∴()1x +()3x - 2∴900900213x x ⨯=+-9. 在同一平面直角坐标系中,函数与(其中m ,n 是常数,)的大致图象可能是( )A. B.C. D.【答案】C 【解析】【分析】本题考查的知识点是一次函数及反比例函数图像与性质,解题关键是结合函数解析式及选项图像判断m ,n 的取值范围是否相符.先根据一次函数图像判断m ,n的取值范围,确定的取值范围后,即可判断反比例函数图像中的m ,n 的取值范围是否一致,从而判断选项是否正确.【详解】A 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,A 选项错误;B 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,B 选项错误;C 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像相符,C 选项正确;D 选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像不符,D 选项错误.故选:C .10. 如图,四边形中,F 是上一点,E 是上一点,连接.若,,,平分,则下列结论中:①;②;③;④垂直平分,正确的个数有( )y mx n =+ny mx=0mn ≠nmy mx n =+0m <0n <0nm>ny mx=0k >y mx n =+0m >0n >0n m >ny mx =0k >y mx n =+0m <0n >0n m <n y mx =0k <y mx n =+0m >0n <0n m <n y mx=0k <ABCD CD BF AE AC DE 、、AB AC =AD AE =80BAC DAE ∠=∠=︒AE BAC ∠ABE ACD △△≌BE EF =100BFD ∠=︒AC DEA. 1个B. 2个C. 3个D. 4个【答案】C 【解析】【分析】本题主要考查的是全等三角形的性质和判定、等腰三角形的性质、四边形的内角和,熟练掌握相关知识是解题的关键.依据可证明,由全等三角形的性质可得到,则,然后依据四边形的内角和为可求得的度数,然后再证明,则依据等腰三角形的性质可得到与的关系.【详解】解:,即,,故①正确,,故③正确.平分,平分.又,平分,是的垂直平分线,故④正确.由已知条件无法证明,故②错误.故选:C.SAS ABE ACD ≌AEB ADC ∠=∠180AEF ADC ∠+∠=︒360︒BFD ∠40EAC DAC ==︒∠∠AC DE BAC DAE ∠=∠ ,BAE EAC DAC EAC∠+∠=∠+∠BAE DAC ∴∠=∠BAE DAC AB AC AE AD ∠==∠= ,,ABE ACD ∴ ≌ABE ACD≌AEB ADC ∴∠=∠180AEB AEF ∠+∠=︒ 180AEF ADC ∴∠+∠=︒180********BFD EAD ∴∠=︒-∠=︒-︒=︒AE BAC ∠40EAC ∴∠=︒80DAE =︒∠ AC ∴EAD ∠AE AD= AC DE ∴⊥AC DE AC ∴DE BE EF =二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.12. 若一个多边形的内角和比外角和大,则这个多边形的边数为______.【答案】【解析】【分析】本题考查了多边形的内角和公式与外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是是解题的关键,根据多边形的内角和公式,外角和等于列出方程求解即可.【详解】解:设多边形的边数是,根据题意得,,解得.故答案为:.13. 在平面直角坐标系中,已知点A 的坐标为,线段轴,且,那么点B 的坐标是__________________.【答案】或【解析】【分析】本题考查了点的坐标;先根据轴得到点B 的纵坐标为,再根据分情况求出点B 的横坐标即可.【详解】解:∵点A 的坐标为,线段轴,∴点B 的纵坐标为,24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-360︒6360︒()2180n -⋅︒360︒n ()2180360360n -⋅︒-︒=︒6n =6()2,8--AB x 6AB =()8,8--()4,8-AB x 8-6AB =()2,8--AB x 8-∵,∴点B 的横坐标为或,即点B 的坐标是或,故答案为:或.14. 关于x 的一元二次方程有两个实数根,则m 的取值范围是___________.【答案】且【解析】【分析】本题考查了一元二次方程根的判别式及一元二次方程的定义.根据一元二次方程的根与有如下关系:①当时,方程有两个不相等的两个实数根;②当时,方程有两个相等的两个实数根;③当时,方程无实数根.及一元二次方程的定义即可得出结果.【详解】解:由题意得:且,即且,解得:且,故答案为:且.15. 某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物,装卸货物共用,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为,两车之间的距离()与货车行驶时间()之间的函数图象如图所示,图中点的坐标为___________【答案】【解析】【分析】本题考查了函数图象;设快递车从甲地到乙地的速度为千米时,根据3小时相距120千米即可6AB =268--=-264-+=()8,8--()4,8-()8,8--()4,8-()()222120m x m x m -+++-=34m ≥2m ≠()200ax bx c a ++=≠24b ac ∆=-0∆>Δ0=Δ0<()()()2214220m m m ∆=+---≥20m -≠22441416160m m m m ++-+-≥20m -≠34m ≥2m ≠34m ≥2m ≠45min 60km /h y km x h B ()3.75,75x /列方程求解,根据条件段所用的时间是45分钟,利用甲和乙之间的距离减去货车行驶的距离即可求得点对应的纵坐标,即可求解.【详解】解:设快递车从甲地到乙地的速度为千米时,则,解得:.则甲、乙两地之间的距离是(千米);快递车返回时距离货车的距离是:(千米),即点的纵坐标为∵装卸货物共用,∴点的横坐标为故答案:.16. 如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,若点为抛物线上一点且横坐标为,点为轴上一点,点在以点为圆心,为半径的圆上,则的最小值______ .##【解析】【分析】先求出点,点,作点关于轴对称的点,则点,连接交与轴于,交于,过点作轴于,连接,当点与点重合,点与点重合时,为最小,最小值为线段的长,然后可在中由勾股定理求出,进而可得,据此可得出答案.【详解】解:对于,当时,,为AB B a /()360120a -=100a =3100300⨯=4530060(37560-+=B 7545min 450.7560=B 3.75()3.75,75234y x x =--+x A B A B y C D 3-E y F A 2DE EF +22-+()4,0A -()3,4D -D y T ()3,4T AE M A N T TH x ⊥H AF E M F N DE EF +TN Rt ATH TA TN 234y x x =--+0y =2340x x --+=解得:,,点的坐标为,对于,当时,,点的坐标为,作点关于轴对称的点,则点,连接交与y 轴于,交于,过点作轴于,连接,当点与点重合,点与点重合时,为最小,最小值为线段的长.理由如下:当点与点不重合,点与点不重合时,根据轴对称的性质可知:,,根据“两点之间线段最短”可知:,即:,,,即:,当点与点重合,点与点重合时,为最小.点,,,,,,在中,,,14x =-21x =∴A ()4,0-234y x x =--+3x =-4y =∴D ()3,4-D y T ()3,4T AE M A N T TH x ⊥H AF E M F N DE EF +TN E M F N DE TE =DE EF TE EF ∴+=+TE EF AF AT ++>TE EF AF TN AN ++>+2AF AN == TE EF TN ∴+>DE EF TN +>∴E M F N DE EF + ()3,4T()4,0A -3OH ∴=4TH =4OA =7AH OA OH ∴=+=Rt ATH 7AH =4TH =由勾股定理得:,.即..【点睛】此题主要考查了二次函数与轴的交点,利用轴对称求最短路线,圆的性质,勾股定理等,解答此题的关键是准确的求出二次函数与轴的交点坐标,难点是确定当为最小时,点,的位置.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤.)17. 计算:【答案】【解析】【分析】本题主要考查了实数的运算,求特殊角三角函数值,零指数幂,负整数指数幂,先计算特殊角三角函数值,,零指数幂,负整数指数幂,再根据实数的运算法则求解即可.【详解】解:.18. 解不等式组,并写出它的所有正整数解.【答案】;1,2,3.【解析】【分析】本题主要考查了解一元一次不等式组,求不等式组的整数解,正确求出每个不等式的解集是解题的关键.先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而求出不等式组的整数解即可.TA ==2TN TA AN ∴=-=-DE EF +2-2-xx DE EF +EF )201tan 6012-⎛⎫︒-+ ⎪⎝⎭3+)201tan 6012-⎛⎫︒-+ ⎪⎝⎭14=+-+3=6341213x x x x +≤+⎧⎪⎨+>-⎪⎩①②14x ≤<【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集为,∴不等式组的所有正整数解有1,2,3.19. 如图,在平行四边形中,的平分线交于点E ,的平分线交于点F .求证:.【答案】见解析【解析】【分析】本题考查了平行四边形的性质、全等三角形的判定与性质以及角平分线定义等知识,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.根据平行四边形性质得,,,则,再证明,然后证明,即可得出结论.【详解】证明:四边形是平行四边形,,,,.平分,平分,,.,在和中,,,6341213x x x x +≤+⎧⎪⎨+>-⎪⎩①②1x ≥4x <14x ≤<ABCD ABD ∠BE AD CDB ∠DF BC AE CF =AB CD =A C ∠=∠AB CD ∥ABD CDB ∠=∠ABE CDF ∠=∠()ASA ABE CDF ≌△△ ABCD AB CD ∴=A C ∠=∠AB CD ∥ABD CDB ∴∠=∠BE ABD ∠DF CDB ∠12ABE ABD ∴∠=∠12CDF CDB ∠=∠ABE CDF ∴∠=∠ABE CDF A C AB CDABE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ABE CDF ∴△△≌.20. 为进一步提升学生数学核心素养,某校拟开展初中数学实践作业成果展示活动,作业项目包括:测量、七巧板、调查活动、无字证明、数学园地设计(分别用字母A ,B ,C ,D ,E 依次表示这五项作业).为了解学生上交的作业项目,现随机调查了若干名学生(每位同学只上交一种作业),并将调查结果绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了______名学生;(2)请根据以上信息直接补全条形统计图;(3)扇形统计图中作业D “无字证明”的圆心角的度数是______度;(4)若参加成果展示活动的学生共有人,请你估计上交A “测量”作业的学生人数.【答案】(1)(2)件解析(3)(4)名【解析】【分析】(1)用项目B 的人数除以其人数占比即可得到答案;(2)先求出项目C 的人数,再补全统计图即可;(3)用乘以项目D 的人数占比即可得到答案;(4)用乘以样本中项目A 的人数占比即可得到答案.【小问1详解】解:名,∴本次共调查了名学生,故答案:;【小问2详解】为AE CF ∴=60012036150360︒6003630%120÷=120120解:项目C 的人数为名,∴补全统计图如下所示:【小问3详解】解:,∴扇形统计图中作业D “无字证明”的圆心角的度数是度,故答案为:;【小问4详解】解:名,∴估计上交A “测量”作业的学生人数为名.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,正确读懂统计图是解题的关键.21. 春节期间,白居寺长江大桥凭借其独特的造型、科幻的氛围、“星际穿越”的视感吸引众多游客纷纷前来打卡拍照.某校数学社团的同学们欲测量白居寺长江大桥桥塔的高度,如图2,他们在桥下地面上架设测角仪(测角仪垂直于地面放置),此时测得白居寺长江大桥桥塔最高点的仰角,然后将测角仪沿方向移动100.5米到达点处,并测出点的仰角,测角仪高度米.(点在同一水平线上,)(1)白居寺长江大桥桥塔的高度约为多少米?(结果保留到个位,参考数据:,1203036121824----=1236036120︒⨯=︒363630600150120⨯=150MB CM A 35ACE ∠=︒MB N A 45ADE ∠=︒1.6CM DN ==M N B ,,AB BM ⊥AB sin 350.57︒≈,)(2)如图3,在(1)问条件下,小明在某大楼处测得白居寺长江大桥桥塔最高点的仰角,最低点的俯角,则小明所在地处与的水平距离约为多少米?(结果保留到个位,参考数据:,,,,,)【答案】(1)2361 (2)141.66【解析】【分析】本题考查解直角三角形的应用,通过仰角俯角问题测量物体高度,熟练掌握锐角三角函数的定义是解答本题的关键.(1)延长,交于点,设, 则,在中, ,可得,在中,,,求出,再根据得出答案;(2)延长交于点,由题意可知,,根据题意可得,设,则,根据,,可得,解得,从而可得的值.【小问1详解】解:如图所示,延长,交于点,由题意得, , 设, 则在中,.cos350.82︒≈tan 350.70︒≈ 1.41≈Q A 18AQG ∠=︒B 53BQG ∠=︒Q AB sin 720.95︒≈cos 720.3︒≈tan 723︒≈sin 370.6︒≈cos370.8︒≈tan 370.75︒≈CD AB F DF x =100.5CF x =+Rt ADF 45ADF ∠=︒AF x =Rt ACF 35ACE ∠=︒tan 350.7100.5AF x CF x ︒==≈+x AB AF BF =+QG AB M QM AB ⊥236.1AB =72,37A B ∠=︒∠=︒AM x =236.1BM x =-tan tan 723QM A AM∠=︒=≈tan tan 370.75QM B BM ∠=∠︒=≈tan 370.75tan 72236.13AM x BM x ︒===︒-47.22x =QM CD AB F 100.5CD MN ==DF BN =90, 1.6AFD CM DN BF ∠=︒===DF x =100.5CF x =+Rt ADF 45ADF ∠=︒在中,, 经检验是原方程的解且符合题意米白居寺长江大桥桥塔的高度约为米;【小问2详解】解:延长交于点,由题意可知,,设,则解得故处与的水平距离约为米22. 如图,在中,,以为直径作交于点E ,连接,.AF x∴=Rt ACF 35ACE ∠=︒tan 350.7100.5AF x CF x ︒==≈+234.5x ∴≈234.5x ≈234.5 1.6236.1AB AF BF ∴=+=+=∴AB 236.1QG AB M QM AB ⊥236.1AB = 18AQG ∠=︒53BQG ∠=︒72,37A B ∴∠=︒∠=︒AM x =236.1BM x=-tan tan 723QM A AM∠=︒=≈ tan tan 370.75QM B BM ∠=∠︒=≈tan 370.75tan 72236.13AM x BM x ︒∴===︒-47.22x =∴tan 7247.223141.66QM AM =⋅︒=⨯=Q AB 141.66Rt ABC △90ACB ∠=︒AD O AB CE CE BC =(1)求证:是的切线;(2)若,,求的半径.【答案】(1)见解析(2)⊙O 的半径为3【解析】【分析】对于(1),连接,先说明,可得,再根据同角的余角相等得,然后根据“等边对等角”得,进而得出,即可得出答案;对于(2),设的半径为r ,根据勾股定理可得,再根据勾股定理用含有r 的式子表示,即可得出关于r 的方程,然后求出解即可.【小问1详解】证明:如图,连接,∵,∴.∵是的直径,∴,∴.∵,∴,∴.∵,∴.CE O 2CD=AB =O OE A B ∠∠=︒+9090DEC CEB ∠+∠=︒A DEC ∠=∠OED ODE ∠=∠90OEC ∠=︒O222(22)(r B C ++=2BC OE 90ACB ∠=︒A B ∠∠=︒+90AD O 90AED DEB ∠=∠=︒90DEC CEB ∠+∠=︒CE BC =B CEB ∠=∠A DEC ∠=∠OE OD =OED ODE ∠=∠∵,∴,即,∴.∵是的半径,∴是的切线;【小问2详解】解:在中,,,设的半径为r ,则,,∴,∴.在中,,∴,∴,∴,∴,解得,或(舍去).∴的半径为3.【点睛】本题主要考查了切线的判定,勾股定理,直径所对的圆周角是直角,等腰三角形的性质,同角的余角相等,勾股定理是求线段长的常用方法.23. 赣南脐橙,江西省赣州市特产,中国国家地理标志产品.某赣南橙种植基地11月20号开始采摘发售,果农根据果实的大小和甜度将赣南橙划分为A 级和B 级两个类别.采摘发售第一周,A 级累计销售19200元,B 级累计销售16000元.已知A 级每箱单价比B 级多,销量比B 级少40箱.(1)赣南橙A 级、B 级每箱售价分别是多少元?(2)某商店计划从该基地购进A 、B 两个等级的赣南橙共40箱,且A 级的数量不少于B 级的数量的.该商店如何购进才能使花费最小,并求出最小花费.【答案】(1)级每箱售价120元,级每箱售价80元(2)购进级10箱,级30箱,花费3600元,此时花费最小【解析】90A ADE ∠+∠=︒90DEC OED ∠+∠=︒90OEC ∠=︒OE CE ⊥OE O CE O Rt ABC △90ACB ∠=︒AB =O OD OE r ==22AC r =+222AC BC AB +=222(22)(r B C ++=Rt OEC △90OEC ∠=︒222OE CE OC +=222(2)r B C r +=+222(2)B C r r =+-2222(22)(2)(r r r +++-=3r =3r =-O 50%13A B A B【分析】本题考查了分式方程的应用以及一次函数的应用,理解题意,列方程及函数关系式是解决问题的关键.(1)设赣南橙级每箱售价元,则级每箱售价元,根据“A 级每箱单价比B 级多,销量比B 级少40箱”列方程即可求解;(2)设购进级箱,则购进级箱,根据“A 级的数量不少于B 级的数量的”列不等式求得的取值范围,再列出函数关系式,根据一次函数的性质即可求解.【小问1详解】解:设赣南橙级每箱售价元,则级每箱售价元,由题意,得:,解得:,经检验,是原方程的解且符合实际意义,则,即:赣南橙级每箱售价120元,级每箱售价80元;【小问2详解】设购进级箱,则购进级箱,则,可得,且为整数,商店购进的花费为,∵,∴随增大而减小,则当时,有最小值,最小值为,即:购进级10箱,级30箱,花费3600元,此时花费最小.24. 如图,一次函数的图象与反比例函数(为常数且)的图象交于,两点.B x A ()150%x +50%B a A ()40a -13a B x A ()150%x +()192001600040150%x x =-+80x =80x =()150%120x +=A B B a A ()40a -01403a a a ≥⎧⎪⎨-≥⎪⎩030a ≤≤a ()1204080404800w a a a =-+=-+400-<w a 30a =w 403048003600w =-⨯+=A B 4y x =+k y x=k 0k ≠()1,A a -B(1)求此反比例函数的表达式及点的坐标;(2)当反比例函数值大于一次函数值时,直接写出的取值范围;(3)在轴上存在点,使得的周长最小,求点的坐标并直接写出的周长.【答案】(1), (2)或 (3)点的坐标为,【解析】【分析】本题主要考查了一次函数与反比例函数综合,轴对称最短路径问题,灵活运用所学知识是解题的关键.(1)先把点坐标代入一次函数解析式求出点的坐标,再把点的坐标代入反比例函数解析式求出反比例函数解析式,再联立一次函数与反比例函数解析式即可求出点的坐标;(2)利用图象法求解即可;(3)如图所示,作点关于轴的对称点,连接交轴于点,此时的值最小,则的周长最小,再求出直线的解析式即可求出点的坐标,由,,,可求出、的值,最后根据的周长为.【小问1详解】解:点在一次函数的图象上,,点,点在反比例函数的图象上,,反比例函数的表达式为,B x y P APB △P APB △3y x=-()3,1B -10x -<<3x <-P 50,2⎛⎫ ⎪⎝⎭A A AB A y A 'BA 'y P PA PB +APB △BA 'P ()1,3A -()3,1B -()1,3A 'AB A B 'APB △PA PB AB A B AB '++=+ ()1,A a -4y x =+∴143a =-+=∴()1,3A - ()1,3A -k y x=∴133k =-⨯=-∴3y x =-联立,解得: 或,;【小问2详解】观察函数图象可知:当或时,一次函数的图象在的图象的下方,当反比例函数值大于一次函数值时,的取值范围为:或;【小问3详解】作点关于轴的对称点,连接交轴于点,此时的值最小,则的周长最小,如图所示.点,点,设直线的表达式为,则,解得:,直线表达式为, 在中,令,则,点,,,,,的周长为.的34y x y x ⎧=-⎪⎨⎪=+⎩13x y =-⎧⎨=⎩31x y =-⎧⎨=⎩∴()3,1B -10x -<<3x <-4y x =+3y x=-∴x 10x -<<3x <-A y A 'BA 'y P PA PB +APB △ ()1,3A -∴()1,3A 'BA '()0y mx n m =+≠331m n m n +=⎧⎨-+=⎩1252m n ⎧=⎪⎪⎨⎪=⎪⎩∴BA '1522y x =+1522y x =+0x =52y =∴50,2P ⎛⎫ ⎪⎝⎭ ()1,3A -()3,1B -()1,3A '∴AB ==A B =='∴APB △PA PB AB A B AB '++=+=+25. 如图1,在矩形中,,点分别是上的中点,过点分别作与交于点,连接.特例感知(1)以下结论中正确的序号有______;①四边形是矩形;②矩形与四边形位似;③以为边围成的三角形不是直角三角形;类比发现(2)如图2,将图1中的四边形绕着点旋转,连接,观察与之间的数量关系和位置关系,并证明你的发现;拓展应用(3)连接,当的长度最大时,①求的长度;②连接,若在内存在一点,使的值最小,求的最小值.【答案】(1)①②;(2)与的夹角是,见解析;(3)①;②【解析】【分析】(1)根据矩形的判定与性质、位似图形的性质以及直角三角形的判定逐个判断即可;(2),连接、,延长、,设交点为N,设、交于点M ,先根据矩形的性质和勾股定理求得,再利用锐角三角函数求得,进而得到,利用位似图形的性ABCD CD ==,E G ,AD AB ,E G ,,EF AD FG AB FG ⊥⊥EF F CF AGFE ABCD AGFE ,,ED CF BG AGFE A BG CF BG CE CE BG ,,AC AF CF ACF △P CP AP ++CP AP ++BG CF =CF BG 30︒AC AF CF BG AC BG 8AC =30BAC ∠=︒AB AC =质得到,进而证明,利用相似三角形的性质和三角形的内角和定理可求解;(3)先根据题意得到当点C 、A 、C 共线时取等号,此时的长度最大,①利用勾股定理求解即可;②将绕着点A 顺时针旋转,且使,连接.同理将绕着点A 顺时针旋转,得到,且使,连接.先证明,得到 ,利用的边角关系得到,然后根据两点之间线段最短得到当C 、P 、K 、L四点共线时,的长最小,过点L 作垂直的延长线于点Q ,可得,在中,根据勾股定理求解即可.【详解】解:(1)∵四边形是矩形,∴∵,∴,∴四边形是矩形,故①正确;∵点分别是上的中点,∴,,即,∴矩形与四边形位似,故②正确;延长交于H ,则四边形、四边形是矩形,∴,,,∴是直角三角形,则以为边围成的三角形是直角三角形,故③错误,故答案为:①②;(2)与的夹角.证明:如图,连接、,延长、,设交点为N ,设、交于点M ,AG AB AF AC ==ACF ABG △∽△CE AP 30︒AK =PK AF 30︒AL AL =LK APF AKL ∽KL =APK △PK AP =CL LO CA 30LAQ ∠=︒Rt CLQ △CL ABCD 90A B BCD D ∠=∠=∠=∠=︒,,EF AD FG AB ⊥⊥90A AGF AEF ∠=∠=∠=︒AGFE ,E G ,AD AB 12AG AB =12AE AD =12AG AE AB AD ==ABCD AGFE GF CD EFHD BCHG HF DE =CH BG =90CHF ∠=︒CHF ,,ED CF BG BG CF =CF BG 30︒AC AF CF BG AC BG∵四边形是矩形,∴,,∴,则,∴,∴由(1)知,矩形与四边形位似,∴,∴,∴,,又,∴;(3)∵,∴当点C 、A 、E 共线时取等号,此时的长度最大,①如图,由(2)知,,,,∵,∴;②如图,将绕着点A 顺时针旋转,且使,连接.同理将绕着点A顺时针旋ABCD AB CD ==4ADBC ==8AC ==1sin 2BC BAC AC ∠==30ACD BAC ∠=∠=︒AB AC ==ABCD AGFE AG AB AF AC ==CAF BAG ∠=∠ACF ABG △∽△BG AB CF AC ==ACF ABG ∠=∠CMN AMB ∠=∠30CNG BAC ∠=∠=︒AC AE CE +≥CE 90CEF ∠=︒10CE AC AE =+=EF =BG CF =CF ==BG ==AP 30︒AK =PK AF转,得到,且使,连接.根据旋转,可得,根据两边对应成比例且夹角相等可得,∴,过P 作于S ,则,,∴,则,∴,∴,∵,即,当C 、P 、K 、L 四点共线时,的长最小,由题意,,,,过点L 作垂直的延长线于点Q ,可得,∴,,则,在中,根据勾股定理得∴的最小值为【点睛】本题是一道压轴题,主要考查了矩形的判定与性质、位似图形的判定与性质、相似三角形的判定与性质、旋转的性质、解直角三角形、等腰三角形的判定、三角形的内角和定理、最短路径等知识,涉及知识点较多,综合性强,熟练掌握相关的知识与联系,适当添加辅助线是解答的关键.26. 如图,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点.30︒AL AL =LK 30PAF KAL FAK ∠=∠=︒-∠APF AKL ∽KL =PS AK ⊥12PS AP =AS AP =KS AK AS AP =-=tan PS PKS KS ∠==30PKS ∠=︒PK AP =CP PK KL CL ++≥CP AP CL ++≥CL 150LAC ∠=︒4AF =8AC =AL =LQ CA 30LAQ ∠=︒QL =6AQ =14CQ AC AQ =+=Rt CLQ △CL ==CP AP ++()240y ax bx a =++≠x ()1,0A -()4,0C y B(1)求该抛物线的解析式以及顶点坐标;(2)若点是抛物线上的一个动点,满足与的面积相等求出点的坐标;(3)若点在第一象限内抛物线上,过点作轴于点,交于点,且满足与相似,求出点的横坐标.【答案】(1), (2) (3)点的横坐标为【解析】【分析】(1)根据题意列方程组,解方程组得到该抛物线的解析式为,由于,于是得到抛物线的解析式的顶点坐标为,;(2)根据点是抛物线上的一个动点,与的面积相等,于是得到,求得点的纵坐标为4,解方程即可得到;(3)设直线的解析式为,解方程得到直线的解析式为,设,则,,根据已知条件得到是等腰直角三角形,是等腰直角三角形,求得,得到,①当时,②当时,根据相似三角形的性质解方程即可得到结论.【小问1详解】抛物线与轴交于、两点,,D ABD △BCD △.D E E EF x ⊥F BC P BFP △CEP △E 325(,24234y x x =-++()3,4D E 2234y x x =-++2232534()24y x x x =-++=--+3(225)4D ABD △BCD △BD AC ∥D (3,4)D BC y kx b =+BC 4y x =-+(,0)F m 2(,34)E m m m -++(,4)P m m -+BOC CPF )CP m =-)BP m =--=BPF CPE ∽BPF EPC ∽ ()240y ax bx a =++≠x ()1,0A -()4,0C 0401644a b a b =-+⎧∴⎨=++⎩解得,该抛物线的解析式为,,抛物线的解析式的顶点坐标为;【小问2详解】抛物线与轴交于点,,点是抛物线上的一个动点,与的面积相等,,点的纵坐标为,当时,即,解得,,;【小问3详解】设直线的解析式为,,解得,直线的解析式为,13a b =-⎧⎨=⎩∴234y x x =-++2232534()24y x x x =-++=--+ ∴325,24⎛⎫ ⎪⎝⎭ 234y x x =-++y B ()0,4B ∴ D ABD △BCD △BD AC ∴∥D ∴44y =2344x x -++=10x =23x =()3,4D ∴BC y kx b =+440b k b =⎧∴⎨+=⎩14k b =-⎧⎨=⎩∴BC 4y x =-+设,则,,,是等腰直角三角形,,,是等腰直角三角形,,,当时,则,,解得,且,当时,则,,解得或不合题意舍去,点的横坐标为.【点睛】本题是二次函数的综合题,考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,待定系数法求函数的解析式,三角形的面积公式,分类讨论是解题的关键.(),0F m ()2,34E m m m -++(),4P m m -+4OB OC == BOC ∴45BCO ∴∠=︒EF AC ⊥ CPF ∴△)4CP m ∴=-)4BP m ∴=-=①BPF CPE ∽PE PC PF PB=23444m m m m-+++-∴=-m =4m =0m > 4m ≠m ∴=②BPF EPC ∽PB PF PE PC==2m =0(m =)∴E 2。

