立体几何中垂直的证明

合集下载

高中立体几何证明线垂直的方法(学生)

高中立体几何证明线垂直的方法(学生)

PE D CB A高中立体几何证明线线垂直方法〔1〕通过“平移〞,根据假设αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=21DC ,中点为PD E .求证:AE ⊥平面PDC.2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ;3.如下图,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高。

〔1〕证明:PH ABCD ⊥平面;〔2〕假设121PH AD FC ===,,,求三棱锥E BCF -的体积; 〔3〕证明:EF PAB ⊥平面.EF BA C DP〔第2题图〕4.如下图, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD 。

证明: BE PDC ⊥平面;5.在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.〔Ⅰ〕求证:PC AB ⊥;〔Ⅱ〕求二面角B AP C --的大小;6.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º 证明:AB ⊥PC〔3〕利用勾股定理7.如图,四棱锥P ABCD -的底面是边长为1的正方形,,1, 2.PA CD PA PD ⊥== 求证:PA ⊥平面ABCD ;_ D_ C_ B_ A_ PACBPCADBOE8.如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且121===CD AD AB .现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 垂直,M 为ED 的中点,如图2.〔1〕求证:AM ∥平面BEC ; 〔2〕求证:⊥BC 平面BDE ;图1图29.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ====== 〔1〕求证:AO ⊥平面BCD ;〔2〕求异面直线AB 与CD 所成角的大小;10.如图,四棱锥S-ABCD 中,BCAB ⊥,CD⊥BC ,侧面SAB 为等边三角形,2,1AB BC CD SD ====.〔Ⅰ〕证明:SAB 面⊥SD;〔Ⅱ〕求AB 与平面SBC 所成角的大小. M AFBCD E M E DC BAF〔4〕利用三角形全等或三角行相似11.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点.求证:D1O⊥平面MAC.12.如图,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1中点.求证:AB1⊥平面A1BD;13.如图,正四棱柱ABCD—A1B1C1D1中,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,求证:A1C⊥平面BDE;〔5〕利用直径所对的圆周角是直角14.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC . 〔1〕求证:平面PAC ⊥平面PBC ;〔2〕假设D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.O AC BPD.15.如图5,在圆锥PO 中,PO =2,⊙O 的直径2AB =,C 是狐AB 的中点,D 为AC 的中点. 证明:平面POD ⊥平面PAC ;16.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD .以BD 的中点O 为球心、BD 为直径的球面交PD 于点M .求证:平面ABM ⊥平面PCD ;【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】OAPBM。

立体几何第五讲 垂直的性质和证明学生

立体几何第五讲 垂直的性质和证明学生

(2)平面与平面垂直的判定定理
文字语言
图形语言
符号语言
判定 如果一个平面经过另一个平面的一条 定理 垂线那么这两个平面互相垂直
l⊂β ⇒α⊥β
l⊥α
(3)平面与平面垂直的性质定理 文字语言
性质 定理
如果两个平面垂直,那么在 一个平面内垂直于它们交线 的直线垂直于另一个平面
图形语言
符号语言
α⊥β α∩β=a ⇒l⊥α l⊂β l⊥a
A.4 B.3 C.2 D.1 6.如图,正方体 ABCD-A1B1C1D1 的棱长为 1,过 A 点作平面 A1BD 的垂线,垂足为点 H, 有下列三个结论:
①点 H 是△A1BD 的中心; ②AH 垂直于平面 CB1D1; ③AC1 与 B1C 所成的角是 90°. 其中正确结论的序号是________. 7. 如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN⊥PM, N 为垂足.
6
(1)求证:AN⊥平面 PBM. (2)若 AQ⊥PB,垂足为 Q, 求证 NQ⊥PB.
8. 如图,在直三棱柱 ABC—A1B1C1 中,E、F 分别是 A1B、A1C 的中点,点 D 在 B1C1 上, A1D⊥B1C1. 求证:(1)EF∥平面 ABC;
(2)平面 A1FD⊥平面 BB1C1C.
3 积.
2
[玩转跟踪] 1.(2018·江苏高考)在平行六面体 ABCD­A1B1C1D1 中,AA1=AB,AB1⊥B1C1. 求证:(1)AB∥平面 A1B1C; (2)平面 ABB1A1⊥平面 A1BC.
2.(2020·安徽淮北一中模拟)如图,四棱锥 P­ABCD 的底面是矩形,PA⊥ 平面 ABCD,E,F 分别是 AB,PD 的中点,且 PA=AD. 求证:(1)AF∥平面 PEC; (2)平面 PEC⊥平面 PCD.

