天体运动知识点

合集下载

(完整版)天体运动知识点

(完整版)天体运动知识点

第二讲天体运动一、两种对立的学说 1.地心说(1)地球是宇宙的中心,是静止不动的;太阳、月亮以及其他行星都绕_地球运动; (2) 地心说的代表人物是古希腊科学家__托勒密__. 2.日心说(1)__ 太阳_是宇宙的中心,是静止不动的,所有行星都绕太阳做__匀速圆周运动__; (2)日心说的代表人物是_哥白尼_. 二、开普勒三大定律行星运动的近似处理在高中阶段的研究中可以按圆周运动处理,开普勒三定律就可以这样表述: (1)行星绕太阳运动的轨道十分接近圆,太阳处在圆心;(2)对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行星做匀速圆周运动; (3)所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等,即r3T2=k.三、太阳与行星间的引力1.模型简化:行星以太阳为圆心做__匀速圆周__运动.太阳对行星的引力,就等于行星做_匀速圆周_运动的向心力.2.太阳对行星的引力:根据牛顿第二定律F =m v2r 和开普勒第三定律r3T2∝k 可得:F∝___mr 2__.这表明:太阳对不同行星的引力,与行星的质量成___正比_,与行星和太阳间距离的二次方成___反比___.3.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F′∝_M r24.太阳与行星间的引力:根据牛顿第三定律F =F′,所以有F∝Mmr 2_,写成等式就是F =_ G Mmr2__.四、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比.2.公式: F=GMm r ²(1)G 叫做 引力常量 ,(2)单位:N ·m²/kg² 。

在取国际单位时,G 是不变的。

(3)由卡文迪许通过扭秤实验测定的,不是人为规定的。

3.万有引力定律的适用条件(1)在以下三种情况下可以直接使用公式F =G m1m2r2计算:①求两个质点间的万有引力:当两物体间距离远大于物体本身大小时,物体可看成质点,公式中的r 表示两质点间的距离.②求两个均匀球体间的万有引力:公式中的r 为两个球心间的距离.③一个质量分布均匀球体与球外一个质点的万有引力:r 指质点到球心的距离.(2)对于两个不能看成质点的物体间的万有引力,不能直接用万有引力公式求解,切不可依据F =G m1m2r2得出r→0时F→∞的结论而违背公式的物理含义.内容理解开普勒第一定律所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个上。

高一物理天体运动知识点总结

高一物理天体运动知识点总结

高一物理天体运动知识点总结天体运动是天文学的重要内容之一,研究宇宙中各种天体的运动规律,揭示宇宙的奥秘。

在高一物理学习中,我们也学习了一些关于天体运动的基本知识。

本文将对高一物理天体运动的知识点进行总结。

一、天体的运动天体的运动分为自转和公转两种。

自转是指天体围绕自身轴线旋转的运动,如地球的自转使得白昼和黑夜的交替。

公转是指天体围绕另一个天体旋转的运动,如地球围绕太阳的公转造成了四季的变化。

二、天体运动的规律1.开普勒定律开普勒定律是描述行星运动的规律,包括开普勒第一定律(椭圆轨道定律)、开普勒第二定律(面积定律)和开普勒第三定律(调和定律)。

这些定律揭示了行星运动的轨道形状、速度和时间的关系。

2.万有引力定律万有引力定律是描述天体之间相互作用的规律,由牛顿提出。

它表明两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

这个定律解释了行星围绕太阳的椭圆轨道和卫星围绕行星的圆轨道。

三、地球的运动1.地球的自转地球的自转使得地球上的各地区经历白昼和黑夜的交替。

自转速度不同,使得地球上不同地区的时间不同。

2.地球的公转地球的公转使得地球围绕太阳运动,形成了四季的变化。

地球公转的轨道是椭圆形的,而不是圆形的。

四、天体间的相互作用1.行星和卫星行星和卫星之间存在引力相互作用,行星的引力使得卫星围绕行星运动。

行星和卫星的质量越大,引力越大,使得卫星绕行星运动的速度越快。

2.恒星和行星恒星是太阳系中的主要天体,行星围绕恒星运动。

恒星的引力决定了行星的轨道形状和运动速度。

五、天体测量1.天文单位天文单位是天文学中常用的长度单位,用来表示天体之间的距离。

1天文单位等于地球和太阳之间的平均距离,约为1.5亿公里。

2.光年光年是天文学中常用的长度单位,用来表示光在一年内传播的距离。

光年是一种非常大的距离单位,一光年约等于9.46万亿公里。

六、宇宙的起源和演化宇宙的起源和演化是天文学的核心问题之一。

宇宙大爆炸理论认为宇宙起源于一个巨大的爆炸,随着时间的推移,宇宙不断膨胀和演化。

高三天体运动知识点

高三天体运动知识点

高三天体运动知识点天体运动是宇宙中各类物体的运动规律,涵盖了天文学的基础知识。

作为高中生,了解天体运动的基本概念、规律和相关知识点是我们必不可少的一部分。

下面,我将为大家介绍几个高三天体运动的重要知识点。

知识点一:地球的自转和公转地球的自转是指地球以自己的轴为中心,在24小时内完成一次旋转。

这一自转运动使得地球表面上的天空看起来像是星星和太阳在我们头顶上运动。

地球自转的方向是由地球的北极指向南极,自西向东。

地球的公转是指地球绕太阳运动,公转周期为365.25天(即一年)。

这一运动决定了四季的变化,使地球上各个地区不同时间经历着不同的气候和天气变化。

知识点二:日地距离和地球的椭圆轨道地球与太阳之间的距离并非固定不变,而是处于一定的变化之中。

地球与太阳的距离最近时约为1.47亿公里,最远时约为1.52亿公里。

这种距离的变化称为地球的近地点和远地点。

地球绕太阳的轨道并非完全是一个圆形,而是近似于一个椭圆。

离心率是衡量椭圆轨道离圆的程度,地球的离心率约为0.017。

这一椭圆轨道使得地球在公转过程中距离太阳有所变化。

知识点三:地球的倾斜轴和地球两极地球的自转轴与公转平面倾斜约23.5度,这一倾斜角度被称为倾斜轴。

地球的倾斜轴是导致地球上季节变化的重要原因之一。

地球上的两个极点分别是北极和南极。

北极位于地球的北端,南极位于地球的南端。

由于地球自转轴倾斜,使得地球上不同区域的太阳照射角度和时间发生改变,从而形成了不同地区的气候特点和季节变化。

知识点四:日食和月食当月球处于地球和太阳之间,太阳的光线被月球遮挡,地球的观测者就会看到太阳被阴影遮蔽的现象,这就是日食。

日食分为全食、偏食和环食。

当月球进入地球和太阳之间,地球的阴影遮住了月球,使得月球暗淡或者完全消失,这就是月食。

月食分为全食、半影食和偏食。

知识点五:星座和星系星座是指人们观测到的天空上一组遥远星星的集合。

我们通常将天空划分成12个星座,其中每个星座都有其特定的名称和象征。

高一物理天体运动知识点总结

高一物理天体运动知识点总结

高一物理天体运动知识点总结一、天体运动的基本概念天体运动是指天体在空间中的运动过程,包括行星、卫星、恒星等天体的运动。

天体运动是宇宙中的基本现象之一,研究天体运动可以揭示宇宙的本质和规律。

二、天体运动的基本规律1. 开普勒定律开普勒定律是描述行星运动的基本规律,包括开普勒第一定律(行星绕太阳运动的轨道是一个椭圆)、开普勒第二定律(行星在轨道上的面积速率是恒定的)和开普勒第三定律(行星公转周期的平方与轨道长轴的立方成正比)。

