离散数学一阶逻辑命题符号化共26页
合集下载
离散数学四省公开课一等奖全国示范课微课金奖PPT课件
![离散数学四省公开课一等奖全国示范课微课金奖PPT课件](https://img.taocdn.com/s3/m/8fa8e7476d85ec3a87c24028915f804d2b1687b5.png)
f : DIn DI , 称 f 为f在I中解释.
(d) 对每一个n元谓词符号FL, 有一个DI上n元谓词常项 ,F 称 F 为F在I中解释. 设公式A, 取个体域DI , 把A中个体常项符号a、函数符
号f、谓词符号F分别替换成它们在I中解释 、a 、f ,F称
所得到公式A为A在I下解释, 或A在I下被解释成A.
比如,x(F(x,y)G(x,z)), x为指导变元,(F(x,y)G(x,z))为 x 辖域,x两次出现均为约束出现,y与 z 均为自由出现
又如, x(F(x,y,z)y(G(x,y)H(x,y,z))), x中x是指导变元, 辖域为(F(x,y,z)y(G(x,y)H(x,y,z))). y中y是指导变元, 辖 域为(G(x,y)H(x,y,z)). x3次出现都是约束出现, y第一次出 现是自由出现, 后2次是约束出现, z2次出现都是自由出现
19
第19页
实例
例7 判断以下公式中,哪些是永真式,哪些是矛盾式? (1) xF(x)(xyG(x,y)xF(x))
重言式 p(qp) 代换实例,故为永真式. (2) (xF(x)yG(y))yG(y)
矛盾式 (pq)q 代换实例,故为永假式. (3) x(F(x)G(x))
解释I1: 个体域N, F(x):x>5, G(x): x>4, 公式为真 解释I2: 个体域N, F(x):x<5, G(x):x<4, 公式为假 结论: 非永真式可满足式
2
第2页
谓词
谓词——表示个体词性质或相互之间关系词 谓词常项 如, F(a):a是人 谓词变项 如, F(x):x含有性质F n(n1)元谓词 一元谓词(n=1)——表示性质 多元谓词(n2)——表示事物之间关系 如, L(x,y):x与 y 相关系 L,L(x,y):xy,… 0元谓词——不含个体变项谓词, 即命题常项 或命题变项
(d) 对每一个n元谓词符号FL, 有一个DI上n元谓词常项 ,F 称 F 为F在I中解释. 设公式A, 取个体域DI , 把A中个体常项符号a、函数符
号f、谓词符号F分别替换成它们在I中解释 、a 、f ,F称
所得到公式A为A在I下解释, 或A在I下被解释成A.
比如,x(F(x,y)G(x,z)), x为指导变元,(F(x,y)G(x,z))为 x 辖域,x两次出现均为约束出现,y与 z 均为自由出现
又如, x(F(x,y,z)y(G(x,y)H(x,y,z))), x中x是指导变元, 辖域为(F(x,y,z)y(G(x,y)H(x,y,z))). y中y是指导变元, 辖 域为(G(x,y)H(x,y,z)). x3次出现都是约束出现, y第一次出 现是自由出现, 后2次是约束出现, z2次出现都是自由出现
19
第19页
实例
例7 判断以下公式中,哪些是永真式,哪些是矛盾式? (1) xF(x)(xyG(x,y)xF(x))
重言式 p(qp) 代换实例,故为永真式. (2) (xF(x)yG(y))yG(y)
矛盾式 (pq)q 代换实例,故为永假式. (3) x(F(x)G(x))
解释I1: 个体域N, F(x):x>5, G(x): x>4, 公式为真 解释I2: 个体域N, F(x):x<5, G(x):x<4, 公式为假 结论: 非永真式可满足式
2
第2页
谓词
谓词——表示个体词性质或相互之间关系词 谓词常项 如, F(a):a是人 谓词变项 如, F(x):x含有性质F n(n1)元谓词 一元谓词(n=1)——表示性质 多元谓词(n2)——表示事物之间关系 如, L(x,y):x与 y 相关系 L,L(x,y):xy,… 0元谓词——不含个体变项谓词, 即命题常项 或命题变项
离散数学-03-一阶逻辑
![离散数学-03-一阶逻辑](https://img.taocdn.com/s3/m/54f216c3a58da0116c1749f3.png)
20
3.1.4 一阶逻辑公式与分类
解释和赋值的直观涵义
例 公式x(F(x)G(x)) 指定1 个体域:全总个体域, F(x): x是人, G(x): x是黄种人 真/假命题? 假命题 指定2 个体域:实数集, F(x): x>10, G(x): x>0 真/假命题? 真命题
21
3.1.4 一阶逻辑公式与分类
离散数学(第3版) 屈婉玲 耿素云 张立昂 编著 清华大学出版社出版
第3章 一阶逻辑
上海大学 谢江
1
第3章 一阶逻辑
• 3.1 一阶逻辑基本概念 • 3.2 一阶逻辑等值演算
2
3.1 一阶逻辑基本概念
• 3.1.1 命题逻辑的局限性 • 3.1.2 个体词、谓词与量词
– 个体常项、个体变项、个体域、全总个体域 – 谓词常项、谓词变项 – 全称量词、存在量词
n元谓词P(x1, x2,…, xn): 含n个个体变项的谓词, 是定义在 个体域上, 值域为{0,1}的n元函数 一元谓词: 表示事物的性质 多元谓词(n2): 表示事物之间的关系 0元谓词: 不含个体变项的谓词,即命题常项或命题变项 0元谓词是命题? 命题均可表示成0元谓词?