2025年陕西省中考数学模拟试卷试题及答案详解(精校打印)

2025年陕西省中考数学模拟试卷试题及答案详解(精校打印)

2025年陕西中考模拟真题数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、单选题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列实数是无理数的是()AB C .12D .2-2.下列几何体放置在水平面上,其中俯视图是圆的几何体为()A .B .C .D .3.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,1402120∠=︒∠=︒,,则34∠+∠的值为()A .160︒B .150︒C .100︒D .90︒4.如图,墨迹污染了等式中的运算符号,则污染的是()A .+B .-C .×D .÷5.若一次函数(2)1y k x =++的函数值y 随x 的增大而减小,则k 的取值范围()A .2k <-B .2k >-C .0k >D .0k <6.如图,在菱形ABCD 中,延长BC 至点F ,使得2BC CF =,连接AF 交CD 于点E .若2CE =,则菱形ABCD 的周长为()A .12B .16C .20D .247.如图,在O 中,半径OA ,OB 互相垂直,点C 在劣弧A 上.若26BAC ∠=︒,则ABC ∠=()A .17︒B .18︒C .19︒D .20︒8.已知二次函数2(1)5y x =--+,当a x b ≤≤且0ab <时,y 的最小值为2a ,最大值为2b ,则a b +的值为()A .2B .12C .3D .32二、填空题(共5小题,每小题3分,计15分)9小的正整数.10.分解因式:2233m n -=.11.如图,在正五边形ABCDE 内,以CD 为边作等边CDF V ,则BFC ∠的数为.12.已知正比例函数图象与反比例函数图象都经过点()1,2-,那么这两个函数图象必都经过另一个点的坐标为.13.如图,在四边形ABDC 中,90A D ∠=∠=︒,3AC DC ==,5BC =,若点M ,点N 分别在AB 边和CD 边上运动,且AM DN =,连接MN ,则MN 的最小值为.三、解答题(共13小题,计81分,解答应写出过程)14()202441---.15.解方程:32544x x =---.16.解不等式组:322443x x x x ->+⎧⎪-⎨<⎪⎩17.已知:如图,ABC V .求作:以AC 为弦的O ,使O 到AB 和BC的距离相等.18.如图,在矩形ABCD 中,点E ,F 在BC 上,且BE CF =,连接AE DF ,.求证:ABE DCF △≌△.19.《九章算术》中有这样一道题:今有米在十斗桶中,不知其数.满中添粟而舂之,得粟七斗,问故米几何?(粟米之法:粟率五十,粝米三十.)大意为:今有米在容量为10斗的桶中,但不知道数量是多少;再向桶加满粟,再舂成米,共得米7斗.问原来有米多少斗?(出米率为35)请解答上面问题.20.甲、乙、丙三人玩捉迷藏游戏,一人为蒙眼人,捉另外两人,捉到一人,记为捉一次;被捉到的人成为新的蒙眼人,接着捉……一直这样玩(每次捉到一人).请用树状图解决下列问题,(1)若甲为开始蒙眼人,捉两次,求第二次捉到丙的概率;(2)若捉三次,要使第三次捉到甲的概率最小,应该谁为开始蒙眼人?21.电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻1R ,1R 与踏板上人的质量m 之间的函数关系式为1R km b =+(其中k ,b 为常数,0120)m ≤≤,其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻0R 的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为0U ,该读数可以换算为人的质量m .温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式U I R=;②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.图1图2(1)求出1R 与踏板上人的质量m 之间的函数关系式并写出m 的取值范围;(2)求出当电压表显示的读数为2伏时,对应测重人的质量为多少千克?22.如图,某小区内有AB 和CD 两栋家属楼,竖直的移动支架EF 位于两栋楼之间,且高为4m ,点A ,E ,C 在同一条直线上.当移动支架EF 运动到如图所示的位置时,在点F 处测得点B ,D 的仰角分别为45︒、60︒,点A 的俯角为30︒,此时测得支架EF 到楼CD 的水平距离EC 为15m .求两楼的高度差.(结果精确到1m 1.41≈ 1.73≈)23.近日,教育部印发的《2023年全国综合防控儿童青少年近视重点工作计划》明确,要指导地方教育行政部门督促和确保落实学生健康体检制度和每学期视力监测制度,及时把视力监测结果记入儿童青少年视力健康电子档案,并按规定上报全国学生体质健康系统.按照国家视力健康标准,学生视力状况分为:视力正常、轻度视力不良、中度视力不良和重度视力不良四个类别,分别用A,B,C,D表示.某校为了解本校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力状况调查,根据调查结果,绘制了如下尚不完整的统计图.(1)此次调查的学生总人数为______;扇形统计图中,m ______;(2)补全条形统计图.(3)已知重度视力不良的四名学生中,甲、乙为九年级学生,丙、丁分别为七、八年级学生,现学校要从中随机抽取2名学生调查他们对护眼误区和保护视力习惯的了解程度,请用列表法或画树状图法求这2名学生恰好是同年级的概率.24.如图,AB是⊙O的直径,点E在AB的延长线上,AC平分∠DAE交⊙O于点C,AD⊥DE 于点D.(l)求证:直线DE是⊙O的切线.(2)如果BE=2,CE=4,求线段AD的长.25.在山体中修建隧道可以保护生态环境,改善公路技术状态,提高运输效率.某城市道路中一双向行驶隧道(来往方向各一车道,路面用黄色双实线隔开)图片如图所示.隧道的纵截面由一个矩形和一段抛物线构成。

2021年北京市中考数学模拟试卷(含解析)

2021年北京市中考数学模拟试卷(含解析)