2. 轨道运动天体在宇宙中的运动基本上都是绕着某个中心进行的,这个中心可以是恒星、行星或其他天体。

天体绕中心运动的轨道有椭圆、圆、抛物线和双曲线四种类型。

3. 万有引力定律万有引力定律是描述天体之间相互作用的基本规律,它表明任何两个物体之间都存在引力,且引力的大小与两个物体的质量成正比,与它们之间的距离的平方成反比。

万有引力定律是描述天体运动的重要依据。

三、天体运动的影响因素1. 天体的质量天体的质量决定了其对其他天体的引力大小,质量越大,引力越大。

2. 天体之间的距离天体之间的距离越近,它们之间的引力就越大,反之亦然。

3. 初始速度天体在开始运动时的初始速度也会影响其轨道形状,初始速度越大,轨道越开放,初始速度越小,轨道越封闭。

四、天体运动的应用1. 行星轨道计算利用开普勒定律和万有引力定律,可以计算行星的轨道形状、周期等参数,从而更好地了解行星的运动规律。

2. 卫星发射与轨道设计在卫星发射过程中,需要根据地球的引力和速度等因素,确定卫星的发射角度和速度,以使卫星进入预期的轨道。

3. 天文观测与导航系统天体运动的知识可以帮助天文学家进行天文观测,研究宇宙的演化和变化。

此外,天体运动的规律也是导航系统中的重要基础,如全球定位系统(GPS)就是基于卫星运动的原理来实现位置定位的。

五、天体运动的未解之谜尽管我们对天体运动有了深入的研究,但仍有一些未解之谜。

例如,黑洞的运动规律、宇宙的扩张速度等问题,仍需要进一步的研究和探索。

物理高一必修二天体知识点

物理高一必修二天体知识点

物理高一必修二天体知识点物理高一必修二天体知识点主要包括有关天体的基本概念、行星运动和引力定律等内容。

以下将对这些知识点进行详细介绍。

一、基本概念1. 天体:指存在于宇宙中的各种天体,如恒星、行星、卫星等。

2. 星系:由大量星体组成的天体系统,如银河系、仙女座星系等。

3. 宇宙:包括了所有存在的空间、时间和能量。

宇宙是无限的。

二、行星运动1. 行星运动:行星绕太阳运动的轨迹被称为椭圆轨道。

这种运动被称为行星公转。

2. 椭圆轨道:椭圆轨道由近日点和远日点组成。

近日点是离太阳最近的点,远日点是离太阳最远的点。

3. 开普勒三定律:开普勒通过实验和观察总结出了行星运动的三个定律:- 第一定律:行星运动轨道为椭圆,太阳位于椭圆的一个焦点上。

- 第二定律:相同时间内,行星在椭圆轨道上扫过的面积相等。

- 第三定律:行星公转周期的平方与平均距离的立方成正比。

三、引力定律1. 引力:物体之间的吸引力称为引力。

引力是一种万有力,适用于所有物体之间的相互作用。

2. 引力定律:牛顿通过实验得出了引力定律,即任何两个物体之间的引力与它们质量的乘积成正比,与它们距离的平方成反比。

3. 地球上的重力:地球对物体的吸引力即为重力,重力的大小取决于物体的质量和离地球的距离。

四、天体的性质1. 恒星:恒星是由巨大的氢气球体中心核聚变产生的能量而发光的天体。

恒星通过核融合反应将氢转变为氦,并释放大量能量。

2. 卫星:绕行行星或恒星的天体称为卫星。

例如,地球的卫星是月球。

3. 小行星:太阳系中绕太阳运行,没有清理出来的一些天体,它们的体积较小,不具备行星特征。

它们主要存在于小行星带中。

总结:物理高一必修二天体知识点主要包括天体的基本概念、行星运动和引力定律等内容。

掌握这些知识对于理解宇宙的奥秘和天体运动有着重要的意义。

通过学习天体知识,我们可以更好地理解地球的运动、星体的特性以及宇宙的起源和演化。

天体运动章节知识点总结

天体运动章节知识点总结

天体运动章节知识点总结1. 日的运动太阳是太阳系中的主要天体之一,其运动对太阳系中其他天体的运动都有着重要的影响。

日的运动包括日冕的运动、日球的自转和公转。

据观测,太阳自转是不均匀的,赤道区域的自转速度要比极区快得多。

此外,太阳还会产生大规模的太阳风和太阳黑子等现象。

这些现象都会影响着地球和其他行星的运动。

2. 月的运动月球是地球的天然卫星,月球的运动对地球的潮汐和太阳系其他行星的运动都有着显著的影响。

月球有自己的自转和公转运动,但由于月球的自转周期和公转周期相等,使得我们只能从地球上看到月球的一面。

另外,由于地球自转产生的离心力和引力的作用,月球的轨道还会发生变形。

月球的周期性现象也是天文学家们研究的重要对象,例如日食和月食等现象都是由月球的运动引起的。

3. 行星的运动在太阳系中,行星的运动也是天文学家们关注的重点。

根据观测结果,行星的轨道都呈椭圆形,且它们的公转速度和周期都是不相同的。

这也是开普勒三定律的一个重要内容。

此外,由于行星的自转轴倾角、自转速度和公转速度的不同,使得我们在不同的时间和位置观测到行星的外观也会有所不同。

4. 彗星的运动彗星是太阳系中的一种小天体,它的运动规律和其他天体有所不同。

彗星的轨道一般十分长而狭窄,其中一部分建立在近日点的轨道上,广大部分则建立在充满星际空间的轨道上。

一般来说,彗星的轨道可以划分为椭圆形、抛物线和双曲线三种,而椭圆形轨道的彗星更多为周期性彗星。

彗星的运动规律和光度变化也成为了天文学家们研究的重要课题。

5. 引力与牛顿运动定律牛顿的引力定律是自然科学的基本定律之一,它揭示了天体之间相互作用的规律。

根据牛顿的引力定律,每两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

而牛顿的运动定律可以描述物体的运动状态和受力情况。

这些定律对于天体运动的研究有着重要的意义,也为我们理解宇宙的运动提供了重要的基础。

总而言之,天体运动是天文学中的重要课题,它包括日、月、行星和彗星的运动规律,引力和牛顿运动定律等多个方面。

全国天体运动知识点总结

全国天体运动知识点总结

全国天体运动知识点总结天体运动是指天体在天空中的运动和变化。

天体包括太阳、月亮、行星、恒星、流星、彗星、卫星等各种宇宙天体。

天体运动包括天文现象的周期、周期性现象、非周期性现象和变化规律等方面的知识。

下面将从这几个方面对全国天体运动知识点进行总结。

