2018 初三数学中考复习 正方形 专题练习题 含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018 初三中考数学复习正方形专题练习题
1. 已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )
A.BC=CD B.AB=CD C.AD=BC D.AC=BD
2. 下列说法不正确的是( )
A.一组邻边相等的矩形是正方形
B.对角线相等的矩形是正方形
C.对角线互相垂直的矩形是正方形
D.有一个角是直角的菱形是正方形
3. 在四边形ABCD中,点O是对角线AC,BD的交点,能判定这个四边形是正方形的条件是( )
A.AC=BD,AB∥CD,AB=CD
B.AO=BO=CO=DO,AC⊥BD
C.AD∥BC,∠A=∠C
D.AO=CO,BO=DO,AB=BC
4. 如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )
A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF
5. 如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE的长为( )
A.2 B.3 C.2 2 D.2 3
6. 正方形具有而菱形不一定具有的性质是( )
A.对角线互相平分
B.内角和为360°
C.对角线相等
D.对角线平分内角
7. 能判定一个四边形是平行四边形的条件是( )
A.一组对边平行,另一组对边相等
B.一组对边平行,一组对角互补
C.一组对角相等,一组邻角互补
D.一组对角相等,另一组对角互补
8. 矩形、菱形、正方形都具有的性质是( )
A.对角线相等
B.对角线垂直平分
C.对角线平分一组对角
D.对角线互相平分
9. 正方形ABCD在平面直角坐标系中的位置如图所示,已知点A的坐标为(0,4),点B坐标为(-3,0),则点C的坐标为( )
A.(1,3) B.(1,-3) C.(1,-4) D.(2,-4)
10. 如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有( )
A.4个 B.6个 C.8个 D.10个
11. 如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是____________.
12. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE∶EC=2∶1,则线段CH的长是____.
13. 如图,已知正方形ABCD的边长为1,连结AC,BD,CE平分∠ACD交BD于点E,则DE=_________________.
14. 如图,四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,且分别与AO,BO交于M,N,求证:
(1)BM=CN;
(2)BM⊥CN.
15. 如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连结DE.
(1)求证:△ABE≌△DAF;
(2)若AF=1,四边形ABED的面积为6,求EF的长.
参考答案:
1---10 ABBDC CCDBC
11. 45°
12. 4 13. 2-1
14. 解:(1)∵MN∥AB,∴∠OMN =∠OAB,∠ONM =∠OBA,∵OA =OB ,∴∠OAB =∠OBA,∴∠OMN =∠ONM,∴OM =ON ,∴AM =OA -OM =OB -ON =BN ,在△ABM 和△BCN 中,
⎩⎪⎨⎪⎧AB =BC
∠MAB=∠NBC AM =BN ,∴△ABM ≌△BCN(SAS),∴BM =CN
(2)由△ABM≌△BCN 得,∠ABM =∠BCN,又∵∠ABM+∠CBM=90°,∴∠BCN +∠CBM=90°,∴CN ⊥BM
15. 解:(1)∵四边形ABCD 是正方形,∴AB =AD ,∵DF ⊥AG ,BE ⊥AG ,∴∠BAE +∠DAF=90°,∠DAF +∠ADF=90°,∴∠BAE =∠ADF,在△ABE 和△DAF 中,⎩⎪⎨⎪⎧∠BAE=∠ADF,∠AEB =∠DFA,AB =AD ,
∴△ABE ≌△DAF(AAS)
(2)设EF =x ,则AE =DF =x +1,由题意2×12×(x+1)×1+12
×x×(x+1)=6,解得x =2或-5(舍弃),∴EF =2