高考指南立体几何垂直证明的六大绝招秒懂

高考指南立体几何垂直证明的六大绝招秒懂

高考指南立体几何垂直证明的六大绝招秒懂!类型一AD⊥SC,求证:AD⊥面SBC证明:∵SA⊥面ABC ∴SA⊥BC又∠ACB=90°∴AC⊥BC又AC,SA⊆面SAC ∴BC ⊥面SAC∴BC⊥AD又AD⊥SC且BC,SC⊆面SBC∴AD⊥面SBC变式:如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,求证:AD⊥AC类型二利用等腰三角形中线证垂直例题:在三棱锥P-ABC中,AC=BC,AP=BP,求证PC⊥AB证明:取AB的中点M,连接PM,CM∵AC=BC,M是AB的中点,∴AB⊥CM∵AP=BP,M是AB的中点,∴AB⊥PM∴AB⊥面PCM∴AB⊥PC变式:四棱锥P-ABCD,底面ABCD是正方形,PA=AD,求证面PAD⊥面PCD类型三利用勾股定理逆定理证垂直例题:如图,四棱锥P-ABCD的底面是边成为3的正方形,PA⊥CD,PA=4,PD=5,求证:PA⊥面ABCD证明:∵PA=4,AB=3,PD=5∴PA2+AB2=PD2,∴三角形PAD是直角三角形,∴PA⊥AD又PA ⊥CD,∴PA⊥面ABCD变式:如果,在三棱台ABC-DEF中,平面BDEF⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,求证:BF⊥面ACFD类型四利用三角形全等证垂直例题:如图,三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°,求证:AB⊥PC证明:取AB的中点M,连接CM,∵△PAB是等边三角形,∴PB=PA又PC=PC,∠PAC=∠PBC=90°∴△PBC≌△PAC,∴BC=AC∴△ACB是等腰三角形,M是AB的中点,∴CM⊥AB又在等边△PAB中,M是AB的中点,∴PM⊥AB∴AB⊥面PMC∴AB⊥PC变式:如图,在以A、B、C、D、E、F为顶点的五面体中,平面CDEF⊥平面ABCD,FC=FB,四边形ABCD为平行四边形,且∠BCD=45°,求证:CD⊥BF类型五利用平行关系证明垂直例题:如图四棱锥P-ABCD,底面是正方形,PA⊥底面ABCD,∠PDA=45°,E是棱AB的中点,求证:面PCE⊥面PCD证明:分别做PC,PD的中点M,N两点,连接EM,MN,NA∵MN为△PCD的中位线,∴MN∥CD且MN=1/2CD又∵E是AB的中点,∴AE∥CD且AE=1/2CD ∴四边形AEMN是平行四边形,则EM∥AN,∵PA⊥面ABCD,∴PA⊥AD,且∠PDA=45°,∴△PAD 是等腰直角三角形又N是PD中点,∴AN⊥PD∵四边ABCD是正方形,∴CD⊥AD,又PA⊥CD,∴CD⊥面PAD,∴CD⊥AN,又上面已求PD⊥AN,∴AN⊥面PCD又∵EM∥AN,∴EM⊥面PCD∵EM ⊂面PEC,∴面PEC⊥面PCD变式:如图1,在直角梯形ABCD中,AD∥BC,∠BAD=90°,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到△A1BE的位置,如图2,证明CD⊥面A1OC.类型六梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD,证明:PA⊥BD。

证明垂直的方法

证明垂直的方法

证明垂直的方法证明垂直的方法1利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分线线垂直分为共面与不共面。

不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为02斜率两条直线斜率积为-13线面垂直,则这条直线垂直于该平面内的所有直线一条直线垂直于三角形的两边,那么它也垂直于另外一边4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

2高中立体几何的证明主要是平行关系与垂直关系的证明。

方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。

2.公理4(平行公理)。

3.线面平行的性质。

4.面面平行的性质。

5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。

2.平面外的一条直线与平面内的一条直线平行。

3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。

2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:线线垂直:1.直线所成角为90°。

2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。

2.一条直线与一个平面内的两条相交直线都垂直。

3.面面垂直的性质。

4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。

5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。

2017年__高二年级立体几何垂直证明题常见模型和方法

2017年__高二年级立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。

例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。

高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)

高中数学知识点总结(第八章 立体几何 第五节 直线、平面垂直的判定与性质)