一、天文现象的周期1.太阳的周期太阳是太阳系的中心天体,其周期性现象有日、四季、岁差和11年黑子等现象。

太阳的周期包括太阳的自转周期和地球围绕太阳的公转周期。

太阳的公转周期是地球的公转周期也就是一年。

太阳的四季是地球围绕太阳公转一周后,运行轨道上地球的日照面变化导致的,四季变化也是一种周期性现象。

太阳岁差是地球公转轨道的轴偏转所产生的现象,大约21,000年产生一个岁差周期,这个现象也是一种周期性现象。

太阳黑子是太阳黑子周期的一种现象,大约每11年产生一次太阳黑子周期,这个现象也是一种周期性现象。

2.月亮的周期月亮是地球的卫星,月亮的周期性现象有月相、潮汐和月食、月球日等。

月相是月球在公转过程中由于太阳光照照射到月球上而产生的亮暗不同的现象,月相的周期是一个月亮的周期,也叫月相周期。

潮汐是地球和月亮之间的引力产生的潮汐现象,也是月球周期的一种现象,叫做潮汐周期。

月食和月球日也是月球周期的现象,月球日是指月球一次自转的时间,月球日大约是27.3天。

3.行星的周期行星是太阳系的行星,行星的周期性现象有行星的日、行星的月、行星的年等。

行星的日是指行星自转一次所需的时间,行星的自转速度和轴倾角决定了行星的自转周期的长短。

行星的年是指行星公转一周所需的时间,行星的公转轨道决定了行星的公转周期的长短。

行星的月是指行星的自然卫星所绕行星公转所需的时间,行星的卫星数量和密度决定了行星的月数。

二、周期性现象1.日食和月食日食是地球在运行轨道上,月亮阴影照射到地球上而使得地球上出现日食的现象,日食是一个周期性现象。

月食是地球在运行轨道上,地球阴影照射到月球上而使得月球上出现月食的现象,月食也是一个周期性现象。

高考物理天体运动知识点

高考物理天体运动知识点

高考物理天体运动知识点天体运动是物理学中重要的一部分,包含了行星运动、月球运动、恒星运动等多个方面。

在高考物理考试中,天体运动常常是涉及的一个重要知识点。

本文将围绕高考物理天体运动知识点展开讨论,探讨地球的自转和公转、行星运动以及恒星运动等内容。

一、地球的自转和公转地球的自转是指地球围绕自身轴线旋转的运动。

地球自转的周期为一天,也就是24小时。

地球自转产生了昼夜的交替现象。

地球的公转则是指地球绕太阳旋转的运动。

地球公转的周期为一年,也就是365.25天。

地球的公转使得我们能够感受到季节的变化。

地球的自转和公转对应了天体运动的基本规律,同时也影响着地球上的各种现象。

例如,地球自转引起了地球的赤道球面膨胀,使得地球呈赤道略扁、极度略鼓出的形态。

地球公转使得地球上不同地区的温度和气候发生了巨大变化。

二、行星运动行星是太阳系中围绕太阳运行的天体,包括地球在内的八大行星。

高考物理中常常涉及太阳系行星的运动轨迹和性质。

行星绕太阳运动的轨道可以看做是椭圆轨道,太阳位于椭圆焦点之一。

开普勒的三定律对行星运动有较好的描述。

第一定律称为椭圆轨道定律,指出行星在其椭圆轨道上运行,太阳位于椭圆的一个焦点上。

第二定律称为面积定律,指出在相等时间内,连线与焦点的矢量面积相等。

第三定律称为调和定律,指出行星公转周期的平方和与它与太阳的平均距离的立方成正比。

行星的运动规律不仅仅对天文学有重要意义,也对物理学的研究有一定启发。

例如,开普勒的第三定律被视为万有引力定律的前兆,对于后来牛顿的物理学发展起到了重要推动作用。

三、恒星运动恒星是太阳系之外的独立照亮的天体。

它们以巨大的质量和极高的温度存在。

高考物理中常常要求掌握太阳系内一些典型恒星的基本参数。

恒星的运动包括自转运动和公转运动。

恒星的自转周期与它的半径、质量等有关。

恒星围绕星系中心进行公转运动,这个公转运动轨道是非常庞大的。

在恒星的运动中,还涉及到恒星的演化和星际物质的相互作用等内容。

高中物理天体运动知识点

高中物理天体运动知识点

高中物理天体运动知识点在高中物理的学习中,天体运动是一个重要且有趣的部分。

它不仅帮助我们理解宇宙中天体的运行规律,还为我们打开了探索未知世界的大门。

接下来,让我们一起深入了解天体运动的相关知识点。

一、开普勒定律开普勒定律是描述天体运动的基本规律,包括三条重要内容:1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

这意味着行星的轨道不是完美的圆形,而是椭圆形,且太阳并非位于中心,而是在焦点之一的位置。

2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

简单来说,就是行星在靠近太阳时运动速度较快,远离太阳时运动速度较慢,但单位时间内扫过的面积相同。

3、开普勒第三定律(周期定律):所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值都相等。

用公式表示为:$\frac{a^3}{T^2} = k$,其中$a$是轨道半长轴,$T$是公转周期,$k$是一个对所有行星都相同的常量,但对于不同的恒星系统,$k$值不同。

二、万有引力定律万有引力定律是由牛顿发现的,它指出:任何两个物体之间都存在相互吸引的力,其大小与这两个物体的质量乘积成正比,与它们之间距离的平方成反比。

公式为:$F = G\frac{m_1m_2}{r^2}$,其中$F$是两个物体之间的引力,$G$是引力常量,约为$667×10^{-11} N·m^2/kg^2$,$m_1$和$m_2$分别是两个物体的质量,$r$是两个物体质心之间的距离。

万有引力定律是天体运动的核心定律,它解释了天体之间的相互作用和运动规律。

例如,地球围绕太阳公转就是因为受到太阳对地球的万有引力作用。

三、天体质量和密度的计算1、利用万有引力定律计算天体质量对于绕中心天体做匀速圆周运动的天体,可根据万有引力提供向心力来计算中心天体的质量。

假设一个天体$m$绕中心天体$M$做匀速圆周运动,轨道半径为$r$,周期为$T$,则有:$G\frac{Mm}{r^2} =m\frac{4\pi^2}{T^2}r$,解得中心天体质量$M =\frac{4\pi^2r^3}{GT^2}$。

