2015山西特岗教师招聘考试初中数学重要考点整理八
特岗数学专业知识总复习.pdf
7、集合概念及其基本理论是近代数学最基本的内容之一。学会用集合的思想处理数学 问题。
三、典型例题
例 1、已知集合 M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},求 M∩N。 解题思路分析: 在集合运算之前,首先要识别集合,即认清集合中元素的特征。M、N 均为数集,不能 误认为是点集,从而解方程组。其次要化简集合,或者说使集合的特征明朗化。M={y|y=x2+1, x∈R}={y|y≥1},N={y|y=x+1,x∈R}={y|y∈R} ∴ M∩N=M={y|y≥1} 说明:实际上,从函数角度看,本题中的 M,N 分别是二次函数和一次函数的值域。一 般地,集合{y|y=f(x),x∈A}应看成是函数 y=f(x)的值域,通过求函数值域化简集合。此 集合与集合{(x,y)|y=x2+1,x∈R}是有本质差异的,后者是点集,表示抛物线 y=x2+1 上 的所有点,属于图形范畴。集合中元素特征与代表元素的字母无关,例{y|y≥1}={x|x≥1}。 例 2、已知集合 A={x|x2-3x+2=0},B+{x|x2-mx+2=0},且 A∩B=B,求实数 m 范围。 解题思路分析: 化简条件得 A={1,2},A∩B=B B A 根据集合中元素个数集合 B 分类讨论,B=φ,B={1}或{2},B={1,2} 当 B=φ时,△=m2-8<0
特岗教师考试数学专业知识总复习题纲
集合
一、复习要求
1、理解集合及表示法,掌握子集,全集与补集,子集与并集的定义; 2、掌握含绝对值不等式及一元二次不等式的解法; 3、理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法; 4、理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系; 5、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
山西初中数学考点
山西初中数学考点数学的公理化方法实质上就是逻辑学方法在数学中的直接运用。
在公理系统中,所有命题与命题之间都是由严谨的逻辑性联系起来的。
将所有概念和定理组成一个具有内在逻辑联系的整体,即构成了公理系统。
今天作者在这给大家整理了一些山西初中数学考点,我们一起来看看吧!山西初中数学考点一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及运算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相干元素,初中数学复习提纲、初中数学复习提纲等)六、一组运算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的运算方法6.圆柱、圆锥的侧面展开图及相干运算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、重要辅助线1.作半径2.见弦常常作弦心距3.见直径常常作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦初中数学考点分析一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
特岗教师考试数学专业知识总复习题纲doc资料
特岗教师考试数学专业知识总复习题纲集合一、复习要求1、理解集合及表示法,掌握子集,全集与补集,子集与并集的定义;2、掌握含绝对值不等式及一元二次不等式的解法;3、理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;4、理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系;5、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
二、学习指导1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。
2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A⊆B时,称A是B的子集;当A≠⊂B时,称A是B的真子集。
3、集合运算(1)交,并,补,定义:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},C U A={x|x ∈U,且x∉A},集合U表示全集;(2)运算律,如A∩(B∪C)=(A∩B)∪(A∩C),C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B)等。
4、命题:(1)命题分类:真命题与假命题,简单命题与复合命题;(2)复合命题的形式:p且q,p或q,非p;(3)复合命题的真假:对p且q而言,当q、p为真时,其为真;当p、q中有一个为假时,其为假。
对p或q而言,当p、q均为假时,其为假;当p、q中有一个为真时,其为真;当p为真时,非p为假;当p为假时,非p为真。
(3)四种命题:记“若q则p”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p“,逆否命题为”若非q则非p“。
教师资格证考试数学科目二重点简答题汇总(识记版)
教师资格证考试数学科目二重点简答题汇总(识记版)本文档是教师资格证考试中数学科目二的重点简答题的汇总。
以下是题目及其简要答案。
1. 什么是二次函数?二次函数是一种形如 $y = ax^2 + bx + c$ 的函数,其中 $a$、$b$、$c$ 是常数,且 $a \neq 0$。
2. 如何求二次函数的顶点坐标?二次函数的顶点坐标可以通过公式 $x = -\frac{b}{2a}$ 求得。
3. 怎样判断二次函数的开口方向?当二次函数的系数 $a > 0$ 时,开口向上;当 $a < 0$ 时,开口向下。
4. 二次函数的图象与相关系数之间有什么关系?二次函数的图象的形状与其相关系数 $a$ 有关,即 $a$ 的正负决定了函数图象的开口方向。
5. 什么是等差数列?等差数列是一种数列,其中相邻两项的差是常数。