2021年北京市中考数学模拟试卷一、选择题(共8小题).1.图中为某几何体的分别从上面、前面、左边看到的三个图形,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥2.随着我国金融科技不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2684亿元.将数据“2684亿”用科学记数法表示()A.2.684×103B.2.684×1011C.2.684×1012 D.2.684×1073.下列说法中,正确的是()A.相等的角是对顶角B.若两条直角被第三条直线所截,则同旁内角互补C.三角形的外角等于两个内角的和D.若三条直线两两相交,则共有6对对顶角4.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.5.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米6.数轴上A,B,C,D四点中,有可能在以原点为圆心,以为半径的圆上的点是()A.点A B.点B C.点C D.点D7.如图,小球从A口往下落,在每个交叉口都有向左或向右两种可能,且可能性相同,则小球最终从E口落出的概率为()A.B.C.D.8.甲、乙两人相约从A地到B地,甲骑自行车先行,乙开车,两人均同一路线上速匀行驶,乙到B地后即停车等甲.甲、乙两人之间的距离y(千米)与甲行驶的时间x(小时)之间的函数关系如图所示,则乙从A地到B地所用的时间为()A.0.25小时B.0.5小时C.1小时D.2.5小时二.填空题(共8小题,满分16分,每小题2分)9.当x时,分式有意义.10.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.11.若的小数部分为a,整数部分为b,则的值为.12.已知,则x﹣y=.13.函数的图象与直线y=x没有交点,那么m的取值范围是.14.△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P 在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为.15.如图,在△ABC中,点D,点E分别是BC,AB的中点,若△AED的面积为1,则△ABC的面积为.16.有一个密码箱,密码由三个数字组成,甲、乙、丙三个人都开过,但都记不清了.甲记得:这三个数字分别是7,2,1,但第一个数字不是7;乙记得:1和2的位置相邻;丙记得:中间的数字不是1.根据以上信息,可以确定密码是.三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:2sin60°+|﹣2|+(﹣1)﹣1﹣18.解一元一次不等式组:.19.先化简,再求值:(1)6x2y(﹣2xy+y3)÷xy2,其中x=2,y=﹣1;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y),其中x=﹣2,y=.20.如图,已知△ABC,∠B=40°,AB=AC.(1)尺规作图:作⊙O,使它经过A,B,C三点;(2)在(1)中所作的⊙O中,∠ACB的平分线CD交⊙O于点D,连接OD,OC,求∠DOC的度数.21.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)OE AE(填<、=、>);(2)求证:四边形OEFG是矩形;(3)若AD=10,EF=4,求OE和BG的长.22.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)请在所给平面直角坐标系中画出这个一次函数的图象并求该一次函数的解析式;(2)当x>1时,对于x的每一个值函数y=mx(m≠0)的值大于一次函数y=kx+b的值,求出m的取值范围.23.已知:如图,△ABC内接于⊙O,过点B作⊙O的切线,交CA的延长线于点E,∠EBC =2∠C.①求证:AB=AC;②若tan∠ABE=(ⅰ)求的值.(ⅱ)求当AC=2时,AE的长.24.小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质:;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k=;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c≤x﹣3的解集:.25.【收集数据】江西中考体育自选项目中有一项是女子1分钟仰卧起坐.某学校为了解该项目的训练情况,在九(1)、(2)两个班各随机抽取了12位女生进行测试,得到测试成绩如下(单位:个):九(1)班:42,56,57,35,54,51,49,55,56,47,40,46九(2)班:32,53,46,38,51,48,40,53,49,56,57,53【整理数据】分组整理,描述这两组数据如表:组别频数32≤x<3737≤x<4242≤x<4747≤x<5252≤x≤57九(1)班112a5九(2)班12135【分析数据】两组数据的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差九(1)班4956b48.2九(2)班48c5058.5(1)a=,b=,c=.(2)若规定成绩在42个及以上为良好,请估计全校480名女生中测试成绩良好的学生有多少人?(3)你认为哪个班的女生1分钟仰卧起坐整体训练的水平较好,请根据以上统计数据,说明你的理由.26.已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象经过点A(﹣3,0)、B (0,3)、C(﹣2,m)三点.(1)若点A为该函数图象的顶点,求m的值;(2)若该函数图象关于直线x=n对称,当﹣3<n<﹣2时,m的取值范围为;(3)该函数图象所经过的象限随着m值的变化而变化,写出函数图象所经过的象限及对应的m的取值范围.27.如图,四边形ABCD中,AB∥CD,CD=AD,∠ADC=60°,对角线BD平分∠ABC 交AC于点P.CE是∠ACB的角平分线,交BD于点O.(1)请求出∠BAC的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由.28.定义:有一个内角等于与其相邻的两个内角之差的四边形称为幸福四边形.(1)已知∠A=120°,∠B=50°,∠C=α,请直接写出一个α的值,使四边形ABCD为幸福四边形;(2)如图1,△ABC中,D、E分别是边AB,AC上的点,AE=DE.求证:四边形DBCE 为幸福四边形;(3)在(2)的条件下,如图2,过D,E,C三点作⊙O,与边AB交于另一点F,与边BC交于点G,且BF=FC.①求证:EG是⊙O的直径;②连接FG,若AE=1,BG=7,∠BGF﹣∠B=45°,求EG的长和幸福四边形DBCE的周长.参考答案一、选择题(共8小题).1.图中为某几何体的分别从上面、前面、左边看到的三个图形,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是正三棱柱.故选:C.2.随着我国金融科技不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2684亿元.将数据“2684亿”用科学记数法表示()A.2.684×103B.2.684×1011C.2.684×1012 D.2.684×107解:将2684亿=268400000000用科学记数法表示为:2.684×1011.故选:B.3.下列说法中,正确的是()A.相等的角是对顶角B.若两条直角被第三条直线所截,则同旁内角互补C.三角形的外角等于两个内角的和D.若三条直线两两相交,则共有6对对顶角解:A、相等的角是对顶角,错误,不符合题意;B、若两条直线被第三条直线所截,则同旁内角互补,错误,不符合题意;C、三角形的外角等于不相邻的两个内角的和,故错误,不符合题意;D、若三条直线两两相交,则共有6对对顶角,故正确,符合题意;故选:D.4.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.解:A、既是中心对称图形,又是轴对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项符合题意;D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:C.5.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米解:∵小明每次都是沿直线前进10米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×10=80(m).故选:B.6.数轴上A,B,C,D四点中,有可能在以原点为圆心,以为半径的圆上的点是()A.点A B.点B C.点C D.点D解:∵4<6<6.25,∴2<<2.5,﹣2.5<﹣<﹣2∴以原点为圆心,以为半径的圆上的点是点A,故选:A.7.如图,小球从A口往下落,在每个交叉口都有向左或向右两种可能,且可能性相同,则小球最终从E口落出的概率为()A.B.C.D.解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E、F、G、H四个,所以,最终从点E落出的概率为.故选:B.8.甲、乙两人相约从A地到B地,甲骑自行车先行,乙开车,两人均同一路线上速匀行驶,乙到B地后即停车等甲.甲、乙两人之间的距离y(千米)与甲行驶的时间x(小时)之间的函数关系如图所示,则乙从A地到B地所用的时间为()A.0.25小时B.0.5小时C.1小时D.2.5小时解:由图像可得:甲骑自行车的速度为10÷1=10千米/小时,乙出发0.25小时追上甲,设乙速度为x千米/小时,0.25x=1.25×10,解得:x=50,∴乙速度为50千米/小时,设追上后到达B地的时间是y,50y﹣10y=10,解得:y=0.25,∴乙从A地到B地所用的时间为0.25+0.25=0.5(小时),故选:B.二.填空题(共8小题,满分16分,每小题2分)9.当x≠﹣时,分式有意义.解:由题意得,2x+3≠0,解得,x≠﹣,故答案为:≠﹣.10.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是n≥0.解:原方程可变形为x2+4x+4﹣n=0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n)≥0,解得:n≥0.故答案为:n≥0.11.若的小数部分为a,整数部分为b,则的值为5.解:∵3<<4,又∵a是的小数部分,b是它的整数部分,∴a=﹣3,b=3,∴=(﹣3)(+3)=14﹣9=5,故答案为5.12.已知,则x﹣y=1.解:,①﹣②得:x﹣y=1,故答案为:113.函数的图象与直线y=x没有交点,那么m的取值范围是m>2.解:∵函数的图象与直线y=x没有交点,∴方程=x无解,方程整理得,x2+m﹣2=0,∴△=0﹣4(m﹣2)<0,解得m>2.故答案为:m>2.14.△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P 在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为 2.25或3.解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),∵点Q的运动速度为3厘米/秒,∴点Q的运动时间为:6÷3=2(s),∴v=4.5÷2=2.25(厘米/秒);若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,∴,解得:v=3;∴v的值为:2.25或3,故答案为:2.25或315.如图,在△ABC中,点D,点E分别是BC,AB的中点,若△AED的面积为1,则△ABC的面积为4.解:∵点E是AB的中点,△AED的面积为1,∴△ABD的面积=△AED的面积×2=2,∵点D是BC的中点,∴△ABC的面积=△ABD的面积×2=4,故答案为:4.16.有一个密码箱,密码由三个数字组成,甲、乙、丙三个人都开过,但都记不清了.甲记得:这三个数字分别是7,2,1,但第一个数字不是7;乙记得:1和2的位置相邻;丙记得:中间的数字不是1.根据以上信息,可以确定密码是127.解:∵三个数字分别是7,2,1,但第一个数字不是7,∴第一个数为1或2,∵1和2的位置相邻,∴前两个数字是1,2或2,1,第三位是数字7,∵中间的数字不是1,∴第一个数字只能是1,第二个数字为2,即密码为127,故答案为127.三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:2sin60°+|﹣2|+(﹣1)﹣1﹣解:原式=2×+2﹣﹣1+2=+2﹣﹣1+2=3.18.解一元一次不等式组:.解:,由①得:x<,由②得:x≤﹣1,则不等式组的解集为x≤﹣1.19.先化简,再求值:(1)6x2y(﹣2xy+y3)÷xy2,其中x=2,y=﹣1;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y),其中x=﹣2,y=.解:(1)6x2y(﹣2xy+y3)÷xy2,=(﹣12x3y2+6x2y4)÷xy2=﹣12x2+6xy2,当x=2,y=﹣1时,原式=﹣12×22+6×2×(﹣1)2=﹣36;(2)(x+2y)(x﹣2y)+(x﹣2y)2﹣(6x2y﹣2xy2)÷(2y)=x2﹣4y2+x2﹣4xy+4y2﹣3x2+xy=﹣x2﹣3xy,当x=﹣2,y=时,原式=﹣(﹣2)2﹣3×(﹣2)×=﹣4+3=﹣1.20.如图,已知△ABC,∠B=40°,AB=AC.(1)尺规作图:作⊙O,使它经过A,B,C三点;(2)在(1)中所作的⊙O中,∠ACB的平分线CD交⊙O于点D,连接OD,OC,求∠DOC的度数.解:(1)如图,⊙O即为所求;(2)∵AB=AC,∴∠ACB=∠B=40°,∵CD是∠ACB的平分线,∴∠ACB=2∠ACD=40°,∴∠AOD=2∠ACD=40°,∠AOC=2∠B=80°,∴∠DOC=∠AOD+∠AOC=120°.答:∠DOC的度数为120°.21.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)OE=AE(填<、=、>);(2)求证:四边形OEFG是矩形;(3)若AD=10,EF=4,求OE和BG的长.【解答】(1)解:∵四边形ABCD是菱形,∴AC⊥BD,∵E是AD的中点,∴OE=AD=AE,故答案为:=;(2)证明:∵四边形ABCD是菱形,∴OB=OD,∵E是AD的中点,∴OE是△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴平行四边形OEFG是矩形;(3)解:∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF===3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.22.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)请在所给平面直角坐标系中画出这个一次函数的图象并求该一次函数的解析式;(2)当x>1时,对于x的每一个值函数y=mx(m≠0)的值大于一次函数y=kx+b的值,求出m的取值范围.解:(1)∵一次函数y=kx+b(k≠0)的图象由直线y=x平移得到,∴k=1,将点(1,2),解得b=1,∴一次函数的解析式为y=x+1;(2)把点(1,2)代入y=mx求得m=2,∵当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x+1的值,∴m≥2.23.已知:如图,△ABC内接于⊙O,过点B作⊙O的切线,交CA的延长线于点E,∠EBC =2∠C.①求证:AB=AC;②若tan∠ABE=(ⅰ)求的值.(ⅱ)求当AC=2时,AE的长.解:①∵BE为圆O的切线,BA为圆的弦,∴∠EBA为弦切角,∴∠EBA=∠C,又∠EBC=2∠C,∴∠EBC=2∠EBA,∴∠ABC=∠C,∴AB=AC;②(i)连接OA.∵AB=AC,∴=,∴OA⊥BC,∴D为BC的中点,即BD=CD,∵tan∠ABE=,∠EBA=∠ABC,∴tan∠ABC=,在Rt△ABD中,tan∠ABC==,设AD=k,则BD=2k,BC=4k,在△ABD中,∠ADB=90°,根据勾股定理得:AB==k,则==;(ii)在Rt△ADC中,AC=AB=2,tan∠ABE=tan C==,设AD=x,DC=2x,根据勾股定理得:x2+(2x)2=22,解得:x=,∴BC=2DC=4x=,∵∠EBA=∠C,∠E=∠E,∴△AEB∽△BEC,∴====,∴BE=AE,又∵=,即BE2=AE•CE,∴(AE)2=AE(AC+AE)=AE(2+AE),整理得:AE2=2AE+AE2,解得:AE=.24.小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为y=|x2﹣4x|﹣3;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质:函数关于x=2对称;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k=1;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c≤x﹣3的解集:0或3≤x≤5.解:(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,∴y=|x2﹣4x|﹣3,故答案为y=|x2﹣4x|﹣3.(2)如图:函数关于x=2对称;(3)①当x=2时,y=1,∴k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点,故答案为1;②y=x﹣3与y=x2﹣4x﹣3的交点为x=0或x=5,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为3≤x≤5,故答案为0或3≤x≤5.25.【收集数据】江西中考体育自选项目中有一项是女子1分钟仰卧起坐.某学校为了解该项目的训练情况,在九(1)、(2)两个班各随机抽取了12位女生进行测试,得到测试成绩如下(单位:个):九(1)班:42,56,57,35,54,51,49,55,56,47,40,46九(2)班:32,53,46,38,51,48,40,53,49,56,57,53【整理数据】分组整理,描述这两组数据如表:组别频数32≤x<3737≤x<4242≤x<4747≤x<5252≤x≤57九(1)班112a5九(2)班12135【分析数据】两组数据的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差九(1)班4956b48.2九(2)班48c5058.5(1)a=3,b=50,c=53.(2)若规定成绩在42个及以上为良好,请估计全校480名女生中测试成绩良好的学生有多少人?(3)你认为哪个班的女生1分钟仰卧起坐整体训练的水平较好,请根据以上统计数据,说明你的理由.解:(1)a=12﹣(1+1+2+5)=3,将九(1)班成绩重新排列为:35,40,42,46,47,49,51,54,55,56,56,57,∴其中位数b==50,九(2)班成绩的众数c=53,故答案为:3,50,53;(2)估计全校480名女生中测试成绩良好的学生有480×=380(人);(3)由表可知,九(1)班成绩的平均数大于九(2)班,方差小于九(2)班,所以九(1)的仰卧起坐的成绩比九(2)班好,且成绩稳定.26.已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象经过点A(﹣3,0)、B (0,3)、C(﹣2,m)三点.(1)若点A为该函数图象的顶点,求m的值;(2)若该函数图象关于直线x=n对称,当﹣3<n<﹣2时,m的取值范围为;(3)该函数图象所经过的象限随着m值的变化而变化,写出函数图象所经过的象限及对应的m的取值范围.解:(1)根据题意,定点(﹣3,0).∴设抛物线为:y=a(x+3)2.将B(0,3)代入,得:3=a(0+3)2.∴a=.∴y=(x+3)2.当x=﹣2时,y=.∴m=.(2)将A(﹣3,0)、B(0,3)代入抛物线得:.∴b=3a+1.当x=﹣2时,m=4a﹣2b+c=4a﹣2(3a+1)+3=﹣2a+1.抛物线的对称轴为:,则n=.∴.解得:.且a≠0∵m=﹣2a+1.∴.故答案为:.(3)由(2)知:b=3a+1,对称轴x=.∵二次函数中a≠0.∴m=﹣2a+1≠1当二次函数开口向下,即:a<0,函数图象过一、二、三、四象限,则m=﹣2a+1>1,即m>1.当二次函数开口向上,即:a>0,此时m=﹣2a+1<1,分两种情况:①二次函数与x轴只有一个交点,即对称轴为x=﹣3,图象经过一、二象限.此时a=,m=﹣2a+1=.②二次函数与x轴两个交点,即:,图象经过一、二、三象限,此时m=﹣2a+1.综上:当m>1时,图象经过一、二、三、四象限;当,图象经过一、二、三象限;当m=时,图象经过一、二象限.27.如图,四边形ABCD中,AB∥CD,CD=AD,∠ADC=60°,对角线BD平分∠ABC 交AC于点P.CE是∠ACB的角平分线,交BD于点O.(1)请求出∠BAC的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由.【解答】(1)解:∵CD=AD,∠ADC=60°,∴△ACD为等边三角形,∵AB∥CD,∴∠ACD=60°,∴∠BAC=∠ACD=60°;(2)证明:在BC上截取BF=BE,∵BD平分∠ABC,∴∠EBO=∠OBF,∵OB=OB,∴△BEO≌△BFO(SAS),∴∠BOE=∠BOF,∵∠BAC=60°,CE是∠ACB的角平分线,∴∠OBC+∠OCB=60°,∴∠POC=∠BOE=60°,∴∠COF=60°,∴∠COF=∠POC,又∵OC=OC,∠OCP=∠OCF,∴△CPO≌△CFO(ASA),∴CP=CF,∴BC=BF+CF=BE+CP.28.定义:有一个内角等于与其相邻的两个内角之差的四边形称为幸福四边形.(1)已知∠A=120°,∠B=50°,∠C=α,请直接写出一个α的值20°或70°或170°或155°(写一个即可),使四边形ABCD为幸福四边形;(2)如图1,△ABC中,D、E分别是边AB,AC上的点,AE=DE.求证:四边形DBCE 为幸福四边形;(3)在(2)的条件下,如图2,过D,E,C三点作⊙O,与边AB交于另一点F,与边BC交于点G,且BF=FC.①求证:EG是⊙O的直径;②连接FG,若AE=1,BG=7,∠BGF﹣∠B=45°,求EG的长和幸福四边形DBCE的周长.【解答】(1)解:∵∠A=120°,∠B=50°,∠C=α,∴∠D=360°﹣120°﹣50°﹣α=190°﹣α,若∠A=∠B﹣∠D,则120°=50°﹣(190°﹣α),解得:α=260°(舍),若∠A=∠D﹣∠B,则120°=(190°﹣α)﹣50°,解得:a=20°,若∠B=∠A﹣∠C,则50°=120°﹣α,解得:α=70°,若∠B=∠C﹣∠A,则50°=α﹣120°,解得:α=170°,若∠C=∠B﹣∠D,则α=50°﹣(190°﹣α),无解,若∠C=∠D﹣∠B,则α=(190°﹣α)﹣50°,解得:α=70°,若∠D=∠A﹣∠C,则190°﹣α=120°﹣α,无解,若∠D=∠C﹣∠A,则190°﹣α=α﹣120°,解得:α=155°,综上,α的值是20°或70°或170°或155°(写一个即可),故答案为:20°或70°或170°或155°(写一个即可);(2)证明:如图1,设∠A=x,∠C=y,则∠B=180°﹣x﹣y,∵AE=DE,∴∠ADE=∠A=x,∴∠BDE=180°﹣x,在四边形DBCE中,∠B=180°﹣x﹣y=∠BDE﹣∠C,∴四边形DBCE为幸福四边形;(3)①证明:如图2,∵D、F、G、E四点都在⊙O上,∴∠ADE=∠FGE,∵∠ADE=∠A,∴∠FGE=∠A,∵∠FGE=∠ACF,∴∠A=∠ACF,∵BF=CF,∴∠B=∠BCF,∵∠A+∠B+∠BCA=180°,∴∠ACF+∠BCF=90°,即∠ACB=90°,∴EG是⊙O的直径;②如图3,过E作EH⊥AB于H,连接DG,∵BF=CF,∴∠B=∠BCF=∠BDG,∴BG=DG=7,∵EG是⊙O的直径,∴∠GDE=90°,∵DE=AE=1,∴EG==5,∵∠BGF﹣∠B=45°,∠BGF﹣∠BCF=∠CFG,∴∠CFG=∠CEG=45°,∴△ECG是等腰直角三角形,∴CE=CG=5,∴BC=7+5=12,AC=5+1=6,∴AB===6,∵∠AHE=∠ACB=90°,∠A=∠A,∴△AHE∽△ACB,∴,即,∴AH=,∵AE=DE,EH⊥AD,∴AD=2AH=,∴幸福四边形DBCE的周长=BD+ED+CE+BC =6﹣+1+5+12=18+.。

2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)

2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)

2024年辽宁省部分学校中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”.如:粮库把运进30吨粮食记为“+30”,则“−30”表示( )A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食2.下列计算正确的是( )A. a2⋅a3=a6B. (−a3b)2=−a6b2C. a6÷a3=a2D. (a2)3=a63.估计6的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间4.如图所示的三棱柱的展开图不可能是( )A.B.C.D.5.关于x的一元二次方程x2+mx−8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的( )A. 南偏西70°方向B. 南偏东20°方向C. 北偏西20°方向D. 北偏东70°方向7.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A. 点数的和为1B. 点数的和为6C. 点数的和大于12D. 点数的和小于138.下列命题中,是真命题的是( )A. 平行四边形是轴对称图形B. 对角线互相垂直的四边形是菱形C. 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上D. 在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形9.今年2月,某班准备从《在希望的田野上》、《我和我的祖国》、《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是( )A. 12B. 13C. 23D. 110.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题:本题共5小题,每小题3分,共15分。

最新九年级中考数学模拟试题 及答案 (1)

最新九年级中考数学模拟试题 及答案 (1)

九年级数学模拟题(一)(考试时间120分钟,试卷满分150分)一、选择题(本大题共10个小题,每小题3分,共30分)1、-2的倒数是()A.2 B.-21C.21D.-22、左下图为主视方向的几何体,它的俯视图是()3、下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D4、下列运算正确的是()A、x2x3 =x6B、(-2x)2 =4x2C、x2+x2=2x4D、(-2x)2 (-3x )3=6x55、下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.6、下列方程中是关于x的一元二次方程的是()A.(x-1)(x+2)=1 B.ax2+bx+c=0C.x2+21x=0 D.3x3-2xy-5y2=07、如图,四边形P AOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形P AOB的形状、大小随之变化,则P A2+PB2的值A.逐渐变大B.逐渐变小C.不变D.不能确定8、如图,A是反比例函数y=xk图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则K的值为()(第8题)ABP xyOA .1B .2C .3D .49、某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ( )A .205.0420420=--x x B .204205.0420=--x x C .5.020420420=--x x D .5.042020420=--xx10、已知二次函数2y ax bx c =++ ()0a ≠ 的图像,如图所示,有下列5个结论: ⑴0abc >; ⑵b a c <+;⑶420a b c ++>;⑷23c b <;⑸()a b m am b +>+,()1m ≠的实数.其中,正确结论的个数为( )A .4B .3C .2D .1二、填空题(本大题共8个小题,每小题3分,共24分) 11、要使式子aa 2+有意义,则a 的取值范围为_________. 12、根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过8000000人次,试用科学记数法表示8000000= .13、若m 2-5m +2=0,则2m 2-10m +2012= .14、如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于 .15、如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到C B A ''的位置.若BC 的长为15cm ,那么顶点A •从开始到结束所经过的路径长为 ㎝.16、如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两动点,且总使AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF = __________.17、如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .18、在直角坐标系中,直线y =x +1与y 轴交于点A 1, 按 如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…, 点A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在 x 轴上,图中阴影部分三角形的面积从左到右依次记 为S 1、S 2、S 3、…S n ,则S n 的值为____________ (用含n 的代数式表示,n 为正整数).三、解答题(本大题共2个题,第19题10分,第20题12分,共22分)19、先化简,再求值:4441x 1122++-÷x x x )--(,其中1311+⎪⎭⎫ ⎝⎛=-x20、如图,在平面直角坐标系中,已知点(42)B ,,BA x ⊥轴于A .(1)画出将△OAB 绕原点旋转180°后所得的△OA 1B 1,并写出 点A 1、B 1的坐标;(2)将△OAB 平移得到△O 2A 2B 2,点A 的对应点是A 2,点B 的对应点B 2的坐标为(22)-,在坐标系中作出△O 2A 2B 2,并写出点O 2、A 2的坐标;(3)△OA 1B 1与△O 2A 2B 2成中心对称吗?若是,找出对称中心,并写出对称中心的坐标.四、解答题(本大题共2个题,每题10分,共20分)21、有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2,B 布袋中有三个完全相同的小球,分别标有数字-l ,-2和-3.小强从A 布袋中随机取出一个小球,记录其标有的数字为a ,再从B 布袋中随机取出一个小球,记录其标有的数字为b ,这样就确定点Q 的一个坐标为OxAB11 y(a,b).⑴用列表或画树状图的方法写出点Q的所有可能坐标;⑵求点Q落在直线y=x-3上的概率、22、数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(3≈1.73要求结果精确到0.1m)五、解答题(本大题共12分)23、如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.六、解答题(本大题14分)24、某书店正在销售一种课外读本,进价12元/本,售价20元/本,为了促销,书店决定凡是一次购买10本以上的客户,每多买一本,售价就降低0.10元,但最低价为16元/本.(1)客户一次至少买多少本,才能以最低价购买?(2)写出当一次购买x本时(x>10),书店利润y(元)与购买量x(本)之间的函数关系式;(3)在销售过程中,书店发现卖出50本比卖出46本赚的钱少,为了使每次的销售均能达到多卖出就多获利,在其他促销条件不变的情况下,最低价应确定为多少元/本?请说明理由.七、解答题(本大题14分)ll l25、已知,在△ABC中,AB=AC.过A 点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.(1)当∠BAC=∠MBN=90°时,①如图a,当θ=45°时,∠ANC的度数为;②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.八、解答题(本大题14分)26、如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行与y轴交CD于点N.设点M的横坐标为t,MN的长度为,求与t之间的函数关系式,并求取最大值时,点M的坐标。