第五节 直线、平面垂直的判定与性质一、基础知识1.直线与平面垂直 (1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言 图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质定理 垂直于同一个平面的两条直线平行⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直. 2.平面与平面垂直的判定定理与性质定理文字语言 图形语言符号语言判定定理一个平面过另一个平面的垂线❷,则这两个平面垂直⎭⎪⎬⎪⎫l ⊂βl ⊥α⇒α⊥β 性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎪⎬⎪⎫α⊥βl ⊂βα∩β=a l ⊥a ⇒l ⊥α[❷要求一平面只需过另一平面的垂线.]二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥P­ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥P­ABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法]证明线面垂直的4种方法(1)线面垂直的判定定理:l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,a ∩b =P ⇒l ⊥α. (2)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (3)性质:①a ∥b ,b ⊥α⇒a ⊥α,②α∥β,a ⊥β⇒a ⊥α. (4)α⊥γ,β⊥γ,α∩β=l ⇒l ⊥γ.(客观题可用) [口诀归纳]线面垂直的关键,定义来证最常见, 判定定理也常用,它的意义要记清. 平面之内两直线,两线相交于一点, 面外还有一直线,垂直两线是条件. [题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC ­A 1B 1C 1中,AB =BC =BB 1,AB 1∩A 1B =E ,D 为AC 上的点,B 1C ∥平面A 1BD .(1)求证:BD ⊥平面A 1ACC 1;(2)若AB =1,且AC ·AD =1,求三棱锥A ­BCB 1的体积. 解: (1)证明:如图,连接ED ,∵平面AB 1C ∩平面A 1BD =ED ,B 1C ∥平面A 1BD , ∴B 1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A ­BCB 1=V B 1­ABC =13S △ABC ·BB 1=13×12×1=16.2.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,∵SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)∵AB=BC,∴BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.考点二面面垂直的判定与性质[典例](2018·江苏高考)在平行六面体ABCD­A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.[证明](1)在平行六面体ABCD­A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD­A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.[解题技法] 证明面面垂直的2种方法 定义法利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题定理法 利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决[题组训练]1.(2019·武汉调研)如图,三棱锥P ­ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P ­ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG , ∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC ,∴AF∥平面PEC.(2)∵P A=AD,F为PD中点,∴AF⊥PD,∵P A⊥平面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∵AF⊂平面P AD,∴CD⊥AF.又PD∩CD=D,∴AF⊥平面PCD.由(1)知EG∥AF,∴EG⊥平面PCD,又EG⊂平面PEC,∴平面PEC⊥平面PCD.[课时跟踪检测]A级1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2019·湘东五校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体P­ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:317.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABC­A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABC­A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥P­ABCD中,底面ABCD是菱形,∠BAD=60°,P A=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面P AD⊥平面ABCD,求三棱锥P­NBM的体积.解:(1)证明:连接BD.∵P A=PD,N为AD的中点,∴PN⊥AD.又底面ABCD是菱形,∠BAD=60°,∴△ABD为等边三角形,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB.(2)∵P A=PD=AD=2,∴PN=NB= 3.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,PN⊥AD,∴PN⊥平面ABCD,∴PN⊥NB,∴S△PNB=12×3×3=32.∵AD⊥平面PNB,AD∥BC,∴BC ⊥平面PNB .又PM =2MC , ∴V P ­NBM =V M ­PNB =23V C ­PNB =23×13×32×2=23.10.如图,在直三棱柱ABC ­A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC ­A 1B 1C 1中,AC ∥A 1C 1, 在△ABC 中,因为D ,E 分别为AB ,BC 的中点. 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC ­A 1B 1C 1中,AA 1⊥平面A 1B 1C 1, 因为A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥A 1C 1,又因为A 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1, 所以A 1C 1⊥平面ABB 1A 1, 因为B 1D ⊂平面ABB 1A 1, 所以A 1C 1⊥B 1D ,又因为B 1D ⊥A 1F ,A 1C 1∩A 1F =A 1,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F , 所以B 1D ⊥平面A 1C 1F , 因为直线B 1D ⊂平面B 1DE , 所以平面B 1DE ⊥平面A 1C 1F .B 级1.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H , 又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P ­ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE , ∴四边形ABED 为平行四边形,∴AD ∥BE ,又BE ⊄平面P AD ,AD ⊂平面P AD , ∴BE ∥平面P AD .(2)∵AB ⊥AD ,∴四边形ABED 为矩形, ∴BE ⊥CD ,AD ⊥CD ,∵平面P AD ⊥底面ABCD ,平面P AD ∩底面ABCD =AD ,P A ⊥AD , ∴P A ⊥底面ABCD , ∴P A ⊥CD ,又P A ∩AD =A , ∴CD ⊥平面P AD ,∴CD ⊥PD , ∵E ,F 分别是CD ,PC 的中点, ∴PD ∥EF ,∴CD ⊥EF ,又EF ∩BE =E , ∴CD ⊥平面BEF ,∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .。

怎么证明垂直

怎么证明垂直

怎么证明垂直1、利用勾股定理的逆定理证明勾股定理的逆定理提供了用计算方法证明两线垂直的方法,即证明三角形其中一个角等于,由于利用代数的方法,只要能计算出待证直角的对边的平方和等于另两边的平方和即可。

2、利用“三线合一”证明要证二线垂直,若能证二线之一是等腰三角形的底边,另一线是等腰三角形顶角的平分线或底边上的中线,则二线互相垂直。

3、利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

4、圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

5、利用菱形的对角线互相垂直证明菱形的对角线互相垂直。

6、利用全等三角形证明主要是找出两线所成的角中有两角是邻补角,并且证明这两角相等,于是就可知这两角都为,从而直线垂直.赞同35| 评论1利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分线线垂直分为共面与不共面。

不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为02斜率两条直线斜率积为-13线面垂直,则这条直线垂直于该平面内的所有直线一条直线垂直于三角形的两边,那么它也垂直于另外一边4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