8
3.1.2 个体词、谓词与量词
• 3.1.3 一阶逻辑命题符号化
3
3.1 一阶逻辑基本概念(续)
• 3.1.4 一阶逻辑公式与分类
– 一阶语言L (字母表、项、原子公式、合式 公式) – 辖域和指导变元、约束出现和自由出现 – 闭式 – 一阶语言L 的解释 – 永真式、矛盾式、可满足式 – 代换实例
4
3.1.1 命题逻辑的局限性
11
3.1.3 一阶逻辑命题符号化
一阶逻辑命题符号化
3.1.4 一阶逻辑公式与分类
解释和赋值的直观涵义
例 公式x(F(x)G(x)) 指定1 个体域:全总个体域, F(x): x是人, G(x): x是黄种人 真/假命题? 假命题 指定2 个体域:实数集, F(x): x>10, G(x): x>0 真/假命题? 真命题
21
3.1.4 一阶逻辑公式与分类
离散数学(第3版) 屈婉玲 耿素云 张立昂 编著 清华大学出版社出版
第3章 一阶逻辑
上海大学 谢江
1
第3章 一阶逻辑
• 3.1 一阶逻辑基本概念 • 3.2 一阶逻辑等值演算
2
3.1 一阶逻辑基本概念
• 3.1.1 命题逻辑的局限性 • 3.1.2 个体词、谓词与量词
– 个体常项、个体变项、个体域、全总个体域 – 谓词常项、谓词变项 – 全称量词、存在量词
n元谓词P(x1, x2,…, xn): 含n个个体变项的谓词, 是定义在 个体域上, 值域为{0,1}的n元函数 一元谓词: 表示事物的性质 多元谓词(n2): 表示事物之间的关系 0元谓词: 不含个体变项的谓词,即命题常项或命题变项 0元谓词是命题? 命题均可表示成0元谓词?
8
3.1.2 个体词、谓词与量词
• 3.1.3 一阶逻辑命题符号化
3
3.1 一阶逻辑基本概念(续)
• 3.1.4 一阶逻辑公式与分类
– 一阶语言L (字母表、项、原子公式、合式 公式) – 辖域和指导变元、约束出现和自由出现 – 闭式 – 一阶语言L 的解释 – 永真式、矛盾式、可满足式 – 代换实例
4
3.1.1 命题逻辑的局限性
11
3.1.3 一阶逻辑命题符号化
一阶逻辑命题符号化
离散数学 第四章 一阶逻辑基本概念
![离散数学 第四章 一阶逻辑基本概念](https://img.taocdn.com/s3/m/368da6caa1c7aa00b52acbfd.png)
18
§4.1 一阶逻辑命题符号化
(3)没有人登上过木星。 令H(x):x登上过木星, M(x):x是人。命题符号化为 ┐x(M(x)∧H(x))。 命题真值为真。 (4)在美国留学的学生未必都是亚洲人。 令F(x):x是在美国留学的学生,G(x):x是亚洲人。符号化 ┐x(F(x)→G(x)) 命题真值为真。
个体词、谓词和量词,以期达到表达出个体与总体的内在 联系和数量关系。
4
§4.1 一阶逻辑命题符号化
一阶逻辑命题符号化的三个基本要素
个体词
谓词
量词
5
个体词及相关概念
个体词:指所研究对象中可以独立存在的具体的 或抽象的客体。
举例
命题:电子计算机是科学技术的工具。 个体词:电子计算机。 命题:他是三好学生。 个体词:他。
个体域为全总个体域
令 M(x):x是人 , F(x):x呼吸 , G(x):x用左手写字
能否将”凡人都呼吸”符号化为 (∀x) (M(x)∧F(x) ) ? 不可以。 (∀x) (M(x)∧F(x) )表示宇宙中的万物都是人并 且会呼吸 能否将”有的人用左手写字”符号化为 (x)( M(x)→G(x) ) ? 不可以。(x)( M(x)→G(x) ) 表示在宇宙万物中存在某个 个体x,”如果x是人则x会用左手写字”
6
个体词及相关概念
个体常项:表示具体或特定的客体的个体词,用小写字母 a, b, c,…表示。 个体变项:表示抽象或泛指的客体的个体词,用x, y, z,… 表示。 个体域(或称论域):指个体变项的取值范围。 可以是有穷集合,如{a, b, c}, {1, 2}。 可以是无穷集合,如N,Z,R,…。 全总个体域(universe)——宇宙间一切事物组成 。
《离散数学》一阶逻辑
![《离散数学》一阶逻辑](https://img.taocdn.com/s3/m/26c9e821360cba1aa911daa8.png)
关于存在量词的:
x(A(x)B)xA(x)B x(A(x)B)xA(x)B
x(A(x)B)xA(x)B
x(BA(x))BxA(x)
注意量词的变化
注意量词的变化
33
证明:设D={a1,a2,…,an}
(1)x(A(x)∨B) (A(a1)∨B) ∧(A(a2)∨B)∧… ∧(A(an)∨B) (A(a1)∧A(a2)∧…∧A(an)) ∨B xA(x)∨B
设D={a1,a2,…,an} xA(x)A(a1)A(a2)…A(an) xA(x)A(a1)A(a2)…A(an)
31
量词否定等值式
❖定理2.1 量词否定等值式
▪ xA(x) xA(x)
▪ xA(x) xA(x)
❖证明:设D={a1,a2,…,an}
▪
xA(x)
A(a(A1)(∨a1)∧AA(a(a2)2∨)∧……∨∧AA(a(na)n))
10
明确个体域
例2.(1) 凡人都要死的。( 2) 有人活百岁以上
❖ 考虑个体域D为人类集合
▪ F(x): x是要死的。 x F(x)
个体域不同,符号化不同
▪ G(x): x活百岁以上。 x G(x)
❖ 考虑个体域为全总个体域
▪ 对于所有个体而言,如果它是人,则它是要死的。引入新谓词 M(x): x是人。
(此点以后再讨论); ❖ 当个体域为有限集时,如果D={a1,a2,…an},由量词的意义可以看出,对于
任意的谓词A(x), 都有:
▪ xA(x) A(a1)∧A (a2) ∧…∧A (an); ▪ xA(x) A (a1)∨A (a2) ∨…∨A (an).
