第11章波动光学练习题

合集下载

大学物理第十一章波动光学作业ppt课件

大学物理第十一章波动光学作业ppt课件

平面处的屏幕上的中央明条纹宽度为2.0mm,则入射
光波长约为
(A) 100 nm
(B) 400 nm
(C) 500 nm
(D) 600 nm
[ C]
解:对单缝衍射,中央明条纹的宽度为正、负一级暗
条纹间的距离
一级暗条纹到中央明条纹的距离为 x1
则中央明条纹的宽度为
x0
2x1
2 b
f
f
b
f
入射光波长为
解:条纹间距即条纹的宽度为 b
2 n
逆时针转动,增加,则b变小,即间隔变小
由的条2纹d 被2高 级k次可的知占,据d,增因加此,向干棱涉边级方次向k增平加移,原来处
.
选A
2.在夫琅禾费单缝衍射实验中,对于给定的入射单色 光,当缝宽度变小时,除中央亮纹的中心位置不变外, 各级衍射条纹 (A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变.(D) 光强也不变. [ B ]
3.在用钠光(=589.3nm)做光源进行的单缝夫琅禾费
衍射实验中,单缝宽度b=0.5mm,透镜焦距f=700mm. 求透镜焦平面上中央明条纹的宽度.
解:对一级暗条纹有
则中央明条纹的宽度为 x1 b f
5 8 9 .3 1 0 6
x 0 2 x 1 2 bf 2 . 0 .5 7 0 0 1 .6 5 m m
透射光加强,为明条纹,则有 2ndk
d k
2n
当k=1时,膜有最小厚度,即
d m 2 n 2 6 1 0 .0 5 4 1 9 4 n m 1 .9 4 1 0 4 m m
或透射光加强时,反射光相消,即对反射光,有
2nd(2k1) 2ndk

11光学习题

11光学习题
解 (1)条纹为同心圆
Δ 2n2 d k k
h
明纹
r
O
d
dk k

2n2
(k 0,1,2,)
油膜边缘 k
R
0, d0 0 明纹
k 1, d1 250nm k 2, d2 500nm
波动光学习题课选讲例题
k 3, d3 750 nm
h
O
r
R
d
k 4, d 4 1000nm
Δr 2n2e
e 0,
Δr 0
波动光学习题课选讲例题
例 在折射率 射率
n2 为 2.5 的透明介质膜可增强反射.
n1 为 1.5 的玻璃板上表面镀一层折
设在镀膜过
程中用一束波长为 600 nm 的单色光从上方垂直照射
到介质膜上, 并用照度表测量透射光的强度.当介质膜 的厚度逐步增大时,透射光的强度发生时强时弱的变 化,求当观察到透射光的强度第三次出现最弱时,介 质膜镀了多少nm厚度的透明介质膜 (A)300 (B)600 (C)250 (D)420
间距大的是 (A)空气中的玻璃劈尖 (B)玻璃夹层中的空气劈尖 (C)两个劈尖干涉条纹间距相等
(D)观察不到玻璃劈尖的干涉条纹
波动光学习题课选讲例题 例 如图所示两个直径有微小差别的彼此平行的
滚柱之间的距离为 L,夹在两块平晶的中间,形成空
气劈尖,当单色光垂直入射时,产生等厚干涉条纹,
如果滚柱之间的距离变小,则在 L 范围内干涉条纹的 (A)数目减少,间距变大 (B)数目不变,间距变小 (C)数目增加,间距变小 (D)数目减少,间距不变 L
波动光学习题课选讲例题
例 用波长为 的单色光垂直照射到空气劈尖 上,从反射光中观察干涉条纹,距顶点为 L 处是暗 纹,使劈尖角

大学物理复习总结题(第11章)

大学物理复习总结题(第11章)

第11章 波动光学一、填空题易:1、光学仪器的分辨率R= 。

(R= a 1.22λ) 易:2、若波长为625nm 的单色光垂直入射到一个每毫米有800条刻线的光栅上时,则第一级谱线的衍射角为 。

(6π) 易:3、在单缝的夫琅和费衍射实验中,屏上第三级暗纹对应的单缝处波面可划分为 个半波带。

(6)易:4、在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射在宽度为a=2λ的单缝上,对应于衍射角为30°方向,单缝处的波面可分成的半波带数目为 个。

(2)易:5、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。

(偶数)易:6、如图(6题)所示,1S 和2S ,是初相和振幅均相同的相干波源,相距4.5λ,设两波沿1S 2S 连线传播的强度不随距离变化,则在连线上1S 左侧各点和2S 右侧各点是 (填相长或相消)。

(相消)易:7、在麦克耳逊干涉仪的一条光路中,插入一块折射率为n ,厚度为d 的透明薄片,插入薄片使这条光路的光程改变了 ;[ 2(n-1)d ]易:8、波长为λ的单色光垂直照射在由两块平玻璃板构成的空气劈尖上,测得相邻明条纹间距为L 若将劈尖角增大至原来的2倍,则相邻条纹的间距变为 。

(2L ) 易:9、单缝衍射中狭缝愈窄,条纹间距愈 。

(宽)易:10、在单缝夫琅和费衍射实验中,第一级暗纹发生在衍射角300的方向上,所用单色光波长为500nm λ=,则缝宽为: 。

(1000nm )易:11、用波长为λ的单色光垂直照射置于空气中的厚度为e 的折射率为1.5的透明薄膜,两束反射光的光程差为 ;(23λ+e )易:12、光学仪器的分辨率与 和 有关,且 越小,仪器的分辨率越高。

(入射波长λ,透光孔经a ,λ)易:13、由马吕斯定律,当一束自然光通过两片偏振化方向成30o 的偏振片后,其出射光与入射光的光强之比为 。

(3:8)易:14、当光由光疏介质进入光密介质时,在交界面处的反射光与入射光有相位相反的现象,这种现象我们称之为 。

大学物理题库通用版-第11章-波动光学--光的干涉(含答案解析)

大学物理题库通用版-第11章-波动光学--光的干涉(含答案解析)