2高中立体几何的证明主要是平行关系与垂直关系的证明。

方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。

高中数学必修立体几何专题线面垂直方法总结

高中数学必修立体几何专题线面垂直方法总结



A
B
C
D-
A1
B1C
1
D

1



A
A1=
6,
底 面 A B C D 是 菱 形 , A B= 2, A B C= 60, P为 侧 棱
B B1上 的 动 点 .
1求 证 : D1P AC;
2 设 AC BD= O,
求 当 B1P 等 于 多 少 时 , PB
PO 平 面 D1AC ?
【 解 析 】1 证 明 :
因为E是PC的中点,所以AE⊥PC. 由(1)知,AE⊥CD,且PC∩CD=C, 所以AE⊥平面PCD. 而PD 平面PCD,所以AE⊥PD. 又因为PA⊥底面ABCD,所以PA⊥AB. 由已知得AB⊥AD,且PA∩AD=A,所以AB⊥ 平面PAD. 又PD 平面PAD,所以AB⊥PD. 因为AB∩AE=A,所以PD⊥平面ABE.
【证明】(1)连结AC,取其 中点O,连结NO、MO,并 延长MO交CD于R. 因为N为PC的中点, 所以NO为△PAC的中位线,所以NO∥PA. 而PA⊥平面ABCD,所以NO⊥平面ABCD,所 以NO⊥CD. 又四边形ABCD是矩形,M为AB的中点,O为 AC的中点,所以MO⊥CD. 而MO∩NO=O, 所以CD⊥平面MNO,所 以 CD⊥MN.
BB1C1C.







A
B
C
D-
A1 B 1C
1
D

1

BB1 平 面 ABC D, 所 以 BB1 AC .
又 因 为 B A D= A D C = 9 0 , A B
= 2AD= 2C D= 2,

立体几何(垂直平面交线的证明)

立体几何(垂直平面交线的证明)