记作 $a_1, a_2, a_3, \dots, a_n$。
6. 如何求等差数列的通项公式?等差数列的通项公式可以通过 $a_n = a_1 + (n - 1)d$ 来求得,其中 $a_n$ 表示第 $n$ 项,$a_1$ 表示第一个项,$d$ 表示公差。
7. 等差数列的前 $n$ 项和公式是什么?等差数列的前 $n$ 项和可以通过 $S_n = \frac{n}{2}(a_1 +a_n)$ 来计算,其中 $S_n$ 表示前 $n$ 项和。
8. 什么是同余方程?同余方程是指形如 $ax \equiv b (\mod m)$ 的方程,其中 $a$、$b$、$m$ 为已知常数,$x$ 为未知数。
9. 怎样解同余方程?解同余方程可以通过使用欧拉定理或中国剩余定理来求得。
10. 什么是指数函数?指数函数是一种形如 $y = a^x$ 的函数,其中 $a > 0$ 且 $a \neq 1$。
以上是教师资格证考试数学科目二重点简答题的汇总。
希望对你的备考有所帮助。
> 注意:本文档提供的答案为简要答案,具体题目和解答可能需要更详细的说明和推导。
山西中考数学考点梳理
山西中考数学考点梳理数学语言亦对初学者而言感到困难。
如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思。
今天作者在这给大家整理了一些山西中考数学考点梳理,我们一起来看看吧!山西中考数学考点梳理1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也相互平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23.角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24.推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理(SSS)有三边对应相等的两个三角形全等26.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27.定理1在角的平分线上的点到这个角的两边的距离相等28.定理2到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31.推论1等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合33.推论3等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1三个角都相等的三角形是等边三角形36.推论2有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上中考数学考点梳理1.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合2.定理1关于某条直线对称的两个图形是全等形3.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上5.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称6.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^27.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形8.定理四边形的内角和等于360°9.四边形的外角和等于360°10.多边形内角和定理n边形的内角的和等于(n-2)×180°11.推论任意多边的外角和等于360°12.平行四边形性质定理1平行四边形的对角相等13.平行四边形性质定理2平行四边形的对边相等1.推论夹在两条平行线间的平行线段相等11.平行四边形性质定理3平行四边形的对角线相互平分16.平行四边形判定定理1两组对角分别相等的四边形是平行四边形17.平行四边形判定定理2两组对边分别相等的四边形是平行四边形18.平行四边形判定定理3对角线相互平分的四边形是平行四边形19.平行四边形判定定理一组对边平行相等的四边形是平行四边形中考数学考点乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1_X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac 0注:方程有两个不等的实根b2-4ac0抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py直棱柱侧面积S=c_h斜棱柱侧面积S=c‘_h正棱锥侧面积S=1/2c_h’正棱台侧面积S=1/2(c+c‘)h’圆台侧面积S=1/2(c+c‘)l=pi(R+r)l球的表面积S=4pi_r2圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r 0扇形面积公式s=1/2_l_r锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h斜棱柱体积V=S’L注:其中,S‘是直截面面积,L是侧棱长柱体体积公式V=s_h圆柱体V=pi_r2h山西中考数学考点梳理到此结束。
山西中考数学考点归纳总结
山西中考数学考点归纳总结在山西中考数学中,有一些重要的考点需要同学们重点掌握。
下面对这些考点进行归纳总结,帮助同学们更好地备考。
一、整数和分数1. 整数的加减:熟练掌握整数的加减运算法则,注意正数加正数、负数加负数以及正数加负数的运算规律。
2. 分数的加减乘除:要能够将不同分母的分数化为相同分母后进行运算,注意约分和通分的方法。
二、代数式与方程1. 代数式的运算:包括代数式的加减乘除,熟悉各种代数式运算法则,特别是分配律、结合律等。
2. 一元一次方程:要学会解一元一次方程,注意方程的变形和解方程的步骤,熟练掌握等式两边同时加减一个数、乘除一个非零数的性质。
三、平面图形与立体图形1. 常见平面图形的性质:熟悉各种平面图形的定义、性质和计算公式,包括正方形、长方形、三角形、平行四边形等。
2. 常见立体图形的性质:掌握各种立体图形的定义、性质以及计算公式,包括长方体、正方体、圆柱体、圆锥体等。