大学物理题库通用版11、波动光学 光的干涉一、选择题(共15题)1.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ ]2.在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ ]3.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2> n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2. (C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2).[ ]4.如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为(A) 4πn 2 e / λ. (B) 2πn 2 e / λ. (C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ]P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1n 3n 1 λ5.如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为 (A) 2πn 2e / ( n 1 λ1). (B)[4πn 1e / ( n 2 λ1)] + π. (C) [4πn 2e / (n 1 λ1) ]+ π. (D) 4πn 2e / ( n 1 λ1). [ ]6.一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ ]7. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的(A) 间隔变小,并向棱边方向平移.(B) 间隔变大,并向远离棱边方向平移.(C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [ ]8.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则(A) 干涉条纹的宽度将发生改变.(B) 产生红光和蓝光的两套彩色干涉条纹.(C) 干涉条纹的亮度将发生改变.(D) 不产生干涉条纹. [ ]9.把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ ]10.在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ ]11.在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃n 1λ1 S S '纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹;(B) 变为暗条纹;(C) 既非明纹也非暗纹;(D) 无法确定是明纹,还是暗纹.[]12.在牛顿环实验装置中,曲率半径为R的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k的表达式为(A) r k =Rkλ.(B) r k =nRk/λ.(C) r k =Rknλ.(D) r k =()nRk/λ.[]13.把一平凸透镜放在平玻璃上,构成牛顿环装置.当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环(A)向中心收缩,条纹间隔变小.(B)向中心收缩,环心呈明暗交替变化.(C)向外扩张,环心呈明暗交替变化.(D)向外扩张,条纹间隔变大.[]14.如图a所示,一光学平板玻璃A与待测工件B之间形成空气劈尖,用波长λ=500 nm (1 nm=10-9 m)的单色光垂直照射.看到的反射光的干涉条纹如图b所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的连线相切.则工件的上表面缺陷是(A) 不平处为凸起纹,最大高度为500 nm.(B) 不平处为凸起纹,最大高度为250 nm.(C) 不平处为凹槽,最大深度为500 nm.(D) 不平处为凹槽,最大深度为250 nm.[]15.在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n-1 ) d.(B) 2nd.(C) 2 ( n-1 ) d+λ / 2.(D) nd.(E) ( n-1 ) d.[]二、填空题(共15题)1. 在双缝干涉实验中,两缝分别被折射率为n1和n2的透明薄膜遮盖,二者的厚度均为e.波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=________.图b2. 如图所示,假设有两个同相的相干点光源S 1和S 2,发出波长为λ的光.A 是它们连线的中垂线上的一点.若在S 1与A 之间插入厚度为e 、折射率为n 的薄玻璃片,则两光源发出的光在A 点的相位差∆φ=_2π (n -1) e / λ_.若已知λ=500 nm ,n =1.5,A 点恰为第四级明纹中心,则e =_____nm .(1 nm =10-9 m)3. 如图所示,两缝S 1和S 2之间的距离为d ,媒质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则屏幕上P 处,两相干光的光程差为___ ______.4.在双缝干涉实验中,所用光波波长λ=5.461×10–4 mm ,双缝与屏间的距离D =300 mm ,双缝间距为d =0.134 mm ,则中央明条纹两侧的两个第三级明条纹之间的距离为________ _______.5.用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=________.6.把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D ,两缝之间的距离为d (d <<D ),入射光在真空中的波长为λ,则屏上干涉条纹中相 邻明纹的间距是_____________.7.用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中 央暗斑)暗环对应的空气膜厚度为____________.(1 nm=10-9 m)8.用波长为λ的单色光垂直照射折射率为n 2的劈形膜(如图)图中各部分折射率的关系是n 1<n 2<n 3.观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e =____________.9.波长为λ的平行单色光,垂直照射到劈形膜上,劈尖角为θ,劈形膜的折射率为n ,第三条暗纹与第六条暗之间的距离是______.10. 一束波长为λ=600 nm (1 nm=10-9 m)的平行单色光垂直入射到折射率为n =1.33的透明薄膜上,该薄膜是放在空气中的.要使反射光得到最大限度的加强,薄膜最小厚度应为________________nm .11.波长为λ的平行单色光垂直照射到劈形膜上,劈尖角为θ,劈形膜的折射率为n ,第k 级明条纹与第k +5级明纹的间距是__________.12.波长λ=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____nm .(1 nm=10-9 m)n 1n 2n 313.折射率分别为n 1和n 2的两块平板玻璃构成空气劈尖,用波长为λ的单色光垂直照射.如果将该劈尖装置浸入折射率为n 的透明液体中,且n 2>n >n 1,则劈尖厚度为e 的地方两反射光的光程差的改变量是_______.14.如图所示,在双缝干涉实验中SS 1=SS 2,用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为___3λ ____.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n =________.15.已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移动距离d 的过程中,干涉条纹将移动__________条. 三、计算题(共5题)1.白色平行光垂直入射到间距为a =0.25 mm 的双缝上,距D =50 cm 处放置屏幕,分别求第一级和第五级明纹彩色带的宽度.(设白光的波长范围是从400nm 到760nm .这里说的“彩色带宽度” 指两个极端波长的同级明纹中心之间的距离.) (1 nm=10-9 m)2.在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D =2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m)3.用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A 处的范围内共有几条明纹?几条暗纹?2分4.图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm . (1) 求入射光的波长. (2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.5.用波长λ=500 nm 的平行光垂直照射折射率n =1.33的劈形膜,观察反射光的等厚干涉条纹.从劈形膜的棱算起,第5条明纹中心对应的膜厚度是多少? P E光的干涉习题答案一、选择题1、B ;2、C ;3、B ;4、A ;5、C ;6、B ;7、A ;8、D ;9、A ;10、B ;11、B ;12、B ;13、B ;14、B ;15、A二、填空题1、 2π(n 1 – n 2) e / λ2、4×103 nm3、d sin θ +(r 1-r 2)4、7.33 mm5、nl 2λ6、D λ / (dn )7、1.2=2λ μm8、249n λ9、3λ / (2n θ)10、113nm11、5λ / (2n θ)12、900 nm13、2 ( n – 1) e – λ /214、1.3315、2d /λ三、计算题1解:由公式x =kD λ / a 可知波长范围为∆λ时,明纹彩色宽度为∆x k =kD ∆λ / a2分 由 k =1可得,第一级明纹彩色带宽度为∆x 1=500×(760-400)×10-6 / 0.25=0.72 mm2分 k =5可得,第五级明纹彩色带的宽度为∆x 5=5·∆x 1=3.6 mm1分2解:(1) ∆x =20 D λ / a2分 =0.11 m2分 (2) 覆盖云玻璃后,零级明纹应满足(n -1)e +r 1=r 22分 设不盖玻璃片时,此点为第k 级明纹,则应有r 2-r 1=k λ 2分所以 (n -1)e = k λ k =(n -1) e / λ=6.96≈7 零级明纹移到原第7级明纹处 2分3解:(1) 棱边处是第一条暗纹中心,在膜厚度为e 2=21λ处是第二条暗纹中心,依此可知第四条暗纹中心处,即A 处膜厚度 e 4=λ23 ∴ ()l l e 2/3/4λθ===4.8×10-5 rad 5分(2) 由上问可知A 处膜厚为 e 4=3×500 / 2 nm =750 nm对于λ'=600 nm 的光,连同附加光程差,在A 处两反射光的光程差为λ'+2124e ,它与波长λ'之比为0.321/24=+'λe .所以A 处是明纹 3分 (3) 棱边处仍是暗纹,A 处是第三条明纹,所以共有三条明纹,三条暗纹.4解:(1) 明环半径 ()2/12λ⋅-=R k r 2分()Rk r 1222-=λ=5×10-5 cm (或500 nm) 2分 (2) (2k -1)=2 r 2 / (R λ) 对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5 3分 故在OA 范围内可观察到的明环数目为50个. 1分5解: 明纹, 2ne +λ21=k λ (k =1,2,…) 3分 第五条,k =5,ne 2215λ⎪⎭⎫ ⎝⎛-==8.46×10-4 mm 2分。