【名师原创】中考数学三轮冲刺:全真模拟试卷(1)及答案解析

【名师原创】中考数学三轮冲刺:全真模拟试卷(1)及答案解析

中考模拟题1(总分120分120分钟)一.选择题(共8小题,每题3分)1.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个2.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=8,AB=6,则这个正六棱柱的侧面积为()A.48B.96 C.144 D.963.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c4.不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2C.﹣1≤x≤2D.﹣1<x<25.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C58°D.30°6.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°7.在平面直角坐标系中,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,则c的值有()A.1个B.2个C.3个D.4个8.如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B (x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=二.填空题(共6小题,每题3分)9.计算:=.10.若一件衣服两次打九折后,售价为y元,则原价为元(用y的代数式表示).11.如图,∠B=∠C=90°,E是BC的中点,EF⊥AD于点F,DE平分∠ADC,∠CED=35°,则∠EAB=.12.如图,AB是⊙O的直径,AB=10,C是⊙O上一点,OD⊥BC于点D,BD=4,则AC的长为.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是.14.如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=上,且与x轴交于A、B两点,若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,则a=.三.解答题(共10小题)15.(6分)先化简,再求值:(1﹣)÷,其中x=3.16.(6分)有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)17.(6分)甲喜欢喝西湖龙井茶,乙喜欢喝咖啡.1包西湖龙井茶叶,甲、乙两人一起喝10天喝完,甲单独喝则比乙单独喝快48天喝完;1罐咖啡,甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完.(1)甲、乙单独喝完1包茶叶各需多少天?(2)假如现在让甲单独先喝咖啡,而让乙单独先喝茶,甲在有咖啡的情况下决不能喝自己喜欢的茶,而乙在有茶叶的情况下决不能喝自己喜欢的咖啡,问两人一起喝完1包茶叶和1罐咖啡需要多少天?18.(7分)如图,在某隧道建设工程中,需沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.为了使开挖点E在直线AC上,现在AC上取一点B,AC外取一点D,测得∠ABD=140°,BD=704m,∠D=50°.求开挖点E到点D的距离.(精确到1米)参考数据:sin50°=0.8,cos50°=0.6,tan50°=1.2.19.(7分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.20.(7分)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?21.(8分)全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.22.(9分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.23.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c (c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.24.(12分)1.如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.中考模拟题1答案一.选择题(共8小题)1.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个考点:有理数.分析:根据有理数是有限小数或无限循环小数,可得答案.解答:解:,0,,﹣1.414,是有理数,故选:D.点评:本题考查了有理数,有理数是有限小数或无限循环小数.2.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=8,AB=6,则这个正六棱柱的侧面积为()A.48B.96 C.144 D.96考点:简单几何体的三视图;几何体的表面积.专题:压轴题.分析:根据AE的长,求底面正六边形的边长,用正六边形的周长×AD,得正六棱柱的侧面积.解答:解:如图,正六边形的边长为AC、BC,CE垂直平分AB,由正六边形的性质可知,∠ACB=120°,∠A=∠B=30°,AE=AB=3,所以,AC===2,正六棱柱的侧面积=6AC×AD=6×2×8=96.故选D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c考点:单项式乘多项式.分析:根据单项式乘以多项式法则,对各选项计算后利用排除法求解.解答:解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.点评:本题考查了单项式乘以多项式法则.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.要熟记单项式与多项式的每一项都相乘,不能漏乘.4.不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2C.﹣1≤x≤2D.﹣1<x<2考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:求出不等式①②的解集,再根据找不等式组解集得规律求出即可.解答:解:,由①得:x<2由②得:x≥﹣1∴不等式组的解集是﹣1≤x<2,故选A.点评:本题主要考查对解一元一次不等式组,不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.5.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C.58°D.30°考点:平行线的性质;平行公理及推论.专题:计算题.分析:过C作CE∥直线m,根据平行公理的推论得到直线m∥n∥CE,根据平行线的性质得出∠ACE=∠DAC=42°,∠ECB=∠a,由∠ACB=90°即可求出答案.解答:解:过C作CE∥直线m,∵直线m∥n,∴直线m∥n∥CE,∴∠ACE=∠DAC=42°,∠ECB=∠a,∵∠ACB=90°,∴∠a=90°﹣∠ACE=90°﹣42°=48°.故选B.点评:本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能灵活运用性质进行计算是解此题的关键.6.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°考点:圆周角定理.分析:首先根据等边对等角即可求得∠OAB的度数,然后根据三角形的内角和定理求得∠AOB的度数,再根据圆周角定理即可求解.解答:解:∵OA=OB,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣40°﹣40°=100°.∴∠C=∠AOB=×100°=50°.故选B.点评:本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理是关键.7.在平面直角坐标系中,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,则c的值有()A.1个B.2个C.3个D.4个考点:坐标与图形性质.分析:分别过A、B点作x轴的垂线,垂足即为所求;以AB的中点为圆心,AB 为直径作圆,交x轴于两点,该两点即为所求.解答:解:如图所示,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,c的值有4个.故选D.点评:考查了坐标与图形性质,注意C(c,0)的点在x轴上,有一定的难度.8.如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B (x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=考点:反比例函数综合题.专题:综合题;压轴题.分析:首先由AC=2BC,可得出A点的横坐标的绝对值是B点横坐标绝对值的两倍.再由|x1﹣x2|=2,可求出A点与B点的横坐标,然后根据点A、点B既在一次函数的图象上,又在反比例函数(k>0)的图象上,可求出k、b的值.解答:解:∵AC=2BC,∴A点的横坐标的绝对值是B点横坐标绝对值的两倍.∵点A、点B都在一次函数的图象上,∴可设B(m,m+b),则A(﹣2m,﹣m+b).∵|x1﹣x2|=2,∴m﹣(﹣2m)=2,∴m=.又∵点A、点B都在反比例函数(k>0)的图象上,∴(+b)=(﹣)(﹣+b),∴b=;∴k=(+)=.故选D.点评:此题综合考查了反比例函数、一次函数的性质,注意通过解方程组求出k、b的值.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.二.填空题(共6小题)9.计算:=.考点:二次根式的混合运算.分析:按照运算规则先算乘法,再算减法,即合并同类二次根式.解答:解:原式=﹣=2﹣=.点评:本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.10.若一件衣服两次打九折后,售价为y元,则原价为元(用y的代数式表示).考点:列代数式.分析:设原价为x,则x×0.9×0.9=y,从而可得出原价的表达式.解答:解:设原价为x,则x×0.9×0.9=y,故x=y,即原价为:y.故答案为:y.点评:本题考查了列代数式的知识,可以设出原价,用方程的思想解决,也可以直接表示出来.11.如图,∠B=∠C=90°,E是BC的中点,EF⊥AD于点F,DE平分∠ADC,∠CED=35°,则∠EAB=35°.考点:角平分线的性质.分析:根据角平分线上的点到角的两边距离相等可得CE=EF,然后求出EF=BE,再根据到角的两边距离相等的点在角的平分线上判断出AE平分∠BAD,根据直角三角形两锐角互余求出∠CDE,再求出∠ADC,然后求出∠BAD,再求解即可.解答:解:∵DE平分∠ADC,∠C=90°,EF⊥AD于点F,∴CE=EF,∵E是BC的中点,∴BE=CE,∴EF=BE,∴AE平分∠BAD,∵∠CED=35°,∴∠CDE=90°﹣35°=55°,∴∠ADC=2∠CDE=2×55°=110°,∵∠B=∠C=90°,∴AB∥CD,∴∠BAD=180°﹣110°=70°,∴∠EAB=∠BAD=×70°=35°.故答案为:35°.点评:本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,直角三角形两锐角互余的性质和平行线的判定与性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.12.如图,AB是⊙O的直径,AB=10,C是⊙O上一点,OD⊥BC于点D,BD=4,则AC 的长为6.考点:垂径定理;勾股定理;三角形中位线定理;圆周角定理.分析:根据垂径定理求出BC,根据圆周角定理求出∠C=90°,根据勾股定理求出即可.解答:解:∵OD⊥BC,OD过O,BD=4,∴BC=2BD=8,∵AB是直径,∴∠C=90°,在Rt△ACB中,AB=10,BC=8,由勾股定理得:AC==6,故答案为:6.点评:本题考查了垂径定理,勾股定理的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,).考点:位似变换;坐标与图形性质.专题:常规题型.分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD 的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(0,1),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).点评:此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.14.如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=上,且与x轴交于A、B两点,若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,则a=.考点:二次函数综合题.分析:根据二次函数y=ax2+2x+c(a>0)图象的顶点M的横坐标是﹣,得出ON=,根据M在反比例函数y=上,得出点M的纵坐标是﹣3a,从而得出NO+MN=+3a,再根据+3a≥2,得出+3a的最小值是2,求出a的值即可.解答:解:∵二次函数y=ax2+2x+c(a>0)图象的顶点M的横坐标是﹣,∴ON=,∵M在反比例函数y=上,∴点M的纵坐标是﹣3a,∴MN=3a,∴NO+MN=+3a,∵+3a≥2,∴+3a≥2,∴+3a的最小值是2,即+3a=2,解得;a=,经检验a=是原方程的解.故答案为:.点评:此题考查了二次函数的综合,用到的知识点是二次函数和反比例函数的图象与性质,关键是求出+3a的最小值是2,列出方程.三.解答题(共10小题)15.先化简,再求值:(1﹣)÷,其中x=3.考点:分式的化简求值.分析:先计算括号内的分式减法,然后把除法转化为乘法进行化简,最后代入求值.解答:解:原式=(﹣)×=×=.把x=3代入,得==,即原式=.故答案为:.点评:本题考查了分式的化简求值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.16.有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)考点:列表法与树状图法.专题:数形结合.分析:列举出所有情况,看抽出的两张纸片上的数字之积小于6的情况数占总情况数的多少即可.解答:解:共有16种情况,积小于6的情况有8种,所以P(小于6)==.点评:考查列树状图解决概率问题;找到抽出的两张纸片上的数字之积小于6的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.17.甲喜欢喝西湖龙井茶,乙喜欢喝咖啡.1包西湖龙井茶叶,甲、乙两人一起喝10天喝完,甲单独喝则比乙单独喝快48天喝完;1罐咖啡,甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完.(1)甲、乙单独喝完1包茶叶各需多少天?(2)假如现在让甲单独先喝咖啡,而让乙单独先喝茶,甲在有咖啡的情况下决不能喝自己喜欢的茶,而乙在有茶叶的情况下决不能喝自己喜欢的咖啡,问两人一起喝完1包茶叶和1罐咖啡需要多少天?考点:分式方程的应用.专题:应用题.分析:(1)用一个字母表示出甲乙两人的工作量,等量关系为:甲乙和喝10天的工作量=1,把相关数值代入计算即可;(2)易得甲乙喝咖啡的工作效率,喝咖啡用的天数少,算出甲喝咖啡用的天数,进而加上甲乙和喝茶叶用的天数即为两人一起喝完1包茶叶和1罐咖啡需要天数.解答:解:(1)设甲单独x天喝完1包茶叶,则每天喝的茶叶为,乙单独(x+48)天喝完1包茶叶,则每天喝的茶叶为.;解得x=12或x=﹣40(舍去),经检验,x=12是原方程的解,∴x+48=60.答:甲单独12天喝完1包茶叶,乙单独60天喝完1包茶叶;(2)甲单独喝一罐咖啡的时间为:1÷()=30天;∴30天后甲喝完咖啡而乙只喝完茶叶的一半,故剩下的茶叶变成两人合喝,由题意可知,他们两人还能喝5天.∴两人35天才全部喝完.点评:考查分式方程的应用;得到甲乙和喝完茶叶的工作量的等量关系是解决本题的关键.18.如图,在某隧道建设工程中,需沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.为了使开挖点E在直线AC上,现在AC上取一点B,AC外取一点D,测得∠ABD=140°,BD=704m,∠D=50°.求开挖点E到点D的距离.(精确到1米)参考数据:sin50°=0.8,cos50°=0.6,tan50°=1.2.考点:解直角三角形的应用.分析:先根据∠ABD=140°,∠D=50°,求出∠E=90°,判断出△BED为直角三角形,再根据锐角三角函数的定义进行求解即可.解答:解:根据题意得:BD=704m,∠ABD=140°,∠D=50°.∵∠EBD=180°﹣∠ABD,∴∠EBD=180°﹣140°=40°.在△BDE中,∠E=180°﹣∠EBD﹣∠D,∴∠E=180°﹣40°﹣50°=90°,∴△BED为直角三角形,在Rt△BED中,∵cos∠D=,∴DE=BD×cos50°=704×0.6=422.4≈422(m).答:开挖点E到点D的距离为422m.点评:本题考查的是解直角三角形在实际生活中的运用,涉及到三角形内角和定理及锐角三角函数的定义,熟知以上知识是解答此题的关键.19.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.考点:切线的判定与性质.专题:压轴题.分析:(1)AF为为圆O的切线,理由为:连接OC,由PC为圆O的切线,利用切线的性质得到CP垂直于OC,由OF与BC平行,利用两直线平行内错角相等,同位角相等,分别得到两对角相等,根据OB=OC,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OC=OA,OF为公共边,利用SAS得出三角形AOF与三角形COF全等,由全等三角形的对应角相等及垂直定义得到AF垂直于OA,即可得证;(2)由AF垂直于OA,在直角三角形AOF中,由OA与AF的长,利用勾股定理求出OF 的长,而OA=OC,OF为角平分线,利用三线合一得到E为AC中点,OE垂直于AC,利用面积法求出AE的长,即可确定出AC的长.解答:解:(1)AF为圆O的切线,理由为:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,则AF为圆O的切线;(2)∵△AOF≌△COF,∴∠AOF=∠COF,∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=5,∵S△AOF=•OA•AF=•OF•AE,∴AE=,则AC=2AE=.点评:此题考查了切线的判定与性质,涉及的知识有:全等三角形的判定与性质,平行线的性质,等腰三角形的性质,三角形的面积求法,熟练掌握切线的判定与性质是解本题的关键.20.君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合②函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.考点:一次函数的应用;一元二次方程的应用.分析:(1)根据图象是一条直线,可得函数的类型;(2)根据待定系数法,可得函数解析式;(3)根据自变量的值,可得相应的函数值,根据等量关系,可得方程,根据解方程,可得答案.解答:解:(1)②;(2)设函数解析式为y=kx+b (a≠0),将(1,80)、(4,95)代入得:,∴∴一次函数的解析式是y=5x+75;(3)把x=6代入y=5x+75得y=105,6月份的收入是105万元,设这个增长率是a,根据题意得105(1+a)2=151.2,解得∴,(不合题意,舍去)答:这个增长率是20%.点评:本题考查了一次函数的应用,利用待定系数法求解析式,(3)找出等量关系列方程是解题关键,不符合题意的要舍去.22.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.考点:四边形综合题.分析:(1)三角形ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)首先证明△BAD≌△CAF,△FCD是直角三角形,然后根据正方形的性质即可求得DF 的长,则OC即可求得.解答:证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;(2)CF﹣CD=BC;(3)①CD﹣CF=BC②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为2且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴OC=DF=2.点评:本题考查了正方形与全等三角形的判定与性质的综合应用,证明三角形全等是关键.23.如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:几何综合题;压轴题.分析:(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为±c,纵坐标为c.解答:解:(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C两点的坐标代入y=﹣x2+bx+c得,,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y=﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠OBC,∴AD∥BO,∴四边形AOBD是平行四边形.(2)存在,点A的坐标可以是(﹣2,2)或(2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(﹣c,c),∴顶点横坐标=c,b=c,∵将A点代入可得c=﹣(﹣c)2+c•c+c,∴横坐标为±c,纵坐标为c即可,令c=2,∴A点坐标可以为(2,2)或者(﹣2,2).点评:本题主要考查了二次函数对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.24.如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC 垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.考点:相似形综合题.专题:压轴题.分析:(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC 延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.解答:解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x 轴,y轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DB,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,。