立体几何(垂直平面交线的证明)
简介
本文将证明在立体几何中,两个垂直平面交线垂直。

垂直平面交线是指两个平面的交线。

证明过程
设两个垂直平面为平面A和平面B,它们的交线为线段CD。

步骤一:确定垂直平面
首先,我们需要确定平面A和平面B垂直。

根据立体几何的性质,两个平面垂直的充要条件是它们的法向量垂直。

设平面A的法向量为向量a,平面B的法向量为向量b。

如果向量a与向量b垂直,则平面A和平面B垂直。

步骤二:确定交线
在确定平面A和平面B垂直后,我们需要证明线段CD垂直。

设线段CD在平面A上的一个点为点C,在平面B上的一个点为点D。

我们需要证明向量CD与向量a和向量b均垂直。

如果向量CD与向量a垂直,则线段CD垂直平面A;如果向量CD与向量b垂直,则线段CD垂直平面B。

步骤三:证明
根据向量的垂直性质,我们知道两个向量垂直的充要条件是它们的点积为零。

首先,我们证明向量CD与向量a垂直。

设向量CD为向量c,向量a为向量d。

如果向量c与向量d的点积为零,则向量CD与向量a垂直。

同样地,我们证明向量CD与向量b垂直。

设向量CD为向量c,向量b为向量e。

如果向量c与向量e的点积为零,则向量CD与向量b垂直。

结论
通过以上证明,我们可以得出结论:在立体几何中,两个垂直平面交线垂直。

参考文献
- 立体几何教材,作者A,出版社B,年份C。

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。

立体几何线线垂直的证明方法

立体几何线线垂直的证明方法

立体几何线线垂直的证明方法在立体几何中,线线垂直是一种非常重要的关系,它在很多问题中都有着重要的应用。

本文将介绍几种线线垂直的证明方法,希望能够帮助读者更好地理解和运用这一关系。

一、垂线段的垂线段垂直首先介绍的是垂线段的垂线段垂直的证明方法。

具体来说,如果有两个垂直于同一个平面的线段AB和CD,且它们之间有一条垂线段EF,则EF和CD垂直。

证明如下:1、连接AE和CF,得到平面ACEF。

2、由于AB和CD垂直于平面ACEF,所以它们的交点O在平面ACEF 内。

3、由于EF垂直于平面ACEF,所以它与平面ACEF的任意一条交线都垂直,特别地,它与CF垂直。

4、因此,EF和CD垂直。

二、平面的法线和平面内的任意直线垂直接下来介绍的是平面的法线和平面内的任意直线垂直的证明方法。

具体来说,如果有一个平面P和一条直线L在平面P内,且L与P垂直,则L与P的法线垂直。

证明如下:1、连接L和P的交点O。

2、在平面P内任意取一点A,连接OA。

3、由于L与P垂直,所以OA与L垂直,即OA和L在点O处垂直。

4、由于P的法线垂直于P,所以它与P内任意一条直线都垂直,特别地,它与OA垂直。

5、因此,L与P的法线垂直。

三、垂线段和平面的法线垂直最后介绍的是垂线段和平面的法线垂直的证明方法。

具体来说,如果有一条垂直于平面P的直线L,且L与平面P上的一条线段AB相交于点O,则OA和OB的中垂线与P的法线垂直。

证明如下:1、连接OA和OB,得到线段AB的中垂线CD。

2、连接CO和DO,得到平面COD。

3、由于L垂直于平面P,所以L和P的法线在平面P内的交点O 处垂直。

4、由于OA和OB在点O处相交,所以它们的中垂线CD也经过点O。

5、因此,CD与P的法线垂直。

以上就是三种线线垂直的证明方法,它们都非常简单易懂,但是能够解决很多实际问题。

在实际应用中,我们可以根据具体情况选择不同的证明方法,以便更好地解决问题。

立体几何中垂直的证明

立体几何中垂直的证明

求证:AH BCD⊥平面3、如图,,,PA ABCD ABCD M N AB PC⊥平面,是矩形,点分别为的中点,求证:MN AB⊥4、如图,在多面体ABCDE中,AE⊥面ABC,BD∥AE,且AC=AB=BC=BD=2,AE =1,F为CD中点.(1)求证:EF⊥面BCD;5、如图,在底面为平行四边形的四棱锥P ABCD-中,,AB AC PA ABCD⊥⊥平面,且PA AB=,点E是PD的中点.⑴求证:AC PB⊥;⑵求证:PB AEC∥平面;6、如图,在四棱锥P-ABCD中, PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求证:CD⊥AE;(2)求证:PD⊥面ABE.ADCBPHBCDA题型二、面面垂直的断定与性子1、如图AB 是圆O 的直径,PA 垂直于圆O 所在的立体,C 是圆周上分歧于A 、B 的恣意一点,求证:立体PAC 垂直立体PBC.2、如图,棱柱111ABC A B C -的正面11BCC B 是菱形,11B C A B ⊥证明:立体1AB C ⊥立体11A BC ;3、已知:如图,将矩形ABCD 沿对角线BD 将BCD 折起,使点C 移到点1C ,且1C ABD O AB 在平面上的射影恰好在上。

11(2).BDC ⊥⊥11()求证:AD BC 求证:面ADC 面4、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:立体ABM ⊥立体A 1B 1M 1OBC 1ADC5、已知四面体ABCD中,CDBDACAB==,,立体⊥ABC立体BCD,E为棱BC的中点. (1)求证:⊥AE立体BCD;(2)求证:BCAD⊥;6、S是△ABC所在立体外一点,SA⊥立体ABC,立体SAB⊥立体SBC,求证AB⊥BC.7、在四棱锥中,底面ABCD是正方形,正面VAD是正三角形,立体VAD⊥底面ABCD 证明:AB⊥立体VADSACB8、如图所示,在四棱锥P—ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,正面PAD为正三角形,其所在立体垂直于底面ABCD,若G为AD边的中点,(1)求证:BG⊥立体PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使立体DEF⊥立体ABCD,并证明你的结论.题型三、平行与垂直的综合题(2)PDA=45.PA ABCDCDMN PCD⊥⊥∠⊥。