波动光学习题

波动光学习题

解:1.判断零级条纹( 0)的移动方向,
相折射率大的n2方向移动
S
S1 n1, d
P
O
2. (n2 1)d (n1 1)d
(n2 n1)d N
S2 n2 , d
d 8106 m
3.间距不变
例3 白光垂直照射在空气中厚度为 0.40mm旳玻璃片 上,玻璃旳折射率为1.50,试问在可见光范围内 (
3
因为 2 级缺级,实际呈现条纹旳全部级数为
0, 1, 3
例9、要测定硅片上二氧化硅薄膜旳厚度,
将薄膜旳一端做成劈尖形,用波长为
0
5461 A
旳绿光从空气照射硅片,观察反射光第7条暗
纹在与平行膜旳交线M处,二氧化硅旳折射率
为n2=1.5, 硅旳折射率为n3=3.4
求:二氧化硅薄膜旳厚度 n1 1
向平行于入射面;
(D)是部分偏振光。
例15 自然光以60°旳入射角照射到某一透明介质表面 时,反射光为线偏振光,则由此可拟定:
(A)折射光为线偏振光,折射角为30° (B)折射光为线偏振光,折射角为60°
(C)
(C)折射光为部分偏振光,折射角为30°
(D)折射光为部分偏振光,折射角为60°
分析: 此时入射角为布儒斯特角,ib 60
因为反射光较弱,不可能某一
振动方向旳光被完全反射,所以折
600
射光仍为部分偏振光。
又因为在入射角为布儒斯特角旳情
况下,反射光与折射光相互垂直,所以 折射角为300。
例16 在双缝干涉试验中,用单色自然光,在屏 上形成干涉条纹.若在两缝后放一种偏振片,则 (A) 干涉条纹旳间距不变,但明纹旳亮度加强. (B) 干涉条纹旳间距不变,但明纹旳亮度减弱. (C) 干涉条纹旳间距变窄,且明纹旳亮度减弱. (D) 无干涉条纹.

大学物理A第十一章 波动光学

大学物理A第十一章 波动光学

第十一章 波动光学一、填空题(每空3分)11-1 相干光的条件是________________.(频率相同,振动方向相同,相位差恒定.)11-2 ______ 和 _______是波动的重要特征,光的偏振现象证明光是_____波.( 干涉,衍射, 横.)11-3当一束自然光在两种介质分界面处发生反射和折射时,若反射光为线偏振光,则折射光为_____________偏振光,且反射线和折射线之间的夹角为_______.(部分, 2π.) 11-4 当光从折射率n______ 的介质射向折射率n___________的介质,并在分界面上反射时,将产生半波损失.(填:大;小.)( 答案:大, 小.)11-5 在双缝实验中,若把一厚度为e ,折射率为n 的薄云母片覆盖在S 1缝上,中央明纹将向__________移动,覆盖云母片后两束相干光至原中央明纹O 处的光程差为_______________.(向上,(n-1)e )11-6光的干涉和衍射现象反映了光的__________________性质;光的偏振现象说明光波是_____________波.( 波动 , 横)11-7使一束自然光和线偏振光混合而成的光束垂直通过一偏振片,以入射光束为轴旋转偏振片,测得透射光的最大值为最小值的4倍,则入射光中自然光与线偏振光的强度之比为 。

(23)11-8杨氏双缝干涉实验、薄膜干涉实验、劈尖干涉实验、牛顿环干涉实验,其中属于分波面干涉的实验为 。

(杨氏双缝干涉实验)11-9 用不同波长的红光(10.7m λμ=)和紫光(20.42m λμ=)进行双缝实验,发现红光照射时第k 级明纹正好与用紫光照射时的第k+2级明纹重合,则k = 。

( 3) 11-10用两块平玻璃构成劈尖观察等厚干涉条纹。

若将劈尖上表面向上缓慢地平移,则干涉条纹向 方向移动;若将劈尖角e S 2 S 1 Oθ逐渐增大,则干涉条纹向 方向移动。

(左;左)11-11光强均为0I 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是 。

大学物理第十一章波动光学习题答案

大学物理第十一章波动光学习题答案

第十一章 波动光学习题11-1 在杨氏双缝实验中,双缝间距d =0.20 mm ,缝屏间距D =1.0 m ,若第2级明条纹离屏中心的距离为6.0 mm ,试求:(1)入射光的波长;(2)相邻两明条纹间的距离。

解:(1)由λk d D x =明知, λ22.01010.63⨯⨯= 30.610m m 600n m λ-=⨯= (2)3106.02.010133=⨯⨯⨯==∆-λd D x mm 11-2 在双缝装置中,用一很薄的云母片(n =1.58)覆盖其中的一条缝,结果使屏幕上的第7级明条纹恰好移到屏幕中央原零级明纹的位置。

若入射光的波长为550 nm ,求此云母片的厚度。

解:设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ 按题意 λδ7= ∴610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 11-3 在折射率n 1=1.52的镜头表面涂有一层折射率n 2=1.38的MgF 2增透膜,如果此膜适用于波长λ=550 nm 的光,问膜的最小厚度应取何值?解:设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A令0=k ,得膜的最薄厚度为996o A 。

11-4 白光垂直照射在空气中厚度为0.4μm 的玻璃片上,玻璃的折射率为1.50。

试问在可见光范围内(λ= 400~700nm ),哪些波长的光在反射中增强?哪些波长的光在透射中增强?解:(1)222n d j λδλ=+= 24 3,480n m 21n d j j λλ===- (2)22(21) 22n d j λλδ=+=+ 22n d j λ= 2,600n m j λ==;3,400nm j λ== 11-5 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解:由反射干涉相长公式有42221ne ne k k λδλλ=+==-, ),2,1(⋅⋅⋅=k 得4 1.3338002674nm 2214 1.3338003404nm 231k k λλ⨯⨯===⨯-⨯⨯===⨯-,红色,紫色所以肥皂膜正面呈现紫红色。

第11章 波动光学(习题与答案)

第11章 波动光学(习题与答案)

第11章 波动光学一. 基本要求1. 解获得相干光的方法。

掌握光程的概念以及光程差与相位差的关系。

2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。

3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。

4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。

5. 理解自然光和偏振光及偏振光的获得方法和检验方法。

6. 理解马吕斯定律和布儒斯特定律。

二. 内容提要1. 相干光及其获得方法 能产生干涉的光称为相干光。

产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。

获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。

2. 光程、光程差与相位差的关系 光波在某一介质中所经历的几何路程l 与介质对该光波的折射率n 的乘积n l 称为光波的光学路程,简称光程。

若光波先后通过几种介质,其总光程为各分段光程之和。

若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。

来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆ 其中λ为光在真空中的波长。

3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。

其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,( λλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。

波动光学(习题与答案)

波动光学(习题与答案)

第11章 波动光学一. 基本要求1. 解获得相干光的方法。

掌握光程的概念以及光程差与相位差的关系。

2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。

3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。

4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。

5. 理解自然光和偏振光及偏振光的获得方法和检验方法。

6. 理解马吕斯定律和布儒斯特定律。

二. 内容提要1. 相干光及其获得方法 能产生干涉的光称为相干光。

产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。

获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。

2. 光程、光程差与相位差的关系 光波在某一介质中所经历的几何路程l 与介质对该光波的折射率n 的乘积n l 称为光波的光学路程,简称光程。

若光波先后通过几种介质,其总光程为各分段光程之和。

若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。

来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆ 其中λ为光在真空中的波长。

3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。

其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,(ΛΛλλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。

第十一章 波动光学习题

第十一章 波动光学习题

解:牛顿环干涉图样中第10级亮环的半径为:
1 r10 (10 ) R 2
第10级亮环的直径为:
1 d10 2 (10 ) R 2 1 1 d10 2 (10 ) R 2 (10 ) R 2 2 n
第十一章 波 动 光 学
25
物理学
第五版
第十一章
0
(C) 4个; (D) 6个。
b sin 3 sin 30 1.5 3

