六年级奥数:第三讲_分数、百分数应用题(一)

合集下载

小学六年级奥数 第十章 分数、百分数应用题

小学六年级奥数 第十章 分数、百分数应用题

第十章 分数、百分数应用题知识要点分数、百分数应用题是日常生活和生产实践中应用最广泛的一类数学问题,并且这类知识与生活有着紧密的联系。

如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。

在解题过程中要着重解决以下几个方面的问题: 1.准确地确定单位“1”的量。

2.确定类型。

单位“1”的量×分率=分率对应量 分率对应量÷分率=单位“1”的量 分率对应量÷单位“1”的量=分率 3.确定好对应关系。

例1 (“希望杯”邀请赛试题)小红和小明帮刘老师修补一批破损图书,根据图中的信息,计算小红、小明一共修补图书 本。

点拨 从图中可知小红和小明一共修补破损图书为:40%-2+14+3=40%+25%+1=65%+1,则这批破损图书一共有(20+1)÷(1-65%)=60(本)。

再减去刘老师修补的图书20本,则为小红和小明一共修补的图书。

解 (20+1)÷[1-(4+40%)]-20 =21÷[1-65%]-20 =21÷35%-20 =60-20 =40(本)答:小红、小明一共修补图书40本。

例2 张、王、李三人共有54元钱,张用了自己钱数的35,王用了自己钱数的34,李用了自己钱数的23,各买了一支相同的钢笔,那么张和李两人剩下的钱共有多少元? 点拨一 先假设钢笔的价格是“1”,则有 张的钱数是钢笔的:1÷35=53王的钱数是钢笔的:1÷34=43李的钱数是钢笔的:1÷23=32三人的总钱数是这支钢笔的(53+43+32)倍,这样就可以求出钢笔的价格。

解54÷(53+43+32)=12(元)张剩下的钱数:12×(53-1)=8(元)李剩下的钱数:12×(32-1)=6(元)张、李两人剩下的钱共有:8+6=14(元) 答:张和李两人剩下的钱共有14元。

点拨二据张用了自己钱数的35,王用了自己钱数的34,李用了自己钱数的23,各买了一支相同的钢笔,即张钱数的35=王钱数的34=李钱数的23,据此可推知张钱数的610=王钱数的68=李钱数的69(根据分数的基本性质,把这几个分率转化成分子相同的分数,即“分子同化法”。

第3讲 百分数(浓度问题)-六年级奥数下册同步精讲精练(西师大版)

第3讲 百分数(浓度问题)-六年级奥数下册同步精讲精练(西师大版)

第三讲百分数(浓度问题)ʌ知识概述ɔ把盐溶于水就得到盐水,其中盐叫溶质,水叫溶剂,盐与水的混合液叫做溶液㊂我们把盐与盐水的比值叫做盐水的浓度,通常浓度用百分数表示,又叫百分比浓度,这一类问题叫做浓度问题㊂解答与浓度有关的问题经常要用到以下几个关系式:溶质的重量+溶剂的重量=溶液的重量溶质的重量ː溶液的重量ˑ100%=浓度溶液的重量ˑ浓度=溶质的重量溶质的重量ː浓度=溶液的重量例题精学例1现有浓度为25%的盐水80克,加入多少克水就能得到浓度为10%的盐水?ʌ思路点拨ɔ将浓度为25%的盐水变为浓度为10%的盐水,盐水中水的重量增加了,但是盐的重量并没有发生变化㊂可以根据已知条件先求出原来盐水中盐的重量,再求出现在盐水的重量,最后再用现在盐水的重量减去原来盐水的重量就是加入水的重量㊂同步精练1.把碘溶在酒精里,配成碘酒,现在有含碘15%的碘酒50千克,要把它变成含碘3%的碘酒,需要加入多少千克酒精?1462.现有浓度为20%的盐水80克,加入多少克水就能得到浓度为16%的盐水?3.往40千克含盐16%的盐水中加入10千克水,这时盐水的浓度是多少?147例2现有浓度为25%的盐水80克,要使盐水的浓度提高到40%,需要加多少克盐?ʌ思路点拨ɔ将浓度为25%的盐水变为浓度为40%的盐水,在盐水的变化过程中,盐的重量增加了,但是水的重量没有发生变化,也就是原来盐水中水的重量等于现在盐水中水的重量㊂同步精练1.现有浓度为15%的盐水20千克,要使盐水浓度提高到20%,需加多少千克盐?2.现有浓度为10%的糖水300克,要把它变成浓度为25%的糖水,需要加糖多少克?3.往40千克含盐16%的盐水中加入10千克盐,这时盐水的浓度是多少?148例3有浓度为2.5%的盐水700克,为了制成浓度为10%的盐水,从中要蒸发掉多少克水?ʌ思路点拨ɔ要使溶液的浓度变大,可以采取增加溶质(盐㊁糖㊁纯酒精等)的方法,也可以用蒸发水的方法㊂把盐水加热,一部分水变成水蒸气蒸发掉了,于是盐水中水的重量减少了,而在变化过程中盐的重量没有发生变化㊂先根据条件求出原来盐水中含盐的重量,由于在变化过程中盐水中盐的重量没有发生变化,所以原来盐水中盐的重量也是现在盐水中盐的重量,再求出现在盐水的重量,最后用原来盐水的重量减去现在盐水的重量就是要蒸发掉水的重量㊂同步精练1.现有浓度为12.5%的盐水40千克,将它变成浓度为20%的盐水,要蒸发掉多少千克水?2.有浓度为7.5%的盐水700克,为了制成浓度为20%的盐水,从中要蒸发掉多少克水?3.从含盐10%的50千克盐水中蒸发掉10千克水,这时盐水的浓度是多少?149例4把浓度为25%的40千克盐水与浓度为10%的60千克盐水混合在一起,混合后的盐水的浓度是多少?ʌ思路点拨ɔ把两种浓度不同的盐水混合在一起,要求混合后的盐水浓度,需要知道混合后盐水的总重量和混合后盐的总重量㊂两种盐水混合的过程中,盐水的总重量和混合后盐的总重量都没有发生变化,因此,我们解答时,先应分别求出混合后盐水的总重量和盐的总重量,再用盐的总重量除以盐水的总重量求出混合后盐水的浓度㊂同步精练1.把浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克混合后,酒精溶液的浓度是多少?2.将浓度为30%的酒精溶液15千克,与浓度为40%的酒精溶液35千克混合,混合后得到的酒精溶液的浓度是多少?3.在浓度为50%的100克盐水中,再加入多少克浓度为5%的盐水,就可得到浓度为15%的盐水?150练习卷一㊁填空㊂1.一瓶盐水共重200克,其中盐有20克,这瓶盐水的浓度是()%㊂2.配制一种盐水,在450克水中加了50克盐,这种盐水的浓度是()%㊂3.一种糖水的浓度是15%,200克糖水中含糖()克㊂4.一种酒精溶液的浓度是20%,其中水有240克,酒精有()克㊂5.一种糖水的浓度是10%,15克糖需加水()克㊂二㊁解决问题㊂1.现有浓度为20%的盐水80克,加入20克水,这时盐水的浓度是多少?2.现有浓度为20%的盐水80克,加入20克盐,这时盐水的浓度是多少?3.在200克浓度为15%的糖水中,加入多少克水就能得到浓度为10%的糖水?1514.浓度为20%的糖水500克,要把它变成浓度为50%的糖水,需要加入多少克糖?5.有浓度为2.5%的盐水400克,为了制成浓度为5%的盐水,从中要蒸发掉多少克水?6.将60克含盐25%和40克含盐10%的两种盐水混合在一起,求混合后盐水的浓度㊂7.在20千克浓度为10%的硫酸溶液中,再加入多少千克浓度为30%的硫酸溶液,就可以配成浓度为22%的硫酸溶液?1528.将20%的盐水与5%的盐水混合,配成15%的盐水600克㊂需要20%的盐水与5%的盐水各多少克?9.20克盐放入100克水中,放置三天后,盐水重量只有100克,这时盐水的浓度是多少?浓度比原来提高了百分之几?10.甲容器中有含盐25%的盐水80克,乙容器中有盐水120克㊂现将甲㊁乙两容器中的盐水混合后得到含盐40%的溶液㊂求原来乙容器中盐水的浓度㊂153片,丙分到104张画片㊂4.解:(1-14)ˑ87+8=2521ː(25-14)=140(人)答:三个车间共有140人㊂5.解:30ː21-58-5()=90(人) 90ː11+2=270(人)答:现在厂里共有270名工人㊂6.解:甲ˑ111=乙ˑ151 5ʒ111=11ʒ5160ˑ1111+5=110答:甲数是110㊂7.解:750-420-750ˑ13=80(千克) 80ː(35-13)=300(千克)答:运来面粉300千克㊂8.解:第一桶ˑ12=第二桶ˑ232 3ʒ12=4ʒ312ˑ44-3=48(千克) 48+4=52(千克)12ˑ34-3=36(千克)36+4=40(千克)答:原来第一桶有油52千克,第二桶有油40千克㊂9.解:(130-2900ˑ125)ː(120-125)= 1400(人)2900-1400=1500(人)答:上年度学校男生有1500人,女生有1400人㊂10.解:(156-12)ˑ2ː(1-111+2)= 99(人)156-99=57(人)答:男生有99人,女生有57人㊂第三讲百分数(浓度问题)例1解:80ˑ25%ː10%-80=120(克)答:加入120克水就能得到浓度为10%的盐水㊂[同步精练]1.解:50ˑ15%ː3%-50=200(千克)答:需要加入200千克酒精㊂2.解:80ˑ20%ː16%-80=20(克)答:加入20克水就能得到浓度为16%的盐水㊂3083.解:40ˑ16%ː(40+10)ˑ100%= 12.8%答:这时盐水的浓度是12.8%㊂例2解:80ˑ(1-25%)ː(1-40%)-80 =20(克)答:需要加20克盐㊂[同步精练]1.解:20ˑ(1-15%)ː(1-20%)-20 =1.25(千克)答:需加1.25千克盐㊂2.解:300ˑ(1-10%)ː(1-25%)-300=60(克)答:需要加糖60克㊂3.解:(40ˑ16%+10)ː(40+10)ˑ100%=32.8%答:这时盐水的浓度是32.8%㊂例3解:700-700ˑ2.5%ː10%=525 (克)答:从中要蒸发掉525克水㊂[同步精练]1.解:40-40ˑ12.5%ː20%=15(千克)答:要蒸发掉15千克水㊂2.解:700-700ˑ7.5%ː20%= 437.5(克)答:从中要蒸发掉437.5克水㊂3.解:50ˑ10%ː(50-10)ˑ100% =12.5%答:这时盐水的浓度是12.5%㊂例4解:(40ˑ25%+60ˑ10%)ː(40 +60)ˑ100%=16%答:混合后的盐水的浓度是16%㊂[同步精练]1.解:(500ˑ70%+300ˑ50%)ː(500+300)ˑ100%=62.5%答:混合后酒精溶液的浓度是62.5%㊂2.解:(15ˑ30%+35ˑ40%)ː(15 +35)ˑ100%=37%答:混合后得到的酒精溶液的浓度是37%㊂3.解:设再加入x克浓度为5%的盐水,就可得到浓度为15%的盐水㊂100ˑ50%+xˑ5%=(100+x)ˑ15%x=350答:再加入350克浓度为5%的盐水,就可得到浓度为15%的盐水㊂练习卷一㊁1.102.103.304.605.135309二㊁1.解:80ˑ20%ː(80+20)ˑ100% =16%答:这时盐水的浓度是16%㊂2.解:(80ˑ20%+20)ː(80+20)ˑ100%=36%答:这时盐水的浓度是36%㊂3.解:200ˑ15%ː10%-200=100 (克)答:加入100克水就能得到浓度为10%的糖水㊂4.解:500ˑ(1-20%)ː(1-50%) -500=300(克)答:需要加入300克糖㊂5.解:400-400ˑ2.5%ː5%=200 (克)答:从中要蒸发掉200克水㊂6.解:(60ˑ25%+40ˑ10%)ː(60 +40)ˑ100%=19%答:混合后盐水的浓度是19%㊂7.解:设再加入x千克浓度为30%的硫酸溶液,就可以配成浓度为22%的硫酸溶液㊂20ˑ10%+xˑ30%=(20+x)ˑ22%x=30答:再加入30千克浓度为30%的硫酸溶液,就可以配成浓度为22%的硫酸溶液㊂8.解:设需要20%的盐水x克,5%的盐水(600-x)克㊂20%x+5%(600-x)=600ˑ15%x=400600-400=200(克)答:需要20%的盐水400克,5%的盐水200克㊂9.解:20ː100ˑ100%=20%[20%-20ː(20+100)]ː[20ː(20 +100)]ˑ100%=20%答:这时盐水的浓度是20%,浓度比原来提高了20%㊂10.解:设原来乙容器中盐水的浓度为x㊂80ˑ25%+120x=40%(80+120)x=50%答:原来乙容器中盐水的浓度是50%㊂第四讲百分数(利息和税收)例1解:20000+20000ˑ2.25%= 20450(元)答:张叔叔一共取回20450元㊂310。