天体运动知识点总结笔记

天体运动知识点总结笔记

天体运动知识点总结笔记天体运动,是指天体在空间中运动的规律和现象。

它包括行星、卫星、彗星等天体的运动规律和运动状态。

在地球上观测到的天体运动,主要为地球和其他天体的相对运动,例如太阳在天空中的日运动、行星在天空中的年运动等。

天体运动的规律是宇宙运动定律的具体应用,是了解宇宙的基础。

下面对天体运动的一些知识点进行总结。

一、天体的自转1. 天体的自转是指天体自身围绕自己的轴线转动。

在太阳系中,太阳、地球、其他行星和卫星都有自转运动。

自转是造成天体自身的白昼和黑夜的原因。

2. 特别地,太阳自转速度在赤道上约为25天转一圈,在极地上约为35天转一圈。

而地球的自转速度约为24小时转一圈。

3. 当天体自转速度增大时,天体的赤道凸起会变大,使得天体呈现扁球狀。

4. 行星和卫星的自转是与它们的公转方向一致的,这种现象称为自转共享现象。

二、地球的公转1. 地球绕太阳运行一周的时间称为地球的一年。

地球公转轨道是椭圆形的,由于轨道的椭圆度,地球到太阳的距离会有所变化,这种现象称为近日点和远日点。

2. 地球的公转速度约为每秒30千米,公转轨道的倾角是23.5度,这是引起四季变化的原因。

在北半球的夏至时,地球北半球远离太阳,而南半球靠近太阳;在冬至时则相反。

春分和秋分时,地球两极离太阳距离相等。

3. 我们所感受到的四季变化是由地球公转和地球轴的倾斜造成的。

地球自转使得不同地区的太阳高度角不同,从而造成了不同季节的温度差异。

4. 天体的公转速度是由其离太阳的距离决定的,公转周期越长,离太阳越远。

三、行星的轨道运动1. 行星的公转轨道是椭圆形的,椭圆的几何性质由轨道长短轴的长度决定。

轨道的长短轴之比称为离心率,离心率越小,椭圆越圆。

离心率为零时,轨道为圆形;随着离心率的增加,轨道趋向椭圆形。

2. 地球是典型的椭圆轨道行星,太阳位于椭圆轨道的一个焦点上。

3. 行星的近日点和远日点分别是距太阳最近和最远的点。

在近日点时,行星运行速度最快,在远日点时运行速度最慢。

物理天体运动知识点整理

物理天体运动知识点整理

物理天体运动
物理天体运动是一种非常重要的物理现象,它描述了物体如何在自身坐标系中运动,这种运动可以分为平动运动和旋转运动。

一、平动运动
1、匀速直线运动:当物体的速度保持不变,且移动的方向也保持不变时,它的运动就是匀速
直线运动。

例如,一颗小行星在太阳系中以恒定的速度沿着一条直线运行,就是匀速直线运动。

2、匀变速直线运动:当物体的速度不断变化,但移动的方向仍然保持不变时,它的运动是匀
变速直线运动,即加速运动或减速运动。

例如,一架飞机在飞行时,以不断变化的速度沿着一条直线飞行,就是匀变速直线运动。

3、抛物线运动:当物体在重力场中,沿着抛物线轨迹运动时,它的运动就是抛物线运动。

例如,一颗地球表面上的抛物线运动的苹果,就是抛物线运动。

二、旋转运动
1、简谐运动:当物体绕一定的轴心按照定期的时间和角速度进行运动时,它的运动就是简谐
运动。

例如,地球绕太阳的运动,就是简谐运动。

2、自由旋转运动:当物体在没有外力作用下,自身质量分布不均匀,以不定轴心和不定角速
度进行旋转运动时,它的运动就是自由旋转运动。

例如,木棒在空中旋转,就是自由旋转运动。

总之,物理天体运动是一种重要的物理现象,它描述了物体如何在自身坐标系中运动,平动运动和旋转运动是这种运动的两个重要类型,包括匀速直线运动、匀变速直线运动、抛物线运动、简谐运动和自由旋转运动等。