2
答案(B)
第十一章
波 动 光 学
6
物理学
第五版
第十一章
波动光学
11-5波长 550 nm 的单色光垂直入射到光栅常数
d 1.0 10 cm的光栅上,可能观察到的光谱线的最 大级次为( )。
解:
d x d
10x 12.2mm
x 1.22mm
d 300 10 3 d 546 .110 9 1.43 10 4 m x 1.22
第十一章 波 动 光 学
13
物理学
第五版
第十一章
波动光学
11-12 一双缝装置的一个缝被折射率为1.40的薄玻璃片 所遮盖,另一个缝被折射率为1.70的薄玻璃片所遮盖。 在玻璃片插入以后,屏上原来的中央极大所在点,现 变为第五级明纹。假定 ,且两玻璃片厚度 480 nm 均为d,求d。
(红外) (蓝绿色) (紫外)
所以,肥皂膜的背面呈现蓝绿色。
第十一章 波 动 光 学
19
物理学
第五版
第十一章
波动光学
11-14在折射率为 n3 1.52 的照相机镜头表面涂有一层 折射率为 n2 1.38 的MgF2增透膜,若此膜仅适用于波 长 550 nm 的光,则此膜的最小厚度为多少?。

波动光学案例习题(含答案)

波动光学案例习题(含答案)
d
x (2k 1) d
d2
11/5 条纹间距
x
xk 1
xk
d
d
4
2.薄膜干涉 (分振幅法)
光程差
2d
n22
n12
s in 2
i
2
i

② n1 n2 d
n1 n2 n3 n1 n2 n3 n1 n2 n3
n1 n2 n3
11/5
n3
光程差不附加
2
光程差附加
2
5
光程差
2d
答: (C)
11/5
21
例: 在牛顿环实验装置中,曲率半径为R的平 凸透镜与平玻璃板在中心恰好接触,它们之间 充满折射率为n的透明介质,垂直入射到牛顿 环装置上的平行单色光在真空中的波长为λ, 则反射光形成的干涉条纹中暗环半径的表达式 为:
( A)r kR (C)r knR
(B)r kR / n (D)r k /(nR)
解: 条纹间距 x d D
dd
中央明纹两侧的第10级明纹中心间距
210x 210 D 0.11m
d
11/5
32
(2)将此装置用一厚度为 e 6.6106 m ,折射率
解: 据明环半径公式 rk
( k 1 )R
2
充液前: r120 19R / 2 充液后: r102 19R /( 2n )
n r120 1.36
11/5
r102
20
例,在相同的时间内,一束波长为λ的单色光在 空气中和在玻璃中:
(A)传播的路程相等,走过的光程相等 (B)传播的路程相等,走过的光程不相等 (C)传播的路程不相等,走过的光程相等 (D)传播的路程不相等,走过的光程不相等

大学物理 第十一章 波动光学

大学物理 第十一章 波动光学

11-1钠黄光波长为589.3mm ,试以一次延续时间计,计算一个波列中的完整波的个数。

810−解178631010510589.3c N τλ−××==≈×11-2在杨氏双缝实验中,当做如下调节时,屏幕上的干涉条纹将如何变化?(要说明理由)(1)使两缝之间的距离逐渐减小;(2)保持双缝的间距不变,使双缝与屏幕的距离逐渐减小;(3)如图11.3所示,把双缝中的一条狭缝遮住,并在两缝的垂直平分线上放置一块平面反射镜。

解(1)由条纹间距公式,在D 和不变的情况下,减小d 可使增大,条D x dλ∆=λx ∆纹间距变宽。

(2)同理,若和保持不变,减小D ,变小,条纹变密,到一定程度时条纹将难以d λx ∆分辨。

(3)此装置同洛埃镜实验,由于反射光有半波损失,所以()212D x k d D x k d λλ=−=明暗与杨氏双缝的干涉条纹相比,其明暗条纹分布的状况恰好相反,且相干的区域仅在中心轴线上方的一部分。

11-3洛埃镜干涉装置如图11.4所示,光源波长,试求镜的右边缘到第一77.210m λ−=×条明纹的距离。

解因为镜右边缘是暗纹中心,它到第一明条纹的距离h 应为半个条纹间隔,()531120307.210 4.510220.4D h cm d λ−−+==×××=×11-4由汞弧灯发出的光,通过一绿光滤光片后,照射到相距为0.60mm 的双缝上,在距双缝2.5m 远处的屏幕上出现干涉条纹。

现测得相邻两明条纹中心的距离为2.27mm ,求入射光的波长解有公式得D x d λ∆=()()3372.27100.0610 5.5105502.5d x m nm D λ−−−×××=∆•==×=11-5在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条狭缝,这时屏幕上的第七级明条纹恰好移到屏幕中央原零级明条纹的位置。

第十一章 波动光学

第十一章  波动光学

第十一章波动光学习题一、单选题1、下列哪个能产生稳定的光干涉现象( B )A. 一束相位变化的光通过圆孔B. 杨氏双缝干涉实验C. 当相位变化的两束光相遇D.两个白炽灯的二束光相遇2、洛埃镜的实验表明( C )A.当光从光密介质射到光疏的介质时,反射光的相位会发生π的变化B.当光从光疏介质射到光密的介质时,入射光的相位会发生π的变化C.当光从光疏介质以接近于90o的角度入射到光密的介质时,反射光的相位会发生π的变化D.当光从光密介质射到光疏的介质时,入射光的相位会发生π的变化3、光程为( D )A.光在真空中经过的几何路程r与介质的折射率n的乘积nrB.光在介质中经过的几何路程r与真空的折射率n的乘积nrC.光在介质中经过的几何路程r与介质的折射率n的商r/nD.光在介质中经过的几何路程r与介质的折射率n的乘积nr4、增透膜的作用是( A )A.反射光产生相消干涉、透射光产生相长干涉,以减少反射光,增强透射光B.反射光产生相长干涉、透射光产生相消干涉,以减少反射光,增强透射光C.反射光产生相消干涉、透射光产生相长干涉,以增强反射光,减少透射光D.反射光产生相长干涉、透射光产生相消干涉,以增强反射光,减少透射光5、在夫琅和费衍射单缝实验中,仅增大缝宽而其余条件均不变时,中央亮纹的宽度将如何变化?( C )A.减小B.增大C.先减小后增大D. 先增大后减小6、下列哪种情况可能会出现光的衍射现象( C )A.光通过眼镜向前传播B.光通过平面镜反射传播C.光通过狭缝向前传播D.光通过凹面镜反射传播7、对于透射光栅,光栅常数(a+b)中a、b的含意是( B )A.狭缝的缝宽为b,缝与缝之间不透光部分的宽度为aB.狭缝的缝宽为a,缝与缝之间不透光部分的宽度为bC.狭缝的缝宽为a ,缝与缝之间透光部分的宽度为bD.狭缝的缝宽为b ,缝与缝之间透光部分的宽度为a8、光栅衍射条纹是( D )A .反射和干涉的综合效应 B.衍射和反射的综合效应C.折射和干涉的综合效应D.衍射和干涉的综合效应9、在光栅常数(a +b )=1.8×10-6m 的透射光栅中,第三级光谱可观察到的最长波长是多少( B )A.700nmB.600n mC.500n mD. 400n m10、波的振动面是( C )A .由波的反射方向和波的折射方向所确定的平面B.由波的反射方向和波的透射方向所确定的平面C.由波的传播方向和波的振动方向所确定的平面D.由波的传播方向和波的反射方向所确定的平面11、一束光强为I 0的自然光,垂直照射在两块前后放置且相互平行、偏振化方向相交60o 角的偏振片上,则透射光的强度为多少( C )A. I 0/4B. I 0/2C. I 0/8D.83I 012、旋光计中的三荫板的作用是为观察者提供一个较易判断的标准,那么,最适合人眼的判断标准是下列哪一个( C )A.两边暗,中间较亮B.中间较亮,两边较暗C.亮暗界线消失,均较昏暗D.亮暗界线消失,均较亮13、下列哪个现象能证明光的波动说( A )A.衍射等现象B.光电效应C.热效应D.光的散射14、晶体的主截面是指( B )A.由光线和晶体表面的法线所组成的平面B.由光轴和晶体表面的法线所组成的平面C.由光线的传播方向和光轴所组成的平面D.由光线的传播方向和晶体表面的法线所组成的平面15、全息照相是( D )A.由激光器发出的两束光线发生干涉,产生干涉图像B.由景物不同处反射的光两束光线发生干涉,产生干涉图像C.由景物同一处反射的光两束光线发生干涉,产生干涉图像D.由参考光和物光在底片上相遇时发生干涉,产生干涉图像二、判断题1、光具有波粒二象性。