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)如图所示的几何体中主视图是()A.B.C.D.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×1035.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣26.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.210.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=b=c=(2)你认为服装店应选择哪个供应商供应服装?为什么?19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BE AC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为(2)当男女相遇时求此时男女同学距离终点的距离.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.参考答案与试题解析一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.故选:B.【点评】本题考查了绝对值的定义掌握一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是0是解题的关键.2.(3分)如图所示的几何体中主视图是()A.B.C.D.【分析】找到从正面看所得到的图形得出主视图即可.【解答】解:如图所示的几何体中主视图是B选项故选:B.【点评】此题主要考查了几何体的三视图关键是掌握主视图和左视图所看的位置.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°【分析】由平行线的性质可得∠ABE=∠BCD从而求出∠DCE再根据三角形的内角和即可求解.【解答】解:∵AB∥CD∴∠ABE=∠BCD=45°∴∠DCE=135°由三角形的内角和可得∠E=180°﹣135°﹣20°=25°.故选:B.【点评】本题考查平行线的性质和三角形的内角和定理熟练掌握性质是解题关键.4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×103【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:17000=1.7×104.故选:C.【点评】此题主要考查了科学记数法﹣表示较大的数一般形式为a×10n其中1≤|a|<10 确定a与n的值是解题的关键.5.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣2【分析】先根据零指数幂二次根式的加法法则二次根式的性质二次根式的乘法法则进行计算再得出选项即可.【解答】解:A.()0=1 故本选项不符合题意B.2+3=5故本选项不符合题意C.=2故本选项不符合题意D.(2﹣2)=﹣2=6﹣2故本选项符合题意故选:D.【点评】本题考查了二次根式的混合运算和零指数幂能灵活运用二次根式的运算法则进行计算是解此题的关键.6.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x【分析】分式方程变形后去分母得到结果即可做出判断.【解答】解:分式方程去分母得:1+3(x﹣1)=﹣3x.故选:B.【点评】此题考查了解分式方程解分式方程的基本思想是“转化思想”把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω【分析】设I=则U=IR=40 得出R=计算即可.【解答】解:设I=则U=IR=40∴R===8故选:B.【点评】本题考查反比例函数的应用解题的关键是掌握欧姆定律.8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π【分析】根据弧长公式计算即可.【解答】解:l==π∴该扇形的弧长为π.故选:C.【点评】本题考查弧长的计算关键是掌握弧长的计算公式.9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.2【分析】根据抛物线的解析式求得对称轴为直线x=1 根据二次函数的性质即可得到结论.【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2∴对称轴为直线x=1∵a=1>0∴抛物线的开口向上∴当0≤x<1时y随x的增大而减小∴当x=0时y=﹣1当1≤x≤3时y随x的增大而增大∴当x=3时y=9﹣6﹣1=2∴当0≤x≤3时函数的最大值为2故选:D.【点评】本题考查了二次函数的性质二次函数的最值熟练掌握二次函数的性质是解题的关键.10.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°【分析】利用扇形图可得喜欢排球的占10% 喜欢篮球的人数占被调查人数的30% 最喜欢足球的学生为100×40%=40人用360°×喜欢排球的所占百分比可得圆心角.【解答】解:A本次调查的样本容量为100 故此选项不合题意B最喜欢篮球的人数占被调查人数的30% 故此选项不合题意C最喜欢足球的学生为100×40%=40(人)故此选项不合题意D根据扇形图可得喜欢排球的占10% “排球”对应扇形的圆心角为360°×10%=36°故此选项符合题意故选:D.【点评】本题考查的是扇形统计图读懂统计图从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为x>﹣3.【分析】按照解一元一次不等式的步骤进行计算即可解答.【解答】解:9>﹣3x3x>﹣9x>﹣3故答案为:x>﹣3.【点评】本题考查了解一元一次不等式熟练掌握解一元一次不等式的步骤是解题的关键.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.【分析】根据题意画出相应的树状图然后即可求得两次标号之和为3的概率.【解答】解:树状图如图所示由上可得一共存在4种等可能性其中两次标号之和为3的可能性有2种∴两次标号之和为3的概率为=故答案为:.【点评】本题考查列表法与树状图法解答本题的关键是明确题意画出相应的树状图求出相应的概率.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为5.【分析】由四边形ABCD是菱形可得BC=DC AC⊥BD∠BEC=90°又∠DBC=60°知△BDC是等边三角形BC=BD=10 而点F为BC中点故EF=BC=5.【解答】解:∵四边形ABCD是菱形∴BC=DC AC⊥BD∴∠BEC=90°∵∠DBC=60°∴△BDC是等边三角形∴BC=BD=10∵点F为BC中点∴EF=BC=5故答案为:5.【点评】本题考查菱形的性质及应用涉及等边三角形的判定与性质解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为1+.【分析】在Rt△AOB中利用勾股定理求出AB=则AB=BC=进而求得OC =1+据此即可求解.【解答】解:∵OA⊥OB∴∠AOB=90°在Rt△AOB中AB===∵以点B为圆心AB为半径作弧交直线OB于点C∴AB=BC=∴OC=OB+BC=1+∴点C的横坐标为1+.故答案为:1+【点评】本题主要考查勾股定理实数与数轴利用勾股定理正确求出AB的长是解题关键.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:8x﹣3=7x+4.【分析】根据货物的价格不变即可得出关于x的一元一次方程此题得解.【解答】解:依题意得:8x﹣3=7x+4.故答案为:8x﹣3=7x+4.【点评】本题考查了由实际问题抽象出一元一次方程找准等量关系正确列出一元一次方程是解题的关键.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.【分析】过点F作FM⊥CE于M作FN⊥CD于点N首先证四边形CMFN为正方形再设CM=a则FM=FN=CM=CN=a BE=5 EM=2﹣a然后证△EFM和△EAB相似由相似三角形的性质求出a进而在Rt△AFN中由勾股定理即可求出DF.【解答】解:过点F作FM⊥CE于M作FN⊥CD于点N∵四边形ABCD为正方形AB=3∴∠ACB=90°BC=AB=CD=3∵FM⊥CE FN⊥CD∠ACB=∠B=90°∴四边形CMFN为矩形又∵CF平分∠DCE FM⊥CE FN⊥CD∴FM=FN∴四边形CMFN为正方形∴FM=FN=CM=CN设CM=a则FM=FN=CM=CN=a∵CE=2∴BE=BC+CE=5 EM=CE﹣CM=2﹣a∵∠B=90°FM⊥CE∴FM∥AB∴△EFM∽△EAB∴FM:AB=EM:BE即:a:3=(2﹣a):5解得:∴∴在Rt△AFN中由勾股定理得:.故答案为:.【点评】此题主要考查了正方形的判定及性质相似三角形的判定和性质勾股定理等解答此题的关键是熟练掌握相似三角形的判定方法理解相似三角形的对应边成比例.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.【分析】先利用异分母分式加减法法则计算括号里再算括号外然后进行计算即可解答.【解答】解:原式=[+]•=•=.【点评】本题考查了分式的混合运算准确熟练地进行计算是解题的关键.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=75b=75c=6(2)你认为服装店应选择哪个供应商供应服装?为什么?【分析】(1)根据平均数众数和方差的计算公式分别进行解答即可(2)根据方差的定义方差越小数据越稳定即可得出答案.【解答】解:(1)B供应商供应材料纯度的平均数为a=×(72+75+72+75+78+77+73+75+76+77+71+78+79+72+75)=7575出现的次数最多故众数b=75方差c=×[3×(72﹣75)2+4×(75﹣75)2+2×(78﹣75)2+2×(77﹣75)2+(73﹣75)2+(76﹣75)2+(71﹣75)2+(79﹣75)2]=6故答案为:75 75 6(2)选A供应商供应服装理由如下:∵A B平均值一样B的方差比A的大A更稳定∴选A供应商供应服装.【点评】本题考查了方差平均数中位数众数熟悉相关统计量的计算公式和意义是解题的关键.19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.【分析】由“SAS”可证△ABC≌△ADE可得结论.【解答】证明:∵∠ACB+∠ACF=∠ACF+∠AED=180°∴∠ACB=∠AED在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴AB=AD.【点评】本题考查了全等三角形的判定和性质证明三角形全等是解题的关键.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.【分析】设2020﹣2022年买书资金的平均增长率为x利用2022年用于购买图书的费用=2020年用于购买图书的费用×(1+2020﹣2022年买书资金的平均增长率)2可列出关于x的一元二次方程解之取其符合题意的值即可得出结论.【解答】解:设2020﹣2022年买书资金的平均增长率为x根据题意得:5000(1+x)2=7200解得:x1=0.2=20% x2=﹣2.2(不符合题意舍去).答:2020﹣2022年买书资金的平均增长率为20%.【点评】本题考查了一元二次方程的应用找准等量关系正确列出一元二次方程是解题的关键.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BEAC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)【分析】延长CD交AE于H于是得到CH=BE EH=BC=1.26m解直角三角形即可得到结论.【解答】解:延长CD交AE于H则CH=BE EH=BC=1.26m在Rt△ACH中AC=10.4m∠ACH=70°∴AH=AC•sin70°=10.4×0.94≈9.78(m)∴AE=AH+CH=9.78+1.26≈11(m)答:楼AE的高度约为11m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题正确地作出辅助线是解题的关键.22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为1000m(2)当男女相遇时求此时男女同学距离终点的距离.【分析】(1)根据男女同学跑步的路程相等即可求解(2)求出女生跑步的速度列方程求解即可.【解答】解:(1)男生匀速跑步的路程为4.5×100=450(m)450+50=500(m)则男女跑步的总路程为500×2=1000(m)故答案为:1000m(2)设从开始匀速跑步到男女相遇时的时间为xs女生跑步的速度为(500﹣80)÷120=3.5(m/s)根据题意得:80+3.5x=50+4.5x解得x=30∴此时男女同学距离终点的距离为4.5×(100﹣30)=315(m)答:此时男女同学距离终点的距离为315m.【点评】此题主要考查了一元一次方程的应用关键是正确理解题意找出题目中的等量关系然后设出未知数列出方程.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.【分析】(1)根据圆周角定理证得两直线平行再根据平行线的性质即可得到结论(2)由勾股定理得到边的关系求出线段的长再利用等面积法求解即可.【解答】解:(1)∵AB为⊙O的直径∴∠ACB=90°∵AD为∠CAB的平分线∴∠BAC=2∠BAD∵OA=OD∴∠BAD=∠ODA∴∠BOD=∠BAD+∠ODA=2∠BAD∴∠BOD=∠BAC∴OD∥AC∴∠OEB=∠ACB=90°∴∠BED=90°(2)连接BD设OA=OB=OD=r则OE=r﹣4 AC=2OE=2r﹣8 AB=2r∵AB为⊙O的直径∴∠ADB=90°在Rt△ADB中BD2=AB2﹣AD2由(1)得∠BED=90°∴∠BED=∠BEO=90°∴BE2=OB2﹣OE2BE2=BD2﹣DE2∴BD2=AB2﹣AD2=BE2+DE2=OB2﹣OE2+DE2∴=r2﹣(r﹣4)2+42解得r=7或r=﹣5(不合题意舍去)∴AB=2r=14∴∵AF是⊙O的切线∴AF⊥AB∵DG⊥AF∴DG⊥AB∴∴.【点评】本题考查了圆周角定理勾股定理切线的性质解一元二次方程熟练掌握圆周角定理和勾股定理是解题的关键.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为4△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.【分析】(1)由t=0时P与O重合得S=t=4时P与B重合得OB=4 (2)设A(a a)由×4a=得a=A()分两种情况:当0≤t≤时设OA交PD于E可得PE=PO=t S△POE=t2故S=﹣S△POE=﹣t2当<t<4时求出直线AB解析式为y=﹣x+2 可得C(0 2)由tan∠CBO====得DP=PB=(4﹣t)=2﹣t故S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=t2﹣2t+4.【解答】解:(1)t=0时P与O重合此时S=S△ABO=t=4时S=0 P与B重合∴OB=4 B(4 0)故答案为:4(2)∵A在直线y=x上∴∠AOB=45°设A(a a)∴S△ABO=OB•a即×4a=∴a=∴A()当0≤t≤时设OA交PD于E如图:∵∠AOB=45°PD⊥OB∴△PEO是等腰直角三角形∴PE=PO=t∴S△POE=t2∴S=﹣S△POE=﹣t2当<t<4时如图:由A()B(4 0)得直线AB解析式为y=﹣x+2 当x=0时y=2∴C(0 2)∴OC=2∵tan∠CBO====∴DP=PB=(4﹣t)=2﹣t∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4综上所述S=.【点评】本题考查动点问题的函数图象涉及锐角三角函数待定系数法等腰直角三角形等知识解题的关键是从函数图象中获取有用的信息.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.【分析】问题1:(1)由等腰三角形的性质可得∠ABC=∠ACB由折叠的性质和三角形内角和定理可得∠A=∠BDE=180°﹣2∠C由邻补角的性质可得结论(2)由三角形中位线定理可得CD=2EF由勾股定理可求AF BF即可求解问题2:先证四边形CGMD是矩形由勾股定理可求AD由等腰三角形的性质可求MD CG即可求解.【解答】问题1:(1)证明:∵AB=AC∴∠ABC=∠ACB∵△BDE由△ABE翻折得到∴∠A=∠BDE=180°﹣2∠C∵∠EDC+∠BDE=180°∴∠EDC=2∠ACB(2)解:如图连接AD交BE于点F∵△BDE由△ABE翻折得到∴AE=DE AF=DF∴CD=2EF=3∴EF=∵点E是AC的中点∴AE=EC=AC=2在Rt△AEF中AF===在Rt△ABF中BF===∴BE=BF+EF=问题2:解:连接AD过点B作BM⊥AD于M过点C作CG⊥BM于G∵AB=BD BM⊥AD∴AM=DM∠ABM=∠DBM=∠ABD∵2∠BDC=∠ABD∴∠BDC=∠DBM∴BM∥CD∴CD⊥AD又∵CG⊥BM∴四边形CGMD是矩形∴CD=GM在Rt△ACD中CD=1 AD=4 AD===∴AM=MD=CG=MD=在Rt△BDM中BM===∴BG=BM﹣GM=BM﹣CD==在Rt△BCG中BC===.【点评】本题是几何变换综合题考查了等腰三角形的性质折叠的性质勾股定理矩形的性质和判定灵活运用这些性质解决问题是解题的关键.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.【分析】(1)根据题意得出点A(﹣2 4)B(1 1)利用待定系数法求解析式即可求解.(2)①根据平移的性质得出C′(2﹣m4﹣n)根据点C的对应点C′落在抛物线C1上可得(2﹣m)2=4﹣n即可求解.②根据题意得出P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)求得中点坐标根据题意即可求解.③作辅助线利用勾股定理求得MG=设出N点M点坐标将M点代入y=﹣x2﹣2x+4 求得N点坐标进而根据点C的对应点C′落在抛物线C1上即可求解.【解答】(1)根据题意点A的横坐标为﹣2 点B的横坐标为1 代入抛物线C1:y=x2∴当x=﹣2时y=(﹣2)2=4 则A(﹣2 4)当x=1时y=1 则B(1 1)将点A(﹣2 4)B(1 1)代入抛物线C2:y=﹣x2+bx+c∴解得∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C当y=4时x=±2∴C(2 4)∵矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.∴C′(2﹣m4﹣n)(2﹣m)2=4﹣n整理得n=﹣m2+4m∵m>0 n>0∴0<m<4∴n=﹣m2+4m(0<m<4)②如图∵A(﹣2 4)C(2 4)∴AC=4∵∴E(﹣2 6)由①可得A′(﹣2﹣m m2﹣4m+4)E′(﹣2﹣m m2﹣4m+6)∴P Q的横坐标为﹣2﹣m分别代入C1C2∴P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)∴∴PQ的中点坐标为(﹣2﹣m m+4)∵点E′为线段PQ的中点∴m2﹣4m+6=m+4解得m=或m=(大于4 舍去).③如图连接MN过点N作NG⊥E′D′于点G则NG=2∵∴设N(a﹣a2﹣2a+4)则M(a﹣﹣a2﹣2a+6)将M点代入y=﹣x2﹣2x+4得解得a=当a=∴将y =代入y=x2解得∴或.【点评】本题考查了二次函数的综合应用解题的关键是作辅助线掌握二次函数的性质.第31 页共31 页。

2023年江苏省徐州市联盟中考数学模拟试卷(一)及答案解析

2023年江苏省徐州市联盟中考数学模拟试卷(一)及答案解析

2023年江苏省徐州市联盟中考数学模拟试卷(一)一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. −3的相反数是( )A. −3B. 3C. −13D. 132. 下列图案既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 下列运算正确的是( )A. x3⋅x4=x12B. x4÷x=x3C. (x3)4=x7D. (x3y)3=x6y34. 某地一周内每天的最高气温分别为(单位:℃):25,26,26,28,27,14,10.这组数据的众数、中位数分别是( )A. 26,25B. 26,27C. 26,26D. 26,25.55.如图,点A、B、C在⊙O上,若∠ACB=39°,则∠AOB的度数为( )A. 78°B. 61°C. 76°D. 51°6.七个大小相同的小正方体搭成的几何体如图所示,其左视图是( )A.B.C.D.7. 在平面直角坐标系中,将二次函数y =(x−1)2+2的图象向左平移1个单位长度,再向下平移1个单位长度所得抛物线对应的函数表达式为( )A. y =(x−2)2+3B. y =(x +2)2−1C. y =x 2+1D. y =(x−2)2+18. 如图,一次函数y =12x +1的图象与反比例函数y =m x (x >0)的图象交于点A ,与y 轴交于点C ,AD ⊥x 轴于点D ,点D 坐标为(4,0),则△ADC 的面积为( )A. 3B. 6C. 8D. 12二、填空题(本大题共10小题,共30.0分)9. 4的算术平方根是______.10. 若二次根式 x +1有意义,则x 的取值范围是 .11. 因式分解2x 2−4x +2= .12. 到2022年底,中国高铁运营里程达到42000km ,该里程数用科学记数法表示为______ .13. 关于x 的一元二次方程x 2+x−4m =0有实数根,则m 的取值范围是______ .14. 圆锥的母线长为12cm ,其侧面展开图的圆心角为150°,则圆锥的底面圆半径长是______ cm .15.如图,圆被分成面积相等的两部分,现在向圆形区域内随机掷点(点落在圆外或线上则不计),点落入A 区域的概率为______ .16. 对于反比例函数y =6x ,当x >2时,y 的取值范围是______.17.如图,将一张长方形纸片ABCD 沿EF 折叠,使C 、A 两点重合.点D 落在点G 处.已知AB =4,BC =8,则EF = ______ .18. 在平面直角坐标系中,已知点A (2,−3),点B (3,2),点P 在一次函数y =2x +b (b >0)的图象上,若满足∠APB =45°的点P 只有1个,则b 的值是______ .三、解答题(本大题共10小题,共86.0分。

中考数学模拟试题及含答案

中考数学模拟试题及含答案

数学中考模拟试题【含答案】说明:1.全卷共9页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.35-的倒数是 ( )A .35-B .53C .35D . 53-2.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-83.下列运算结果正确的是 ( )(A )332x x x =⋅ (B )23x x x =÷ (C )923)(x x = (D )6332x x x =+4.下图所示的几何体的主视图是 ( )A. B. C. D. A B C D则这组数据的中位数是 ( )A.26 B.27 C.28 D.29二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.冬季的一天室内温度是8℃,室外温度是-2℃,则室内外温度的差是_____;7.函数y=x的取值范围是;8.分解因式:3a-a= ;9.在你所学过的几何图形中,既是轴对称图形又是中心对称图形的有(写出两个);10.如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,再过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积是_____ _____.三、解答题(一)(本大题5小题,每小题6分,共30分)11.(本题满分6分)计算:2cos60)0+(13)-1+(-1)2009第10题12.(本题满分6分)先化简,再求值,(-3 < p < 3中的整数)13.(本题满分6分)如图,在10×10的正方形网格中,每个小正方形的边长均为1个单位.(1)请作出△ABC 关于点P 的对称图形△A 'B 'C '.(2)若C 点的坐标为(-1,2),则C '点的坐标为 _____.- - ÷- + 42 2 1 ( 2 2 p p p p14.(本题满分6分)已知二次函数y=-x2+6x+7,指出它的图象的开口方向、对称轴和顶点坐标.15.(本题满分6分)如图,在梯形ABCD中,AD∥BC,=,若点M为线段AD上任意一点(M与A、D不AB DC重合).问:当点M在什么位置时,MB MC=,请说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(本题满分7分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包。