13
嵌套量词
❖多个量词同时出现时,不能随意颠倒他们的顺序。 ❖对任意的x,存在着y,使得 x+y=5.
离散数学课件 4.1一阶逻辑命题符号化
![离散数学课件 4.1一阶逻辑命题符号化](https://img.taocdn.com/s3/m/cf1f9b65dc36a32d7375a417866fb84ae45cc3b5.png)
说明: x yG(x, y) 和 x yG(x, y)表示的含义不同!
第 10 页
四、符号化
例2 在一阶逻辑中将下面命题符号化。
(1)人都爱美。
(2)有人用左手写字。
个体域分别为:
(a) D为人类集合 (b) D为全总个体域
解: (a)设F(x):x爱美,G(x):x用左手写字,则
(1) xF(x) (2) xG(x)
, L(x,y): x与y跑得同样快。 (5) ﹁ x y(F(x) G(y) H(x, y)) (6) ﹁ x y(F(x) F(y) L(x, y))
第 16 页
总结和作业
➢ 小结 ◆ 理解个体词、谓词、量词的含义 ◆ 掌握一阶逻辑命题的符号化
➢ 作业(做书上)
课本63-64页 4(1) (3), 5(1) (3),6 (1) (3) (5)
第1 页
第四章 一阶逻辑基本概念
➢ 命题逻辑的局限性
在命题逻辑中,研究的基本单位是简单命题,对简单 命题不再进行分解,并且不考虑命题之间的内在联系和数 量关系。
➢ 一阶逻辑所研究的内容
为了克服命题逻辑的局限性,将简单命题再细分,分 析出个体词、谓词和量词,以期达到表达出个体与总体的 内在联系和数量关系。 ◆ §4.1一阶逻辑命题符号化 ◆ §4.2一阶逻辑公式及解释 ◆ §5.1一阶逻辑等值式与置换规则 ◆ §5.2一阶逻辑前束范式
第四章 一阶逻辑基本概念
➢ 苏格拉底三段论
◆ 所有的人都是要死的。 ◆ 苏格拉底是人。 ◆ 所以,苏格拉底是要死的。 试证明此推理。 解:令p:所有的人都是要死的,q:苏格拉底是人,r:苏格拉底 是要死的,则 前提:p,q 结论:r 推理的形式结构: p Ù q ® r
第 10 页
四、符号化
例2 在一阶逻辑中将下面命题符号化。
(1)人都爱美。
(2)有人用左手写字。
个体域分别为:
(a) D为人类集合 (b) D为全总个体域
解: (a)设F(x):x爱美,G(x):x用左手写字,则
(1) xF(x) (2) xG(x)
, L(x,y): x与y跑得同样快。 (5) ﹁ x y(F(x) G(y) H(x, y)) (6) ﹁ x y(F(x) F(y) L(x, y))
第 16 页
总结和作业
➢ 小结 ◆ 理解个体词、谓词、量词的含义 ◆ 掌握一阶逻辑命题的符号化
➢ 作业(做书上)
课本63-64页 4(1) (3), 5(1) (3),6 (1) (3) (5)
第1 页
第四章 一阶逻辑基本概念
➢ 命题逻辑的局限性
在命题逻辑中,研究的基本单位是简单命题,对简单 命题不再进行分解,并且不考虑命题之间的内在联系和数 量关系。
➢ 一阶逻辑所研究的内容
为了克服命题逻辑的局限性,将简单命题再细分,分 析出个体词、谓词和量词,以期达到表达出个体与总体的 内在联系和数量关系。 ◆ §4.1一阶逻辑命题符号化 ◆ §4.2一阶逻辑公式及解释 ◆ §5.1一阶逻辑等值式与置换规则 ◆ §5.2一阶逻辑前束范式
第四章 一阶逻辑基本概念
➢ 苏格拉底三段论
◆ 所有的人都是要死的。 ◆ 苏格拉底是人。 ◆ 所以,苏格拉底是要死的。 试证明此推理。 解:令p:所有的人都是要死的,q:苏格拉底是人,r:苏格拉底 是要死的,则 前提:p,q 结论:r 推理的形式结构: p Ù q ® r
离散数学命题符号化课件 21页PPT文档
![离散数学命题符号化课件 21页PPT文档](https://img.taocdn.com/s3/m/614cc57fbd64783e08122b41.png)
人,卻一毛錢也沒賺到!』算命仙摸著下巴說:「那就奇怪了,不過既然不準,錢就還給你吧 。」
當麥芽糖商人回去後,糕餅商人也怒氣衝天的跑進來。『今天我都沒賺到錢,把我的錢還 給我!』算命仙停頓了一下,問說:「那麼,是否有碰到來自東方的人呢?」糕餅商搔著頭說 :『沒有耶,只碰到來自南方的人。』「那就對啦,我是說你如果碰到從東方來的人就會賺錢 ,可沒說碰到從南方來的人會賺錢啊。」糕餅商聽這話似乎有理,就回去了。
偽值表清楚的顯示只有在 3 的情形之下才會發生。所以,用「如果 p 就 q」的方法幫人家算命,總會有四分之三機率是準確的。因此,即使 承諾「如果算不準就退錢」,算命仙仍然可能賺到錢。因為,算不準 的機準只有四分之一。小心別上當哦! • 大人常對小孩說:「如果你乖乖,我就給你糖吃。」不知道有沒 有小孩了解,即使不乖,還是可能有糖可吃這件事呢?