第11章波动光学(知识题与答案解析)

第11章波动光学(知识题与答案解析)

第11章波动光学一.基本要求1. 解获得相干光的方法。

掌握光程的概念以及光程差与相位差的关系。

2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。

3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。

4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。

5. 理解自然光和偏振光及偏振光的获得方法和检验方法。

6. 理解马吕斯定律和布儒斯特定律。

二. 内容提要1. 相干光及其获得方法能产生干涉的光称为相干光。

产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。

获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。

2. 光程、光程差与相位差的关系光波在某一介质中所经历的几何路程l与介质对该光波的折射率n的乘积n l称为光波的光学路程,简称光程。

若光波先后通过几种介质,其总光程为各分段光程之和。

若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。

来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆其中λ为光在真空中的波长。

3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。

其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,( λλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。

杨氏双缝干涉明、暗条纹的中心位置 λdD kx ±= 明纹中心 212λd D k x )(+±= 暗纹中心 相邻明纹或暗纹中心距离λd D x =∆。

第十一章 波动光学及其答案

第十一章 波动光学及其答案

第十一章 波动光学答案§11.2杨氏双缝干涉实验 劳埃德镜一.选择题和填空题1. D2. B3. 4I 04. 上 (n -1)e5. 0.75二.计算题1. 解:相邻明纹间距 ∆x 0 = D λ / d2分 两条缝之间的距离 d = D λ / ∆x 0 =D λ / (∆x / 20) =20 D λ/∆x= 9.09×10-2 cm 3分2. 解:设S 1、S 2分别在P 点引起振动的振幅为A ,干涉加强时,合振幅为2A ,所以2max 4A I ∝1分因为 λ3112=-r r所以S 2到P 点的光束比S 1到P 点的光束相位落后()3π23π2π212=⋅=-=∆λλλφr r 1分P 点合振动振幅的平方为:22223π2cos 2A A A A =++ 2分 ∵ I ∝A 2 ∴ I / I max = A 2 / 4A 2 =1 / 41分§11.3 光程 薄膜于涉一.选择题和填空题1. A2. C3. B4. 2.60 e5. [( 4ne / λ )–1 ]π 或 [( 4ne / λ) +1]π二.计算题1. 解:设介质薄膜的厚度为e ,上、下表面反射均为由光疏介质到光密介质,故不计附加程差。

当光垂直入射i = 0时,依公式有: 对λ1: ()112212λ+='k e n ① 1分 按题意还应有: 对λ2: 22λk e n =' ② 1分 由① ②解得: ()32121=-=λλλk 1分将k 、λ2、n '代入②式得en 0 =1.00n '=1.35n k e '=22λ=7.78×10-4 mm 2分2. 解:加强, 2ne+21λ = k λ, 2分 123000124212-=-=-=k k ne k ne λ nm 2分 k = 1, λ1 = 3000 nm , k = 2, λ2 = 1000 nm , k = 3, λ3 = 600 nm , k = 4, λ4 = 428.6 nm ,k = 5, λ5 = 333.3 nm .2分∴ 在可见光范围内,干涉加强的光的波长是λ=600 nm 和λ=428.6 nm . 2分§11.4 劈尖 牛顿环一.选择题和填空题1. C2. C3. D4. B5. λ/(2n )6. 2 ( n – 1) e – λ /2 或者2 ( n – 1) e + λ /2二.计算题1. 解:根据暗环半径公式有 R k r k λ=2分()R k r k λ1010+=+ 由以上两式可得 ()()λ10/2210k k r r R -=+ 2分=4 m 1分2. 解: 明纹, 2ne +λ21=k λ (k =1,2,…)3分 第五条,k =5,ne 2215λ⎪⎭⎫ ⎝⎛-==8.46×10-4 mm 2分3. 解:(1) 明环半径 ()2/12λ⋅-=R k r 2分()Rk r 1222-=λ=5×10-5 cm (或500 nm) 2分 (2) (2k -1)=2 r 2 / (R λ)对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5 3分 故在OA 范围内可观察到的明环数目为50个. 1分§11.5 迈克耳孙干涉仪 时间相干性一.选择题和填空题1. D2. 2(n-1)d3. 2d /λ二.计算题1. 解:插入厚度为 d 的介质片后,两相干光的光程差的改变量为2(n-1)d,从而引起N 条条纹的移动,根据劈尖干涉加强的条件有2(n-1)d=N λ,得:§11.7 单缝衍射 一.选择题和填空题1. B2. C3. D4. C5. 干涉(或答“相干叠加”)6. ±30° (答30° 也可以)7. 0.36 mm二.计算题1.解:中央明纹宽度 x = 2 x ≈2 f λ/ a2分 单缝的宽度 a = 2 f λ/ x = 2×400×6328×10-9 / 3.4 m 2分 = 0.15 mm 1分2. 解:(1) 由单缝衍射暗纹公式得111sin λθ=a 222sin λθ=a 由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ= 3分(2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……)a k /sin 222λθ=若k 2 = 2k 1,则θ1 = θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合. 2分§11.8 圆孔衍射 光学仪器的分辨率1.2.24×10-5 4.47§11.9 衍射光栅一.选择题和填空题1.D 2. B 3. D 4. D 5. B 6. 一 三二.计算题1. 解:(1) 由光栅衍射主极大公式得md 61051.51)-2(n N -⨯==λa +b =ϕλsin k =2.4×10-4 cm 3分 (2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得 λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3) ()λϕk b a =+sin ,(主极大)λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)因此 k =3,6,9,........缺级. 2分 又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分2.解:(1) a sin ϕ = k λ tg ϕ = x / f 2分 当x << f 时,ϕϕϕ≈≈sin tg , a x / f = k λ , 取k = 1有x = f l / a = 0.03 m 1分 ∴中央明纹宽度为 ∆x = 2x = 0.06 m 1分(2) ( a + b ) sin ϕλk '=='k ( a +b ) x / (f λ)= 2.5 2分 取k'= 2,共有k '= 0,±1,±2 等5个主极大 2分§11.10 光的偏振性 马吕斯定律一.选择题和填空题1.B 2. A 3. 2 1/44. 自然光 线偏振光 部分偏振光 5.波动 横二.计算题1. 解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方平行. 2分(2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. 1分 I 1仍不变. 1分2. 解:设I 0为入射光中自然光的强度,I 1、I 2分别为穿过P 1和连续穿过P 1、P 2的强度. (1) 由题意,入射光强为2I 0, ()θ20001cos 5.0221I I I I +==得 cos 2θ=1 / 2, θ =45° 3分(2) I 2=(0.5I 0+I 0cos 245°) cos 2α =()0241I得 21cos 2=α , α=45° 2分§11.11 反射光和折射光的偏振一.选择题和填空题 1. D 2. B3.线偏振光 垂直于入射面 部分偏振光二.计算题1. 解:(1) 设该液体的折射率为n ,由布儒斯特定律tg i 0=1.56 / n 2分 得 n =1.56 / tg48.09°=1.40 1分(2) 折射角r =0.5π-48.09°=41.91° (=41°55' ) 2分2. 解: (1) 据布儒斯特定律tg i =n 2 / n 1=1.43所以 i =55.03° 2分(2) 令在介质Ⅱ中的折射角为r ,则 r =0.5π-i此r 在数值上等于介质Ⅱ、Ⅲ界面上的入射角,由布儒斯特定律 tg r =n 3 / n 2得 n 3=n 2 tg r =n 2 ctg i =n 2n 1 / n 2=1.00 3分§11.12 双折射一.选择题和填空题1. 遵守通常的折射 不遵守通常的折射2.传播速度 单轴。