六年级上册奥数

六年级上册奥数

六年级上册奥数第一讲牛吃草问题1:牧场上有一片青草,可以供6头牛吃8天,或者供10头牛吃4天,如果这片青草每天生长的速度相同,则这片青草可供18头牛吃几天?2、一只船发现漏水时,已经进了一些水,水匀速进入船内。

如果10人淘水,3小时淘完;如果5人淘水8小时淘完。

如果要求2小时淘完,要安排多少人淘水?3、牧场上有一片青草,每天生长速度相同,可供27头牛吃6天,或供69只羊吃9天,如果1头牛的吃草量等于3只羊的吃草量,那么这片青草可供11头牛和30只羊吃几天?4、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。

如果同时打开7个检票口,那么需多少分钟?5、因天气渐冷,牧场上的草以均匀的速度减少。

已知牧场上的草可供33头牛吃5天,或可供24头牛吃6天。

照此计算,这个牧场可供多少头牛吃10天?6、一个牧场,草每天匀速生长,每头牛每天吃的草量相同。

17头牛30天可以将草吃完,19头牛只需要24天就可以将草吃完,现有一群牛,吃了6天后,卖掉4头,余下的牛再吃2天就将草吃完。

则没有卖掉之前这群牛共有多少头?7、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

问该扶梯共有多少级?8、一个蓄水池,每分钟流入4立方米水,如果打开5个水龙头,150分钟就把水池中的水放光;如果打开8个水龙头,90分钟就把水池中的水放光。

现打开13个水龙头,要多少时间才能把水池中的水放光?9、甲、乙、丙三个仓库,各存放着两样数量的化肥,甲仓库用皮带输送机一台和12名工人需要5小时才能把甲仓搬空;乙仓库用一台皮带输送机和28名工人需要3小时才能把乙仓搬空;丙仓库用二台皮带输送机,如果需要2小时把乙仓搬空,同时还需要多少名工人?(皮带输送机工效相同,每个工人每小时搬运量相同。

六年级奥数上答案

六年级奥数上答案

六年级奥数上册:第二讲比和比例习题解答
六年级奥数上册:第三讲分数、百分数应用题(一)习题解答
六年级奥数上册:第三讲分数、百分数应用题(二)习题解答
六年级奥数上册:第五讲长方体和正方体习题解答
六年级奥数上册:第六讲立体图形的计算习题解答
六年级奥数上册:第七讲旋转体的计算习题解答
六年级奥数上册:第十讲棋盘中的数学(一)习题解答
六年级奥数上册:第十三讲棋盘中的数学(四)习题解答
六年级奥数上册:第十四讲典型试题分析习题解答。

6年级奥数教程配套习题的答案

6年级奥数教程配套习题的答案

六年级奥数上册:第一讲工程问题习题解答
六年级奥数上册:第二讲比和比例习题解答
六年级奥数上册:第三讲分数、百分数应用题(一)习题解答
六年级奥数上册:第四讲分数、百分数应用题(二)习题解答
六年级奥数上册:第五讲长方体和正方体习题解答
六年级奥数上册:第六讲立体图形的计算习题解答
六年级奥数上册:第七讲旋转体的计算习题解答
六年级奥数上册:第八讲应用同余解题习题解答
六年级奥数上册:第九讲二进制小数习题解答
六年级奥数上册:第十讲棋盘中的数学(一)习题解答
六年级奥数上册:第十四讲典型试题分析习题解答
六年级奥数下册:第一讲列方程解应用题习题解答
六年级奥数下册:第二讲关于取整计算习题解答
六年级奥数下册:第三讲最短路线问题习题解答
六年级奥数下册:第四讲奇妙的方格表习题解答
六年级奥数下册:第五讲巧求面积习题解答
六年级奥数下册:第六讲最大与最小问题习题解答
六年级奥数下册:第七讲整数的分拆习题解答
六年级奥数下册:第八讲图论中的匹配与逻辑习题解答
六年级奥数下册:第九讲从算术到代数(一)习题解答
六年级奥数下册:第十讲从算术到代数(二)习题解答。

奥数百分数应用题

奥数百分数应用题

奥数百分数应用题 SANY GROUP system office room 【SANYUA16H-小学六年级奥数题——分数、百分数应用题1.一列火车从甲地开往乙地,如果将车速提高20%,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度。

2.甲、乙、丙三人合作生产一批机器零件,甲生产的零件数量的一半与乙生产的零件数量的五分之三相等,又等于丙生产的零件数量的四分之三,已知乙比丙多生产50个零件,问:这批零件共有多少个?3.菜园里西红柿获得丰收,收下全部的3/8时,装满3筐还多24千克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克?4.服装厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间是156人,这个服装厂全厂共有多少人?5.二年级两个班共有学生90人,其中少先队员有71人,又知一班少先队员占本班人数的3/4,二班少先队员占本班人数的5/6,求两个班各有多少人?参考答案:1.甲、乙两地相距540千米,原来火车的速度为每小时90千米。