离散数学 第一章 命题逻辑
4
• 故事中的算命仙就是巧妙地運用了這種條件命題而賺到錢的。讓我們 來研究一下他是如何辦到的。
• 我們考慮“ P= 碰上來自東方的人,Q= 賺到錢 ”有四種情形會發 生:
1. 碰到來自東方的人,而賺到錢。 2. 碰到來自東方的人,但沒有賺到錢。 3. 沒有碰到來自東方的人,而賺到錢。 4. 沒有碰到來自東方的人,也沒賺到錢。 • 然而,算命仙算不準的情形即是「如果 p 就 q」為偽的情形。上面的真
4. 蕴含“→”
定义1-4 由命题P和Q利用“→”组成的复合命题,称为蕴含式复合
命题,记作“P→Q”(读作“如果P,则Q”)。
当P为真,Q为假时,P→Q为假,否则 P→Q为真。
P
Q
P→Q
0
0
1
0
1
1
1
0
0
當麥芽糖商人回去後,糕餅商人也怒氣衝天的跑進來。『今天我都沒賺到錢,把我的錢還 給我!』算命仙停頓了一下,問說:「那麼,是否有碰到來自東方的人呢?」糕餅商搔著頭說 :『沒有耶,只碰到來自南方的人。』「那就對啦,我是說你如果碰到從東方來的人就會賺錢 ,可沒說碰到從南方來的人會賺錢啊。」糕餅商聽這話似乎有理,就回去了。
偽值表清楚的顯示只有在 3 的情形之下才會發生。所以,用「如果 p 就 q」的方法幫人家算命,總會有四分之三機率是準確的。因此,即使 承諾「如果算不準就退錢」,算命仙仍然可能賺到錢。因為,算不準 的機準只有四分之一。小心別上當哦! • 大人常對小孩說:「如果你乖乖,我就給你糖吃。」不知道有沒 有小孩了解,即使不乖,還是可能有糖可吃這件事呢?
离散数学 第一章 命题逻辑
4
• 故事中的算命仙就是巧妙地運用了這種條件命題而賺到錢的。讓我們 來研究一下他是如何辦到的。
• 我們考慮“ P= 碰上來自東方的人,Q= 賺到錢 ”有四種情形會發 生:
1. 碰到來自東方的人,而賺到錢。 2. 碰到來自東方的人,但沒有賺到錢。 3. 沒有碰到來自東方的人,而賺到錢。 4. 沒有碰到來自東方的人,也沒賺到錢。 • 然而,算命仙算不準的情形即是「如果 p 就 q」為偽的情形。上面的真
4. 蕴含“→”
定义1-4 由命题P和Q利用“→”组成的复合命题,称为蕴含式复合
命题,记作“P→Q”(读作“如果P,则Q”)。
当P为真,Q为假时,P→Q为假,否则 P→Q为真。
P
Q
P→Q
0
0
1
0
1
1
1
0
0
离散数学命题符号化课件
![离散数学命题符号化课件](https://img.taocdn.com/s3/m/effe273631b765ce0408143a.png)
当P和Q的真值相同时,P↔Q取真,否则取假。
例10
P
Q
P Q
0
0
1
0
1
0
1
0
0
1
1
1
非本仓库工作人员,一律不得入内。
解
令P:某人是仓库工作人员;
Q:某人可以进入仓库。
则上述命题可表示为P↔Q。
离散数学 第一章 命题逻辑
8
例11 黄山比喜马拉雅山高,当且仅当3是素数
令P:黄山比喜马拉雅山高;Q:3是素数 本例可符号化为PQ
离散数学 第一章 命题逻辑
6
例. P: 月亮下山 Q: 3+3=6
则P→Q: 若月亮下山,则3+3=6 (并没有实质蕴含关系,仍承认)
Q→P: 叫做P→Q的逆命题 ┐P→┐Q : 叫做P→Q的反命题 ┐Q→┐P: 叫做P→Q的逆反命题
离散数学 第一章 命题逻辑
7
5.等值“↔”
定义1-5 由命题P和Q,利用“↔”组成的复合命题,称为等值式 复合命题,记作“P↔Q” (读作“P当且仅当Q”)。
21
2
條件否定¬(P→Q)的真值表:
P
Q
0
0
0
1
1
0
1
1
于是得到:¬(P→Q) 与 P∧¬Q 等价。
P∧¬Q 0 0 1 0
換個角度來看,既然下雨地就會溼;那麼如果地是乾的,就一定是沒有下雨。 下面的真偽值表可以反應這個關係:
P
Q
¬Q → ¬P
0
0
1
0
1
1
1
0
0
1
1
1
「非 Q則非P」為「若 P 則 Q」之逆否命題(contrapositive),和「若 P 則 Q 」 為等價之命題。我們稱 Q 為 P之必要條件。
4.1-一阶逻辑命题符号化newPPT课件