大学物理(波动光学)练习(含答案)

大学物理(波动光学)练习(含答案)

大 学 物 理(波动光学)试 卷班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________一、选择题(共27分) 1.(本题3分)在双缝干涉实验中,两缝间距离为d ,双缝与屏幕之间的距离为D (D >>d ).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是 (A) 2λD / d . (B) λ d / D .(C) dD / λ. (D) λD /d . [ ] 2.(本题3分)在双缝干涉实验中,设缝是水平的.若双缝所在的平面稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. [ ] 3.(本题3分)把一平凸透镜放在平玻璃上,构成牛顿环装置.当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环(A) 向中心收缩,条纹间隔变小.(B) 向中心收缩,环心呈明暗交替变化. (C) 向外扩张,环心呈明暗交替变化.(D) 向外扩张,条纹间隔变大. [ ] 4.(本题3分)在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 (A) λ / 2. (B) λ / (2n ). (C) λ / n . (D)()12-n λ. [ ]5.(本题3分)在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹 (A) 宽度变小. (B) 宽度变大. (C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大. [ ] 6.(本题3分) 某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 (A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ...... (D) 3 ,6 ,9 ,12...... [ ] 7.(本题3分)一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为 (A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D) 2I 0 / 2. [ ]8.(本题3分)自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是 (A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光. (C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光. [ ] 9.(本题3分)自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.(B) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°. (C) 部分偏振光,但须知两种介质的折射率才能确定折射角.(D) 部分偏振光且折射角是30°. [ ] 二、填空题(共25分) 10.(本题4分)如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________.11.(本题3分)一平凸透镜,凸面朝下放在一平玻璃板上.透镜刚好与玻璃板接触.波长分别为λ1=600 nm 和λ2=500 nm 的两种单色光垂直入射,观察反射光形成的牛顿环.从中心向外数的两种光的第五个明环所对应的空气膜厚度之差为______nm .12.(本题3分)波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________. 13.(本题3分)惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的_________________,决定了P 点的合振动及光强. 14.(本题3分)波长为500 nm(1nm=10−9m)的单色光垂直入射到光栅常数为1.0×10-4 cm 的平面衍射光栅上,第一级衍射主极大所对应的衍射角ϕ =____________. 15.(本题3分)用波长为λ的单色平行红光垂直照射在光栅常数d =2μm (1μm=10-6 m)的光栅上,用焦距f =0.500 m 的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l =0.1667m .则可知该入射的红光波长λ=_________________nm .(1 nm =10-9 m) 16.(本题3分)如图所示的杨氏双缝干涉装置,若用单色自然光照射狭缝S ,在屏幕上能看到干涉条纹.若在双缝S 1和S 2的一侧分别加一同质同厚的偏振片P 1、P 2,则当P 1与P 2的偏振化方向相互______________时,在屏幕上仍能看到很清晰的干涉条纹.17.(本题3分)光的干涉和衍射现象反映了光的________性质.光的偏振现象说明光波是_________波.SP 2P 1S 1S 2S三、计算题(共38分) 18.(本题8分)在牛顿环装置的平凸透镜和平玻璃板之间充以折射率n =1.33的液体(透镜和平玻璃板的折射率都大于1.33 ). 凸透镜曲率半径为300 cm ,用波长λ=650 nm (1 nm=10-9 m)的光垂直照射,求第10个暗环的半径(设凸透镜中心刚好与平板接触,中心暗斑不计入环数). 19.(本题5分)用波长λ=632.8nm(1nm=10-9m)的平行光垂直入射在单缝上,缝后用焦距f=40cm 的凸透镜把衍射光会聚于焦平面上.测得中央明条纹的宽度为 3.4mm ,单缝的宽度是多少? 20.(本题10分)一束平行光垂直入射到某个光栅上,该光束有两种波长的光,λ1=440 nm ,λ2=660 nm(1 nm = 10-9 m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角ϕ=60°的方向上.求此光栅的光栅常数d . 21.(本题10分)一光束由强度相同的自然光和线偏振光混合而成.此光束垂直入射到几个叠在一起的偏振片上.(1) 欲使最后出射光振动方向垂直于原来入射光中线偏振光的振动方向,并且入射光中两种成分的光的出射光强相等,至少需要几个偏振片?它们的偏振化方向应如何放置? (2) 这种情况下最后出射光强与入射光强的比值是多少? 22.(本题5分)在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i '. 四、理论推导与证明题(共5分)23.(本题5分)如图所示的双缝干涉装置中,假定两列光波在屏上P 点处的光场随时间t 而变化的表示式各为E 1 = E 0 sin ω t E 2=E 0 sin (ωt+φ) φ表示这两列光波之间的相位差.试证P 点处的合振幅为 ⎪⎭⎫ ⎝⎛=θλsin πcos d E E m p式中λ是光波波长,E m 是E p 的最大值.五、回答问题(共5分) 24.(本题5分)在单缝衍射图样中,离中心明条纹越远的明条纹亮度越小,试用半波带法说明.DOPr 1 r 2 θ S 1 S 2d (D>>d )大学物理(波动光学)试卷解答一、选择题(共27分) D B B D A D B C D二、填空题(共25分) 10.(本题4分)上 2分 (n -1)e 2分 11.(本题3分) 225 3分 12.(本题3分)λ/(2n ) 3分 13.(本题3分)干涉(或答“相干叠加”) 3分 14.(本题3分)30° 3分 15.(本题3分)632.6 或 633 3分 参考解:d sin ϕ =λ --------① l =f ·tg ϕ --------②由②式得 tg ϕ =l / f = 0.1667 / 0.5 = 0.3334sin ϕ = 0.3163λ = d sin ϕ =2.00×0.3163×103 nm = 632.6 nm 16.(本题3分)平行或接近平行 3分 17.(本题3分)波动 1分 横 2分 三、计算题(共38分) 18.(本题8分)解: R 2=r 2+(R - r )2 r 2 = 2Re – e 2略去e 2,则 Rre 22= 2分 暗环: 2ne +21λ=( 2k +1)21λ 2e =λn k(k =0,1,2,…) 3分nRk r λ= k =10 2分r =0.38 cm 1分 19.(本题5分)解:中央明纹宽度 ∆x = 2 x 1 ≈2 f λ/ a 2分 单缝的宽度 a = 2 f λ/∆x = 2×400×6328×10-9 / 3.4 m 2分 = 0.15 mm 1分Re r20.(本题10分)解:由光栅衍射主极大公式得 111sin λϕk d = 222sin λϕk d =212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 4分 当两谱线重合时有 ϕ1= ϕ2 1分即 69462321===k k ....... 1分 两谱线第二次重合即是 4621=k k , k 1=6, k 2=4 2分由光栅公式可知d sin60°=6λ160sin 61λ=d =3.05×10-3mm 2分 21.(本题10分)解:设入射光中两种成分的强度都是I 0,总强度为2 I 0.(1) 通过第一个偏振片后,原自然光变为线偏振光,强度为I 0 / 2, 原线偏振光部分强度变为I 0 cos 2θ,其中θ为入射线偏振光振动方向与偏振片偏振化方向P 1的夹角.以上两部分透射光的振动方向都与P 1一致.如果二者相等,则以后不论再穿过几个偏振片,都维持强度相等(如果二者强度不相等,则以后出射强度也不相等).因此,必须有 I 0 / 2=I 0 cos 2 θ,得θ=45︒. 2分为了满足线偏振部分振动方向在出射后“转过”90︒,只要最后一个偏振片偏振化方向与入射线偏振方向夹角为90︒就行了. 2分综上所述,只要两个偏振片就行了(只有一个偏振片不可能将振动方向“转过”90︒). 2分配置如图,E表示入射光中线偏振部分的振动方向,P 1、P 2分别是第一、第二偏振片的偏振化方向 2分 (2) 出射强度I 2=(1/2)I 0 cos 2 45︒+I 0 cos 4 45︒ =I 0 [(1 / 4)+(1 / 4)]=I 0/2比值 I 2/(2I 0)=1 / 4 2分22.(本题5分)解:光自水中入射到玻璃表面上时,tg i 0=1.56 / 1.33 2分 i 0=49.6° 1分 光自玻璃中入射到水表面上时,tg 0i '=1.33 / 1.56 0i '=40.4° (或 0i '=90°-i 0=40.4°) 2分 四、推导与证明题(共5分)23.(本题5分)证:由于 相位差=波长光程差π2 1分所以 ()θλφsin π2d =1分P 点处合成的波振动 E = E 1 +E 2P 1P 245°45°E⎪⎭⎫⎝⎛+=2sin 2cos 20φωφt E ⎪⎭⎫ ⎝⎛+=2sin φωt E p 所以合成振幅 2cos 20φE E p =3分式中E m = 2E 0是E p 的最大值.五、回答问题(共5分) 24.(本题5分)答:除中央明纹(零级)外,其他明纹的衍射方向对应着奇数个半波带(一级对应三个,二级对应五个…),级数越大,则单缝处的波阵面可以分成的半波带数目越多.其中偶数个半波带的作用两两相消之后,剩下的光振动未相消的一个半波带的面积就越小,由它决定的该明条纹的亮度也就越小. 5分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章波动光学一、填空题(一)易(基础题)1、光学仪器的分辨率R= 。