2.7503.3844.6005.一班48人,二班42人六百分数应用题(2)年级班姓名得分一、填空题1.甲数比乙数少20%,那么乙数比甲数多百分之.2.每天水分排出量(单位为毫升)如图所示.由肺呼出的水分占每天水分排出的百分之.(400:肺呼出;500:;100:固体废物;1500:水性废物)3.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%.那么,这堆糖中有奶糖块.4.把25克盐放进,制成的这种盐水,含盐量是百分之几有200克这样的盐水,里面含盐克.5.一个有弹性的球从A 点落下到地面,弹起到B 点后又落下高20厘米的平台上,再弹起到C 点,最后落到地面(如图).每次弹起的高度都是落下高度的80%,已知A 点离地面比C 点离地面高出68厘米,那么C 点离地面的高度是厘米..100 500 400 150A B C6.某次会议,昨天参加会议的男代表比女代表多700人,今天男代表减少10%,女代表增加了5%,今天共1995人出席会议,那么昨天参加会议的有人.7.有甲、乙两家商店,如果甲店的利润增加20%,乙店的利润减少10%,那么这两店的利润就相同,原来甲店的利润是原来乙店的利润的百分之.8.开明出版社出版某种书.今年每册书的成本比去年增加10%.但是仍保持原售价,因此每本盈利下降了40%,但今年的发行册数比去年增加80%,那么今年发行这种书获得的总盈利比去年增加的百分数是.9.甲、乙二人分别从A 、B 两地同时出发,相向而行,出发时他们的速度比是3:2.他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B 地时,乙离A 还有14千米.那A 、B 两地间的距离是.10.有两堆棋子,A 堆有黑子350个和白子500个,B 堆有黑子400个和白子100个,为了使A 堆中黑子占50%,B 堆中黑子占75%,要从B 堆中拿到A 堆;黑子. 个,白子个.二、解答题11.有一位精明的老板对某商品用下列办法来确定售价:设商品件数是N ,那么N 件商品售价(单位:元)按:每件成本?(1+20%)?N 算出后,凑成5的整数倍(只增不减),按这一定价方法得到:1件50元;2件95元;3件140元;4件185元;…,如果每件成本是整元,那么这一商品每件成本是多少元12.盈利百分数=买入价买入价买出价-?100% 某电子产品去年按定价的80%出售,能获得20%的盈利,由于今年买入价降低,按同样定价的75%出售,却能获得25%的盈利,那么去年买入价今年买入价是多少13.北京九章书店对顾客实行一项优惠措施:每次买书200元至499.99元者优惠5%,每次买500元以上者(包含500元)优惠10%.某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜38.4元.已经知道第一次的书价是第三次书价的85,问这位顾客第二次买了多少钱的书.14.有A 、B 、C 三根管子,A 管以每秒4克的流量流出含盐20%的盐水,B 管以每秒6克的流量流出含盐15%的盐水,C 管以每秒10克的流量流出水.C 管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒…三管同时打开,1分种后都关上,这时得到的混合液中含盐百分之几———————————————答案——————————————————————1. 20%?(1-20%)=25%2. 400?(400+500+100+1500)=16%3. 16?[(1-25%)?25%-(1-45%)?45%]=9(块)4. 含盐量是:%20%1001002525=⨯+ 200克这样的盐水里面含盐200?20%=40克5. [68+20?(1-80%)]?(1-80%?80%)-68=132(厘米)6. (1995-700?90%)?(1+5%+90%)?2+700=2100(人)7. (1-10%)?(1+20%)=75%8. 假设每册书成本为4元,售价5元,每册盈利1元,而现在成本为4?(1+10%)=4.4元,售价仍为5元,每册盈利0.6元,比原来每册盈利下降了40%.但今年发行册数比去年增加80%,若去年发行100册,则今年发行100?(1+80%)=180(册).原来盈1?100=100(元),现在盈利0.6?180=108(元).故今年获得的总盈利比去年增加了(108-100)?100=8%.9.相遇到后,甲乙速度之比为1?(1+20%):⨯32(1+30%)=18:13,故A 、B 两地之间的距离是14?4513185253=⎪⎭⎫ ⎝⎛÷-(千米) 10.设要从B 堆中拿到A 堆黑子x 个,白子y 个,则有:()()[]()()[]⎩⎨⎧⨯++-=-⨯+++=+%75100400400%50500350350y x x y x x 解得x =175,y =25. 11. 45?[(1+20%)?1]=37.512. [75%?(1+25%)]?[80%?(1+20%)]=109. 13. 第一次与第二次共应付款13.5?5%=270(元),故第三次书价必定在 500-270=230(元)以上,这样才能使三次书价总数达到优惠10%的钱数.如果分三次购买,第三次的书价也能优惠5%,从而有:第三次书价总数为518-270=248(元)第一次书价总数为24885⨯=155(元) 第二次书价总数为270-155=115(元)14.因60?(5+2)=8…4,故C 管流水时间为5?8+2=42(秒),从而混合液中含盐百分数为()()%10%1004210606460%156%2040=⨯⨯+⨯+⨯⨯+⨯ 在日常生活中和生产中我们经常会遇到一些百分数应用题。

六年级奥数第三讲:分数计算技巧--整体约分法

六年级奥数第三讲:分数计算技巧--整体约分法

六年级奥数第三讲:分数计算技巧----整体约分法【专题精析】 我们知道如何将123经行约分,因为3和12都含有公约数3,所以123=41。

对于比较复杂的分数,分子、分母含有相同运算的,可提取相同因数进行约分,特别注意:整体相同,只能作为整体约去,不能单独一项一项的约,小升初学习中,整体约分法是重点考查的计算技能之一,整体约分法有三种表现形式:第一种:有相同的部分与运算:例题1:(454+272)÷(151+74) =)()(7456716524+÷+ (第一组数分别是第二组的4倍) =)()(7456474456+÷⨯+⨯ (提取公因数) =)()(7456]74564[+÷+⨯ ( 整体一样,可以整体约去) =4练习:(3117+1137)÷(1119+1310) (31+52+73+94)÷(131+153+175+197)第二种:分子分母整体相同:例题2:186-548×362361×548362+= (观察分子分母,584×361和548×362相近) = (转换成584×361,分母变548-182) = (分子分母整体相同,整体约去) =1)(7456+1865481361361548362-⨯+⨯+)(182548548361361548362-+⨯⨯+362548361361548362+⨯⨯+练习:1-2008×20072008×20062007++1-2009×20082009×20072008+第三种:分子分母中含有相同因数:例题3:516334421721339322621131⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++++ == (提取公因数)= (有相同的公因数 ,整体约去)= 练习:400×300×20012×9×68×6×44×3×2300×200×1009×6×36×4×23×21+⋯⋯++++⋯⋯+++⨯63×45×921×15×314×10×27×5145×27×915×9×310×6×25×31+⋯⋯+++⨯+⋯⋯+++⨯(每一组数都是第一组数的倍数) 33321++469-725×256255×725256+)()()()()()()()()()()()(317323121722211721311333121123211131⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯33333172121721172131131211311131⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯⨯+⨯⨯)()(333332117213211131++⨯⨯⨯++⨯⨯⨯3433【基础练习】1、计算:987659876554321⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯+2、计算:173÷7425×12922÷(1.47×715)×237133、计算:(1)0.0199÷0.004×20001 (2)20001994199733333122⨯—【拓展提高】1、计算:(1)8.87.76.65.54.43.32.22642311981651329966++++++++++++(2)19661909190819072008195119501949++++++++⋯⋯⋯⋯2、计算:(1)212121*********×132132132121212(2)999999991122334455667788998877665544332211⨯++++++++++++++++3、计算:19953212199619941996199519951994++++—++⋯⋯⨯⨯⨯4、1234568123456612345675252252122⨯-⨯-)(5、计算:175********-⨯⨯+136********-⨯⨯++16059605859-⨯⨯++。

分数、百分数问题奥数思维拓展(试题)-小学数学六年级上册人教版(含答案)

分数、百分数问题奥数思维拓展(试题)-小学数学六年级上册人教版(含答案)

分数、百分数问题奥数思维拓展-小学数学六年级上册人教版一.选择题(共6小题)1.一袋洗衣粉,第一周用了全部的,第二周用了全部的25%,还剩1.2千克。

这瓶洗衣粉原来有多少千克?()A.3.2B.5.6C.3.5D.5.22.汽车厂今年上半年完成计划的75%,下半年完成计划的,汽车厂今年超产()A.75%B.50%C.25%D.125%3.甲数比乙数多,乙数就比甲数少()A.12.5%B.37.5%C.60%4.体育用品商店进购一批体育器材,其中足球和篮球的总数是150个,足球的数量占两种球总数的40%.后来又进购了一些足球,此时篮球的数量占两种球总数的,后来又进购了()个足球.A.90B.70C.605.学校一次课外活动,缺勤人数是出勤人数的10%,后来又有2人因病请假,这时缺勤人数是出勤人数的,这个学校课外活动小组共有()A.99人B.90人C.100人D.190人6.某厂上半月完成计划的75%,下半月完成计划的,这个月增产()A.25%B.45%C.30%D.20%二.填空题(共8小题)7.某服装厂计划一个月生产衬衫8000件,结果上半月完成了60%,下半月完成,这个月超量生产件。

8.某超市将商品促销活动,一种书包原价是100元,先降价20%后,又提价这种书包现在的售价是元。

9.湖边种了40棵柳树,是桃树棵数的,榕树的棵数是桃树棵数的65%。

湖边种了棵榕树。

10.工地有水泥120吨,沙子的质量是水泥的40%,又是石子的,石子的质量是吨。

11.运动健身迎亚运,和谐杭州展新韵。

为迎接第十九届杭州亚运会,学校组织教师健步走,张老师已经走了全程的40%,如果再走4千米,已走路程就占全程的。

这次健步走的全程是千米。

12.明彩文具超市新购进180支钢笔,新购进的圆珠笔的数量比钢笔多,新购进的圆珠笔有支;新购进的中性笔比圆珠笔少50%。

新购进的中性笔有支。

13.一堆货物,第一天运走了总数的,第二天运走了总数的25%,剩下的按3:4分配给甲车和乙车。

寒假奥数专题:分数、百分数复合应用题(试题)-小学数学六年级上册人教版(含答案)

寒假奥数专题:分数、百分数复合应用题(试题)-小学数学六年级上册人教版(含答案)