高三物理天体运动知识点

高三物理天体运动知识点

高三物理天体运动知识点天体运动是物理学中的重要内容,它研究的是天体在宇宙中的运动规律。

本文将介绍高三物理中的一些重要天体运动知识点,帮助同学们更好地理解和掌握这一部分内容。

一、行星运动行星是太阳系中围绕太阳运行的天体,它们的运动规律可以用开普勒三定律来描述。

1. 第一定律:行星绕太阳运动的轨道是椭圆,太阳处于椭圆的一个焦点上。

2. 第二定律:行星在椭圆轨道上的虚线面积相等。

也就是说,行星在相同时间内,与太阳连线所扫过的面积相等。

3. 第三定律:行星绕太阳的公转周期平方的倒数与它们的平均距离的立方成正比。

即T^2/R^3 = k,其中T为公转周期,R为平均距离,k为常数。

二、地球自转和公转地球作为一个天体,除了自转之外还存在公转运动。

1. 自转:地球绕着自己的轴线旋转,一个自转周期为24小时。

由于地球自转的存在,我们才会有昼夜交替的现象。

2. 公转:地球绕太阳公转,公转周期为365.24天。

地球与太阳之间的距离并非固定不变,它会随着时间而改变。

根据开普勒第二定律,地球在公转过程中会以近日点和远日点为焦点,运动速度不同。

三、月球运动月球是地球的卫星,它绕地球运动的规律与行星绕太阳运动的规律类似,也可以使用开普勒三定律来描述。

1. 第一定律:月球绕地球运动的轨道是椭圆,地球处于椭圆的一个焦点上。

2. 第二定律:月球在椭圆轨道上的虚线面积相等。

3. 第三定律:月球绕地球的公转周期平方的倒数与它们的平均距离的立方成正比。

四、人造卫星人造卫星是人类制造并送入太空的人造天体,它们围绕地球或其他天体进行运动。

1. 地球同步轨道:位于赤道平面上,绕地球自西向东运动,周期与地球自转周期相同,因此能够固定在某一地区上空,用于通信、气象等领域。

2. 极地轨道:位于地球的北极或南极位置上,绕地球南北极轴运动,周期约为90分钟。

3. 圆形轨道和椭圆轨道:除了地球同步轨道和极地轨道之外,还有一些人造卫星运行在不同的圆形和椭圆轨道上,用于不同的科研或应用目的。

天体运动知识点范文

天体运动知识点范文

天体运动知识点范文天体运动是指在天体之间互相影响下的运动。

主要包括行星、卫星、恒星等天空中的天体以及它们之间的相对运动。

以下是天体运动的几个重要知识点:一、日月运动1.自转:地球自西向东自转一周约24小时,导致我们眼中的太阳和月亮从东方升起,西方落下。

2.公转:地球绕太阳公转一周约365天,形成一年。

3.月球运动:月球绕地球公转一周约27.3天,形成一个月。

二、行星运动1.行星公转:行星绕太阳公转,形成行星运动,公转周期各异,如水星约88天,金星约225天,地球约365天等。

2.行星自转:行星也有自转运动,自转周期不同。

例如地球自转一周约24小时,金星自转一周约243天。

三、椭圆轨道1.开普勒定律:行星绕太阳运动的轨道为椭圆,太阳位于椭圆的一个焦点上。

2.卫星轨道:卫星绕行星或其他天体的运动也遵循开普勒定律,轨道为椭圆,行星或其他天体位于椭圆焦点上。

四、理解黄道和赤道黄道:地球绕太阳公转所形成的轨道。

因为地球轴线倾斜,所以黄道和赤道有交点,这些交点被称为春分点和秋分点,分别是春分和秋分时太阳直射地球的位置。

赤道:是地球表面上一条经纬线,和地球自转轴相交成90度,被定义为赤道面。

赤道为太阳直射地球的区域,因此赤道附近气温较高。

五、四季变化1.轨道倾角:地球的轴倾角是23.5度,这意味着地球在绕太阳公转时,北半球与南半球接收到的太阳辐射不同,导致了四季的变化。

2.日照时间:当地球一些地区倾斜朝向太阳时,该地区会接受到更多的阳光,白天时间更长,温度更高,这就是夏季。

相反,当地区远离太阳时,白天时间更短,温度更低,这就是冬季。

六、恒星运动1.恒星自转:恒星也有自转运动,不同恒星的自转周期各异,但通常会比行星长得多。

2.恒星行星绕行:行星围绕恒星公转,这是我们观察到的恒星运动。

七、天体互相影响1.重力:行星、卫星和恒星等天体之间相互吸引,形成重力。

根据万有引力定律,任何两个天体之间都存在引力,大小与它们的质量和距离有关。

物理高考知识点天体运动

物理高考知识点天体运动

物理高考知识点天体运动天体运动是物理学中一个重要的研究领域,它研究的是天体在宇宙中的运动规律以及对其他天体的相互影响。

在高考物理考试中,天体运动是考察的重点之一。

本文将从天体运动的基本规律、天体间的引力作用等角度来探讨物理高考中的天体运动相关知识点。

1. 天体运动的基本规律天体运动遵循着两个基本规律:开普勒定律和牛顿万有引力定律。

1.1 开普勒定律开普勒定律是物理学家开普勒在16世纪提出的,它包括三条基本规律:1.1.1 第一定律:椭圆轨道定律行星绕太阳运动的轨道是一个椭圆,太阳位于椭圆的一个焦点上。

1.1.2 第二定律:面积定律行星在相等的时间内扫过的面积相等。

这意味着当离太阳较近时,行星运动速度较快,而离太阳较远时,运动速度较慢。

1.1.3 第三定律:调和定律行星公转周期的平方与它的半长轴的立方成正比。

即 T^2 ∝ a^3,其中 T 为公转周期,a 为半长轴。

1.2 牛顿万有引力定律牛顿万有引力定律描述了两个天体之间的引力作用,它的数学表达式为 F = G * (m1 * m2) / r^2,其中 F 为引力的大小,G 为引力常量,m1 和 m2 分别为两个天体的质量,r 为它们之间的距离。

2. 太阳系的运动规律太阳系是一个庞大的天体系统,其中包括太阳、八大行星、卫星、小行星等。

太阳系的运动规律主要包括行星的公转和自转、月球的月食和日食等。

2.1 行星的公转和自转行星围绕太阳公转,它们具有不同的公转周期和轨道。

同时,行星也具有自转,自转的周期和轴倾角各异。

2.2 月球的月食和日食月球绕地球公转,地球和太阳在月球所在的平面上。

当地球、月球、太阳三者处于一条直线上时,会发生月食;当月球正好挡住太阳时,会发生日食。

3. 天体间的引力作用天体间存在着万有引力作用,它是宇宙中的最基本的相互作用之一。

3.1 行星公转的稳定性行星的公转轨道是由太阳的引力和行星的运动速度共同决定的。

当行星离太阳较远时,引力较小,行星的平衡速度较慢;当行星离太阳较近时,引力较大,行星的平衡速度较快。

天体运动的知识点总结

天体运动的知识点总结

天体运动的知识点总结一、天体运动的基本规律1.开普勒三定律开普勒三定律是描述行星运动规律的基础。

第一定律指出,行星绕太阳运动的轨道是椭圆形的,太阳位于椭圆的一个焦点上。

第二定律说明,行星在椭圆轨道上的矢量面积相等。

第三定律指出,行星绕太阳转一圈的时间的平方和它的椭圆轨道长轴的立方是成正比的。

2.行星的运动行星绕太阳运动主要有公转和自转两种运动。

公转是指行星绕太阳运动的运动,而自转是行星自身绕自身轴心旋转的运动。

行星公转的轨道有椭圆轨道、近圆轨道和双星轨道等不同类型。

而行星的自转速度和方向不同,有的自转周期很长,有的则较短。

3.卫星运动卫星是围绕行星运动的天体,它也有公转和自转两种运动。

卫星绕行星的公转轨道也是椭圆的,而卫星自转的速度和方向也是不同的。

卫星的运动规律受到行星的引力和其他因素的影响,会有不同的轨道变化。

4.彗星运动彗星是太阳系中的一种天体,它主要由冰和尘埃组成。

彗星的运动轨道也是椭圆的,但它的运动周期比较长,有的甚至达到几百年。

彗星的运动受到引力影响,会有轨道的变化和星头尾的形成。

二、天体运动的测量和研究方法1.天体运动的观测方法天体运动的观测方法主要有地基观测和空间观测两种。

地基观测是利用天文台等地面设施进行观测,通过望远镜、望远镜等设备来观测天体的运动状态。

空间观测是利用人造卫星、宇航飞船等设备在外层空间进行观测,可以更加准确地获取天体运动的数据。

2.测量天体运动的工具和方法测量天体运动的工具主要有望远镜、光谱仪、天文望远镜等设备。

测量天体运动的方法主要有光度测量、位置测量、光谱分析等。

这些工具和方法可以帮助天文学家更加全面地了解天体的运动规律和性质。

三、天体运动的应用1.导航定位天体运动在导航定位中有着重要的应用。

通过测量天体的位置和运行轨迹,可以确定自己的位置和行进方向。

在古代,人们就利用太阳、星等天体来辅助导航定位,帮助航海、探险等活动。

2.气象预报天文学的知识可以帮助气象学家预测天气环境的变化。

天体运动知识点总结打印

天体运动知识点总结打印
(3)牛顿第二运动定律:物体受到的加速度与作用力成正比,与物体的质量成反比,方向与作用力方向相同。
(4)牛顿第三运动定律:任何两个物体相互作用,其中一个物体对另一个物体施加的力,另一个物体对第一个物体施加的力大小相等,方向相反。
牛顿定律为我们理解天体的运动提供了重要的理论依据,是现代天文学发展的基石之一。
2.惯性
根据牛顿第一运动定律,物体要么静止,要么以恒定速度直线运动,只有受到外力作用才会改变其状态。地球自转的原因就是地球的自身惯性。
3.其他因素
除了引力和惯性外,其他因素也会影响天体的运动。例如,气流对于行星大气层的影响、行星的自转轴倾角对于季节变化的影响等。
总结
天体运动是一门古老而又深奥的学科,它不仅揭示了宇宙间天体的运动规律和现象,也为我们认识宇宙、发展技术和推动社会进步提供了有价值的信息。通过对天体运动的研究,我们可以更加深刻地理解宇宙的运行规律,推动天文学的发展。近年来,随着科学技术的不断进步,人们对天体运动的认识也在不断深化,相信在不久的将来,我们对天体运动的了解会更为深刻,为人类对宇宙的探索和理解提供更为宝贵的知识。
二、天体的运动形式
1.公转
天体围绕另一个天体运动的轨道叫做公转。地球围绕太阳运转、月球围绕地球运转、太阳围绕银河系中心运转等都是公转的具体表现。
2.自转
天体围绕自身中心运动的过程叫做自转。地球和行星的自转速度由于自转轴的倾角和自转速度的不同而产生昼夜交替的现象。
3.合成运动
天体的运动大多是多种运动的合成。例如,地球的公转和自转形成了白昼和黑夜的交替,月球的公转和自转形成了月相的变化等。
一、天体的运规律
1.开普勒定律
德国天文学家开普勒在16世纪提出了三大行星运动定律,即开普勒定律。