![4.1-一阶逻辑命题符号化newPPT课件](https://img.taocdn.com/s3/m/cb7e44dc7cd184254a35353e.png)
(1)所有的人都呼吸。 所有的个体都呼吸。 (2)有的人用左手写字。有的个体用左手写字。
所以个体域是全总个体域时,命题应转述为: (1)对于任意的个体,如果它是人,则它是要呼吸的。
(2)存在着个体,它是人并且用左手写字。
需要引进一种新的谓词(特性谓词)将人与其它事 物区分开来 令M(x):x是人。
使用特性谓词M(x),所给命题就可以符号化为: (1)x(M(x)→F(x)) (2)x(M(x)∧ G(x))
命题可看成“存在在美国留学的学生不是亚洲 人”。
令F(x):x是在美国留学的学生;
G(x):x是亚洲人 命题符号化为:x(F(x)∧┐G(x)) 或者命题可看成“在美国留学的任意学生都是亚 洲人”的否定。 命题符号化为:┐x(F(x)→G(x))
2021
18
2021
19
例 使用多元谓词将下列命题符号化。 (1)兔子比乌龟跑得快。 (2)有的兔子比所有的乌龟跑得快。 (3)并不是所有的兔子都比乌龟跑的快。 (4)不存在跑的同样快的两只兔子。
解:本题未给出个体域,因而以全总个体域为个体域 令M(x):x为人
(1)令F(x):x长着黑头发
可将命题转述为:对所有个体而言,如果它是人, 那么它就长着黑头发。
命题符号化为:x(M(x)→F(x))
2021
16
(2)有的人登上过月球。 令G(x):x登上过月球 可将命题转述为:存在着个体,它是人并且登上过
不带个体变项的谓词称为0元谓词。 例如:F(a),G(a,b),P(a1,a2,…,an) 都是0元谓词。
2021
8
例 将下面命题用0元谓词符号化。 (1)只有2是素数,4才是素数 (2)如果5大于4,则4大于6
命题的谓词符号化步骤: (a)找出谓词、个体词常项 (b)符号化谓词和个体词常项 (c)使用符号化了的谓词和个体词以及逻辑运算符
所以个体域是全总个体域时,命题应转述为: (1)对于任意的个体,如果它是人,则它是要呼吸的。
(2)存在着个体,它是人并且用左手写字。
需要引进一种新的谓词(特性谓词)将人与其它事 物区分开来 令M(x):x是人。
使用特性谓词M(x),所给命题就可以符号化为: (1)x(M(x)→F(x)) (2)x(M(x)∧ G(x))
命题可看成“存在在美国留学的学生不是亚洲 人”。
令F(x):x是在美国留学的学生;
G(x):x是亚洲人 命题符号化为:x(F(x)∧┐G(x)) 或者命题可看成“在美国留学的任意学生都是亚 洲人”的否定。 命题符号化为:┐x(F(x)→G(x))
2021
18
2021
19
例 使用多元谓词将下列命题符号化。 (1)兔子比乌龟跑得快。 (2)有的兔子比所有的乌龟跑得快。 (3)并不是所有的兔子都比乌龟跑的快。 (4)不存在跑的同样快的两只兔子。
解:本题未给出个体域,因而以全总个体域为个体域 令M(x):x为人
(1)令F(x):x长着黑头发
可将命题转述为:对所有个体而言,如果它是人, 那么它就长着黑头发。
命题符号化为:x(M(x)→F(x))
2021
16
(2)有的人登上过月球。 令G(x):x登上过月球 可将命题转述为:存在着个体,它是人并且登上过
不带个体变项的谓词称为0元谓词。 例如:F(a),G(a,b),P(a1,a2,…,an) 都是0元谓词。
2021
8
例 将下面命题用0元谓词符号化。 (1)只有2是素数,4才是素数 (2)如果5大于4,则4大于6
命题的谓词符号化步骤: (a)找出谓词、个体词常项 (b)符号化谓词和个体词常项 (c)使用符号化了的谓词和个体词以及逻辑运算符
《离散数学》第二章一阶逻辑
![《离散数学》第二章一阶逻辑](https://img.taocdn.com/s3/m/83825f24aaea998fcc220e61.png)
解:定义特性谓词M(x):x是在美国留学的学生。
定义谓词F(x):x是亚洲人。 x(M ( x) F ( x))
x(M ( x) F ( x))
真值: T
2013-7-29
离散数学
27
例:将下列命题符号化。 (1) 兔子比乌龟跑得快.