寒假奥数专题:分数、百分数复合应用题(试题)-小学数学六年级上册人教版一.选择题(共5小题)1.某厂上半月完成本月计划的75%,下半月完成本月计划的,这个月实际完成量比计划多()A.25%B.30%C.45%D.50%2.据《钱江晚报》报道,共有100多名自行车运动爱好者参与12月1日至11日进行的“爱我浙江环保骑行宣传活动”.车队途经25个县市,全程1600千米.当行进到全程时,已有70%的参与者退出了骑行队伍.坚持骑完全程的有12人,是出发时总人数的10%,他们平均每天骑行8时,骑行路程的60%是山道.问:没有骑完全程的有多少人?要解决这个问题,需要用到的信息是()A.100人,12人,1600米,1090,,70%B.100人,70%,10%C.12人,70%,10%D.12人,10%3.水果店运进两种质量相同并且超出1吨的水果,甲种水果卖出吨,乙种水果卖出30%,两种水果剩下的()A.甲种多B.乙种多C.一样多D.无法比较4.男生人数的等于女生人数的60%,男生和女生人数的比是()A.:60%B.60%:C.4:5D.5:45.某厂上半月完成计划的75%,下半月完成计划的,这个月增产()A.25%B.45%C.30%D.20%二.填空题(共7小题)6.商店上午的营业额占全天营业额的,其余是下午的营业额,上午的营业额比下午少%.7.电信公司要架设一条长4800米的光缆,第一天架设了全长的25%,第二天架设了余下的又10米,还剩下米.8.在一个三角形中,第一个角占其中的,第二个角占其中的50%,这三个角分别是,这是一个三角形.9.小明和弟弟各自积攒很多画片,小明把自己的给弟弟后,两人的一样多,原来小明比弟弟多%.10.用汽车运一批货,已经运了5次,运走的货物比多一些,比75%少一些.运完这批货物最多要运次,最少要运次.11.花园小学有学生1260人,学校组织全校男生的80%和全校女生的的学生参观西湖,其余学生祭扫雨花台烈士陵园,结果发现扫墓的男、女生人数正好相等.花园小学男生、女生各有人.12.甲、乙、丙三人赛跑,已知甲速比乙速快,而乙速又比丙速快10%,则甲速比丙速快%.三.应用题(共9小题)13.六(1)班有32人喜欢跳舞,占全班人数的,喜欢唱歌的占全班人数的75%。

六年级奥数分数百分数应用题教师版

六年级奥数分数百分数应用题教师版

分数百分数应用题【例 1】 (小数报数学竞赛初赛)甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人民市场,甲买一双运动鞋花去了所带钱的49,乙买一件衬衫花去了人民币16元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?【解析】 把甲所带的钱视为单位“1”,由题意,乙花去16元后所剩的钱与甲所带钱的59一样多,那么8616-元钱正好是甲所带钱的519+,那么甲原来带了5(8616)(1)459-÷+=(元),乙原来带了864541-=(元).【巩固】 一实验五年级共有学生152人,选出男同学的111和5名女同学参加科技小组,剩下的男、女人数正好相等。

五年级男、女同学各有多少人?【解析】 根据题意画出线段图,找出量率对应:男工有:(152-5)÷(1-111+1)=77(名)女工有:152-77=75(名) 【例 2】 甲、乙两个书架共有1100本书,从甲书架借出13,从乙书架借出75%以后,甲书架是乙书架的2倍还多150本,问乙书架原有多少本书?设甲原有x 本书,()111502175%11003x x ⎡⎤⎛⎫--÷÷-+= ⎪⎢⎥⎝⎭⎣⎦,解得600x =,则乙为500本。

【例 3】 五年级上学期男、女生共有300人,这一学期男生增加125,女生增加120,共增加了13人.这一学年六年级男、女生各有多少人?男生有40÷5×(25+1)=208(人),女生有300+13—208=105(人)。

【巩固】 把金放在水里称,其重量减轻119,把银放在水里称,其重量减轻110.现有一块金银合金重770克,放在水里称共减轻了50克,问这块合金含金、银各多少克?【解析】 设合金含金x 克,列方程得:11(770)501910x x +-=,解得570x =,所以金有570克,银有200克.【例 4】 光明小学有学生900人,其中女生的47与男生的23参加了课外活动小组,剩下的340人没有参加.这所小学有男、女生各多少人?【解析】 假设男生、女生都有23的人参加了课外活动小组,那么共有29006003⨯=(人),比现在多出了()60090034040--=(人),这多出的40人即为女生的2437⎛⎫- ⎪⎝⎭,所以女生人数为244042037⎛⎫÷-= ⎪⎝⎭(人),男生人数为900420480-=(人).【巩固】 二年级两个班共有学生90人,其中少先队员有71人,又知一班少先队员占全班人数的34,二班少先队员占全班人数的56,求两个班各有多少人? 【解析】 一班人数为553(9071)()48664⨯-÷-=(人),那么二班人数为904842-=(人).【例 5】 盒子里有红,黄两种玻璃球,红球为黄球个数的25,如果每次取出4个红球,7个黄球,若干次后,盒子里还剩2个红球,50个黄球,那么盒子里原有________个玻璃球.【解析】 由于红球与黄球个数比为2:5,所以若每次取4个红球,10个黄球,则最后剩下的红球与黄球的个数比仍为2:5,即最后剩下2个红球,5个黄球,而实际上是每次取4个红球,7个黄球,最后剩2个红球,50个黄球,每次少取了3个黄球,最后多剩下45个黄球,所以一共取了45315÷=次,所以球的总数为(47)15250217+⨯++=个.【巩固】 甲乙两班的同学人数相等,各有一些同学参加课外天文小组,已知甲班参加的人数恰好是乙班未参加人数的三分之一,乙班参加人数恰好是甲班未参加人数的四分之一,问甲班没有参加的人数是乙班没有参加的人数的几分之几?【解析】 分别用甲参、甲未、乙参、乙未表示甲、乙班参加和未参加的人数,则:甲参+甲未=乙参+乙未,1111834349==+=+=末参末末末末末末末末甲将甲乙、乙甲代入上式,得乙甲甲乙,解得乙【例 6】 工厂生产一批产品,原计划15天完成。