宇宙天体运动知识点总结

宇宙天体运动知识点总结

宇宙天体运动知识点总结宇宙天体运动是指宇宙中各种天体(如行星、恒星、星云等)的运动规律和方式。

宇宙天体运动的研究既有理论上的基础,也有实际应用价值。

在现代天文学中,人们通过对宇宙天体运动的研究,不仅可以了解宇宙的结构和演化过程,还可以帮助人类预测天文现象、进行空间探测和导航等方面的工作。

因此,宇宙天体运动的研究具有重要意义。

接下来,我们将通过文章对宇宙天体运动的相关知识点进行总结。

一、宇宙天体运动的基本规律1. 开普勒定律开普勒定律是描述行星绕太阳运动规律的三个基本定律,由德国天文学家开普勒在17世纪提出。

这三个定律分别是:第一定律(椭圆轨道定律),第二定律(面积定律)和第三定律(调和定律)。

根据这些定律,我们可以知道行星绕太阳的轨道是椭圆形的,且在等距离时间内所扫过的面积是相等的,而且行星的轨道周期和轨道半长轴的立方成正比。

这些定律揭示了行星运动的规律,对后来的天体力学研究有着深远的影响。

2. 牛顿引力定律牛顿引力定律是由英国科学家牛顿在17世纪提出的,它描述了两个物体之间的引力大小与它们的质量和距离的关系。

牛顿引力定律的表达式为 F=G(m1*m2)/r^2,其中F为引力大小,G为万有引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。

根据这个定律,我们可以计算出任意两个天体之间的引力大小,并且可以预测它们之间的运动轨迹。

3. 开普勒-牛顿定律开普勒-牛顿定律是将开普勒定律和牛顿引力定律结合起来的一套完整的理论体系。

它有效地描述了宇宙天体运动的规律,可以用来解释行星、卫星等天体之间的相互作用、运动轨迹和动力学特性。

二、宇宙天体的运动方式1. 行星运动行星是太阳系中的天体,它们围绕太阳运动。

根据开普勒定律,我们知道行星的运动轨道是椭圆形的,但在实际观测中,行星的运动轨迹往往呈现为周期性的不规则变化,这是由于行星之间的引力相互作用和行星自身的自转引起的。

由于这些因素的影响,行星的运动轨迹很难用简单的数学模型准确描述,需要借助计算机模拟等手段来进行研究。

天体运动的知识点

天体运动的知识点

天体运动的知识1. 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.公式:F=ma=mvw=GMm/r²=mg=mv²/r=m(2π/T)²=mω²r=m(2πf)2r= m(2πn)2r些是你必记的,不过你必须知道一个解题用的“黄金代换式”,非常重要,那就是GM=gr²(这个公式在解答天体密度,质量还有一些定性问题时非常有用3. 这种卫星绕地球运动的角速度与地球自转的角速度相同,相对于地面静止,所以从地面上看,它总在某地的正上方,因此叫地球同步卫星.(1)定周期:T = 24 h(2)定轨道:地球同步卫星在通过赤道的平面上运行,(3)定高度:离开地面的高度h为定值,约为地球轨道半径的6倍。

h = 36000千米(4)定速率:所有同步卫星环绕地球的速度(V)都相同。

V = 3千米/秒(5)定点:每颗卫星都定在世界卫星组织规定的位置上1.由于通讯和广播等方面的需要,许多国家发射了地球同步卫星,这些卫星的:A.质量可以不同B.轨道半径可以不同C.轨道平面可以不同D.速率可以不同2.据报道,我国数据中继卫星“天链一号01星”于4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经77°赤道上空的同步轨道.关于成功定点后的“天链一号01星”,下列说法正确的是()A.运行速度大于7.9km/sB.离地面高度一定,相对地面静止C.绕地球运行的角速度比月球绕地球运行的角速度大D.向心加速度与静止在赤道上物体的向心加速度大小相等1.A2..分析:研究同步卫星绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式求出表示出线速度的大小.知道7.9 km/s为第一宇宙速度.了解同步卫星的含义,即同步卫星的周期必须与地球相同.根据向心加速度的表达式找出向心加速度与静止在赤道上物体的向心加速度大小关系.解答:解:A、由万有引力提供向心力得:=,v=,即线速度v随轨道半径 r的增大而减小,v=7.9 km/s为第一宇宙速度,即围绕地球表面运行的速度;因同步卫星轨道半径比地球半径大很多,因此其线速度应小于7.9 km/s,故A错误;B、因同步卫星与地球自转同步,即T、ω相同,因此其相对地面静止,由万有引力提供向心力得:=m(R+h)ω2得:h=-R,因G、M、ω、R均为定值,因此h一定为定值,故B正确;C、因同步卫星周期T同=24小时,月球绕地球转动周期T月=27天,即T同<T月,由公式ω=得ω同>ω月,故C正确;D、同步卫星与静止在赤道上的物体具有共同的角速度,由公式a向=rω2,可得:=,因轨道半径不同,故其向心加速度不同,故D错误.故选BC.。

总结天体运动的知识点

总结天体运动的知识点

总结天体运动的知识点一、天体运动的基本规律1. 开普勒三定律开普勒三定律是描述行星运动的基本规律,其中第一定律指出,行星在椭圆轨道上运行,太阳位于椭圆的一个焦点上;第二定律指出,行星和太阳连线在相等的时间内扫过相等的面积;第三定律指出,行星的公转周期的平方与平均轨道半长径的立方成正比。

2. 开普勒运动定律的物理意义开普勒三定律对描述行星的运动有很强的物理意义,它揭示了行星的运动规律,使我们可以更好地理解行星围绕太阳的运动方式以及行星轨道的形状和大小。