四、函数与图像1. 函数的概念:了解函数的定义、定义域、值域、增减性等基本概念,能够判断一个关系是否是函数。
2. 常见函数图像:熟悉常见函数的图像及其特点,包括一次函数、二次函数、指数函数、对数函数等,要能够根据函数的表达式绘制对应的图像。
五、统计与概率1. 数据的收集和整理:学会对一组数据进行整理和分析,包括频数表、频率表、直方图等统计图表的绘制。
2. 简单概率的计算:掌握计算简单概率的方法,了解事件的互斥与对立,能够根据概率计算问题进行推理和判断。
总结:以上是山西中考数学的重点考点归纳总结,希望同学们能够结合课本和练习题,熟练掌握这些知识点,灵活运用于解题过程。
只有牢固掌握了基础知识,才能在考试中取得好成绩。
祝同学们取得优异的成绩!。
【数学】2019年山西省特岗教师初中数学学科专业知识试卷全解析版
2016-2019年全国特岗教师招聘初中数学真题卷温馨提示:本套试卷收录2016-2019特岗教师招聘考试中最具有代表性的初中数学真题,包含了四川省、辽宁省、河北省、河南省、海南省、江西省、黑龙江省、安徽省、云南省、甘肃省等主要招考省份,内容详实,覆盖面广,有利于考生把握当前命题趋势,了解考试题型,洞悉考点变化,达到及时有效复习的目的。
2020年度,全国特岗教师招聘计划分配名额表如下:以下为试题,参考解析附后一、单选题1.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.【答案】B【解析】【分析】根据抛物线图像的平移规律“左加右减,上加下减”即可确定平移后的抛物线解析式.【详解】解:将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为()2223y x =-+,故选:B .【点睛】本题考查了二次函数的平移规律,熟练掌握其平移规律是解题的关键. 2.000073用科学记数法表示为57.310-⨯,故选:D .【点睛】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.3.下列事件中,必然事件是( )A .打开电视机,正在播放体育比赛B .明天是星期一C .掷一枚均匀的硬币,正面朝上D .在北半球,太阳会从东方升起4.如图,等腰直角三角板的顶点A 在直线b 上.若a b ∥,234∠=︒,则1∠度数为( )A .34︒B .56︒C .10︒D .5︒5.如图,a<0,b>0,c<0,那么二次函数y=ax 2+bx+c 的图象可能是( )A .B .C .D .6.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A .5210258x y x y +=⎧⎨+=⎩B .5210258x y x y -=⎧⎨-=⎩C .5210258x y x y +=⎧⎨-=⎩D .5282510x y x y +=⎧⎨+=⎩7.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明A OB AOB '''∠=∠的依据是( )A .SSSB .SASC .SSAD .ASA8.下列各曲线中哪个不能表示y 是x 的函数的是( )A .B .C .D .9.如图,点A 是反比例函数y=(x >0)的图象上任意一点,AB ∥x 轴交反比例函数y=﹣的图象于点B ,以AB 为边作▱ABCD ,其中C 、D 在x 轴上,则S □ABCD 为( )A .2B .3C .4D .510.先化简,再求值: 2212111x x x x -+⎛⎫-÷ ⎪-⎝⎭,小明的解题步骤如下: 原式= 21(1)(1)(1)x x x x x --÷+-第一步 = 21(1)(1)(1)x x x x x --⋅+-第二步 = 21(1)(1)(1)x x x x x -+-⋅-第三步 = 1x x+第四步 请你判断一下小明的解题过程从第几步开始出错( )A .第一步B .第二步C .第三步D .第四步 11.四个实数﹣23,1,0,﹣2.5中,最小的实数是( ) A .﹣23 B .1 C .0 D .﹣2.512.如图,⊙O 的半径为4,点A 为⊙O 上一点, OD ⊥弦BC 于D ,如果∠BAC=60°,那么OD的长是()A.4 B.23C.2 D.313.如图,点C在反比例函数y=kx(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.414.如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为A. B. C.D.15.亚洲陆地面积约为4400万平方千米,用科学记数法正确表示44000000的是()A.44×106B.0.44×108C.4.4×103D.4.4×107二、填空题16.对于任意不相等的两个实数a、b,定义一种运算如下:a⊗b=a ba b+-,如图3⊗2=3232+-=5,那么8⊗5=_____.17.如图,⊙O的内接五边形ABCDE的对角线AC与BD相交于点G,若∠E=92°,∠BAC=41°,则∠DGC=_____°.18.如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE'F'G',此时点G'在AC上,连接CE',则CE'+CG'=_____.19.一个正方形的内切圆半径,外接圆半径与这个正方形边长的比为 ___.20.如图,直线y=kx与双曲线y=2x(x>0)交于点A(1,a),则k=_____.三、解答题21.为更好的了解中学生课外阅读的情况,学校团委将初一年级学生一学期阅读课外书籍量分为A (3本以内)、B (3﹣﹣6本)、C (6﹣﹣10本)、D (10本以上)四种情况进行了随机调查,并根据调查结果制成了如下两幅不完整的统计图.请结合统计图所给信息解答上列问题:(1)在扇形统计图中C 所占的百分比是多少?(2)请将折线统计图补充完整;(3)学校团委欲从课外阅读量在10本以上的同学中随机邀请两位参加学校举办的“书香致远墨卷至恒”主题读书日的形象大使,请你用列表法或画树状图的方法,求所选出的两位同学恰好都是女生的概率.22.(1)计算:1231()(sin301)824--+︒---÷- (2)先化简,再求值:31(1)12x x x x -+---,其中x=2+2. 