六年级奥数分数百分数应用题教师版

六年级奥数分数百分数应用题教师版

六年级奥数分数百分数应用题教师版The latest revision on November 22, 2020一、解答题(共25小题,满分0分)1.(2011成都)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是多少元2.(2006泉山区校级自主招生)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,这100千克的蘑菇现在还有千克.3.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升4.(2012哈尔滨校级自主招生)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重.如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍.这两堆煤共重多少吨5.一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子、白棋子各有多少枚6.某班有学生48人,女生占全班的%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生7.(2010北京校级自主招生)把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少8.学校男生人数占45%,会游泳的学生占54%.男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几9.某校四年级原有2个班,现在要重新编为3个班,将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班有多少人10.(2012中山校级模拟)一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米11.有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2:5.现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(图1),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(图2),那么做成的竖式纸盒与横式纸盒个数之比是多少12.(2009东莞市校级自主招生)某学校入学考试,参加的男生与女生人数之比是4:3.结果录取91人,其中男生与女生人数之比是8:5.未被录取的学生中,男生与女生人数之比是3:4.问报考的共有多少人13.(2013北京模拟)幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名14.某商店进了一批笔记本,按30%的利润定价.当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少15.(2014长沙)A,B,C三个试管中各盛有10克、20克、30克水.把某种浓度的盐水10克倒入A中,混合后取出10克倒入B中,混合后又从B中取出 10克倒入C中.现在C中盐水浓度是%.问最早倒入A中的盐水浓度是多少16.(2015泸州校级模拟)小明到商店买红、黑两种笔共66支.红笔每支定价5元,黑笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支17.制鞋厂生产的皮鞋按质量共分10个档次,生产最低档次(即第1档次)的皮鞋每双利润为24元.每提高一个档次,每双皮鞋利润增加6元.最低档次的皮鞋每天可生产180双,提高一个档次每天将少生产9双皮鞋.按天计算,生产哪个档次的皮鞋所获利润最大最大利润是多少元18.某中学,上年度高中男、女生共290人.这一年度高中男生增加4%,女生增加5%,共增加13人.本年度该校有男、女生各多少人19.在如图中AB,AC的长度是15,BC的长度是9.把BC折过去与AC重合,B点落在E点上,求三角形ADE与三角形ABC面积之比.20.(2012长春)成本元的练习本1200本,按40%的利润定价出售,当销掉80%后,剩下的练习本打折扣出售,结果获得的利润是预定的86%.问剩下的练习本出售时按定价打了多少折扣21.甲乙两人各有一些书,甲比乙多的数量恰好是两人总数的,如果甲给乙20本,那么乙比甲多的数量恰好是两人总数的.那么他们共有多少本书22.甲、乙、丙三位同学共有图书108本.乙比甲多18本,乙与丙的图书数之比是5:4.求甲、乙、丙三人所有的图书数之比.23.一个容器内已注满水,有大、中、小三个球.第一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次取出中球,把小球和大球一起沉入水中,现在知道每次从容器中溢出水量的情况是,第一次是第二次的,第三次是第一次的倍,求三个球的体积之比.24.某种密瓜每天减价20%.第一天妈妈按定价减价20%买了3个密瓜,第二天妈妈又买了5个密瓜,两天共花了42元.如这8个密瓜都在第三天买,问要花多少钱25.(2007兴庆区校级自主招生)袋子里红球与白球数量之比是19:13.放入若干只红球后,红球与白球数量之比变为5:3;再放入若干只白球后,红球与白球数量之比变为13:11.已知放入的红球比白球少80只,那么原先袋子里共有多少只球2010年学而思教育小升初专项训练9:比例百分数篇参考答案与试题解析一、解答题(共25小题,满分0分)1.(2011成都)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是多少元分析:设甲成本为X元,则乙为2200﹣X元,分别把甲、乙商品定价后的价钱求出,然后根据一个数乘分数的意义,求出后来都按定价的90%打折出售的总价钱,继而根据“按定价的90%打折出售的总价钱﹣成本价=获利钱数(131)”列出方程,解答即可.解答:解:设甲成本为x元,则乙为2200﹣x元,则:90%×[(1+20%)x+(2200﹣x)×(1+15%)]﹣2200=131,×[+2200×﹣]﹣2200=131,×[+2530]﹣2200=131,+2277﹣2200=131,+77=131,x=1200.答:甲商品的成本是1200元.点评:解答此题的关键是先设出要求的量,进而判断出单位“1”,根据题意,找出数量间的相等关系式,然后根据关系式,进行解答即可;用到的知识点:一个数乘分数的意义.2.(2006泉山区校级自主招生)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,这100千克的蘑菇现在还有千克.浓度问题;百分数的实际应用.kaodian:分析:此题转化为浓度问题来解答,相当于蒸发问题,所以蘑菇的数量不变,列方程得:100×(1﹣99%)=(1﹣98%)X,解答即可.解答:解:设这100千克的蘑菇现在还有X千克,由题意得:(1﹣98%)X=100×(1﹣99%),2%X=100×1%,2X=100,X=50.答:这100千克的蘑菇现在还有50千克.点评:此题解答的关键是根据蘑菇的数量不变,列出方程,解决问题.3.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升kaodian比的应用;比例的应用.:分析:由题意可知:设加进去的水量为x升,则会有(8+x):(13+x)=5:7,解此比例即可.解答:解:设加进去的水量为x升,则会有(8+x):(13+x)=5:7,(8+x)×7=(13+x)×5,56+7x=65+5x,2x=9,x=;答:加进去的水量为升.点评:解答此题的关键是:设出未知数,利用比例解答比较容易理解.4.(2012哈尔滨校级自主招生)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重.如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍.这两堆煤共重多少吨kaodian差倍问题.堆运12吨给甲堆,说明现在甲乙相差就是24+24=48吨,而甲堆煤就是乙堆煤的2倍,说明相差1份,所以现在甲重48×2=96吨,总共重量为48×3=144吨解答:解:(12×2+12×2)÷(2﹣1),=48÷1,=48(吨);所以甲乙两堆煤重:48×(2+1)=144(吨);答:这两堆煤共重144吨.点评:此题关系较为复杂,要求学生要认真审题,找准等量关系分别得出甲乙原来相差的吨数,以及2倍关系下1份的重量即乙煤重量,从而求得甲乙的总重量.5.一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子、白棋子各有多少枚kaodian比的应用.:分析:由题意可知:第二次拿走45枚黑棋,黑子与白子的个数之比由2:1(即10:5)变为1:5,而其中白棋的数目是不变的,这样我们就知道白棋由原来的10份变成现在的1份,减少了9份,这9分对应的数量是45,可以求出原来黑棋的个数,再据“拿走15枚白棋子后,黑子与白子的个数之比为2:1”即可求得原来白棋子的个数.解答:解:因为2:1=10:5,则原来黑棋子的个数:45÷9×10,=5×10,=50(个);原来白棋的个数:45÷9×5+15,=5×5+15,=25+15,=40(个);答:原来黑棋子有50个,白棋子有40个.点评:解答此题的关键是:拿走的45枚棋子对应的是9份的量,求出一份的量,即可逐步求解.6.某班有学生48人,女生占全班的%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生百分数的实际应用.kaodian:分析:把原来全班共有的学生(48人)看作单位“1”,则男生人数占全班人数的(1﹣%),根据一个数乘分数的意义,求出男生人数,进而把后来全班人数看作单位“1”,根据“对应数÷对应分率=单位“1”的量“进行解答,求出后来的全班人数,然后减去原来全班人数,即可得出结论.解答:解:48×(1﹣%)÷(1﹣40%)﹣48,=30÷﹣48,=50﹣48,=2(人);答:转来2名女生.点评:这是一道变换单位“1”的分数应用题,需抓住男生人数这个不变量,进行解答,用到的知识点:(1)一个数乘分数的意义,用乘法解答;(2)已知一个数的几分之几是多少,求这个数用除法.7.(2010北京校级自主招生)把一个正方形的一边减少20%,另一边增加2米,得到一个长方kaodian百分数的实际应用;长方形、正方形的面积.:分析:把正方形的边长看做单位“1”,根据一边减少了20%,另一边将增加2米,得到的长方形与原来的正方形面积相等,可知减少的面积就等于增加的面积,先求得增加的面积即2×(1﹣20%),也就是减少的面积数,再用减少的面积数除以20%就是原来正方形的边长,再用边长乘边长即得正方形的面积.解答:解:正方形的边长:2×(1﹣20%)÷20%,=2×÷,=8(米);正方形的面积:8×8=64(平方米);答:正方形的面积是64平方米.点评:解决此题关键是把正方形的边长看做“1”,根据减少的面积就等于增加的面积,先求得正方形的边长,进而求得面积.8.学校男生人数占45%,会游泳的学生占54%.男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几分数和百分数应用题(多重条件).kaodian:分析:由于男生人数占总人数的45%,男生中会游泳的占72%,所以在全体学生中,会游泳的男生占45%×72%=%;则在全体学生中,会游泳的女生占54%﹣%=%;由于男生人数占总人数的45%,设全体学生为单位“1”,由于女生占全体学生的1﹣45%=55%,则不会游泳的女生有55%﹣%=%.解答:解:会游泳的女生占全体学生的:54%﹣45%×72%=54%﹣%,=%;则不会会游泳的女生占全体学生的:(1﹣45%)﹣%=55%﹣%,=%.答:在全体学生中不会游泳的女生占%.点评:先根据已知条件求出会游泳的女生占全体学生的分率是完成本题的关键.9.某校四年级原有2个班,现在要重新编为3个班,将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班有多少人分数和百分数应用题(多重条件).kaodian:分析:由题意可知,原一班的与原二班的+原一班的与原二班的=总人数,所以余下的30人占总人数的1﹣=,所以总人数有30÷=72人;72﹣30=42人,即新一班与新二班的人数和为42人,新一班的人数比新二班的人数多10%,则新二班的人数是42÷(1+1+10%)=20人,则新一班有42﹣20=22人,即原一班的(﹣)=比原二班的多2人,原一班比原二班共多2=24人,所以,原一班有(72+24)÷=48人.解答:解:则总人数有:30÷(1﹣)=30,=72(人);新一、二班共有学生:72﹣30=42(人);新二班的人数是:42÷(1+1+10%)=20(人),新一班比新二班多:(42﹣20)﹣22=2(人);即原一班的(﹣)=比原二班的多2人,原一班比原二班共多2=24人,所以,原一班有(72+24)÷2=48人.答:原一班有48人.点评:本题中的数量关系较为复杂,完成要思路清晰,根据条件中的逻辑关系认真分析,逐步解答.10.