3. 牛顿万有引力定律牛顿万有引力定律描述了两个物体之间的引力与它们质量和距离的平方成反比的关系。

该定律在描述行星和其他天体之间的引力作用以及行星公转和自传的运动规律方面有着重要的应用。

4. 行星的自转行星的自转是指行星绕自身轴旋转的运动。

自转的速度、方向和倾角等参数对行星的气候、地理特征以及地球上的时间和季节等有着重要的影响。

二、天体运动的影响1. 天体运动对地球的影响天体运动影响着地球的气候、季节、潮汐等自然现象。

例如,地球公转和自转决定了地球的昼夜变化和季节变化;月球的引力影响地球的潮汐现象,对海洋和大气运动有着重要的影响。

2. 天体运动对人类文明的影响天体运动对人类文明有着深远的影响。

古代人类通过观察天体运动来确定时间、规划农事、寻找方向等。

现代人类通过天文观测来研究宇宙的起源、地球的环境变化以及行星生命的可能性,对于推动科学技术的发展和人类文明的进步有着重要的作用。

三、天体运动的研究方法1. 天文观测天文观测是研究天体运动的基本方法。

通过望远镜、天文台以及太空探测器对天体进行观测,获取天体的位置、速度、亮度等信息,从而揭示天体的运动规律。

2. 数值模拟数值模拟是研究天体运动的重要方法,通过建立数学模型对天体的运动规律进行模拟和预测。

数值模拟可以帮助我们理解天体运动的复杂性和规律性,为天文学研究提供重要的理论依据。

3. 天体力学天体力学是研究天体运动的物理学分支,通过牛顿力学和引力理论等物理学原理分析天体的运动规律,揭示天体之间的相互作用以及天体运动的基本规律。

天体运动知识点高中总结

天体运动知识点高中总结

天体运动知识点高中总结天体运动知识点主要包括以下几个方面:1. 天体的运动规律地球、其他行星和卫星都遵循着一定的运动规律。

地球绕太阳公转,同时自转;其他行星也绕太阳公转,同时自转;卫星则围绕行星公转。

通过学习天体的运动规律,学生可以了解宇宙中的运动规律,如行星的公转周期、自转周期等。

2. 天体的轨道每个天体都围绕着自己的轨道运行,轨道形状和大小不同。

通过天体的轨道,可以了解天体之间的相对位置和运动轨迹,掌握天体在宇宙中的运动规律。

3. 天体的视运动天体在观测者的视线中呈现出不同的视运动,包括直线视运动、圆周视运动、椭圆视运动等。

通过学习天体的视运动,可以了解天体在宇宙中的运动规律和相对位置,培养学生观察和推理能力。

4. 天体的周期现象天体运动中存在着一些周期现象,如行星的合、冲、留、升现象;月相的变化;日食、月食等现象。

通过学习天体的周期现象,可以了解宇宙中的运动规律和周期性,培养学生观察和分析能力。

5. 天体的引力作用天体之间存在着引力作用,通过引力作用导致了宇宙中的各种运动现象,如行星的轨道运动、卫星的围绕行星运动等。

通过学习天体的引力作用,可以了解宇宙中的力学规律和运动规律,培养学生分析和推理能力。

6. 天体运动的观测方法观测天体运动是天文学的重要内容,可以通过望远镜观测天体的位置、轨道、视运动等现象,了解天体的运动规律和相对位置。

通过学习天体运动的观测方法,可以培养学生的观察和实验能力,提高他们对天文学的理解和认识。

天体运动知识点涉及了许多复杂的物理现象和数学概念,需要学生具备一定的数理基础和推理能力。

在教学中,可以通过举例、实验、观测等方式,激发学生对天体运动的兴趣,提高他们的学习积极性。

同时,也可以结合最新的科学研究成果和技术手段,让学生了解天体运动领域的最新进展和发展趋势,拓展他们的宇宙观念。

总之,天体运动是高中天文学课程中的重要知识点,通过学习天体运动,可以让学生了解宇宙中的运动规律,掌握宇宙中的基本概念和常识,培养他们的科学思维和观察能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲天体运动一、两种对立的学说 1.地心说(1)地球是宇宙的中心,是静止不动的;太阳、月亮以及其他行星都绕_地球运动; (2) 地心说的代表人物是古希腊科学家__托勒密__. 2.日心说(1)__ 太阳_是宇宙的中心,是静止不动的,所有行星都绕太阳做__匀速圆周运动__; (2)日心说的代表人物是_哥白尼_. 二、开普勒三大定律行星运动的近似处理在高中阶段的研究中可以按圆周运动处理,开普勒三定律就可以这样表述: (1)行星绕太阳运动的轨道十分接近圆,太阳处在圆心;(2)对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行星做匀速圆周运动; (3)所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等,即r3T2=k.三、太阳与行星间的引力1.模型简化:行星以太阳为圆心做__匀速圆周__运动.太阳对行星的引力,就等于行星做_匀速圆周_运动的向心力.2.太阳对行星的引力:根据牛顿第二定律F =m v2r 和开普勒第三定律r3T2∝k 可得:F ∝___mr 2__.这表明:太阳对不同行星的引力,与行星的质量成___正比_,与行星和太阳间距离的二次方成___反比___.3.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F ′∝_M r24.太阳与行星间的引力:根据牛顿第三定律F =F ′,所以有F ∝Mmr 2_,写成等式就是F =_ G Mmr2__.四、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比.2.公式: F=G(1)G 叫做 引力常量 ,(2)单位:N ·m ²/kg ² 。

在取国际单位时,G 是不变的。

(3)由卡文迪许通过扭秤实验测定的,不是人为规定的。

3.万有引力定律的适用条件(1)在以下三种情况下可以直接使用公式F =G m1m2r2计算:①求两个质点间的万有引力:当两物体间距离远大于物体本身大小时,物体可看成质点,公式中的r 表示两质点间的距离.②求两个均匀球体间的万有引力:公式中的r 为两个球心间的距离.③一个质量分布均匀球体与球外一个质点的万有引力:r 指质点到球心的距离.内容理解开普勒第一定律所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个上。

开普勒第一定律又叫轨道定律.某个行星在一个固定平面的轨道上运动。

不同行星的运动轨道是不同的。

开普勒第二定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等. 开普勒第二定律又叫面积定律. 行星运动的速度是在变化的,近日点速率最大,远日点速率最小。

开普勒第三定律所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等表达式第三定律也叫周期定律K 与中心天体的质量有关,与行星的质量无关。

如果围绕着同一个恒星运动,对于所有行星而言,K 是相同的。

如果围绕着不同的恒星,K 不同。

此公式使用于所有天体。

(2)对于两个不能看成质点的物体间的万有引力,不能直接用万有引力公式求解,切不可依据F =G m1m2r2得出r→0时F →∞的结论而违背公式的物理含义. 4.万有引力的三个特点(1)普遍性:任意两个物体之间都存在.(2)相互性:两个物体之间的万有引力是一对作用力与反作用力.(3)宏观性:通常情况下,万有引力非常小,只是在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际的物理意义.5.挖补法求万有引力的解题步骤(1)先将大球填满,求出大球M 对m 的万有引力F1 (2)求出空心部分M’对m 的万有引力F2 (3)剩余部分对m 的万有引力F=F1-F2 注:M’的质量由M’=ρV 计算得出。

5.重力与万有引力的关系(1)在地面附近万有引力F 分解后产生两个效果:①提供物体随地球自转所需的向心力----万有引力的一个分力 ②物体的重力----万有引力的一个分力(2)地球上的物体受到两个力,F 万和F 支。

F 支=mg (3)重力与万有引力的大小关系 赤道:F 万= F 向+mg 赤 即:22MmG mg mR ωR =+赤两极:F 万=mg 极 即:2MmG mg R =极①赤道重力小于极地重力。

极地重力等于万有引力。

②当地球速度增加时,赤道附近的万有引力不变,重力减小,南北极的万有引力不变,重力不变。

(4)物体在赤道上完全失重和地球不因自转而瓦解的条件 当F 支=0N , 即2222Mm 4G mR ω=m R R T=π 6.黄金代换当星体地球自转影响时,万有引力就等于重力。

由于向心力比较小,在一般情况下可认为重力和万有引力近似相(1)黄金代换式:忽略自转时, mg =G MmR2,整理可得:gR2=GM ,(2)适用条件及特点 ①忽略自转时。