解:定义特性谓词F(x):x是兔子。
G(y): y是乌龟。
x(M ( x) F ( x))
x(M ( x) F ( x))
考虑所有狮子都喝咖啡的情况。
左式为假,符合原句的意思。 对右式而言,设x是老虎,则右式为真。这和原 句是矛盾的。
2013-7-29
离散数学
19
个体域对命题符号化的影响
例:将下列命题符号化。要求个体域为: (1)有理数集合;(2)实数集合;(3)全总个体域。 1. 凡是有理数均可表示成分数。 解:设P (x):x是有理数。 Q (x):x可以表示成分数。 (1)有理数集合:x Q(x) (2)实数集合: x (P(x) Q(x)) (3)全总个体域:x (P(x) Q(x)) 2. 有的有理数是整数。 解:设P (x):x是有理数。 I (x):x是整数。 (1)有理数集合: x I (x) (2)实数集合: x (P(x) I(x)) (3)全总个体域: x (P(x) I(x))
第二章 一阶逻辑
浙江工业大学计算机学院 浙江工业大学软件学院
2013-7-29
离散数学
1
所有的人都是要死的。 苏格拉底是人, 所以苏格拉底是要死的。
2013-7-29
离散数学
2
命题逻辑的局限
符号化: P:所有的人都是要死的。 Q:苏格拉底是人, R:所以苏格拉底是要死的。 P∧Q→R 推理正确吗? 命题逻辑不能表现出简单命题中各部分的内在联系。
定义谓词F(x):x是亚洲人。 x(M ( x) F ( x))
x(M ( x) F ( x))
真值: T
2013-7-29
离散数学
27
例:将下列命题符号化。 (1) 兔子比乌龟跑得快.
解:定义特性谓词F(x):x是兔子。
G(y): y是乌龟。
x(M ( x) F ( x))
x(M ( x) F ( x))
考虑所有狮子都喝咖啡的情况。
左式为假,符合原句的意思。 对右式而言,设x是老虎,则右式为真。这和原 句是矛盾的。
2013-7-29
离散数学
19
个体域对命题符号化的影响
例:将下列命题符号化。要求个体域为: (1)有理数集合;(2)实数集合;(3)全总个体域。 1. 凡是有理数均可表示成分数。 解:设P (x):x是有理数。 Q (x):x可以表示成分数。 (1)有理数集合:x Q(x) (2)实数集合: x (P(x) Q(x)) (3)全总个体域:x (P(x) Q(x)) 2. 有的有理数是整数。 解:设P (x):x是有理数。 I (x):x是整数。 (1)有理数集合: x I (x) (2)实数集合: x (P(x) I(x)) (3)全总个体域: x (P(x) I(x))
第二章 一阶逻辑
浙江工业大学计算机学院 浙江工业大学软件学院
2013-7-29
离散数学
1
所有的人都是要死的。 苏格拉底是人, 所以苏格拉底是要死的。
2013-7-29
离散数学
2
命题逻辑的局限
符号化: P:所有的人都是要死的。 Q:苏格拉底是人, R:所以苏格拉底是要死的。 P∧Q→R 推理正确吗? 命题逻辑不能表现出简单命题中各部分的内在联系。
离散数学之命题符号化.ppt
![离散数学之命题符号化.ppt](https://img.taocdn.com/s3/m/1c88916226fff705cd170a58.png)
p? q 的逻辑关系: q 为 p 的必要条件 “如果 p,则 q ”的不同表述法很多:
若 p,就 q 只要 p,就 q p 仅当 q 只有 q 才 p 除非 q, 才 p 或 除非 q, 否则非 p. 当 p 为假时,p? q 为真 常出现的错误:不分充分与必要条件
17
例 设 p:天冷,q:小王穿羽绒服,
外层括号可以省去24定义其中bc分别为i层和j层公式且nmaxi例如公式26定义给公式a中的命题变项p指定一组真值称为对a的一个赋值或解释成真赋值
离散数学
1
主要内容
? 数理逻辑 ? 集合论 ? 图论 ? 组合分析初步 ? 代数系统简介 ? 形式语言和自动机初步
2
教材与教学参考书
? 教材:
? 耿素云、屈婉玲、张立昂,离散数学(第五 版),清华大学出版社 , 2013.
p? q p? q p? q q? p q? p p? q q? p q? p
注意: p? q 与 ? q?? p 等值(真值相同)
18
联结词与复合命题(续)
5. 等价式与等价 “p当且仅当 q”称 作p与q的等价式 ,记作 p? q. ? 称作等价联结词 . 并规定 p? q为真当且仅当 p与q同时为真或同时为 假.
12
例 (续)
令 r : 张辉是三好学生, s :王丽是三好学生 (4) r∧s. (5) 令 t : 张辉与王丽是同学, t 是简单命题 .
说明: (1)~(4)说明描述合取式的灵活性与多样性 . (5) 中“与”联结的是两个名词,整个句子是
一个简单命题 .
13
联结词与复合命题(续)
3.析取式与析取联结词“∨”
简单命题(原子命题): 简单陈述句构成的命题
若 p,就 q 只要 p,就 q p 仅当 q 只有 q 才 p 除非 q, 才 p 或 除非 q, 否则非 p. 当 p 为假时,p? q 为真 常出现的错误:不分充分与必要条件
17
例 设 p:天冷,q:小王穿羽绒服,
外层括号可以省去24定义其中bc分别为i层和j层公式且nmaxi例如公式26定义给公式a中的命题变项p指定一组真值称为对a的一个赋值或解释成真赋值
离散数学
1
主要内容
? 数理逻辑 ? 集合论 ? 图论 ? 组合分析初步 ? 代数系统简介 ? 形式语言和自动机初步
2
教材与教学参考书
? 教材:
? 耿素云、屈婉玲、张立昂,离散数学(第五 版),清华大学出版社 , 2013.
p? q p? q p? q q? p q? p p? q q? p q? p
注意: p? q 与 ? q?? p 等值(真值相同)
18
联结词与复合命题(续)
5. 等价式与等价 “p当且仅当 q”称 作p与q的等价式 ,记作 p? q. ? 称作等价联结词 . 并规定 p? q为真当且仅当 p与q同时为真或同时为 假.