(2012中山校级模拟)一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米组合图形的面积;长方形、正方形的面积.kaodian:分析:画出图便于解题:长方形长与宽的比是14:5,则设原来的长方形的长宽分别为14x厘米、5x厘米,则图中红色部分是长减少13厘米后原长方形面积减少了13×5x平方厘米,绿色部分是宽增加13厘米后长方形面积增加了(14x﹣13)×13平方厘米,而实际变化后比原来长方形的面积增加182平方厘米,由此列出方程即可解答.解答:解:设原长方形长为14x,宽为5x.由图分析得方程(14x﹣13)×13﹣5x×13=182,182x﹣169﹣65x=182,117x=351,x=3;则原长方形面积:(14×3)×(5×3),=42×15,=630(平方厘米).答:原来的长方形的面积是630平方厘米.点评:此题的关键是根据长宽的变化,画出图形,正确找出增加部分和减少部分的面积进行解答.11.有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2:5.现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(图1),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(图2),那么做成的竖式纸盒与横式纸盒个数之比是多少比的应用;简单的立方体切拼问题.kaodian:分析:此题可以用设数法来解答,假设竖式纸盒有a个,横式纸盒有b个,由题意列式为(a+2b):(4a+3b)=2:5,然后化简即可.解答:解:设竖式纸盒有a个,横式纸盒有b个,则共用长方形纸板(4a+3b)块,正方形纸板(a+2b)块.根据题意有:(a+2b):(4a+3b)=2:5,即5(a+2b)=2(4a+3b),5a+10b=8a+6b,3a=4b,即a:b=4:3.答:做成的竖式纸盒与横式纸盒个数之比是4:3.点评:此题的解题思路是:先设出竖式纸盒和横式纸盒的个数,然后相应地表示出共用长方形纸板的块数,正方形纸板的块数,再根据正方形纸板总数与长方形纸板总数之比为2:5,列出等式并化简.12.(2009东莞市校级自主招生)某学校入学考试,参加的男生与女生人数之比是4:3.结果录取91人,其中男生与女生人数之比是8:5.未被录取的学生中,男生与女生人数之比是3:4.问报考的共有多少人kaodian比的应用;比例的应用.:分析:先依据“结果录取91人,其中男生与女生人数之比是8:5”,利用按比例分配的方法求出录取的男女生的人数,再据未被录取的男女生人数比和参加考试的男女生人数比,即可列比例求解.解答:解:录取学生中男生:91×=56(人),女:91﹣56=35(人).设未被录取的男生有3x人,未被录取的女生有4x人,则有(56+3x):(35+4x)=4:3(56+3x)×3=(35+4x)×4,168+9x=140+16x,7x=168﹣140,7x=28,x=4;所以未录取男生:4×3=12(人),女生4×4=16(人).报考人数是:(56+12)+(35+16),=68+51,=119(人);答:报考的共有119人.点评:解答此题的关键是:先求出录取的男女生的人数,再据题目条件,即可求出报考的总人数.13.(2013北京模拟)幼儿园大班和中班共有32名男生,18名女生.已知大班男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名kaodian比的应用.:分析:方法一:由于男女生有比例关系,而且知道总数,所以我们可以用鸡兔同笼的方法解答,假设18名女生全部是大班,再据“大班男生数与女生数的比为5:3”,即可逐步求解.方法二:可以把中班女生数看作“1”份,那么中班男生数为2份.从而大班中的男生数为32﹣2份,大班里的女生人数是18﹣1份.根据题意有(32﹣2份):(18﹣1份)=5:3,只要求出1份的数目即可.解答:解:方法一:假设18名女生全部是大班,则大班男生数:女生数=5:3=30:18,即男生应有30人,实际男生有32人,32﹣30=2,相差2个人;中班男生数:女生数=2:1=6:3,以3个中班女生换3个大班女生,每换一组可增加1个男生,需要换2组;所以,大班女生有18﹣3×2=12个.方法二:把中班女生数看作单位“1”,则有(32﹣2份):(18﹣1份)=5:3,(32﹣2份)×3=(18﹣1份)×5,96﹣6份=90﹣5份1份=6;所以大班的女生则有18﹣6=12(人).答:大班有女生12名.点评:解答此题的关键是:知道男女生的人数比例,既可以用鸡兔同笼的方法解答,也可以用份数解答.14.某商店进了一批笔记本,按30%的利润定价.当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少利润和利息问题.kaodian:分析:把这批笔记本的成本是“1”,因此定价是1×(1+30%)=;其中80%的卖价是×80%,20%的卖价是÷2×20%;因此全部卖价是×80%+÷2×20%=;实际获得利润的百分数是﹣1==17%.解答:解:[1×(1+30%)×80%+1×(1+30%)÷2×(1﹣80%)]﹣1,=[+]﹣1,=,=17%;答:销完后商店实际获得的利润百分数是17%.点评:此题较难,解答此题的关键:把这批笔记本的成本是“1”,根据题意,求出全部卖出的总价,进而与成本总价进行比较,得出结论;用到的知识点:一个数乘分数的意义.15.(2014长沙)A,B,C三个试管中各盛有10克、20克、30克水.把某种浓度的盐水10克倒入A中,混合后取出10克倒入B中,混合后又从B中取出 10克倒入C中.现在C中盐水浓度是%.问最早倒入A中的盐水浓度是多少kaodian浓度问题.:分析:混合后,三个试管中的盐水分别是20克、30克、40克,又知C管中的浓度为%,可算出C管中的盐是:40×%=(克).由于原来C管中只有水,说明这克的盐来自从B管中倒入的10克盐水里.B管倒入C管的盐水和留下的盐水浓度是一样的,10克盐水中有克盐,那么原来B管30克盐水就应该含盐:×3=(克).而且这克盐来自从A管倒入的10克盐水中.A管倒入B管的盐水和留下的盐水的浓度是一样的,10克盐水中有克盐,说明原A管中20克盐水含盐:×2=(克),而且这克的盐全部来自某种浓度的盐水.即说明倒入A管中的10克盐水含盐克.所以,某种浓度的盐水的浓度是÷10×100%=12%.解答:解:B中盐水的浓度是:(30+10)×%÷10×100%,=40×÷10×100%,=2%.现在A中盐水的浓度是:(20+10)×2%÷10×100%,=30×÷10×100%,=6%.最早倒入A中的盐水浓度为:(10+10)×6%÷10,=20×6%÷10,=12%.答:最早倒入A中的盐水浓度为12%.点评:不管是哪类的浓度问题,最关键的思维是要抓住题中没有变化的量,不管哪个试管中的盐,都是来自最初的某种浓度的盐水中,运用倒推的思维来解答.16.(2015泸州校级模拟)小明到商店买红、黑两种笔共66支.红笔每支定价5元,黑笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支浓度问题.kaodian:分析:浓度倒三角的妙用:红笔按85%优惠,黑笔按80%优惠,结果少付18%,相当于按82%优惠,可按浓度问题进行配比.与其他题不同的地方在于红、黑两种笔的单价不同,要把这个因素考虑进去.然后就可以按比例分配这66支笔了.解答:解:1﹣18%=82%;红笔每支多付:5×(85%﹣82%),=5×3%,=(元);黑笔每支少付:9×(82%﹣80%),=9×2%,=(元);红笔总共多付的钱等于黑笔总共少付的钱,红笔与黑笔数量之比是与的反比,即::=6:5,红笔是:66×=36(支),答:他买了红笔36支.点评:解答此题的关键是求出红笔与黑笔数量之比,然后根据按比例分配的方法解答即可.17.制鞋厂生产的皮鞋按质量共分10个档次,生产最低档次(即第1档次)的皮鞋每双利润为24元.每提高一个档次,每双皮鞋利润增加6元.最低档次的皮鞋每天可生产180双,提高一个档次每天将少生产9双皮鞋.按天计算,生产哪个档次的皮鞋所获利润最大最大利润是多少元kaodian利润和利息问题.:分析:由题意,生产第n(n=1,2,…,10)档次的皮鞋,每天生产的双数为189﹣9n=9×(21﹣n)双,每双利润为18+6n=6×(3+n)(元),所以每天获利润[6×(3+n)]×[9×[(21﹣n)]=54×(3+n)×(21﹣n)元;两个数的和一定时,这两个数越接近,这两个数的乘积越大,上式中,因为(3+n)与(21﹣n)的和是24,而n=9时,(3+n)与(21﹣n)都等于12,所以每天生产第9档次的皮鞋所获利润最大,然后算出最大利润即可.解答:由题意,生产第n(n=1,2,…,10)档次的皮鞋,每天生产的双数为189﹣9n=9×(21﹣n)双,每双利润为:18+6n=6×(3+n)(元),所以每天获利润:[6×(3+n)]×[9×[(21﹣n)]=54×(3+n)×(21﹣n)元;两个数的和一定时,这两个数越接近,这两个数的乘积越大,上式中,因为(3+n)与(21﹣n)的和是24,而n=9时,(3+n)与(21﹣n)都等于12,所以每天生产第9档次的皮鞋所获利润最大,最大利润是:54×(3+9)×(21﹣9)=7776(元);答:生产第9个档次的皮鞋所获利润最大,最大利润是7776元.点评:解答此题的关键:认真分析题意,找出题中数量间的关系,进而根据每双鞋的利润、生产鞋的双数和总利润之间的关系解答即可.18.某中学,上年度高中男、女生共290人.这一年度高中男生增加4%,女生增加5%,共增加13人.本年度该校有男、女生各多少人列方程解含有两个未知数的应用题;百分数的实际应用.kaodian:分析:如果女生也是增 4%,这样增加的人数是290×4%=(人),比 13人少人,少的人就是因为女生本是增加5%,而算成4%,少算了上年度女生的1%,用除法可求出上年度女生的人数,根据“上年度男、女生共290人”算出上年度男生的人数,又因为4%,5%的单位“1”是上年度女生和男生,所以用乘法可算出本年度男女生人数.解答:解:如果女生也是增加 4%,这样增加的人数是:290×4%=(人),女生少算了:13﹣=(人),上年度女生是:÷(5%﹣4%)=140(人),上年度男生有:290﹣140=150(人),本年度男生有:150×(1+4%)=156(人),本年度女生有:140×(1+5%)=147(人),答:本年度该校有男生156人,女生147人.点评:解此题的关键是先算出上年度男女生的人数,再根据增加的比算出本年度的男女生人数.19.在如图中AB,AC的长度是15,BC的长度是9.把BC折过去与AC重合,B点落在E点上,求三角形ADE与三角形ABC面积之比.kaodian简单图形的折叠问题;比的意义;三角形的周长和面积.:分析:首先,根据△ADE和△DEC的高相等,那么可推出这两个三角形的面积之比,等于这两个三角形的底边之比为(15﹣9):9=6:9=2:3.三角形BCD与三角形CDE面积相等.所以三角形ADE与三角形ABC的面积之比为2:8 即1:4解答:解:因为BC=CE=9,所以AE=15﹣9=6(厘米);因为△ADE和△DEC的高相等,所以△ADE和△DEC的面积比为(15﹣9):9=6:9=2:3;又因为三角形BCD与三角形CDE面积相等.所以三角形ADE与三角形ABC的面积之比为2:8 即1:4.答:三角形ADE与三角形ABC面积之比为1:4.点评:此题重点考查等高的两个三角形的面积之间的关系.如果在两个三角形中,底边上的高相等,这两个三角形的面积比等于底边之比.20.(2012长春)成本元的练习本1200本,按40%的利润定价出售,当销掉80%后,剩下的练习本打折扣出售,结果获得的利润是预定的86%.问剩下的练习本出售时按定价打了多少折扣kaodian利润和利息问题.:分析:此题可以先求出每本练习本的预定利润为:×40%=元,则预定价格为:+×40%=元,那么预定总利润就是:1200×=120元,销掉80%得到的利润就是:1200×80%×=96(元),而实际获得的利润为:120×86%=,所以剩下的20%的利润是﹣96=元,由此可以求得剩下的每本的利润为:÷(1200×20%)=元,那么剩下的练习本的单价为:+=元,÷=,故剩下的练习本出售时按定价打了八折.解答:解:预定价格为:+×40%=(元),预定利润为:×40%=(元),预定总利润为:×1200=120(元),剩下的20%的练习本的每一本价格为:(120×86%﹣120×80%)÷(1200×20%)+,=(﹣96)÷240+,=÷240+,=+,=(元),÷=答:剩下的练习本出售时按定价打了8折.点评:此题的解题过程有点复杂,只要抓住先求得预定价格,和剩下的20%的练习本的价格为做题思路,即可解决问题21.甲乙两人各有一些书,甲比乙多的数量恰好是两人总数的,如果甲给乙20本,那么乙比甲多的数量恰好是两人总数的.那么他们共有多少本书分数和百分数应用题(多重条件).kaodian:分析:甲比乙多的数量恰好是两人总数的,把差1份,和4份,用和差问题来算一下,大数为:(4+1)÷2=,小数:(4﹣1)÷2=,,得甲是份,乙是份,甲与乙的比是5:3.同理,甲给乙20本后,甲与乙的比是5:7;因为甲给乙20本书,甲减少多少,乙就增加多少,甲乙两人共有书的总数不变,在这里8与12的最小公倍数是24份:5:3=15:9,5:7=10:14观察比较甲从15份变为10份,是因为少了20本书,因此每份是4本,共有书就为4×(15+9)=96本解答:解:甲比乙多的数量恰好是两人总数的,甲:(4+1)÷2=(份),乙:4﹣=(份),。