②适用于任何天体。

③物体在天体表面时,不是绕天体做圆周运动。

④当题目中给出星体表面的重力加速度g 是,一般都要列黄金代换式。

⑤当题目中告诉某物体在星体表面做自由落体运动、上抛运动、平抛运动等运动,往往让我们求g 。

7.不同位置的重力(1) 星体表面:万有引力近似等于重力,mg =GMm R 2.(2) 距地面一定高度处的重力与万有引力:物体在距地面一定高度h 处时,mg ′=GMm R +h2,R 为地球半径,g ′为该高度处的重力加速度.随着高度的增加,重力加速度减小.(3)在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =G M ′m r2.五、万有引力的成就1.天体运行的各物理量与轨道半径的关系设质量为m 的天体绕另一质量为M 的中心天体做半径为r 的匀速圆周运动.(1)由G Mm r 2=m v 2r得v =GM r,r 越大,v 越小.(2)由GMm r 2=m ω2r 得ω=GM r 3,r 越大,ω越小.(3)由G Mmr 2=m ⎝ ⎛⎭⎪⎫2πT 2r 得T =2πr 3GM,r 越大,T 越大.(4)由G Mm r 2=ma n 得a n =GMr2,r 越大,a n 越小.解决四个问题:1.对行星的v ,a 、w 、T 进行定性分析(也适用于椭圆轨道)。

2不同行星绕同一行星的运动参量的比值3.不同行星绕不同恒星的参量的比值。

2.天体质量和密度常用的估算方法使用方法已知量 利用公式 表达式 备注质 量 的计 算利用运行天体r 、TG Mm r 2=mr 4π2T 2 M =4π2r 3GT 2只能得到中心 天体的质量,行星和卫星的质量和密度无法求解的,因为在式子中都约掉了。

r 、vG Mmr 2=m v 2rM =rv 2Gv 、TG Mm r 2=m v 2rG Mm r 2=mr 4π2T2 M =v 3T2πG利用天体表面重力加速度g 、Rmg =GMmR2M =gR 2G密度 的 计算利用运行天体r 、T 、RG Mm r 2=mr 4π2T 2 M =ρ·43πR 3ρ=3πr 3GT 2R 3若r=R ,23M 3πρ.4GT πR 3==若绕中心天体表面做匀速圆周运动时,轨道半径r=R , (只需测出周期)利用天体表面重力加速度g 、R mg =GMmR 2M =ρ·43πR 3ρ=3g4πGR六、多星模型的特点1.双星模型(1)两星的角速度、周期相同 ,即T 1=T 2,ω1=ω2 (2)两星体间的万有引力提供向心力,他们的向心力相等。

Gm 1m 2L 2=m 1ω21r 1Gm 1m 2L 2=m 2ω22r 2(3)r1+r2=L 两星体的半径之和等于他们之间的距离。

(4)质量之比等于半径的反比m 1m 2=r 2r 1.。

2.三星模型(1)三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R 的圆形轨道上运行(如图3甲所示). (2)三颗质量均为m 的星体位于等边三角形的三个顶点上(如图乙所示).图33.四星模型(1)其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).(2)另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O ,外围三颗星绕O 做匀速圆周运动(如图丁所示).七.宇宙速度(2)发射速度与发射轨道①当0km/s<v发<7.9 km/s时,卫星不能绕地球运动,最终回到地面。

②当7.9 km/s≤v发<11.2 km/s时,卫星绕地球运动,且发射速度越大,卫星的轨道半径越大,绕行速度越小.(即所有绕地球运动的卫星的运行速度都不可能大于第一宇宙速度)③当11.2 km/s≤v发<16.7 km/s时,卫星绕太阳旋转,成为太阳系一颗“小行星”.④当v发≥16.7 km/s时,卫星脱离太阳的引力束缚跑到太阳系以外的空间中去.八、卫星1.人造地球卫星的轨道:卫星绕地球做匀速圆周运动时,由地球对它的万有引力充当向心力.因此卫星绕地球做匀速圆周运动的圆心必与地心重合.(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中一种.(2)极地轨道:卫星的轨道通过南北极,即在垂直于赤道的平面内,如定位系统中的卫星轨道.(3)其他轨道:除以上两种轨道外的轨道2.近地卫星.①轨道半径近似等于地球半径R.②是所有卫星中运行的线速度、加速度、角速度最大的。

③是所有卫星中运行的周期最短的。

3.同步卫星(1)确定的转动方向:和地球自转方向一致;(2)确定的周期:和地球自转周期相同,即T=24 h;(3)确定的角速度:等于地球自转的角速度;(4)确定的轨道平面:所有的同步卫星都在赤道的正上方,其轨道平面必须与赤道平面重合;(5)确定的高度:离地面高度固定不变(3.6×104 km);(6)确定的环绕速率:线速度大小一定(3.1×103 m/s).(7)向心力(万有引力)不同4.近地卫星、同步卫星和赤道上随地球自转的物体的比较如图所示,a为近地卫星,半径为r1;b为同步卫星,半径为r2;c为赤道上随地球自转的物体,半径为r3.近地卫星同步卫星赤道上随地球自转的物体向心力万有引力GMmr2=ma n=mω2r.万有引力GMmr2=ma n=mω2r.万有引力的一个分力GMmr2=mg+mω2r,轨道半径r1<r2r2>r3=r1角速度由GMmr2=mrω2得ω=GMr3,故ω1>ω2同步卫星的角速度与地球自转角速度相同,故ω2=ω3ω1>ω2=ω3线速度由GMmr2=mv2r得v=GMr,故v1>v2由v=rω得v2>v3v1>v2>v3向心加速度由GMmr2=ma得a=GMr2,故a1>a2由a=rω2得a2>a3a1>a2>a3九、卫星变轨问题1.变轨运行分析当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将做变轨运行:(1)升轨:当卫星的速度突然增加时,22Mm vG mr r<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时,由GMvr=可知其运行速度比在原轨道时减小;(2)降轨:当卫星的速度突然减小时,22Mm vG mr r>,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时,由GMvr=可知其运行速度比在原轨道时增大.2.变轨运行各量间的关系(1)速度因为I进入II要加速,所以:V AI<V AII因为在II轨道A-B做椭圆运动,所以:V AII>V BII因为II进入III要加速,所以:V BII<V BIII(2)加速度因为在A点,加速度由万有引力提供,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同:a AI=a AII同理,经过B点加速度也相同: a BII=a BIII(3)周期设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)能量①在一个确定的圆(椭圆)轨道上机械能守恒.②若卫星在Ⅰ、Ⅲ轨道的动能分别为E I、E III,则E I>E III.③若卫星在Ⅰ、Ⅲ轨道的势能分别为E PI、E PIII,则E PI<E PIII.④若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E I、E II、E III,则E I<E II<E III.十、飞船对接问题1.低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.2.同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.十一、天体相遇问题的解法围绕同一中心天体做圆周运动的运行天体因不再同一轨道上,不可能直接相遇,天体的相遇定义为两运行的天体与太阳在同一直线上,并在同一侧。

相关文档
最新文档