2、若波长为625nm的单色光垂直入射到一个每毫米有800条刻线的光栅上时,则第一级谱线的衍射角为。

3、在单缝夫琅和费衍射实验中,屏上第三级暗纹对应的单缝处波面可划分为个半波带。

4、当光由光疏介质进入光密介质时,在交界面处的反射光与入射光有相位相反的现象,这种现象我们称之为。

5、干涉相长的条件是两列波的相位差为π的(填奇数或偶数)倍。

6、可见光要产生干涉现象必须满足的条件是:。

7、在麦克耳逊干涉仪的一条光路中,插入一块折射率为n,厚度为d的透明薄片,插入薄片使这条光路的光程改变了;8、波长为λ的单色光垂直照射在由两块平玻璃板构成的空气劈尖上,测得相邻明条纹间距为L,若将劈尖角增大至原来的2倍,则相邻条纹的间距变为。

9、单缝衍射中狭缝愈窄,条纹间距愈。

10、在单缝夫琅和费衍射实验中,第一级暗纹发生在衍射角300的方向上,λ=,则缝宽为。

所用单色光波长为500nm11、用波长为λ的单色光垂直照射置于空气中厚度为e的折射率为1.5的透明薄膜,两束反射光的光程差为;12、光学仪器的分辨率与和有关,且越小,仪器的分辨率越高。

13、当一束自然光通过两片偏振化方向成30o的偏振片后,其出射光与入射光的光强之比为。

(二)中(一般综合题)1、若麦克耳逊干涉仪的可动反射镜M移动0.620的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为 mm 。

2、在杨氏双缝干涉实验中,如果相干光源1S 和2S 相距0.20d mm =,1S 、2S 到屏幕E 的垂直距离为 1.0D m =。

若第二级明纹距中心点O 的距离为6.0mm ,则单色光的波长为 ;相邻两明条纹之间的距离为 。

3、用单色光垂直照射空气劈形膜,当劈形膜的夹角减小时,干涉条纹_______劈棱方向移动,干涉条纹间距__________。

4、用单色光垂直照射空气劈形膜;观察反射光的干涉,则劈棱处是_____纹; 若改用波长大的单色光照射,相邻条纹间距将变__________。

5、真空中波长为单色光在折射率为n 的媒质中由A 点传到B 点时光程改变量为3/2,则相位改变量为__________ ,光走过的几何路程为____。

6、如图(6题)所示,1S 和2S ,是初相和振幅均相同的相干波源,相距4.5λ,设两波沿1S 2S 连线传播的强度不随距离变化,则在连线上1S 左侧各点和2S 右侧各点是(填相长或相消)。

7、在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射在宽度为a=2λ的单缝上,对应于衍射角为30°方向,单缝处的波面可分成的半波带数目为 个。

三、难(综合题)1、每毫米有500条刻痕的衍射光栅的光栅常数为_______.当以的单色光垂直照射该光栅时最多可观察到_______条明条纹.2、有单色光垂直照射在单缝上,若缝宽增大,则条纹间隔_______;若波长增大,则条纹间隔_______ ;当与满足_______的数量关系时,在屏上将只出现中央明纹.3、在牛顿环干涉实验中,以波长为λ的单色光垂直照射,若平凸透镜与平玻璃板之间的介质折射率为n ,今使玻璃板稍微下移,则干涉圆环将__________移;每当膜厚改变__________时就移过一条条纹.二、选择题(一)易(基础题)1、在双缝干涉实验中,如果拉大光屏与双缝之间的距离,则光屏上的条纹间距将:()(A)不变;(B)变小;(C)变大;(D)不能确定。

2、在夫琅和费单缝实验中,若增大缝宽,其它条件不变,则中央明纹()(A)宽度变大;(B)宽度不变,且中心强度也不变;(C)宽度变小;(D)宽度不变,但中心强度变小。