立体几何证垂直的方法

立体几何证垂直的方法

立体几何证垂直的方法垂直是立体几何中一个非常重要的概念,常常用于判断两个直线、两个平面或者一个直线和一个平面之间的关系。

本文将介绍几种常见的方法来证明两个线段、两个直线、两个平面或者一个线段和一个平面之间的垂直关系。

1. 定义证明法:垂直可以通过定义来证明。

垂直的定义是:两条直线相交,互相垂直。

这个定义可以用来判断两条直线之间是否垂直。

如果已知两条直线相交,并且相交角度为90度,则可以得出两条直线垂直的结论。

2. 重叠线证明法:当两个线段的一个端点重合,并且两个线段的另一个端点也重合时,可以得出这两个线段垂直的结论。

这是因为,当两个线段垂直时,它们的端点将构成一个直角,而直角的两条边重合时,会得到一个重叠的线段,从而可以推出两个线段垂直。

3. 垂直性质证明法:根据垂直性质来证明两个直线或者平面之间的垂直关系。

例如,两个直线垂直的性质之一是:直线的斜率相乘为-1。

如果已知两个直线的斜率,且斜率的乘积等于-1,则可以得出这两条直线垂直的结论。

类似地,两个平面之间垂直的性质之一是:平面上两个垂直的直线在平面上的投影线也垂直。

如果已知两个平面上的直线的投影线垂直,则可以得出这两个平面垂直的结论。

4. 垂直线性等式证明法:当两个线段、直线或平面上的点坐标可以满足垂直线性等式时,可以证明它们之间的垂直关系。

例如,对于两个直线L1:y = a1x + b1和L2:y = a2x + b2,如果它们的斜率满足a1 * a2 = -1,则可以得出这两条直线垂直的结论。

5. 三角形几何证明法:在三角形中,垂直性质也可以用来证明两个线段或直线之间的垂直关系。

例如,如果一条线段平分了一个角,并且与另一条线段垂直相交,那么可以得出这两个线段垂直的结论。

同样地,如果一个直角三角形中的两条边互相垂直,那么可以得出这两条边垂直的结论。

总结起来,证明垂直关系的方法有很多种,包括基于定义、重叠线、垂直性质、线性等式和三角形几何的方法。

立体几何-垂直关系

立体几何-垂直关系

垂直关系一、知识点:1、线线垂直:1)线线垂直:三垂线定理及逆定理2)线面垂直:如果a ⊥α,b ⊂α,那么a ⊥b3)面面垂直:如果三个平面两两垂直,那么它们交线两两垂直4)平行关系:如果a ∥b ,a ⊥c ,那么b ⊥c2、线面垂直:1)线线垂直:如果a ⊥b ,a ⊥c ,b ⊂α,c ⊂α,b ∩c=P ,那么a ⊥α2)面面垂直: 如果α⊥β,α∩β=b ,a ⊂α,a ⊥b ,那么a ⊥β3) 平行关系: 如果a ⊥α,b ∥a ,那么b ⊥α3、面面垂直:1)定义(二面角等于900)2)线面垂直:如果a ⊥α,a ⊂β,那么β⊥α4、距离:异面直线的距离,点面距离,线面距离及面面距离。

1)异面直线的距离:除求公垂线段长度外,通常化归为线面距离和面面距离。

2)线面距离,面面距离常化归为点面距离。

5、角:直线和平面所成的角,二面角,都化归为平面几何中两条相交直线所成的角。

1)直线和平面所成的角:通过作直线射影的作图法得到。

2)二面角:化归为平面角的度量,化归途径有:定义法,三垂线定理法,棱的垂面法及面积射影法。

二、例题讲解:例1、在棱长为6厘米的正方体中,P 是A 1A 上一点,且1A P=2,在AB 上是否存在点Q ,使得1C P ⊥PQ ?例2、如图,已知AEFG SC ABCD SA 截面所在平面,正方形⊥⊥, 求证:(1)SD AG SB AE ⊥⊥,;(2)GE AF ⊥、例3、SA ⊥面ABCD ,AN ⊥SC ,∠ABC=90°,M 为SD 的中点,AB=CD=1,SA=AD=2,BC=2,求证:MN ⊥SD 。

例4、设S 是△ABC 所在平面外一点,且SA=SB=SC ,D 是BC 的中点,∠BAC=90° ,求证:SD ⊥面ABC 。

例5、在正方体ABCD —A 1B 1C 1D 1中, F 为棱CC 1的中点,O 为AC 与BD 的交点(如图),求证: 1)A 1O ⊥平面BDF ;2)平面BDF ⊥平面AA 1C 。

高中立体几何证明线垂直的方法(学生)

高中立体几何证明线垂直的方法(学生)

PE D CB A高中立体几何证明线线垂直方法(1)通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P —ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=21DC ,中点为PD E 。

求证:AE ⊥平面PDC 。

2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ;3。

如图所示,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高. (1)证明:PH ABCD ⊥平面;(2)若121PH AD FC ===,,,求三棱锥E BCF -的体积;(3)证明:EF PAB ⊥平面。

EF BA C DP(第2题图)4。

如图所示, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD 。

证明: BE PDC ⊥平面;5。

在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小;6。

如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º 证明:AB ⊥PC(3)利用勾股定理7。

如图,四棱锥P ABCD -的底面是边长为1的正方形,,1, 2.PA CD PA PD ⊥==求证:PA ⊥平面ABCD ;_ D_ C_ B_ A_ PACBPCADBOE8。

如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且121===CD AD AB .现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 垂直,M 为ED 的中点,如图2.(1)求证:AM ∥平面BEC ; (2)求证:⊥BC 平面BDE ;图1图29。