奥数百分数应用题(一)

奥数百分数应用题(一)

百分数应用题(一)一、求一个数是另一个数的百分之几。

例1、甲、乙两队合修一条路,甲队修240m ,乙队修160m 。

甲、乙两队各修这条路的百分之几?例2、一个长位8cm ,宽位5cm ,高为4cm 的长方体剪出一个最大的正方体,余下部分的体积是长方体体积的百分之几? 同类练习: (一)选择题。

1、做种子发芽试验,100粒发芽,25粒没有发芽,求发芽率正确列式为( ) A (100-25)÷100% B 100÷(100-25)×100%C 100÷(100+25)×100%D (100+25)÷100×100% 2、一块正方形铁板,剪出一块最大的圆形,这块铁板的利用率为( ) A 62.5% B 78.5% C 87.5% D 92.5% 3、把20g 盐放入80g 水中,盐水含盐率为( )A 25%B 20%C 50%D 80%4、某班男生26人,女生比男生少4人,求女生是男生的百分之几?正确算式是( )。

A 4÷26B (26-4)÷26C 4÷(24-4)D 26÷(24-4) 5、某电冰箱厂上月计划生产电冰箱3800台,实际增产570台,上月完成计划的百分之几?正确列式是( )。

A 570÷3800B 3800÷(3800+570)C (3800+570)÷3800D (3800-570)÷3800 (二)解答题。

1、某工厂男、女工人数分别是86人、114人,问男、女工各占总人数的百分之几?2、走完一段路程,甲用去21小时,乙用去31小时,乙的速度是甲的百分之几? 3、A 的43相当于B 的65,B 相当于A 的百分之几? 4、王师傅计划一天加工500个零件,上、下午各加工250个,上午有501没有通过检测,下午有2523通过检测,求王师傅加工这批产品合格率?例3、某班有学生50人,会游泳的占全班人数的2518,女生25人中有53会游泳,那么男生中会游泳的占男生人数的百分之几?例4、有两包糖果,第一包的粒数与第二包粒数之比是2︰5,第一包中奶糖占30%,在第二包中其它糖占42%。

六年级奥数专题练习

六年级奥数专题练习

六年级奥数-分数、百分数应用题1.一块菜地和一块麦地,菜地的1/2和麦地的1/3共13公顷,麦地的1/2和菜地的1/3共12公顷,菜地和麦地各有多少公顷2.菜园里西红柿获得丰收,收下全部的3/8时,装满3筐还多24千克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克3.服装厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间是156人,这个服装厂全厂共有多少人4.二年级两个班共有学生90人,其中少先队员有71人,又知一班少先队员占本班人数的3/4,二班少先队员占本班人数的5/6,求两个班各有多少人5.某校有学生465人,其中女生的2/3比男生的4/5少20人,男生比女生少几人6.红旗商场的木桌按20%的利润定价,结果又按8折出售,亏本32元,这个木桌买入价多少元1、浓度为10%的盐水800克和浓度为20%的盐水200克混在一起,浓度是多少2、有浓度为%盐水200克,为了制成浓度为%的盐水,需要加水多少克3、有浓度为%的盐水900克,为了制成浓度为%的盐水,要蒸发掉多少克水4、小明的妈妈买了10千克萝卜,含水量为80%,晾晒一段时间后,含水量只有75%,这时萝卜重多少千克5、有浓度为10%的盐水170克,加入多少克盐后,盐水的浓度为15%6、有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是%的糖水100克,问每种应取多少克1. 一项工程,甲单独完成需12天,乙单独完成需9天。

若甲先做若干天后乙接着做,共用10天完成,问甲做了几天2.师徒二人合做生产一批零件,6天可以完成任务。

师傅先做5天后,因事外出,由徒弟接着做,一共完成任务的7/10,如果每人单独做这批零件各需几天3.一件工作甲先做6小时,乙接着做12小时可以完成。

甲先做8小时,乙接着做6小时也可以完成。

如果甲做3小时后,由乙接着做,还需要多少小时完成4.一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时5.一项工程,8人干需15天完成,先由18人做了3天,余下的由一部分人做3天,共完成这项工程的3/4,那么后三天有多少人参加6. 一项工程,如果由一、二、三小队合干需18天完成,由二、三、四小队合干需15天完成,由一、二、四小队合干需12天完成,由一、三、四小队合干需20天完成,那么一小队单独干需多少天完成六年级奥数-不定方程(A卷)1.一位同学把他出生的月份乘以31,再把出生日是期乘以12,然后加起来,和是170.这位同学的生日是几月几日2.若干只6脚蟋蟀和8脚蜘蛛,共有46只脚,问蟋蟀和蜘蛛各有多少只3.现有3米长和5米长的钢管各6根,安装31米长的管道,问怎样接用最省材料4.小华买圆珠笔若干支,正好付出10元钱,他所买的圆珠笔有两种,有1元1支的,也有1元5角一支的,他两种圆珠笔各买了多少支5.王明用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包.问他每种各买了多少包六年级奥数-不定方程(B卷)6.甲级铅笔7分钱一支,乙级铅笔3分钱一支,张明用六角钱恰好可以买两种不同的铅笔共几支7.有甲乙两种卡车,甲车的载重量为6吨,乙车的载重量为8吨。

【精品推荐,与教材同步】六年级上册奥数

【精品推荐,与教材同步】六年级上册奥数

第一讲:圆和扇形(一)(一)基本知识1、圆:圆周长公式:C=πd 或C=2πr 。

圆面积公式:2r S π=。

圆环面积:)(22r R S -=π环图一 图二 图三2、扇形。

如上图二,连接两条半径OA 、OB ,就可得到一个扇形OAB ,扇形面积公式是:S=3602r n π。

扇形的圆弧长=所在圆周长的。

其中r 是指扇形的在圆的面积,n 指的是圆心角的度数。

例1、图二中n=60°,半径为6厘米,扇形面积是多少?弧AB 是多少?3、弓形。

如上图三, S 弓AC= S 扇AOC —S △AOC例2、图三中,直角三角形AOC 的直角边OA= 6厘米,求弓形AC 的面积。

(二)基本运用例3、街心花园中圆形花坛的周长是18.84米。

花坛的面积是多少平方米?例4、计算下图阴影部分的面积.(单位:厘米)例5、在一块长4.5米,宽2米的长方形铁板上截下2个最大的圆形后,剩下的铁板面积是多少平方米?例6、从一块边长10厘米的正方形铁皮上剪下一个最大的圆,这块圆形铁皮的面积是多少平方厘米?剩下的面积是多少?例7、从一个直径为10厘米的圆中,剪去一个最大的正方形,正方形面积是多少?例8、求下图中阴影部分的面积和周长。

练习一、基本题1、一个圆形花坛的周长是25.12米。

花坛的面积是多少平方米?2、已知一个圆的面积是28.26平方厘米,求这个圆的周长。

3、下图涂色部分是个环形,它的内圆半径是10厘米,外圆半径是15厘米,它的面积是多少?4、从一块边长8厘米的正方形铁皮上剪下一个最大的圆,阴影部分面积是多少?5、下图圆的半径为6厘米,圆心角为45度,扇形AOC的面积是多少?弧AC 是多少?6、下图是一个直角边长为20厘米的等腰直角三角形。

求弓形面积。

7、求阴影部分的面积:(单位:分米) (π=3)8、右图中直角三角形ABC的底AB= 20 厘米,以AB为直径画成一个圆,圆心为O,CO垂直于AB,求弓形AC的面积。

小学六年级_奥数专项:分数应用题

小学六年级_奥数专项:分数应用题

例1 新华书店运来一批图书,第一天卖出总数的81多16本,第二天卖出总数的21少8本,还余下67本。

这批图书一共多少本?分析:解答此题的关键是要找出实际数量的对应分率。

从含有倍数关系的句子可以看出图书的总数为“单位1”。

现在找出题中所给的数量与“单位1”之间的关系,见线段图:从图中可以看出卖出总数的81和21后,余下的分率是1-81-21=83,与83相对应的数量是(67-8+16),从而可以求这批图书。

解答:(67-8+16)÷1-81-21=200(本)说明:我们还可以通过另一种方法找出量率对应。

根据题意,我们可以列出下面的等式:总数的81+16本+总数的21-8本+余下的67本=“单位1”将等式变形,量率分别放在等号的两边:16本-8本+余下的67本=“单位1”-总数的81-总数的21从上面的式子中可以看出,(67-8+16)就是这批图书的1-81-21=83,因此列式为:(67-8+16)÷1-81-21=200(本)这种方法比较简单直观,思维比较顺畅,只要把题目的叙述翻译成等式即可。