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分)1.(4分)给出四个实数.2.0.﹣1.其中负数是()A.B.2 C.0 D.﹣1 2.(4分)移动台阶如图所示.它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中.各班代表队得分如下(单位:分):9.7.8.7.9.7.6.则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球.其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球.是白球的概率为()A.B.C.D.6.(4分)若分式的值为0.则x的值是()A.2 B.0 C.﹣2 D.﹣5 7.(4分)如图.已知一个直角三角板的直角顶点与原点重合.另两个顶点A.B的坐标分别为(﹣1.0).(0.).现将该三角板向右平移使点A与点O重合.得到△OCB′.则点B的对应点B′的坐标是()A.(1.0)B.(.)C.(1.)D.(﹣1.)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆.刚好坐满.设49座客车x 辆.37座客车y辆.根据题意可列出方程组()A.B.C.D.9.(4分)如图.点A.B在反比例函数y=(x>0)的图象上.点C.D 在反比例函数y=(k>0)的图象上.AC∥BD∥y轴.已知点A.B 的横坐标分别为1.2.△OAC与△ABD的面积之和为.则k的值为()A.4 B.3 C.2 D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成.若a=3.b=4.则该矩形的面积为()A.20 B.24 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π.圆心角为60°.则它的半径为.13.(5分)一组数据1.3.2.7.x.2.3的平均数是3.则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图.直线y=﹣x+4与x轴、y轴分别交于A.B两点.C 是OB的中点.D是AB上一点.四边形OEDC是菱形.则△OAE的面积为.16.(5分)小明发现相机快门打开过程中.光圈大小变化如图1所示.于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形.若PQ所在的直线经过点M.PB=5cm.小正六边形的面积为cm2.则该圆的半径为cm.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8分)如图.在四边形ABCD中.E是AB的中点.AD∥EC.∠AED =∠B.(1)求证:△AED≌△EBC.(2)当AB=6时.求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店.该市蛋糕店数量的扇形统计图如图所示.其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店.请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率.决定在该市增设蛋糕店.在其余蛋糕店数量不变的情况下.若要使甲公司经营的蛋糕店数量达到全市的20%.求甲公司需要增设的蛋糕店数量.20.(8分)如图.P.Q是方格纸中的两格点.请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱P AQB.(2)画出一个四边形PCQD.使其是轴对称图形而不是中心对称图形.且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.21.(10分)如图.抛物线y=ax2+bx(a≠0)交x轴正半轴于点A.直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x =2.交x轴于点B.(1)求a.b的值.(2)P是第一象限内抛物线上的一点.且在对称轴的右侧.连接OP.BP.设点P的横坐标为m.△OBP的面积为S.记K=.求K关于m的函数表达式及K的范围.22.(10分)如图.D是△ABC的BC边上一点.连接AD.作△ABD的外接圆.将△ADC沿直线AD折叠.点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°.cos∠ADB =.BE=2.求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品.每人每天生产2件甲或1件乙.甲产品每件可获利15元.根据市场需求和生产经验.乙产品每天产量不少于5件.当每天生产5件时.每件可获利120元.每增加1件.当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元.求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下.增加生产丙产品.要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品).丙产品每件可获利30元.求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图.已知P为锐角∠MAN内部一点.过点P作PB⊥AM 于点B.PC⊥AN于点C.以PB为直径作⊙O.交直线CP于点D.连接AP.BD.AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB.ED.当tan∠MAN=2.AB=2时.在点P的整个运动过程中.①若∠BDE=45°.求PD的长.②若△BED为等腰三角形.求所有满足条件的BD的长.(3)连接OC.EC.OC交AP于点F.当tan∠MAN=1.OC∥BE时.记△OFP的面积为S1.△CFE的面积为S2.请写出的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数.2.0.﹣1.其中负数是:﹣1.故选:D.【点评】此题主要考查了实数.正确把握负数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图.可得答案.【解答】解:从正面看是三个台阶.故选:B.【点评】本题考查了简单组合体的三视图.从正面看得到的图形是主视图.3.【分析】根据同底数幂相乘.底数不变.指数相加进行计算.【解答】解:a6•a2=a8.故选:C.【点评】此题主要考查了同底数幂的乘法.关键是掌握同底数幂的乘法的计算法则.4.【分析】将数据重新排列后.根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9.所以各代表队得分的中位数是7分.故选:C.【点评】本题主要考查中位数.解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列.如果数据的个数是奇数.则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数.则中间两个数据的平均数就是这组数据的中位数.5.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球.其中白球有2个.∴摸出一个球是白球的概率是=.故选:D.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.6.【分析】分式的值等于零时.分子等于零.【解答】解:由题意.得x﹣2=0.解得.x=2.经检验.当x=2时.=0.故选:A.【点评】本题考查了分式的值为零的条件.注意.分式方程需要验根.7.【分析】根据平移的性质得出平移后坐标的特点.进而解答即可.【解答】解:因为点A与点O对应.点A(﹣1.0).点O(0.0). 所以图形向右平移1个单位长度.所以点B的对应点B'的坐标为(0+1.).即(1.).故选:C.【点评】此题考查坐标与图形变化.关键是根据平移的性质得出平移后坐标的特点.8.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10.两种客车载客量之和=466.【解答】解:设49座客车x辆.37座客车y辆.根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时.要注意抓住题目中的一些关键性词语.找出等量关系.列出方程组.9.【分析】先求出点A.B的坐标.再根据AC∥BD∥y轴.确定点C.点D的坐标.求出AC.BD.最后根据.△OAC与△ABD的面积之和为.即可解答.【解答】解:∵点A.B在反比例函数y=(x>0)的图象上.点A.B 的横坐标分别为1.2.∴点A的坐标为(1.1).点B的坐标为(2.).∵AC∥BD∥y轴.∴点C.D的横坐标分别为1.2.∵点C.D在反比例函数y=(k>0)的图象上.∴点C的坐标为(1.k).点D的坐标为(2.).∴AC=k﹣1.BD=.∴S△OAC=(k﹣1)×1=.S△ABD=•×(2﹣1)=.∵△OAC与△ABD的面积之和为.∴.解得:k=3.故选:B.【点评】本题考查了反比例函数系数k的几何意义.解决本题的关键是求出AC.BD的长.10.【分析】欲求矩形的面积.则求出小正方形的边长即可.由此可设小正方形的边长为x.在直角三角形ACB中.利用勾股定理可建立关于x的方程.利用整体代入的思想解决问题.进而可求出该矩形的面积.【解答】解:设小正方形的边长为x.∵a=3.b=4.∴AB=3+4=7.在Rt△ABC中.AC2+BC2=AB2.即(3+x)2+(x+4)2=72.整理得.x2+7x﹣12=0.而长方形面积为x2+7x+12=12+12=24∴该矩形的面积为24.故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用.求出小正方形的边长是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式.可以把这个公因式提出来.从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.12.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r.2.解得:r=6.故答案为:6【点评】此题考查弧长公式.关键是根据弧长公式解答.13.【分析】根据平均数的定义可以先求出x的值.再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知=3.解得:x=3.则数据为1、2、2、3、3、3、7.所以众数为3.故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可.【解答】解:.解①得x>2.解②得x>4.故不等式组的解集是x>4.故答案为:x>4.【点评】考查了解一元一次不等式组.一元一次不等式组的解法:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】延长DE交OA于F.如图.先利用一次函数解析式确定B (0.4).A(4.0).利用三角函数得到∠OBA=60°.接着根据菱形的性质判定△BCD为等边三角形.则∠BCD=∠COE=60°.所以∠EOF=30°.则EF=OE=1.然后根据三角形面积公式计算.【解答】解:延长DE交OA于F.如图.当x=0时.y=﹣x+4=4.则B(0.4).当y=0时.﹣x+4=0.解得x=4.则A(4.0).在Rt△AOB中.tan∠OBA==.∴∠OBA=60°.∵C是OB的中点.∴OC=CB=2.∵四边形OEDC是菱形.∴CD=BC=DE=CE=2.CD∥OE.∴△BCD为等边三角形.∴∠BCD=60°.∴∠COE=60°.∴∠EOF=30°.∴EF=OE=1.△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b.(k≠0.且k.b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣.0);与y轴的交点坐标是(0.b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.【分析】设两个正六边形的中心为O.连接OP.OB.过O作OG⊥PM.OH⊥AB.由正六边形的性质及邻补角性质得到三角形PMN为等边三角形.由小正六边形的面积求出边长.确定出PM的长.进而求出三角形PMN的面积.利用垂径定理求出PG的长.在直角三角形OPG中.利用勾股定理求出OP的长.设OB=xcm.根据勾股定理列出关于x的方程.求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O.连接OP.OB.过O作OG ⊥PM.OH⊥AB.由题意得:∠MNP=∠NMP=∠MPN=60°.∵小正六边形的面积为cm2.∴小正六边形的边长为cm.即PM=7cm.∴S△MPN=cm2.∵OG⊥PM.且O为正六边形的中心.∴PG=PM=cm.OG=PM=.在Rt△OPG中.根据勾股定理得:OP==7cm.设OB=xcm.∵OH⊥AB.且O为正六边形的中心.∴BH=x.OH=x.∴PH=(5﹣x)cm.在Rt△PHO中.根据勾股定理得:OP2=(x)2+(5﹣x)2=49. 解得:x=8(负值舍去).则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆.熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时.需要针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算.再合并同类项即可求解.【解答】解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.【点评】本题主要考查了实数的综合运算能力.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形.推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC.∴∠A=∠BEC.∵E是AB中点.∴AE=EB.∵∠AED=∠B.∴△AED≌△EBC.(2)解:∵△AED≌△EBC.∴AD=EC.∵AD∥EC.∴四边形AECD是平行四边形.∴CD=AE.∵AB=6.∴CD=AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识.解题的关键是正确寻找全等三角形解决问题.属于中考常考题型.19.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量.再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店.根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷=600家.甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店.由题意得:20%×(600+x)=100+x.解得:x=25.答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用.解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系.并据此列出方程.20.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知.对应角都相等都等于旋转角.对应线段也相等.由此可以通过作相等的角.在角的边上截取相等的线段的方法.找到对应点.顺次连接得出旋转后的图形.也考查了轴对称变换.21.【分析】(1)根据直线y=2x求得点M(2.4).由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组.解之可得;(2)作PH⊥x轴.根据三角形的面积公式求得S=﹣m2+4m.根据公式可得K的解析式.再结合点P的位置得出m的范围.利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x.得:y=4.∴点M(2.4).由题意.得:.∴;(2)如图.过点P作PH⊥x轴于点H.∵点P的横坐标为m.抛物线的解析式为y=﹣x2+4x.∴PH=﹣m2+4m.∵B(2.0).∴OB=2.∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m.∴K==﹣m+4.由题意得A(4.0).∵M(2.4).∴2<m<4.∵K随着m的增大而减小.∴0<K<2.【点评】本题主要考查抛物线与x轴的交点.解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC.结合∠ABD =∠AED知∠ABD=∠ACD.从而得出AB=AC.据此得证;(2)作AH⊥BE.由AB=AE且BE=2知BH=EH=1.根据∠ABE =∠AEB=∠ADB知cos∠ABE=cos∠ADB==.据此得AC=AB=3.利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知.△ADE≌△ADC.∴∠AED=∠ACD.AE=AC.∵∠ABD=∠AED.∴∠ABD=∠ACD.∴AB=AC.∴AE=AB;(2)如图.过A作AH⊥BE于点H.∵AB=AE.BE=2.∴BH=EH=1.∵∠ABE=∠AEB=∠ADB.cos∠ADB=.∴cos∠ABE=cos∠ADB=.∴=.∴AC=AB=3.∵∠BAC=90°.AC=AB.∴BC=3.【点评】本题主要考查三角形的外接圆.解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式.用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知.每天安排x人生产乙产品时.生产甲产品的有(65﹣x)人.共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上.增加x人.利润减少2x元每件.则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x;(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10.x2=70(不合题意.舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负整数∴取x=26时.m=13.65﹣x﹣m=26即当x=26时.W最大值=3198答:安排26人生产乙产品时.可获得的最大利润为3198元.【点评】本题以盈利问题为背景.考查一元二次方程和二次函数的实际应用.解答时注意利用未知量表示相关未知量.24.【分析】(1)由PB⊥AM、PC⊥AN知∠ABP=∠ACP=90°.据此得∠BAC+∠BPC=180°.根据∠BPD+∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2.根据tan∠BAC=tan∠BPD==2知BP=PD.据此可得答案;②根据等腰三角形的定义分BD=BE、BE=DE及BD=DE三种情况分类讨论求解可得;(3)作OH⊥DC.由tan∠BPD=tan∠MAN=1知BD=PD.据此设BD=PD=2a、PC=2b.从而得出OH=a、CH=a+2b、AC=4a+2b.证△ACP∽△CHO得=.据此得出a=b及CP=2a、CH=3a、OC=a.再证△CPF∽△COH.得=.据此求得CF=a、OF=a.证OF为△PBE的中位线知EF=PF.从而依据=可得答案.【解答】解:(1)∵PB⊥AM、PC⊥AN.∴∠ABP=∠ACP=90°.∴∠BAC+∠BPC=180°.又∠BPD+∠BPC=180°.∴∠BPD=∠BAC;(2)①如图1.∵∠APB=∠BDE=45°.∠ABP=90°.∴BP=AB=2.∵∠BPD=∠BAC.∴tan∠BPD=tan∠BAC.∴=2.∴BP=PD.∴PD=2;②当BD=BE时.∠BED=∠BDE.∴∠BPD=∠BPE=∠BAC.∴tan∠BPE=2.∵AB=2.∴BP=.∴BD=2;当BE=DE时.∠EBD=∠EDB.∵∠APB=∠BDE、∠DBE=∠APC.∴∠APB=∠APC.∴AC=AB=2.过点B作BG⊥AC于点G.得四边形BGCD是矩形.∵AB=2、tan∠BAC=2.∴AG=2.∴BD=CG=2﹣2;当BD=DE时.∠DEB=∠DBE=∠APC.∵∠DEB=∠DPB=∠BAC.∴∠APC=∠BAC.设PD=x.则BD=2x.∴=2.∴.∴x=.∴BD=2x=3.综上所述.当BD=2、3或2﹣2时.△BDE为等腰三角形;(3)如图3.过点O作OH⊥DC于点H.∵tan∠BPD=tan∠MAN=1.∴BD=PD.设BD=PD=2a、PC=2b.则OH=a、CH=a+2b、AC=4a+2b.∵OC∥BE且∠BEP=90°.∴∠PFC=90°.∴∠P AC+∠APC=∠OCH+∠APC=90°.∴∠OCH=∠P AC.∴△ACP∽△CHO.∴=.即OH•AC=CH•PC.∴a(4a+2b)=2b(a+2b).∴a=b.即CP=2a、CH=3a.则OC=a.∵△CPF∽△COH.∴=.即=.则CF=a.OF=OC﹣CF=a.∵BE∥OC且BO=PO.∴OF为△PBE的中位线.∴EF=PF.∴==.【点评】本题主要考查圆的综合问题.解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.。

2023年中考数学模拟试卷(1)(含详解)

2023年中考数学模拟试卷(1)(含详解)

2023年中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.在﹣3,2,﹣1,0这四个数中,比﹣2小的数是()A.﹣3 B.2 C.﹣1 D.02.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.3.2022年10月12日,“天宫课堂”第三课在中国空间站开讲,3名航天员演示了在微重力环境下毛细效应实验、水球变“懒”实验等,相应视频在某短视频平台的点赞量达到150万次,数据150万用科学记数法表示为()A.1.5×105B.0.15×105C.1.5×106D.1.5×1074.下列运算正确的是()A.2a3﹣a2=a B.(a3)2=a5C.2a3•3a2=6a5D.﹣8a2÷4a=25.某校对部分参加研学活动的中学生的年龄(单位:岁)进行统计,结果如下表:年龄13 14 15 16人数 1 3 4 2则这些学生年龄的众数和中位数分别是()A.15,15 B.15,13 C.15,14 D.14,156.如图为一节楼梯的示意图,BC⊥AC,∠BAC=a,AC=6米.现要在楼梯上铺一块地毯,楼梯宽度为1米,则地毯的面积至少需要()平方米.A.6tanα+6B.+6 C.D.7.如图,在△ABC中,DE∥AB,且,则的值为()A.B.C.D.8.已知一次函数y=(4﹣m)x﹣3,y随x的增大而减小,则m的值可能是()A.1 B.2 C.3 D.59.如图,AB为⊙O的直径,C、D为⊙O上两点,若∠BCD=25°,则∠ABD的大小为()A.50°B.55°C.60°D.65°10.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.分解因式:3x2﹣3=.12.在平面直角坐标系中,点(﹣2,3)关于原点对称的点的坐标是.13.不等式组的解为.14.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.15.如图,已知A为反比例函数y=(x<0)图象上的一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为1,则k的值为.16.如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为.三.解答题(共8小题,满分66分)17.(6分)计算:()﹣1+3tan30°+|1﹣|﹣(3.4﹣π)0.18.(6分)先化简÷(﹣x﹣1),再从﹣2,﹣1,0,1,2中选一个合适的数作为x的值代入求值,19.(6分)为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,但这次每盒的进价是第一次进价的倍,购进数量比第一次少了30盒,求第一次每盒乒乓球的进价是多少元?20.(8分)某居民小区为宣传生活垃圾分类,开展了相关知识测试,并随机抽取50户的成绩分成A、B、C、D、E 五个等级,制成如下统计图表,部分信息如下:等级分数频数A90≤x≤10011B80≤x<90 mC70≤x<80 10D60≤x<70 nE x<60 3(1)频数统计表中有两个数字模糊不清,分别记为m,n,直接写出m=,n=.(2)求这50户的成绩的中位数所在的等级以及扇形统计图中D等级所对应的扇形的圆心角度数.(3)已知这个居民小区共有1200户,这次测试成绩在A和B两个等级者为优秀,请你估计该小区测试成绩为优秀的有多少户.21.(9分)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.22.(9分)如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,联结PC,交AD于点E.(1)求证:AD是圆O的切线.(2)若PC是圆O的切线,BC=4,求PE的长.23.(10分)如图,在矩形ABCD中,AB=4,AD=6,E是AD边上的一个动点,将四边形BCDE沿直线BE折叠,得到四边形BC′D′E,连接AC′,AD′.(1)若直线DA交BC′于点F,求证:EF=BF;(2)当AE=时,求证:△AC′D′是等腰三角形;(3)在点E的运动过程中,求△AC′D′面积的最小值.24.(12分)如图,已知抛物线y=﹣x2+bx+c与y轴交于点C,与x轴交于A(﹣1,0),B(3,0)两点.(1)求抛物线的解析式.(2)连接AC,在抛物线的对称轴上是否存在点P,使得△ACP的周长最小?若存在,求出点P的坐标和△ACP 的周长的最小值,若不存在,请说明理由.(3)点M为抛物线上一动点,点N为x轴上一动点,当以A,C,M,N为顶点的四边形为平行四边形时,直接写出点M的横坐标.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵﹣3<﹣2<﹣1<0<2,∴比﹣2小的数是﹣3.故选:A.2.【解答】解:四棱锥的主视图与俯视图不相同.故选:C.3.【解答】解:150万=1500000=1.5×106.故选:C.4.【解答】解:A、2a3与a2不是同类项,故不能合并,故A不符合题意.B、原式=a6,故B不符合题意.C、原式=6a5,故C符合题意.D、原式=﹣2a,故D不符合题意.故选:C.5.【解答】解:15出现的次数最多,15是众数.一共10个学生,按照顺序排列第5、6个学生年龄分别是15、15,所以中位数为=15.故选:A.6.【解答】解:在Rt△ABC中,∴tanα=,∴BC=AC•tanα=6tanα(米),∴AC+BC=(6+6tanα)(米),∴地毯的面积至少需要1×(6+6tanα)=(6+6tanα)(米2),故选:A.7.【解答】解:∵=,∴=,∵DE∥AB,∴==,故选:A.8.【解答】解:∵y随x的增大而减小,∴4﹣m<0,∴m>4,故选:D.9.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵圆周角∠BCD和∠A都对着,∴∠BCD=∠A,∵∠BCD=25°,∴∠A=25°,∴∠ABD=90°﹣∠A=65°,故选:D.10.【解答】解:∵DF=BD,∴∠DFB=∠DBF∵四边形ABCD是正方形,∵AD∥BC,AD=BC=CD,∠ADB=∠DBC=45°,∴DE∥BC,∠DFB=∠GBC,∵DE=AD,∴DE=BC,∴四边形DBCE是平行四边形,∴∠DEC=∠DBC=45°,∴∠DEC=∠ADB=∠DFB+∠DBF=2∠EFB=45°,∴∠GBC=∠EFB=22.5°,∠CGB=∠EGF=22.5°=∠GBC,∴CG=BC=DE,∵BC=CD,∴DE=CD=CG,∴∠DEG=∠DCE=45°,EC=CD,∠CDG=∠CGD=(180°﹣45°)=67.5°,∴∠DGE=180°﹣67.5°=112.5°,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD(AAS),∴∠EDG=∠CGB=∠CBF,∴∠GDH=90°﹣∠EDG,∠GHD=∠BHC=90°﹣∠CGB,∴∠GDH=∠GHD,∴∠GDH=∠GHD,故②符合题意;∵∠EFB=22.5°,∴∠DHG=∠GDH=67.5°,∴∠GDF=90°﹣∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF,∴HF=2HG,即EC≠HF=2HG,故①符合题意;∵△CHG≌△EGD,∴S△CHG=S△EGD,∴S△CHG+S△DHG=S△EGD+S△DHG,即S△CDG=S四边形DHGE≠S△DHF,故④不符合题意;结合前面条件易知等腰三角形有:△ABD、△CDB、△BDF、△CDE、△BCG、△DGH、△EGF、△CDG、△DGF 共9个,故③不符合题意;则正确的个数有2个.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:3x2﹣3,=3(x2﹣1),=3(x+1)(x﹣1).12.【解答】解:点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案是:(2,﹣3).13.【解答】解:,解得,0<x≤4.故答案为:0<x≤4.14.【解答】解:根据题意得k﹣1≠0且Δ=(﹣2)2﹣4×(k﹣1)>0,解得k<2且k≠1,所以k的取值范围是k<2且k≠1.故答案为:k<2且k≠1.15.【解答】解:∵AB⊥y轴,∴S△OAB=|k|=1,而k<0,∴k=﹣2.故答案为﹣2.16.【解答】解:由翻折变换的性质得:AE=EF,∵∠ACB=90°,AC=12,BC=5,∴AB==13,设AE=EF=x,则BF=13﹣2x;分三种情况讨论:①当BF=BC时,13﹣2x=5,解得:x=4,∴AE=4;②当BF=CF时,F在BC的垂直平分线上,∴F为AB的中点,∴AF=BF,∴x+x=13﹣2x,解得:x=,∴AE=;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FG=BF,根据射影定理得:BC2=BG•AB,∴BG===,即(13﹣2x)=,解得:x=,∴AE=;综上所述:当△BCF为等腰三角形时,AE的长为:4或或;故答案为:4或或.三.解答题(共8小题,满分66分)17.【解答】解:原式=4+3×+﹣1﹣1=4++﹣1﹣1=2+2.18.【解答】解:原式=÷=•=﹣,∵x≠0且x≠1,x=2,∴x只能取﹣2或﹣1,当x=﹣1时,原式=﹣=﹣.19.【解答】解:设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是x元,由题意得:=+30,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,答:第一次每盒乒乓球的进价是4元.20.【解答】解:(1)m=50×40%=20,n=50﹣11﹣20﹣10﹣3=6,故答案为:20,6;(2)∵中位数是数据从大到小排列的第25和第26个的平均数,∴这50户的成绩的中位数在的B等级,D等级所对应的扇形的圆心角度数是360°×=43.2°;(3)1200×=744(户),答:估计该小区测试成绩为优秀的有744户.21.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S△ABC=×8m×=8.22.【解答】解:(1)∵AB=AC,D是BC的中点,∴AD⊥BC,BD=DC,∵OD是⊙O的半径,∴AD是圆O的切线;(2)连接OP,∵BC=4,∴BD=DC=2,∵BD为直径,∴BO=OD=1,∵EP为⊙O切线,∴OP=1,∵OC=3,∴在Rt△OPC中,OP2+OC2=PC2,∴,∵∠EDC=∠PCO,∠EDC=∠OPC=90°,∴△EOC∽△POC,∴,∴,∴,∴PE=PC﹣EC==.23.【解答】(1)证明:由折叠得:∠FBE=∠CBE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴EF=BF;(2)解:在Rt△ABE中,∵AB=4,AE=,∴BE==,∴∠ABE=30°,∴∠AEB=60°,由(1)知:EF=BF,∴△BEF是等边三角形,∵AB⊥EF,∴AE=AF,如图1,过A作AH⊥C'D',∵FC'⊥C'D',ED'⊥C'D',∴FC'∥AH∥ED',∴C'H=D'H,∵AH⊥C'D',∴AC'=AD',∴△AC′D′是等腰三角形;(3)如图1,S△C'D'A=AH•C'D',∵C'D'=CD=4为定值,∴当AH最小时,△AC′D′面积最小,如图2,当C'、A、B三点共线时,此时H与C'重合,△AC′D′面积最小,由折叠得:BC=BC'=6,∠C=∠C'=90°,∵AB=4,∴AC'=6﹣4=2,△AC′D′面积的最小值===4.24.【解答】解:(1)将A(﹣1,0),B(3,0)代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3;(2)抛物线的对称轴上存在点P,使得△ACP的周长最小,理由如下:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,∵A、B点关于直线x=1对称,∴P A=PB,∴△ACP的周长=AC+AP+CP=AC+PB+CP≥AC+BC,∴当B、C、P三点共线时,△ACP的周长有最小值,当x=0时,y=3,∴C(0,3),设直线BC的解析式为y=kx+m,∴,解得,∴y=﹣x+3,∴P(1,2),∵AC=,BC=3,∴△ACP的周长的最小值为+3;(3)设M(x,﹣x2+2x+3),N(n,0),当AC为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AM为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AN为平行四边形的对角线时,∴,解得或,∴M(1+,﹣3)或(1﹣,﹣3);综上所述:M点横坐标为2或1+或1﹣.。

中考数学仿真模拟测试题(附答案解析)