12
例 (续)
令 r : 张辉是三好学生, s :王丽是三好学生 (4) r∧s. (5) 令 t : 张辉与王丽是同学, t 是简单命题 .
说明: (1)~(4)说明描述合取式的灵活性与多样性 . (5) 中“与”联结的是两个名词,整个句子是
一个简单命题 .
13
联结词与复合命题(续)
3.析取式与析取联结词“∨”
简单命题(原子命题): 简单陈述句构成的命题
离散数学之命题符号化
![离散数学之命题符号化](https://img.taocdn.com/s3/m/bdba089552ea551811a6873a.png)
--
15
联结词与复合命题(续)
4.蕴涵式与蕴涵联结词“”
定义 设 p,q为二命题,复合命题 “如果p,则q” 称作p与q的蕴涵式,记作pq,并称p是蕴涵式 的前件,q为蕴涵式的后件. 称作蕴涵联结词, 并规定,pq为假当且仅当 p 为真 q 为假.
--
16
联结词与复合命题(续)
pq 的逻辑关系:q 为 p 的必要条件 “如果 p,则 q ” 的不同表述法很多:
00000000
00001111
00110011
01010101
FFFFFFFF ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) 8 9 1 01 11 21 31 41 5
11111111
00001111
00110011
01010101
--
33
(4) 小元元只能拿一个苹果或一个梨.
(5) 王晓红生于1975年或1976年.
--
14
解 令 p:2是素数, q:3是素数, r:4是素数, s:6是素数, 则 (1), (2), (3) 均为相容或. 分别符号化为: p∨r , p∨q, r∨s, 它们的真值分别为 1, 1, 0.
(4), (5) 为排斥或. 令 t :小元元拿一个苹果,u:小元元拿一个梨, 则 (4) 符号化为 (t∧u) ∨(t∧u). 令v :王晓红生于1975年,w:王晓红生于1976年, 则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可 符号化为 v∨w .
例如:pq, pq, (pq)((pq)q) 等都对应
表中的
F (2) 13
--
32
2元真值函数对应的真值表
离散数学一阶逻辑命题符号化ppt课件
![离散数学一阶逻辑命题符号化ppt课件](https://img.taocdn.com/s3/m/c903b5a03169a4517723a3ed.png)
例如: 逻辑学中著名的三段论:
凡偶数都能被2整除. 6是偶数. 所以, 6能被2整除.
这个推理是数学中的真命题, 是正确的, 但在命题逻辑中却无 法判断其正确性, 用p,q,r分别表示以上三个命题. 则得到推理的形式结构为:
(p∧q)→r
由于上式不是重言式, 因而不能由它判断推理的正确性. 原因 在于各命题的内在联系没有表示出来. 为了克服命题逻辑的局限性, 应该将原子命题再细分, 分析出 个体词, 谓词和量词, 以便达到表达出命题的内在联系和命题 之间的逻辑关系. 这就是一阶逻辑所研究的内容.
解
(1) 令M(x): x 为实数 ; F(x): x能写成整数之比. 则
x (M(x)→ F(x))
不是 x (M(x) ∧ F(x))
假命题
(2) 令M(x): x 为素数; G(x): x为偶数. 则
x (M(x)∧G(x))
不是 x (M(x) → G(x))
真命题
(3) 令M(x): x 是人; H(x): x登上过木星. 则
2. 谓词: 用来刻划个体词的性质或个体词之间相互关系的词. 例如: (1) 在命题“是无理数”中, “…是无理数”是谓词.
(2) 在命题“x 是有理数”中, “…是有理数”是谓词. (3) 在命题“小王与小李同岁”中, “…与…同岁”是谓词. (4) 在命题“x与y具有关系L”中, “…与…具有关系L”是谓词. 注 ① 常用大写字母F, G, H 等来表示谓词. ② 表示具体性质或关系的谓词称为谓词常项; 表示抽象或泛指的性质或关系的谓词称为谓词变项. ③ F(a): 表示个体常项a具有性质F (F是谓词常项或变项); F(x): 表示个体变项x具有性质F (F同上); F(a,b): 表示个体常项a, b具有关系F (同上); F(x,y): 表示个体变项 x, y具有关系F (同上) . 一般地, 用P(x1,x2,…,xn)表示含n(n≥1)个个体变项x1,x2,…,xn 的n元谓词. 它可看成以个体域为定义域, 以{0,1}为值域的n元函数关系. 当P取常项, 且(x1,x2,…,xn)取定常项(a1,a2,…,an)时, P(a1,a2,…,an)是一个命 题.
凡偶数都能被2整除. 6是偶数. 所以, 6能被2整除.
这个推理是数学中的真命题, 是正确的, 但在命题逻辑中却无 法判断其正确性, 用p,q,r分别表示以上三个命题. 则得到推理的形式结构为:
(p∧q)→r
由于上式不是重言式, 因而不能由它判断推理的正确性. 原因 在于各命题的内在联系没有表示出来. 为了克服命题逻辑的局限性, 应该将原子命题再细分, 分析出 个体词, 谓词和量词, 以便达到表达出命题的内在联系和命题 之间的逻辑关系. 这就是一阶逻辑所研究的内容.