3、光波的衍射没有声波显著是由于()(A)光是电磁波;(B)光速比声速大;(C)光有颜色;(D)光的波长比声波小得多。

4、为了提高仪器的分辨率,可以采用的正确方法是()(A)减小观测距离;(B)减小入射光波长;(C)增大观测距离;(D)增大入射光波长。

5、频率为100Hz,传播速度为300m/s的平面简谐波,波线上两点振动的相位差为13π,则此两点相距 ( )(A)2m; (B)2.19m; (C) 0.5m; (D)28.6m。

6、光强均为I的两束相干光在某区域内叠加,则可能出现的最大光强为()(A)I; (B)2 I; (C)3 I ; (D)4 I。

7、一束白光垂直照射在一光栅上,在形成的同级光栅光谱中,偏离中央明纹最远的是:()(A)紫光;(B)绿光;(C)黄光;(D)红光。

8、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中()(A)传播的路程相等,走过的光程相等;(B)传播的路程相等,走过的光程不相等;(C)传播的路程不相等,走过的光程相等;(D )传播的路程不相等,走过的光程不相等。

9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是:( )(A )使屏靠近双缝; (B )使两缝的间距变小;(C )把两缝的宽度稍微调窄;(D )改变波长较小的单色光源。

10、在单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为4a λ=的单缝上,对应于衍射角30︒的方向,单缝处波阵面的半波带数目为( )(A )2个; (B )4个; (C )6个; (D )8个。

11、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A,B 两点位相差为3π,则此路径的光程差为:( )(A )1.5λ; (B )1.5n λ;(C )3λ; (D )1.5n λ。

12、自然光以布儒斯特角入射到透明介质表面时,正确的陈述为( )(A )反射线和折射线是平行的;(B )折射光是线偏振光;(C )反射线和折射线是垂直的; (D )反射光的光振动平行于入射面。

(二)中(一般综合题)1、人耳能辨别同时传来的不同的声音,是由于 ( )(A )波的反射和折射; (B )波的干涉;(C )波的独立传播特性; (D )波的强度不同。

2、如图2,在杨氏双缝干涉实验中,用透明玻璃挡住下缝,则 ( )(A )中央明纹向上移动;(B )中央明纹向下移动;(C )中央明纹不动;(D )不能确定 。

3、两块平玻璃构成空气劈尖,左边为棱边,用单色光垂直入射,若上面的平玻璃以棱边为轴,沿顺时针方向作微小转动,则干涉条纹的:( )(A )间隔变小,并向棱边方向平移;(B )间隔变大,并向远离棱边方向平移;(C )间隔不变,向棱边方向平移;(D )间隔变小,并向远离棱边方向平移。

4、用一毫米内有500条刻痕的平面透射光栅观察钠光谱( λ =589nm ),设透镜焦距f=1.00m.则光线垂直入射时,最多能看到的光谱级数为( )(A )4 ; (B )2 ; (C )不能确定; (D )3 。

5、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹。

若在两缝后放一个偏振片,则 ( )(A )干涉条纹的间距不变,但明纹的亮度加强;(B )干涉条纹的间距不变,但明纹的亮度减弱;(C )干涉条纹的间距变窄,但明纹的亮度减弱;(D )无干涉条纹。

6、某单色光垂直照射一衍射光栅,在屏幕上只能出现零级和一级光谱,欲使屏幕上出现更高级次的谱线,应该 ( )(A )换一个光栅常数较大的光栅; (B )换一个光栅常数较小的光栅;(C )将光栅向靠近屏幕的方向移动(D )将光栅向远离屏幕方向移动。

(三)难(综合题)1、真空中波长为λ的单色光,在折射率为n 的透明介质中从A 传播到B ,若A,B 两点光程差为5n λ,则此两点间的相位差为( )(A )π; (B )2.5π; (C )5π; (D )10/n π。

2、光强为I 0的自然光垂直通过两个偏振片,它们的偏振化方向之间的夹角60α=︒。

设偏振片没有吸收,则出射光强I 与入射光强I 0之比为( )(A )1/4; (B )3/4; (C )1/8; (D )3/8。

3、在牛顿环干涉实验中,若在平凸透镜的周边轻轻下压时,干涩圆环(A) 不动; (B) 向中心收缩;(C )从中心向外扩大; (D) 变密。

4、光从光疏媒质射向光密媒质时(A) 反射光有半波损失; (B) 入射光有半波损失;(C) 透射光有半波损失; (D) 入射、反射、透射光均无半波损失。

5、当组成空气劈形膜的两玻璃片夹角增大时,干涉条纹将(A) 向劈棱方向移动且变密;(B) 向劈棱方向移动但条纹间隔不变;(C) 向远离劈棱方向移动但间隔不变;(D) 向远离劈棱方向移动间隔变宽.三、判断题(易,基础题)1、光栅条纹是衍射和干涉的总效果。

( )2、光是横波,光具有波动性和粒子性。

( )3、等厚干涉图样一定是明暗相间的直条纹。

( )4、牛顿环中心是暗纹。

( )5、等倾干涉图样一定是明暗相间的同心圆环。

( )6、光的波动性表现为光能产生干涉和衍射。

( )7、干涉和衍射产生的是完全一样的明、暗相间的条纹。

( )8、当入射角为布儒斯特角时,反射光与折射光垂直,反射光为偏振光。

( )9、 若以白光垂直照射单缝,则光屏中央处为波长最短的紫色光条纹。

( )10、 光的衍射可以分为夫琅和费衍射和菲涅耳衍射两种。

( )四、计算题(一)易(基础题)1、在杨氏双缝干涉实验中,如果相干光源1S 和2S 相距0.20d mm =,1S 、2S 到屏幕E 的垂直距离为 1.0D m =。

(1)若第二级明纹距中心点O 的距离为6.0mm ,求此单色光的波长;(2)求相邻两明条纹之间的距离;(3)如改用波长为500nm 的单色光做实验,求相邻两明条纹之间的距离。

2、在双缝干涉实验中,两缝间距为0.30mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹两侧第五条暗纹间的距离为22.78mm ,求所用计算题5图单色光的波长。

3、用波长为589.3nm 的黄色光观察牛顿环时,测得第k 级暗环半径为5mm,第k+5级暗环半径为7mm,试求平凸透镜的曲率半径R 和级数K 。

4、在迈克耳孙干涉仪的两臂中,分别插入10.0l cm =长的玻璃管,其中一个抽成真空,另一个则储有压强为51.01310Pa ⨯的空气,用以测定空气的折射率n 。

设所用光波波长为546nm ,实验时,向真空玻璃管中逐渐充入空气,直至压强达到51.01310Pa ⨯为止。

在此过程中,观察到107.2条干涉条纹的移动,试求空气的折射率n 。

5、如图所示(计算题5图)的杨氏双缝实验中,P 为屏上第五级亮纹所在位置。

现将一 玻璃片插入光源1S 发出的光束途中,则P 点变为中央亮条纹的位置。

已知相干光源的波长0.6m λμ=,玻璃的折射率 1.5n =,求玻璃片的厚度。

6、把膜厚为65.8910d m -=⨯的薄膜放入迈克耳孙干涉仪的一臂,如果由此产生了9.0条干涉条纹的移动,求薄膜的折射率。

相关文档
最新文档