例2 某工厂第一车间原有工人120名,现在调出81给第二车间后,这是第一车间的人数比第二车间现有人数的76还多3名。

求第二车间原来有多少人?分析:通过读题可知“从第一车间调出81的工人给第二车间”,即调出120×81=15名,这时第一车间还剩下105名工人。

这105名比第二车间现有人数的76还多3名。

那么这102名工人就相当于第二车间的现有人数的76了。

于是,第二车间现有人数与原来的人数就可以求了。

解答:(1)第一车间剩下的人数:120×(1-81)=105(名) (2)第二车间现在的人数:(105-3)÷76=119(名)(3)第二车间原来的人数:119-120×81=104(名)例3 学校图书室内有一架故事书,借出总数的75%之后,有放上60本,这时架上的书是原来总数的31。

【奥数题】人教版小学数学六年级上册奥数思维拓展分数百分数问题(试题)含答案与解析

【奥数题】人教版小学数学六年级上册奥数思维拓展分数百分数问题(试题)含答案与解析

奥数思维拓展分数百分数问题(试题)一.选择题(共8小题)1.张月读一本240页的诗集,第一天读了这本诗集的,第二天读了这本诗集的10%。

张月第三天应从第()页读起。

A.72B.73C.1202.一段绳子分两次用完,第一次用去全长的60%,第二次用去了m,两次用去的长度比较,结果是()A.第一次长B.第二次长C.一样长3.一杯果汁第一次喝了全部的25%,第二次喝了剩下的,还剩这杯果汁的()A.50%B.25%C.D.4.甲、乙两瓶饮料,各倒出100毫升后,甲还剩原来的,乙还剩原来的75%,原来()瓶饮料多.A.甲B.乙C.同样多D.无法确定5.某公司有男职工150人,已知男职工人数的80%正好等于女职工人数的.这个公司女职工有()人A.330B.180C.125D.806.一根钢管,截去部分是剩下部分的,剩下部分是原钢管长的()%.A.75B.400C.80D.257.某工厂实行责任制后,职工人数减少了,而产量却增加了8%,现在职工的工作效率是原来的()%A.120B.108C.928.某班的男生人数比全班学生人数的少4人,女生人数比全班学生人数的40%多6人.那么这个班的男生人数比女生人数少()A.5人B.3人C.9人D.10人二.填空题(共8小题)9.的比20千米的20%少2千米,4.5吨的比千克的45%多.10.为庆“六•一”,学校舞蹈队购买了红、黄、蓝三种颜色的彩带若干根,其中20%是红色的,是黄色的,其余81根是蓝色的.学校三种彩带共买了根.11.一块布长40米,先剪去它的40%,再剪去米,还剩下米.12.某小学四、五、六年级的同学分别给边疆地区的小朋友写信,六年级的同学写了159封信,比五年级的同学多写了6%,四年级的同学写的是五年级的同学的,则四年级的同学写了封信,五年级的同学写了封信.13.一个口袋中装有三种颜色的球,其中黄色球数至少是蓝色球数的,至多是红色球的25%,若黄色球与蓝色球总数不少于2003个,则红色球最少有个.14.张华看一本120页的故事书,第一天看了全书的30%,第二天看了第一天的,第三天应从第页看起.15.一个水箱中的水是装满时的,用去25%后,剩余的水比用去的多210升.这个水箱装满水是升.16.一个长方形的长是12分米,如果把长增加它的,要使长方形面积不变,宽应当减少%.三.应用题(共8小题)17.小小借了一本120页的故事书,第一天看了全书的,第二天看了全书的25%。

小学六年级奥数试卷-分数、百分数应用题(一)

小学六年级奥数试卷-分数、百分数应用题(一)

1、汽车从甲开往乙,每分钟行750米,预计50分到达;但驶到3/5 路程时,出了故障,修了5分钟,想要准时到达,余下的路程,每分钟必须比原来快多少?2、一公司,出售货物收取390的服务费,代客户购物收取290的服务费,一客户即出售又要代购货物,公司扣取了264元服务费,客户恰好收支平衡。

问购物用了多少元?3、一辆车分别从A、B两地出发,相向而行。

出发时,甲、乙的速度之比是5:4,相遇后,甲的速度减少20%,乙的增加20%,甲到达B时,乙离A还有10千米,求A、B的距离。

4、老王的体重的2/5与小付的2/3相等,老王的3/7比小付的3/4轻1.5,则老王和小付各重多少千克?5、某校六年级写了159封信,比五年级多写6%,四年级写的是五年级5/6,则四年级写了多少封?五年级写了多少封?6、在商店,小明花了钱数的2/3,在另一商店,又花了余下的1/4,还剩4元,问小明原有多少元钱?7、一瓶水,倒出1/2,然后灌同样多的酒精,又倒出溶液的1/3,又用酒精灌满,然后倒出1/4,在用酒精灌满,问这时酒精占全部溶液的百分之几?8、学校植树,第一天完成了3/8,第二天完成了余下的2/3,第三天植了55棵,结果超过计划的1/4,原计划植树多少棵?8、某校准备把1/10又6本书送给青山小学,把余下的一部分送给少年宫,送给少年宫的比送给青山小学的3倍还多136本,又把第二批余下的75%有80本送给青苗幼儿园,还剩300本,该校一共有多少本图书?10、两个容器,甲装了一杯水,乙是空的。

第一次把甲的水倒给乙1/2,第二次把乙中的水倒给甲1/3,第三次把甲中的水倒给乙1/4.......照这样倒101次后,甲中有水多少?11、仓库运来含水量99%的一种水果1000千克,一星期后再测发现含水量降低了,变成98%,现这批水果的总重量是多少千克?12、一筐桃,第一次取总数的一半又一个,第二次取余下的一半又一个,这是还剩一个,原有桃多少个?13、一块地,第一天耕的比这块地的1/3多2亩,第二天耕的比剩下的1/2少1亩,后还剩38亩,这块地共多少亩?14、两只桶,甲桶有糖水60千克,含糖率4%,乙有糖水40千克,含糖率20%,两桶交换24千克后,两桶的含糖率各是多少?15、四个鸡场共养10万只鸡,其中甲场比乙场多2万只,丙是丁的1/5,问四个场各养鸡多少只?16、某人挖水渠,第一天挖了全长的30% ,第二天挖的是笫一天的8/9, 笫三天全部挖完,已知笫三比笫二多挖75米,那么水渠全长多少米?17、小王有书不超过50本,其中1/7是读物, 1/3是作品, 1/2是教材,小王有书多少本?18、两只同样大的杯子,甲装半杯酒精,乙装半杯水,从甲杯倒出一些酒精到乙杯内,混合均匀后,再从乙杯倒同样的体积混合液到甲杯,这是甲杯中含水和乙杯含酒精的体积谁大19、一批零件,甲加工20%,乙加工余下的25%,丙再加工余下的40%,还剩3600个,则乙丙共加工多少个?20、A、B、C有如下关系:A的2/3是B的4/7,B的2/3是C的4/7,C比A多13,那么B是多少?21、一对西瓜,第一天卖1/4又6个,第二天卖余下的1/3又4个,第三天卖余下的1/2又3个,正好卖完,这堆瓜原有多少个?22、一批水果,第一天批2/9,第二天批出剩下的3/7,第三天运进一些,数量是第二天批法后剩下的一半;这时共有298千克,则水果原有多少千克?23、把25克盐放入100克水中,盐水的浓度是多少?24、一个卖蛋人,第一次卖鸡蛋的一半又半个,第二次卖剩下的一半又半个,还剩一个,问她共有多少个蛋?25、某厂去年水费比前年增加5%,今年比去年减少5%。

(完整版)六年级奥数分数百分数应用题汇总

(完整版)六年级奥数分数百分数应用题汇总

分数百分数应用题一、单位“1”定长短。

1)两根1米长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?3)一根绳子,第一次用去1/4,第二次用去1/4米。

哪一次用去的长一些?4)一根绳子,第一次用去4/7,第二次用去4/7米。

哪一次用去的长一些?5)一根绳子分两次用完,第一次用去1/3,第二次用去1/3米。

哪一次用去的长一些?6)一根绳子分两次用完,第一次用去2/3,第二次用去余下的部分。

哪一次用去的长一些?练一练:1)两根1米长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?3)一根绳子,第一次用去1/6,第二次用去1/6米。

哪一次用去的长一些?3)一根绳子,第一次用去3/5,第二次用去2/5米。

哪一次用去的长一些?4)一根绳子分两次用完,第一次用去2/5,第二次用去3/5米。

哪一次用去的长一些?5)一根绳子分两次用完,第一次用去3/8,第二次用去余下的部分。

哪一次用去的长一些?二、量率对应1、修一条水渠,已经修好了2/5.(1)水渠全长20千米,已经修了的比剩下没修的少多少千米?(2)正好已经修了8千米,这条水渠全长多少千米?(3)还剩12千米没修,已经修了多少千米?(4)已经修好了的比剩下没修好的少4千米,还剩下多少千米没修?2、六年级一班,男学生人数相当于女学生人数的4/5,问:(1)女生20人,全班多少人?(2)男生人数比女生人数少4人,女生有多少人?(3)男生16人,女生人数比男生人数多多少人?(4)全班36人,男生有多少人?3、等候公共汽车的人整齐的排成一排,小明也在其中。

他数了数,排在他前面的人数是总人数的2/3,排在他后面的是总人数的1/4.小明排在第几位?4、 甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买86一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱4916正好一样多.问甲、乙两人原先各带了多少钱?【巩固】一实验五年级共有学生152人,选出男同学的和5名女同学参加科技小组,剩下的男、女人111数正好相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档