立体集合中证明面面垂直的条件

立体集合中证明面面垂直的条件

一、引言在三维空间中,两个平面可以存在以下三种关系:平行、相交和垂直。

其中,面面垂直是两个平面相交的特殊情况。

在立体几何中,面面垂直的判定方法有很多,以下是几种常见的证明条件。

二、面面垂直的几何条件1. 定义法若两个平面相交,且它们的交线垂直于其中一个平面,则这两个平面垂直。

证明:设两个平面为α和β,它们的交线为l。

若l垂直于平面α,则根据线面垂直的定义,l与α内的任意一条直线都垂直。

又因为l在平面β内,所以l也与β内的任意一条直线垂直,即l垂直于平面β。

因此,平面α和β垂直。

2. 两条相交直线垂直法若两个平面相交,且它们的交线与其中一个平面内的两条相交直线都垂直,则这两个平面垂直。

证明:设两个平面为α和β,它们的交线为l。

设α内的两条相交直线为m和n。

若l垂直于m和n,则根据线面垂直的定义,l与α内的任意一条直线都垂直。

又因为l在平面β内,所以l也与β内的任意一条直线垂直,即l垂直于平面β。

因此,平面α和β垂直。

三、面面垂直的向量条件1. 向量积法若两个平面相交,且它们的交线与其中一个平面的法向量垂直,则这两个平面垂直。

证明:设两个平面为α和β,它们的交线为l。

设平面α的法向量为n,平面β的法向量为m。

若l垂直于n,则根据向量积的定义,n×l垂直于平面α。

又因为n×l在平面β内,所以n×l也垂直于平面β。

因此,平面α和β垂直。

2. 向量投影法若两个平面相交,且它们的交线在其中一个平面上的投影与另一个平面垂直,则这两个平面垂直。

证明:设两个平面为α和β,它们的交线为l。

设l在平面α上的投影为l',l在平面β上的投影为l"。

若l'垂直于l",则根据向量投影的定义,l'在平面α上的投影垂直于平面β。

因此,平面α和β垂直。

四、面面垂直的解析条件1. 法线方程法若两个平面相交,且它们的法线方程的系数满足一定的关系,则这两个平面垂直。

立体几何线面垂直的证明

立体几何线面垂直的证明

立体几何证明【知识梳理】1.直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)2..直线与平面垂直判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。

(线面垂直⇒线线垂直)性质2:如果两条直线同垂直于一个平面,那么这两条直线平行.三。

平面与平面空间两个平面的位置关系:相交、平行.1.平面与平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)2. 两个平面垂直判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直⇒线面垂直)知识点一 【例题精讲】1.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。

(1)求证:EF//平面11D ABC ;(2)求证: 平面B 11D C C B 1⊥ EF C B 1⊥; (3)求三棱锥EFC B -1的体积V.2.如图所示, 四棱锥P -ABCD 底面是直角梯形,,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD =AB =1. (1)证明: //EB PAD 平面; (2)证明: BE PDC ⊥平面; (3)求三棱锥B -PDC 的体积V .3、如图所示,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,证明:(1)AE⊥CD(2)PD⊥平面ABE.4、.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;练习1、如图,菱形ABCD与等边△PAD所在的平面相互垂直,AD=2,∠DAB=60°.(Ⅰ)证明:AD⊥PB;(Ⅱ)求三棱锥C﹣PAB的高.2.如图1­4所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.求证:EF⊥平面BCG;3.如图1­1所示,三棱柱ABC­A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;4、如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.5、三棱锥P﹣ABC中,∠BAC=90°,PA=PB=PC=BC=2AB=2,(1)求证:面PBC⊥面ABC6.已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥底面ABCD,E为PC的中点.(1)求证:PA∥平面EDB;(2)求证:平面EDB⊥平面PBC;7、如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PC的中点.(1)求证:AP∥平面BDE;2.求证BE 垂直平面PAC8、将如图一的矩形ABMD沿CD翻折后构成一四棱锥M﹣ABCD(如图二),若在四棱锥M﹣ABCD中有MA=.(1)求证:AC⊥MD;(2)求四棱锥M﹣ABCD的体积.作业1、如图1,菱形ABCD的边长为12,∠BAD=60°,AC交BD于点O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M,N分别是棱BC,AD 的中点,且DM=6.(Ⅰ)求证:OD⊥平面ABC;2、如图,在斜三棱柱ABC﹣A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.(Ⅰ)求证:A1B⊥AC1;3、如图所示,四棱锥P﹣ABCD的侧面PAD是边长为2的正三角形,底面ABCD 是∠ABC=60°的菱形,M为PC的中点,PC=.(Ⅰ)求证:PC⊥AD;AD,E,4、如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.5、如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=1,SD=.(1)证明:CD⊥SD;6.如图,四棱锥S ﹣ABCD 中,△ABD 是正三角形,CB=CD ,SC ⊥BD .(Ⅰ)求证:SB=SD ;(Ⅱ)若∠BCD=120°,M 为棱SA 的中点,求证:DM ∥平面SBC .7、如图,在矩形ABCD 中,点E 为边AD 上的点,点F 为边CD 的中点,234A E D B A A ===,现将ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面BCDE .(1)求证:平面PBE ⊥平面PEF ;8、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点.(1) 证明:AD ⊥平面DEF;AB CDEBCDEFP9、在如图所示的多面体ABCDEF 中,ABCD 为直角梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为等腰梯形,//EF AD ,已知AE EC ⊥,2AB AF EF ===,4AD CD ==.(Ⅰ)求证:平面ABCD ⊥平面ADEF10.如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点. (Ⅱ)求证://PB 平面AEC ;11.棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱AA1的中点,过C、M、D1作正方体的截面,则截面的面积是。

立体几何垂直证明

立体几何垂直证明

立体几何垂直证明方法技巧类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:掌握几种模型①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形⑤利用相似或全等证明直角。