解
(1) 令M(x): x 为实数 ; F(x): x能写成整数之比. 则
x (M(x)→ F(x))
不是 x (M(x) ∧ F(x))
假命题
(2) 令M(x): x 为素数; G(x): x为偶数. 则
x (M(x)∧G(x))
不是 x (M(x) → G(x))
真命题
(3) 令M(x): x 是人; H(x): x登上过木星. 则
2. 谓词: 用来刻划个体词的性质或个体词之间相互关系的词. 例如: (1) 在命题“是无理数”中, “…是无理数”是谓词.
(2) 在命题“x 是有理数”中, “…是有理数”是谓词. (3) 在命题“小王与小李同岁”中, “…与…同岁”是谓词. (4) 在命题“x与y具有关系L”中, “…与…具有关系L”是谓词. 注 ① 常用大写字母F, G, H 等来表示谓词. ② 表示具体性质或关系的谓词称为谓词常项; 表示抽象或泛指的性质或关系的谓词称为谓词变项. ③ F(a): 表示个体常项a具有性质F (F是谓词常项或变项); F(x): 表示个体变项x具有性质F (F同上); F(a,b): 表示个体常项a, b具有关系F (同上); F(x,y): 表示个体变项 x, y具有关系F (同上) . 一般地, 用P(x1,x2,…,xn)表示含n(n≥1)个个体变项x1,x2,…,xn 的n元谓词. 它可看成以个体域为定义域, 以{0,1}为值域的n元函数关系. 当P取常项, 且(x1,x2,…,xn)取定常项(a1,a2,…,an)时, P(a1,a2,…,an)是一个命 题.
离散数学一阶逻辑.ppt
![离散数学一阶逻辑.ppt](https://img.taocdn.com/s3/m/7af1386feff9aef8951e062a.png)
义可以看出,对于任意的谓词A(x), 都有:
xA(x) A(a1)∧A(a2) ∧…∧A(an); xA(x) A(a1)∨A(a2) ∨…∨A(an).
多个量词同时出现时,不能随意颠倒他们的顺序。
15
例题
对任意的x,存在着y,使得 x+y=5.
H(x,y)表示x+y=5 可符号化成:x y H(x,y) 不可符号化成: y x H(x,y)
P37. 例题2.2、2.3、2.4、2.5
16
第二章 一阶逻辑
第2章 一阶逻辑
2.1 一阶逻辑基本概念 2.2 一阶逻辑合式公式及解释 2.3 一阶逻辑等值式
17
2.2 一阶逻辑公式及解释
合式公式(简称公式) 个体变项的自由出现和约束出现 解释与分类
18
一阶逻辑合式公式采用字母表
个体词:是可以独立存在的客体. 个体常项:用小写的英文字母
a,b,c,d…. 个体变项:用小写的英文字母
x,y,z…. 个体域:个体的取值范围. 全总个体域:指宇宙中的一切事物.
7
2.谓词的相关概念
谓词: 表示个体词性质或相互之间关系的词
谓词常项:F(a):a是人 谓词变项:F(x):x具有性质F
在解释N下,下面那些公式为
真命题;
真?那些公式为假?
(3) x+y=y+z
(1)xF(g(x,a),x);
真值不确定,不是命题.
(2)xy(F(f(x,a),y)→F(f(y,a) ,x));
(3)F(f(x,y),f(y,z))
30
公式的分类
设A为一公式(谓词公式) 如果A在任何解释下都是真的, 称A为 逻辑有效式(或永真式); 如果A在任何解释下都是假的, 称A为 矛盾式(或永假式); 若至少存在一个解释使A为真, 则称A 是可满足式(协调式).
xA(x) A(a1)∧A(a2) ∧…∧A(an); xA(x) A(a1)∨A(a2) ∨…∨A(an).
多个量词同时出现时,不能随意颠倒他们的顺序。
15
例题
对任意的x,存在着y,使得 x+y=5.
H(x,y)表示x+y=5 可符号化成:x y H(x,y) 不可符号化成: y x H(x,y)
P37. 例题2.2、2.3、2.4、2.5
16
第二章 一阶逻辑
第2章 一阶逻辑
2.1 一阶逻辑基本概念 2.2 一阶逻辑合式公式及解释 2.3 一阶逻辑等值式
17
2.2 一阶逻辑公式及解释
合式公式(简称公式) 个体变项的自由出现和约束出现 解释与分类
18
一阶逻辑合式公式采用字母表
个体词:是可以独立存在的客体. 个体常项:用小写的英文字母
a,b,c,d…. 个体变项:用小写的英文字母
x,y,z…. 个体域:个体的取值范围. 全总个体域:指宇宙中的一切事物.
7
2.谓词的相关概念
谓词: 表示个体词性质或相互之间关系的词
谓词常项:F(a):a是人 谓词变项:F(x):x具有性质F
在解释N下,下面那些公式为
真命题;
真?那些公式为假?
(3) x+y=y+z
(1)xF(g(x,a),x);
真值不确定,不是命题.
(2)xy(F(f(x,a),y)→F(f(y,a) ,x));
(3)F(f(x,y),f(y,z))
30
公式的分类
设A为一公式(谓词公式) 如果A在任何解释下都是真的, 称A为 逻辑有效式(或永真式); 如果A在任何解释下都是假的, 称A为 矛盾式(或永假式); 若至少存在一个解释使A为真, 则称A 是可满足式(协调式).