中考数学仿真模拟测试题(附答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。

A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。

A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。

A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。

2. 一个数的平方是9,那么这个数是______或______。

2024年江苏省南京师大附中中考数学模拟试卷(一)及答案解析

2024年江苏省南京师大附中中考数学模拟试卷(一)及答案解析

2024年江苏省南京师大附中中考数学模拟试卷(一)一、单选题1.|﹣2|的值等于()A.2B.﹣C.D.﹣22.据《中国教育报》近期报道,4年来全国在义务教育阶段经费累计投入2.37万亿元,数据2.37万亿用科学记数法表示为()亿.A.2.37×103B.2.37×104C.2.37×105D.0.237×106 3.计算x4÷x+x3的结果是()A.x4B.x3C.2x3D.2x44.一次函数y=2x+1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.不论x取何值,下列代数式的值不可能为0的是()A.x+1B.x2﹣1C.D.(x+1)27.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作,若设甲、乙共用x天完成,则符合题意的方程是()A.=1B.=1C.=1D.=1 8.如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.+B.3C.2+D.+二、填空题9.要使分式有意义,则x的取值范围为.10.分解因式:4x2y﹣12xy=.11.已知点P(m﹣1,2m﹣3)在第三象限,则m的取值范围是.12.已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46则关于x的一元二次方程ax2+bx+c=0的根是.13.用一个圆心角为150°,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为.14.为测量附中国旗杆的高度,小宇的测量方法如下:如图,将直角三角形硬纸板△DEF 的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.6米,到旗杆的水平距离DC=18米,按此方法,可计算出旗杆的高度为米.15.如图,在平面直角坐标系中,直线与直线分别与函数的图象交点A、B两点,连接AB、OB,若△OAB的面积为3,则k的值为.16.已知点D(2,a)为直线y=﹣x+3上一点,将一直角三角板的直角顶点放在D处旋转,保持两直角边始终交x轴于A、B两点,C(0,﹣1)为y轴上一点,连接AC,BC,则四边形ACBD面积的最小值为.三、解答题17.(1)计算:﹣÷;(2)解不等式组:.18.如图是三个可以自由转动的转盘,甲、乙两人中甲转动转盘,乙记录转盘停下时指针所指的数字.当三个数字中有数字相同时,就算甲赢,否则就算乙赢.请判断这个游戏是否公平,并用概率知识说明理由.19.【阅读材料】老师的问题:已知:如图,△ABC 中,∠ACB =90°,CD 是斜边AB 上的中线.求作:菱形AECD .小明的作法:(1)取CD 的中点F ;(2)连接BF 并延长到E ,使FE =FB ;(3)连接AE ,CE .四边形AECD 就是所求作的菱形.【解答问题】请根据材料中的信息,证明四边形AECD 是菱形.20.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取甲、乙两个班(每个班均为40人)的学生进行测试,并对成绩进行整理(成绩为整数,满分100分).a.甲班成绩统计表:平均数众数中位数优秀率79847640%b.乙班良好这一组学生的成绩:70,71,73,73,73,74,76,77,78,79.c.乙班成绩统计图:说明:①成绩等级分为:80分及以上为优秀,70~79分为良好,60~69分为合格,60以下为不合格;②统计图中每小组包含最小值,不包含最大值.(1)已知甲班没有3人的成绩相同,成绩是76分的学生,在班的名次更好些;(2)从两个不同的角度推断哪个班的整体成绩更好.21.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.22.某商场销售一种成本为20元/kg的商品,市场调研反映:在某个月的第x天(1≤x≤30)的销售价格为(40+x)元/kg,日销售量y(kg)与x的函数关系如图所示.(1)求y与x的函数解析式;(2)销售该商品第几天时,日销售利润最大?(3)结合函数图象回答,在当月有多少天的日销售利润大于2250元?23.如图,等边三角形ABC中,P是边AC上的一个动点(不与A,C点重合),连接BP,将△BCP绕点C顺时针旋转至△ACD,过点C作CQ∥BP,交PD的延长线于点Q.(1)探究△PCD的形状;(2)求证:△APD≌△QDC;(3)若延长AD交CQ于点E,CE=2EQ,求∠CAQ的正切值.24.定义:若函数G1的图象上至少存在一个点,该点关于x轴的对称点落在函数G2的图象上,则称函数G1,G2为关联函数,这两个点称为函数G1,G2的一对关联点.例如,函数y=2x与函数y=x﹣3为关联函数,点(1,2)和点(1,﹣2)是这两个函数的一对关联点.(1)判断函数y=x+2与函数y=﹣是否为关联函数?若是,请直接写出一对关联点;若不是,请简要说明理由;(2)若对于任意实数k,函数y=2x+b与y=kx+k+5始终为关联函数,求b的值;(3)若函数y=x2﹣mx+1与函数y=2x﹣(m,n为常数)为关联函数,且只存在一对关联点,求2m2+n2﹣6m的取值范围.2024年江苏省南京师大附中中考数学模拟试卷(一)参考答案与试题解析一、单选题1.【分析】直接根据绝对值的意义求解.【解答】解:|﹣2|=2.故选:A.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答】解:由题可得:2.37万亿=23700亿=2.37×104.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.【分析】首先根据同底数幂的除法法则:同底数幂相除,底数不变,指数相减,求出x4÷x的值是多少;然后用它加上x3,求出x4÷x+x3的结果是多少即可.【解答】解:x4÷x+x3=x3+x3=2x3,故x4÷x+x3的结果是2x3.故选:C.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了合并同类项的方法,要熟练掌握.4.【分析】根据一次函数图象的性质可得出答案.【解答】解:∵k=2>0,b=1>0,∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限.故选:A.【点评】此题考查了一次函数的性质,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.5.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x≥﹣2;由②得,x<1,故此不等式组的解集为:﹣2≤x<1.在数轴上表示为:故选:C.【点评】本题考查的是在数轴上表示不等式组的解集,掌握解不等式组的方法是解答此题的关键.6.【分析】分别找到各式为0时的x值,即可判断.【解答】解:A、当x=﹣1时,x+1=0,故不合题意;B、当x=±1时,x2﹣1=0,故不合题意;C、分子是1,而1≠0,则≠0,故符合题意;D、当x=﹣1时,(x+1)2=0,故不合题意;故选:C.【点评】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.【分析】首先理解题意找出题中的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据此列方程即可.【解答】解:设甲、乙共用x天完成,则甲单独干了(x﹣22)天,本题中把总的工作量看成整体1,则甲每天完成全部工作的,乙每天完成全部工作的.根据等量关系列方程得:=1,故选:A.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.【分析】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB 的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【解答】解:∵一次函数y=x+的图象与x轴、y轴分别交于点A、B,令x=0,则y=,令y=0,则x=﹣,则A(﹣,0),B(0,),则△OAB为等腰直角三角形,∠ABO=45°,∴AB==2,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC==x,由旋转的性质可知∠ABC=30°,∴BC=2CD=2x,∴BD==x,又BD=AB+AD=2+x,∴2+x=x,解得:x=+1,∴AC=x=(+1)=,故选:A.【点评】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.二、填空题9.【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.10.【分析】直接提取公因式4xy进行分解因式即可.【解答】解:4x2y﹣12xy=4xy(x﹣3),故答案为:4xy(x﹣3).【点评】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.11.【分析】根据点P的位置可得,然后按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:∵点P(m﹣1,2m﹣3)在第三象限,∴,解不等式①得:m<1,解不等式②得:m<1.5,∴原不等式组的解集为:m<1,故答案为:m<1.【点评】本题考查了解一元一次不等式组,点的坐标,准确熟练地进行计算是解题的关键.12.【分析】由抛物线经过点(﹣5,6),(2,6)可得抛物线对称轴,根据抛物线对称性及抛物线经过(﹣4,0)求解.【解答】解:由抛物线经过点(﹣5,6),(2,6)可得抛物线抛物线对称轴为直线x==﹣,∵抛物线经过(﹣4,0),对称轴为直线x=﹣,∴抛物线经过(1,0),∴一元二次方程ax2+bx+c=0的根是x1=﹣4,x2=1.故答案为:x1=﹣4,x2=1.【点评】本题考查抛物线与x轴的交点,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.13.【分析】根据弧长公式先计算出扇形的弧长,再利用圆的周长和圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长求解.【解答】解:扇形的弧长==10π,设圆锥的底面半径为R,则2πR=10π,所以R=5.故答案为:5;【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【分析】根据题意证出△ACD∽△FED,进而利用相似三角形的性质得出AC的长,即可得出答案.【解答】解:∵CD⊥AB,△DEF为直角三角形,∴∠DEF=∠ACD,∵∠ADC=∠FDE,∴△ACD∽△FED,∴=,∵DE=0.5米,EF=0.25米,DC=18米,∴=,∴AC=9米,∵DG=1.6米,∴BC=1.6米,∴AB=10.6米,故答案为:10.6.【点评】此题主要考查了相似三角形的应用;由三角形相似得出对应边成比例是解题关键.15.【分析】由两条直线的解析式即可得到两直线平行,根据同底等高的三角形面积相等,=S△AOB,由△OAB的面积为3,得到,解得A 即可得到S△AOC的横坐标,代入求得纵坐标,把A的坐标代入即可求得k的值.【解答】解:设直线交y轴于点C,则C(0,2),连接AC,由题意可知OA∥BC,=S△AOB,∴S△AOC∵△OAB的面积为3,∴,即,∴|x|=3,∵在第二象限,∴A的横坐标为﹣3,把x=﹣3代入得,y=2,∴A(﹣3,2),∵函数的图象过点A,∴k=﹣3×2=﹣6,故答案为:﹣6.【点评】本题考查了两条直线的平行问题,三角形的面积,一次函数图象上点的坐标特征,求得A的坐标是解题的关键.16.【分析】先求出点D的坐标(2,2),进而得出S四边形ACBD=AB(2+1)=AB,只要AB最小时,四边形ACBD的面积最小,而DA=DB时,AB最小,即可得出结论.【解答】解:如图,取AB的中点F,连接DF,∵∠ADB=90°,∴AB=2DF∵点D(2,a)为直线y=﹣x+3上一点,∴a=﹣×2+3=2,∴D(2,2),过点D作DE⊥AB于E,∴DE=2,E(2,0),=S△ABC+S△ABD=AB•OC+AB•DE=AB(OC+DE)=AB=3DF,∴S四边形ACBD要四边形ACBD的面积最小,即DF最小,∵点D(2,2),点F在x轴上,∴当DF⊥x轴时,DF最小,最小值为DE=2,=3×2=6,∴S四边形ACBD最小故答案为6.【点评】此题主要考查了点的坐标特点,三角形的面积公式,直角三角形斜边的中线等于斜边的一半,判断出DF最小时,四边形ACBD的面积最小.三、解答题17.【分析】(1)先计算分式的除法,再算分式的减法,即可解答;(2)按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:(1)﹣÷=﹣•=﹣==﹣;(2),解不等式①得:x≤1,解不等式②得:x<﹣7,∴原不等式组的解集为:x<﹣7.【点评】本题考查了分式的混合运算,解一元一次不等式组,准确熟练地进行计算是解题的关键.18.【分析】画出树状图,计算出各种情况的概率,然后比较即可.相等则公平,否则不公平.【解答】解:不公平,理由如下:画树状图如下:由图可知:共有8种结果,且是等可能的,其中含有相同数字的结果有6种.则甲获胜的概率==,乙获胜的概率==,因为≠,所以这个游戏不公平.【点评】本题考查的是游戏公平性的判断、列表法与树状图法.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.19.【分析】由作法得CF=DF,EF=BF,则可判断△CEF≌△DBF,所以CE=DB,∠CEF =∠DBF,则CE∥BD,在根据斜边上的中线性质得到CD=AD=BD,则AD=CD=CE,然后根据菱形的判定方法可得到四边形AECD是菱形.【解答】证明:由作法得CF=DF,EF=BF,在△CEF和△DBF中,,∴△CEF≌△DBF(SAS),∴CE=DB,∠CEF=∠DBF,∴CE∥BD,∵CD为斜边AB上的中线,∴CD=AD=BD,∴AD=CE,∵AD=CE,AD∥CE,∴四边形AECD为平行四边形,∵AD=CD,∴四边形AECD是菱形.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了直角三角形斜边上的中线性质和菱形的判定与性质.20.【分析】(1)根据中位数的定义求解即可;(3)根据中位数与优秀率的意义进行解答即可(答案不唯一).【解答】解:(1)成绩是76分的学生,在乙班的名次更好些.理由如下:甲班成绩的中位数是76分,而且没有3人的成绩相同,所以成绩是76分的学生在甲班位于第20或第21名;乙班优秀学生有3+9=12(人),根据乙班良好学生的成绩可知成绩是76分的学生在乙班位于第16名,所以成绩是76分的学生,在乙班的名次更好些.故答案为:乙;(2)甲班的整体成绩更好.理由如下:甲班成绩的中位数是76分,乙班成绩的中位数是=72(分),甲班成绩的优秀率是40%,乙班成绩的优秀率是×100%=30%,甲班成绩的中位数、优秀率均高于乙班,所以甲班的整体成绩更好.【点评】本题考查了统计的应用,中位数、众数、优秀率的意义,掌握中位数的定义及其意义是解决问题的关键.21.【分析】(1)连接OC,由切线的性质可知:∠OCD=90°,从而可知OC∥AD,由于OC=OA,从而可证明AC平分∠DAB;(2)由于∠B=60°,所以∠CAB=30°,所以∠DAC=30°,从而可求出AD的长度.【解答】(1)证明:连接OC,∵CD与⊙O相切,∴∠OCD=90°,∵∠ADC=90°,∴OC∥AD,∴∠ACO=∠DAC,∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,∴AC平分∠BAD;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=60°,OC=OB,∴△BOC是等边三角形,∴∠BOC=60°,∴∠CAO=30°,AC=,作OF⊥AC交AC于点C,∴OF=BC=1,+S扇形BOC图中阴影部分的面积=S△AOC===.【点评】本题考查圆的综合问题,涉及切线的性质,角平分线的判定,圆周角定理,锐角三角函数等知识,综合程度较高,属于中等题型.22.【分析】(1)设y=kx+b(k≠0),根据图象取两个点坐标代入,求出k,b的值即可.(2)设日销售利润为w元,列出w关于x的函数关系式,求最大值即可.(3)令w=2250,求出一元二次方程的两个解,结合二次函数的草图求出x的范围,从而得到结果.【解答】解:(1)设y=kx+b(k≠0),把(5,90),(10,80)代入上式得,,解得,,∴y与x的函数解析式为:y=﹣2x+100.(2)设日销售利润为w元,由题意得:w=(40+x﹣20)(﹣2x+100)=﹣2x2+60x+2000=﹣2(x﹣15)2+2450,∵﹣2<0,1≤x≤30,∴当x=15时,w最大,答:销售该商品第15天时,日销售利润最大.(3)令w=2250,则﹣2(x﹣15)2+2450=2250,解得,x1=5,x2=25,结合二次函数图象可知,当5<x<25时,w>2250,∴有19天的日销售利润大于2250元.【点评】本题主要考查了一次函数的应用,二次函数的应用,读懂题意,正确列出函数关系式是解题的关键.23.【分析】(1)由旋转的性质得出∠BCP=∠ACD=60°,CP=CD,则可得出△PCD是等边三角形;(2)证明∠CAD=∠DQC,根据AAS可证明△APD≌△QDC;(3)过点P作PM⊥AB于M,设QE=x,证明△DQE∽△CQD,得出,求出DQ=x,证出∠ACQ=90°,由锐角三角函数的定义可得出答案.【解答】(1)解:△PCD是等边三角形.理由:∵△ABC是等边三角形,∴∠ACB=60°,∵将△BCP绕点C顺时针旋转至△ACD,∴∠BCP=∠ACD=60°,CP=CD,∴△PCD是等边三角形;(2)证明:∵△PCD是等边三角形,∴PD=CD,∠PDC=∠CPD=60°,∴∠PAD=∠CDQ=120°,又∵CQ∥BP,∴∠CBP+∠QCB=180°,∵∠PCD=60°,∴∠CBP+∠DCQ=60°,∵将△BCP绕点C顺时针旋转至△ACD,∴∠CBP=∠CAD,∴∠CAD+∠DCQ=60°,又∵∠DCQ+∠DQC=60°,∴∠CAD=∠DQC,在△APD和△DQC中,,∴△APD≌△QDC(AAS);(3)解:过点P作PM⊥AB于M,设QE=x,∵CE=2EQ,∴CE=2x,CQ=BP=3x,∵△APD≌△QDC,∴∠ADP=∠QCD,∵∠DQE=∠CQD,∴△DQE∽△CQD,∴,∴DQ2=CQ•EQ,∴DQ=x,∴AP=DQ=x,∵△ABC是等边三角形,∴∠BAC=60°,∴∠APM=30°,∴PM=AP•sin60°=x,∴cos∠BPM==,∴∠BPM=60°,∴∠APB=∠APM+∠BPM=90°,∴∠ACQ=90°,∴AC=AB=2AP=2x,∴tan∠CAQ==,∴∠CAQ的正切值为.【点评】本题属于三角形综合题,考查了旋转的性质,等边三角形的判定与性质,全等三角形的判定和性质,相似三角形的判定和性质,锐角三角函数的定义等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题.24.【分析】(1)设函数y=x+2图象上一点为(a,a+2),把(a,﹣a﹣2)代入y=﹣得﹣a﹣2=﹣,即可解得a=1或a=﹣3,故函数y=x+2与函数y=﹣的关联点为(1,3)与(1,﹣3)或(﹣3,﹣1)与(﹣3,1);(2)设函数y=2x+b图象上一点为(p,2p+b),把(p,﹣2p﹣b)代入y=kx+k+5得﹣2p﹣b=kp+k+5,根据对于任意实数k,函数y=2x+b与y=kx+k+5始终为关联函数,可得,即可解得b的值为﹣3;(3)设函数y=x2﹣mx+1图象上一点为(t,t2﹣mt+1),把(t,﹣t2+mt﹣1)代入y=2x ﹣得﹣t2+mt﹣1=2t﹣,根据函数y=x2﹣mx+1与函数y=2x﹣(m,n为常数)为关联函数,且只存在一对关联点,知Δ=(2﹣m)2﹣4(1﹣)=0,有n2=﹣m2+4m,由n2≥0求出m的范围,结合2m2+n2﹣6m=2m2+(﹣m2+4m)﹣6m=m2﹣2m=(m﹣1)2﹣1,即可得到答案.【解答】解:(1)函数y=x+2与函数y=﹣为关联函数,理由如下:设函数y=x+2图象上一点为(a,a+2),这点关于x轴的对称点坐标为(a,﹣a﹣2),把(a,﹣a﹣2)代入y=﹣得:﹣a﹣2=﹣,解得a=1或a=﹣3,∴函数y=x+2与函数y=﹣的关联点为(1,3)与(1,﹣3)或(﹣3,﹣1)与(﹣3,1);(2)设函数y=2x+b图象上一点为(p,2p+b),这点关于x轴的对称点坐标为(p,﹣2p﹣b),把(p,﹣2p﹣b)代入y=kx+k+5得:﹣2p﹣b=kp+k+5,整理得:(p+1)k+2p+b+5=0,∵对于任意实数k,函数y=2x+b与y=kx+k+5始终为关联函数,∴对于任意实数k,(p+1)k+2p+b+5=0恒成立,∴,解得,∴b的值为﹣3;(3)设函数y=x2﹣mx+1图象上一点为(t,t2﹣mt+1),这点关于x轴的对称点为(t,﹣t2+mt﹣1),把(t,﹣t2+mt﹣1)代入y=2x﹣得:﹣t2+mt﹣1=2t﹣,整理得:t2+(2﹣m)t+1﹣=0,∵函数y=x2﹣mx+1与函数y=2x﹣(m,n为常数)为关联函数,且只存在一对关联点,∴关于t的方程t2+(2﹣m)t+1﹣=0有两个相等的实数解,∴Δ=(2﹣m)2﹣4(1﹣)=0,∴n2=﹣m2+4m,∵n2≥0,∴﹣m2+4m≥0,即m2﹣4m≤0,∴0≤m≤4,∵2m2+n2﹣6m=2m2+(﹣m2+4m)﹣6m=m2﹣2m=(m﹣1)2﹣1,∴当m=4时,2m2+n2﹣6m最大为8,当m=1时,2m2+n2﹣6m最大为﹣1,∴2m2+n2﹣6m的取值范围是﹣1≤2m2+n2﹣6m≤8.【点评】本题考查二次函数综合应用,涉及新定义,一次函数与反比例函数等知识,解题的关键是读懂题意,理解关联点、关联函数的概念,用含字母的式子表示相关点坐标。