例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面(2) 异面垂直(利用线面垂直来证明)例1 在正四面体ABCD 中, 求证:AC BD ⊥变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知ο60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿,DE DF折起,使,A C两点重合于'A.求证:'A D EF⊥;变式3如图,在三棱锥P ABC-中,⊿PAB是等边三角形,∠P AC=∠PBC=90 º证明:AB⊥PC类型二:直线与平面垂直证明BE'ADFG方法○1利用线面垂直的判断定理例:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;变式2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的P中点,2,CA CB CD BD AB AD ====== 求证:AO ⊥平面BCD ;变式3 如图,在底面为直角梯形的四棱锥P ABCD -中,(1) 求证://AF 平面BCE ;(2) 求证:平面BCE ⊥平面CDE ;例2 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,FADPEE是PC的中点.⊥;(2)证明PD⊥平面ABE;(1)证明CD AE变式1已知直四棱柱ABCD—A′B′C′D′的底面是菱形,∠60ABC,E、F分别是棱CC′与BB′上的点,=︒且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;类型三:平面与平面垂直证明1.AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,点N为垂足,求证:平面PAM⊥平面PBM2.如图,在空间四边形ABCD中,AB=BC,CD=DA,E,F,G分别为CD,DA和对角线AC的中点。

高中数学必修二《立体几何垂直证明题常见模型及方法》优秀教学设计

高中数学必修二《立体几何垂直证明题常见模型及方法》优秀教学设计

立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。

垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直○1 等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④1:1:2 的直角梯形中 ⑤ 利用相似或全等证明直角。

例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为的正方形中,点是的中点,点是的中点,将△AED,△DCF 分别沿折起,使两点重合于.求证:;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形, ∠P AC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O BDE ⊥平面变式1:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;2ABCD E AB F BC ,DE DF ,A C 'A 'A D EF ⊥变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,23AB =,6BC =()1求证:BD ⊥平面PAC○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全方位教学辅导教案
4、如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为CD 中点.
(1)求证:EF ⊥面BCD ;
5、如图,在底面为平行四边形的四棱锥P ABCD -中,,AB AC PA ABCD ⊥⊥平面,且
PA AB =,点E 是PD 的中点。

⑴求证:AC PB ⊥; ⑵求证:PB AEC ∥平面;
6、 如图,在四棱锥P -ABCD 中, PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD , ∠ABC =60°,PA
=AB =BC ,E 是PC 的中点.
(1)求证:CD ⊥AE ;(2)求证:PD ⊥面ABE.
题型二、面面垂直的判定与性质
1、如图AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于A 、B 的任意一点,求证:平面PAC 垂直平面PBC 。

2、如图,棱柱
111
ABC A B C -的侧面
11
BCC B 是菱形,11B C A B ⊥
证明:平面1AB C ⊥平面11A BC ;
3、已知:如图,将矩形ABCD 沿对角线BD 将BCD 折起,使点C 移到点1C ,且
1C ABD O AB 在平面上的射影恰好在上。

11(2).
BDC ⊥⊥1
1()求证:AD BC 求证:面ADC 面
4、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1
5、已知四面体ABCD 中,CD BD AC AB ==,,平面⊥ABC 平面BCD ,E 为棱BC 的中点。

(1)求证:⊥AE 平面BCD ; (2)求证:BC AD ⊥;
O
B
C 1
A
D
C
6、S 是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB ⊥平面SBC,求证AB ⊥BC.
7、在四棱锥中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD 证明:AB ⊥平面VAD
S
A
C
B
V
D C
B
A
8、如图所示,在四棱锥P —ABCD 中,底面ABCD 是∠DAB=60°且边长为a 的菱形,侧面PAD 为正三角形,其所在平面垂直于底面ABCD ,若G 为AD 边的中点, (1)求证:BG ⊥平面PAD ; (2)求证:AD ⊥PB ;
(3)若E 为BC 边的中点,能否在棱PC 上找到一点F ,使平面DEF ⊥平面ABCD ,并证明你
的结论.
题型三、平行与垂直的综合题
(2)PDA=45.
PA ABCD CD
MN PCD ⊥⊥∠⊥。

1、已知矩形所在的平面,M,N 分别是AB,PC 的中点。

(1)求证:MN 若,求证:平面
2、如图所示,直三棱柱ABC—A1B1C1中,B1C1=A1C1,AC1⊥A1B,M、N分别是A1B1、AB的中点.
(1)求证:C1M⊥平面A1ABB1;
(2)求证:A1B⊥AM;
(3)求证:平面AMC1∥平面NB1C;
P 中,平面PAD⊥平面ABCD,
3、如图,在四棱锥ABCD
AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点
求证:(1)直线EF ‖平面PCD ;
(2)平面BEF ⊥平面PAD
4.如图5所示,在四棱锥P-ABCD 中,AB ⊥平面PAD,AB CD,PD=AD,E 是PB 的中点,F 是DC 上的点且DF=2
1AB,PH 为∆PAD 中AD 边上的高. (1) 证明:PH ⊥平面ABCD ;
(2) 若PH=1,AD=2,FC=1,求三棱锥E-BCF 的体积;
证明:EF ⊥平面PAB .
课堂检测:
课后作业:
签字
教研组长: 教学主任: 学生: 教务老师: 家长:
老师 下节课的计划: 学生的状况、接受情况和配合程度:。

相关文档
最新文档