2023年陕西省中考数学全真模拟试卷(一)及答案解析

2023年陕西省中考数学全真模拟试卷(一)及答案解析

2023年陕西省中考数学全真模拟试卷(一)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.(3分)﹣2023的相反数是()A.2023B.C.D.﹣20232.(3分)中国“二十四节气“已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春“、“谷雨“、“白露“、“大雪”,其中是中心对称图形的是()A.B.C.D.3.(3分)计算()=8a,正确的结果是()A.16a2b2B.4ab2C.(4ab)2D.(2ab)24.(3分)如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,若BD=2,sin C=,则线段AB的长为()A.10B.4C.4D.25.(3分)如图,两个相同的菱形拼接在一起,若∠ADB=15°,则∠BCF的度数为()A.60°B.45°C.30°D.70°6.(3分)已知直线y=3x与y=﹣2x+b的交点坐标为(1,a),则a﹣b的值为()A.8B.2C.﹣2D.﹣17.(3分)如图,A,B,C,D,E均是⊙O上的点,且BE是⊙O的直径,若∠BCD=2∠BAD,则∠DAE的度数是()A.15°B.20°C.25°D.30°8.(3分)如图,物体从点A抛出,物体的高度y(m)与飞行时间t(s)近似满足函数关系式y=,在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t的取值范围是()A.0<t<6B.0≤t≤6C.0≤t≤6且t≠3D.0<t≤6且t≠3二、填空题(共5小题,每小题3分,计15分)9.(3分)有理数a,b在数轴上的位置如图所示,化简|a﹣b|﹣|a|=.10.(3分)如图所示,已知∠MON=60°,正五边形ABCDE的顶点A、B在射线OM上,顶点E在射线ON上,则∠AEO=度.11.(3分)我国古代数学家赵爽巧妙地用“弦图”证明了勾股定理,标志着中国古代的数学成就.如图,若弦图中四个全等的直角三角形的两条直角边长分别为3和4,则中间小正方形的对角线长为.12.(3分)等边△OAB在平面直角坐标系中的位置如图所示,已知点A(4,0),若一个反比例函数经过边AB的中点,则该反比例函数的表达式为.13.(3分)如图,在矩形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH.若AB=6,BC=10,则GH的长为.三、解答题(共13小题,计81分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】2019年河南省洛阳市洛龙区六校联考中考数学二模试卷一、选择题(每小题3分,共30分)1.在下列各数中,比大的数是()A.B.πC.0 D.2.3月1日,国家统计局公布了31省份2018年GDP数据,其中,河南省2018年GDP总量约为4.8万亿元,位居全国第五,数据“4.8万亿”用科学记数法表示为()A.4.8×1013B.48×1011C.4.8×1012D.4.8×10113.如图所示,该几何体的俯视图是()A.B.C.D.4.如图,a∥b,A、B为直线a、b上的两点,且AB⊥BC,∠BAC=30°,则∠1与∠2的度数之和为()A.60°B.90°C.30°D.120°5.下列运算正确的是()A.B.C.(﹣3xy3)2=9x2y5D.6.不等式组的整数解之和为()A.﹣3 B.﹣1 C.1 D.37.一元二次方程(x﹣1)(x+5)=3x+2的根的情况是()A.方程没有实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.方程的根是1、﹣5和8.2019年2月9日国际滑联四大洲花样滑冰锦标赛的花滑短节目比赛中,中国选手的得分为74.19分,当天比赛的其他四组选手的得分分别为61.91分、66.34分、61.71分、57.38分,则这5组数据的平均数、中位数分别是()A.61.835分、66.34分B.61.835分、61.91分C.64.306分、66.34分D.64.306分、61.91分9.如图,在平面直角坐标系中,△OAB是等腰三角形,∠OBA=120°,位于第一象限,点A的坐标是(,),将△OAB绕点O旋转30°得到△OA1B1,则点A1的坐标是()A.(,)B.(,﹣)C.(,)或(3,0)D.(,)或(,﹣)10.如图,已知平行四边形ABCD中,AB=BC,点M从点D出发,沿D→C→A以1cm/s 的速度匀速运动到点A,图2是点M运动时,△MAB的面积y(cm2)随时间x(s)变化的关系图象,则边AB的长为()cm.A.B.C.D.二、填空题(每小题3分,共15分)11.计算:=.12.如图,分别以AB的两个端点A、B为圆心,大于AB的长为半径画弧,两弧分别交于点P、Q,作直线PQ交AB于点C,在CP上截取CD=AC,过点D作DE∥AC,使DE =AC,连接AD、BE,当AD=1时,四边形DCBE的面积是.13.在九张质地都相同的卡片上分别写有数字﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是.14.如图,O是圆心,半圆O的直径AB=2,点C在上,=3,连接BC,则图中阴影部分的面积是.15.如图,在矩形ABCD中,AB=2,BC=3,点M是BC边上的一个动点(点M不与点B、C重合),BM=x,将△ABM沿着AM折叠,使点B落在射线MP上的点B′处,点E 是CD边上一点,CE=y,将△CME沿ME折叠,使点C也落在射线MP上的点C′处,当y取最大值时,△C′ME的面积为.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:,其中.17.(9分)据最新统计显示,中国人口约为13901亿,河南省人口约为955913万,全国在用姓氏共计6150个,《户籍人口数据超过千万的姓氏表》中排在前20的姓氏和户籍人口数据如表:表一:排名姓氏人数(亿人)排名姓氏人数(亿人)1 王 1.015 11 徐0.2022 李 1.009 12 孙0.1943 张0.954 13 马0.1914 刘0.721 14 朱0.1815 陈0.633 15 胡0.1656 杨0.462 16 郭0.1587 黄0.337 17 何0.1488 赵0.286 18 林0.1429 吴0.278 19 高0.14110 周0.268 20 罗0.140表二:组别分组频数A0.140≤x≤0.315 13B0.315≤x<0.490 aC0.490≤x<0.665 1D0.665≤x<0.840 1E0.840≤x<1.015 b请根据以上信息解答下列问题:(1)填空:a=,b=;(2)请补全频数分布直方图;(3)请估计河南省户籍人口中,姓氏为王的有多少万人?18.(9分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE 与AB交于点P,再连接FP、FB,且∠AED=45°.(1)求证:CD∥AB;(2)填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.19.(9分)如图,滑翔运动员在空中测量某寺院标志性高塔“云端塔”的高度,空中的点P距水平地面BE的距离为200米,从点P观测塔顶A的俯角为33°,以相同高度继续向前飞行120米到达点C,在C处观测点A的俯角是60°,求这座塔AB的高度(结果精确到1米).(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.(10分)如图,在Rt△ABO中,∠OAB=90°,点A在y轴正半轴上,AB=OA,点B的坐标为(x,3),点D是OB上的一个动点,反比例函数的图象经过点D,交AB于点C,连接CD.(1)当点D是OB的中点时,求反比例函数的解析式;(2)当点D到y轴的距离为1时,求△CDB的面积.21.(10分)某新型高科技商品,每件的售价比进价多6元,5件的进价相当于4件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件.(1)该商品的售价和进价分别是多少元?(2)设每天的销售利润为w元,每件商品涨价x元,则当售价为多少元时,该商品每天的销售利润最大,最大利润为多少元?(3)为增加销售利润,营销部推出了以下两种销售方案:方案一:每件商品涨价不超过8元;方案二:每件商品的利润至少为24元,请比较哪种方案的销售利润更高,并说明理由.22.(10分)如图,在平行四边形ABCD中,AC与BD交于点O,以点O为顶点的∠EOF 的两边分别与边AB、AD交于点E、F,且∠EOF与∠BAD互补.(1)若四边形ABCD是正方形,则线段OE与OF有何数量关系?请直接写出结论;(2)若四边形ABCD是菱形,那么(1)中的结论是否成立?若成立,请画出图形并给出证明;若不成立,请说明理由;(3)若AB:AD=m:n,探索线段OE与OF的数量关系,并证明你的结论.23.(10分)如图,已知抛物线y=ax2+4x+c与x轴交于点M,与y轴交于点N,抛物线的对称轴与x轴交于点P,OM=1,ON=5.(1)求抛物线的表达式;(2)点A是y轴正半轴上一动点,点B是抛物线对称轴上的任意一点,连接AB、AM、BM,且AB⊥AM.①AO为何值时,△ABM∽△OMN,请说明理由;②若Rt△ABM中有一边的长等于MP时,请直接写出点A的坐标.2019年河南省洛阳市洛龙区六校联考中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】根据对的估计解答即可.【解答】解:∵,∴π>,故选:B.【点评】考查实数的比较;用到的知识点为:0大于一切负数;正数大于0;注意应熟记常见无理数的约值.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4.8万亿=4.8×1012,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.【解答】解:从上往下看,可以看到选项C所示的图形.故选:C.【点评】本题考查了三视图的知识,掌握俯视图是从物体的上面看得到的视图是解题的关键.4.【分析】如图,作CE∥直线a,首先证明∠1+∠2=∠ACB,求出∠ACB即可.【解答】解:如图,作CE∥直线a,∵a∥b,∴CE∥b,∴∠1=∠ACE,∠2=∠ECB,∴∠ACB=∠1+∠2,∵AB⊥BC,∴∠ABC=90°,∵∠BAC=30°,∴∠ACB=60°,∴∠1+∠2=60°.故选:A.【点评】本题考查平行线的性质,垂线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.【分析】利用二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;利用积的乘方和幂的乘方对C进行判断;根据约分对D进行判断.【解答】解:A、原式=2﹣,所以A选项错误;B、原式==3,所以B选项错误;A、原式=9x2y6,所以C选项错误;A、原式==,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.也考查了整式的运算.6.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可.【解答】解:解不等式x﹣1>2(x﹣2),得:x<3,解不等式x≤+2,得:x≥1,则不等式组的解集为1≤x<3,∴不等式组的整数解为1、2,∴不等式组整数解之和为1+2=3,故选:D.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.7.【分析】把方程整理成一元二次方程的一般形式后,计算根的判别式△的符号,即可判断根的情况.【解答】解:∵原方程可化为x2+x﹣7=0,∴a=1,b=1,c=﹣7,∴△=b2﹣4ac=12﹣4×1×(﹣7)=29>0,∴方程有两个不相等的实数根.故选:C.【点评】本题考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.8.【分析】根据平均数和中位数的定义分别进行解答,即可得出答案.【解答】解:这5组数据的平均数是:(74.19+61.91+66.34+61.71+57.38)÷5=64.306(分);把这些数从小到大排列为:57.38分、61.71分、61.91分、66.34分、74.19分,最中间的数是61.91分,则这5组数据的中位数是61.91分;故选:D.【点评】本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.9.【分析】两个勾股定理求出OA的长,分两种情形分别求解即可解决问题.【解答】解:如图,∵A(,),∴OA==3,∵BA=BO,∠ABO=120°,∴∠AOB=30°,∴△OAB绕点O旋转30°得到△OA1B1,则点A1的坐标是(,)或(3,0),故选:C.【点评】本题考查坐标与图形的性质,勾股定理,旋转变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【分析】先由图2分析计算出DC,AB,BC,AC的长,及三角形MAB的面积;易判定平行四边形ABCD为菱形,从而其对角线垂直,从而连接对角线,得直角三角形,利用勾股定理建立方程,从而求得a值,进而得AB的长.【解答】解:由图2可知,点M从点D到点C时,△MAB的面积一直为a,∴DC=a,AB=BC=a,S=a,△MAB逐渐减小,直到为0,当点M从点C运动到点A时,S△MAB∴AC=a+﹣a=,连接BD,交AC于点O,∵AB=BC,∴平行四边形ABCD为菱形,∴AC⊥BD,∴AO=CO==,BO==,=a,∵S△MAB∴=a,即•=a,解得a=或﹣(舍).∴边AB的长为cm.故选:A.【点评】本题是动点函数图象问题,需要数形结合,分析出相关线段的长,以及△MAB 的面积,然后以勾股定理建立方程得解,本题综合性较强,难度中等偏上.二、填空题(每小题3分,共15分)11.【分析】根据实数的运算法则即可求出答案.【解答】解:原式=﹣1+1×1=,故答案为:【点评】本题考查实数的运算,解题的关键是熟练运用实数的运算法则,本题属于基础题型.12.【分析】首先证明四边形DCBE是矩形,求出DC,BC即可.【解答】解:由作图可知:DC⊥AB,∵AC=CD,∠ACD=90°,AD=1,∴AC=DC=BC=,∵DE=AC=BC,DE∥BC,∴四边形DCBE是平行四边形,∵∠DCB=90°,∴四边形DCBE是矩形,∴四边形DCBE的面积=CD•CB=×=,故答案为.【点评】本题考查作图﹣复杂作图,线段的垂直平分线,平行四边形的判定和性质,矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.【分析】让绝对值不大于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率.【解答】解:∵数的总个数有9个,绝对值不大于2的数有﹣2,﹣1,0,1,2共5个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是.故答案为.【点评】本题考查概率公式,用到的知识点为:概率=所求情况数与总情况数之比.得到绝对值不大于2的数的个数是解决本题的易错点.14.【分析】连接OC,作CD⊥AB于D,根据题意求出∠BOC和∠AOC,根据扇形面积公式、三角形面积公式计算即可.【解答】解:连接OC,作CD⊥AB于D,∵=3,∴∠BOC=135°,∠AOC=45°,则CD=OC•sin∠AOC=,∴阴影部分的面积=﹣×1×=﹣,故答案为:﹣.【点评】本题考查的是扇形面积计算,掌握扇形面积公式:S=是解题的关键.15.【分析】由折叠的性质得:∠AMB'=∠AMB,∠EMC'=∠EMC,得出∠AME=90°,∠AMB+∠EMC=90°,得出∠BAM=∠EMC,证出△ABM∽△MCE,得出=,即=,求出y=﹣x2+x=﹣(x﹣)2+,当x=时,y取最大值,即CE=,由三角形面积公式即可得出△C'ME的面积.【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,∴∠AMB+∠BAM=90°,由折叠的性质得:∠AMB'=∠AMB,∠EMC'=∠EMC,∵∠AMB'+∠AMB+∠EMC'+∠EMC=180°,∴∠AME=90°,∠AMB+∠EMC=90°,∴∠BAM=∠EMC,∴△ABM∽△MCE,∴=,即=,∴y=﹣x2+x=﹣(x﹣)2+,当x=,即BM=,CM=BC﹣BM=时,y取最大值,即CE=,此时△C'ME的面积=△CME的面积=××=;故答案为:.【点评】本题考查了矩形的性质、翻折变换的性质、相似三角形的判定与性质等知识;熟练掌握翻折变换的性质,证明三角形相似是解决问题的关键.三、解答题(本大题共8个小题,满分75分)16.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=÷=÷=•=,当a=时,原式==﹣2﹣.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.【分析】(1)根据表中信息即可得到结论;(2)根据题意补全频数分布直方图即可;(3)根据题意列式计算即可.【解答】解:(1)根据表中信息得,a=2,b=3,故答案为2,3;(2)补全频数分布直方图如图所示;(3)955913×≈69.797(万人),答:估计河南省户籍人口中,姓氏为王的有69.797万人.【点评】本题考查了频数分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.【分析】(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【解答】(1)证明:连接OD,如右图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①连接AF与DP交于点G,如右上图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此时点P与点O重合,∴此时DE是直径,∴∠EAD=90°,故答案为:90°.【点评】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.19.【分析】根据∠ACD=60°,求得CD=AD•cot60°=AD≈0.58AD,从而求得PD =PC+CD=120+0.58AD,根据∠APD=33°,可得AD=PD•tan33°,利用正切函数可求出AD的长,进而求得AB的长.【解答】解:∵∠ACD=60°,∴CD=AD•cot60°=AD≈0.58AD,∵PC=120∴PD=PC+CD=120+0.58AD,∵∠APD=33°,∴AD=PD•tan33°,∴AD=(120+0.58AD)0.65,∴AD=126(米),∴AB=200﹣126=74米.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.20.【分析】(1)易求得B的坐标,进而求得D的坐标,然后根据待定系数法即可求得;(2)求得D点的坐标,然后求得解析式,进而求得C点的坐标,即可求得BC,然后利根据三角形面积公式即可求得.【解答】解:在Rt△ABO中,∠OAB=90°,点B的坐标为(x,3),∴OA=3,AB=x,∵AB=OA=4,∴B(4,3),∵点D是OB的中点,∴D点坐标为(2,),∵反比例函数的图象经过点D,∴k=2×=3,∴反比例函数的解析式为:y=;(2)设直线OB的解析式为y=ax,∵B(4,3),∴3=4a,解得,a=,∴直线OB的解析式为y=x,∵点D到y轴的距离为1,∴D点的横坐标为1,代入y=x得,y=,∴D(1,),∵反比例函数的图象经过点D,∴k=1×=,∴反比例函数的解析式为:y=,把y=3代入得,3=,解得x=,∴C(,3),∴BC=3﹣=,=×(3﹣)=.∴S△CDB【点评】本题考查了反比例函数图象上点的坐标特征和反比例函数的性质;求得D点的坐标是解题的关键.21.【分析】(1)根据题目,设出未知数,列出二元一次方程组即可解答;(2)根据题目:利润=每件利润×销售数量,列出二次函数,根据二次函数的最值问题,即可求出最大利润;(3)分别根据两种方案,算出他们的最大利润,然后进行比较.【解答】解:(1)该商品的售价x元,进价为y元,由题意得:,解得,故商品的售价30元,进价为24元.(2)由题意得:w=(30+x﹣24)(200﹣5x)=﹣5(x﹣17)2+2645,当每件商品涨价17元,即售价30+17=47元时,商品的销售利润最大,最大为2645元.(3)方案一:每件商品涨价不超过8元,a =﹣5<0,故当x =8时,利润最大,最大利润为w =﹣5(8﹣17)2+2645=2240元;方案二:每件商品的利润至少为24元,即每件的售价应涨价:30+x ﹣24≥24,解得x ≥18,a =﹣5<0,故当a =18时,利润最大,最大利润为w =﹣5(18﹣17)2+2645=2640元. ∵2640>2240,∴方案二的销售利润最高.【点评】本题主要考查了二次函数的实际应用,熟练掌握实际问题模型是解答此题的关键.22.【分析】(1)先利用同角的余角相等判断出∠MON =∠EOF ,再判断出OM =ON ,进而得出△OME ≌△ONF (AAS ),即可得出结论; (2)同(1)的方法即可得出结论;(3)先用同角的余角相等判断出∠GOH =∠EOF ,进而得出△EOG ∽△FOH ,即,再用S △AOB =S △AOD ,得出AB •OG =AD •OH ,即可得出结论.【解答】解:(1)如图1,过点O 作OM ⊥AB 于M ,ON ⊥AD 于N , ∴∠OME =∠ONF =90°, ∴∠BAD +∠MON =180°, ∵∠BAD +∠EOF =180°, ∴∠MON =∠EOF , ∴∠EOM =∠FOM ,∵O 是正方形ABCD 的对角线的交点, ∴∠BAO =∠DAO , ∵OM ⊥AB ,ON ⊥AD , ∴OM =ON , ∴OE =OF ;(2)(1)的结论成立;理由:如图2,过点O 作OM ⊥AB 于M ,ON ⊥AD 于N , ∴∠OME =∠ONF =90°, ∴∠BAD +∠MON =180°,∵∠BAD +∠EOF =180°, ∴∠MON =∠EOF , ∴∠EOM =∠FOM ,∵O 是菱形ABCD 的对角线的交点, ∴∠BAO =∠DAO , ∵OM ⊥AB ,ON ⊥AD , ∴OM =ON , ∴OE =OF ;(3)如图3,过点O 作OG ⊥AB 于G ,OH ⊥AD 于H , ∴∠OGE =∠OHF =90°, ∴∠BAD +∠GOH =180°, ∵∠BAD +∠EOF =180°, ∴∠GOH =∠EOF , ∴△EOG ∽△FOH , ∴,∵O 是▱ABCD 的对角线的交点, ∴S △AOB =S △AOD ,∵S △AOB =AB •OG ,S △AOD =AD •OH , ∴AB •OG =AD •OH , ∴=, ∴.【点评】此题是四边形综合题,主要考查了正方形,菱形的性质,平行四边形的性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出全等三角形和相似三角形是解本题的关键.23.【分析】(1)将M、N的坐标代入列方程组求出a,c的值即可;(2)①设A(0,m),用m的代数式分别表示AB、AM,然后△ABM∽△OMN列出等式求出m的值;②分3种情况讨论Ⅰ.当AB=MP=3时,Ⅱ.当AM=MP=3时,Ⅲ.当BM=MP=3时,分别求出m的值.【解答】解:(1)∵OM=1,ON=5,∴M(﹣1,0),N(0,5),将M(﹣1,0),N(0,5)代入y=ax2+4x+c,,a=﹣1,c=5,抛物线的表达式为y=﹣x2+4x+5;(2)①AO为10时,△ABM∽△OMN.理由如下:设A(0,m),则OA=m,AM=,∵k AM=m,AB⊥AM,∴k AB=﹣,∴直线AB表达式:y=,∵抛物线y=﹣x2+4x+5对称轴:直线x=2,∴B(2,),∴AB=∵△ABM∽△OMN,∴,=,化简,得m4﹣99m2﹣100=0,(m2﹣100)(m2+1)=0,∵m2+1≠0,∴m2﹣100=0,∴m=10或﹣10(舍去)AO=10,即AO为10时,△ABM∽△OMN.②A的坐标为(0,)或(0,)或(0,).∵M(﹣1,0),P(2,0),∴MP=2﹣(﹣1)=3Ⅰ.当AB=MP=3时,AB==3,解得m=或(舍去)Ⅱ.当AM=MP=3时,AM==3,解得m=或(舍去)Ⅲ.当BM=MP=3时,BM==3m=或﹣(舍去),故求得符合条件的A的坐标为(0,)或(0,)或(0,).【点评】本题考查了二次函数,熟练运用二次函数的性质及相似三角形的性质是解题的关键.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

相关文档
最新文档