23.如图,在矩形ABCD 中,E 是AB 的中点,连接DE 、CE .(1)求证:△ADE ≌△BCE ;(2)若AB=6,AD=4,求△CDE 的周长.24.解不等式组:()23423x x x x ⎧-≤-⎪⎨-<⎪⎩,并求非负整数解. 25.如图,AB 是⊙O 的直径,M 是OA 的中点,弦CD ⊥AB 于点M ,过点D 作DE ⊥CA 交CA 的延长线于点E .(1)连接AD ,则∠OAD = °;(2)求证:DE 与⊙O 相切;(3)点F 在BC 上,∠CDF =45°,DF 交AB 于点N .若DE =3,求FN 的长.参考答案:一、单选题3.D【解析】试题分析:A .打开电视机,正在播放体育比赛,是随机事件;B .明天是星期一,是随机事件;C .掷一枚均匀的硬币,正面朝上,是随机事件;D .在北半球,太阳会从东方升起,是必然事件;故选D.考点:随机事件.4.B【解析】试题解析:如图,∵a ∥b ,90ABC ∠=︒,∴2490∠+∠=︒,34∠=∠,456∠=︒,∴356∠=︒,∴1356∠=∠=︒.故选B.5.A【解析】【分析】根据a 、b 、c 的符号,可判断抛物线的开口方向,对称轴的位置,与y 轴交点的位置,作出选择.【详解】由a <0可知,抛物线开口向下,排除. D ;由a <0,b>0可知,对称轴x= -2ab >0,在y 轴右边,排除B ; 由c <0可知,抛物线与y 轴交点(0,c)在x 轴下方,排除C ;故选A.【点睛】本题考查的是二次函数,熟练掌握二次函数的图像是解题的关键.6.A【解析】【分析】每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】由题意可得,5210258x y x y +=⎧⎨+=⎩, 故选A .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找准等量关系列出相应的方程组.7.A【解析】【分析】由作法易得OD =O′D′,OC =O′C′,CD =C′D′,根据SSS 可得到三角形全等.【详解】解:由作法易得OD =O′D′,OC =O′C′,CD =C′D′,依据SSS 可判定△COD≌△C'O'D',故选:A.【点睛】本题主要考查了全等三角形的判定和基本作图,关键是掌握全等三角形的判定定理.8.D【解析】【分析】在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.【详解】解:显然A、B、C三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D、对于x>0的部分值,y都有二个或三个值与之相对应,则y不是x的函数;故选:D.【点睛】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.9.D【解析】设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.=×b=5.则S□ABCD故选D.10.C【解析】从第三步到第四步约分时出现了错误,x-1与1-x 互为相反数,掉了“-”【详解】分式的混合运算 2212111x x x x -+⎛⎫-÷ ⎪-⎝⎭=21(1)(1)(1)x x x x x --÷+-=21(1)(1)(1)x x x x x -+-⋅-=-1x x +, 由此可看出从第三步到第四步约分时出现了错误,x-1与1-x 互为相反数,掉了“-”。
初中数学考点归纳口诀记忆轻松掌握
初中数学考点归纳口诀记忆轻松掌握
初中数学考点归纳
1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
2.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
3.弧长计算公式:L=n兀R/180。
4.扇形面积公式:S扇形=n兀R^2/360=LR/2。
5.内公切线长= d-(R-r) 外公切线长= d-(R+r)。
6.绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
7.列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程。
8.事件的概率:对于一个,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A)。
数学考点口诀记忆轻松掌握
1、有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
2、合并同类项
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
3、去、添括号法则
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
4、解方程
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
5、平方差公式
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
2015教师招聘考试初中数学重要考点整理汇总
内蒙古教师考试网2015教师招聘考试初中数学重要考点整理汇总纵观历年教师招聘考试,初中数学重要考点主要有实数、代数式、方程(组)、不等式(组)、统计初步与概率初步一、一次函数与反比例函数、二次函数等。
中公教师考试网为大家一一整理了各重要考点详解。
实数(具体内容)考点一、实数的分类考点二、实数的倒数、相反数和绝对值考点三、平方根、算数平方根和立方根考点四、科学记数法和近似数考点五、实数大小的比较考点六、实数的运算(做题的基础,分值相当大)代数式(具体内容)考点一、整式的有关概念考点二、多项式考点三、因式分解考点四、分式考点五、二次根式(初中数学基础,分值很大)方程(组)(具体内容)考点一、一元一次方程的概念考点二、一元二次方程考点三、一元二次方程的解法考点四、一元二次方程根的判别式考点五、一元二次方程根与系数的关系考点六、分式方程考点七、二元一次方程组不等式(组)(具体内容)考点一、不等式的概念考点二、不等式基本性质考点三、一元一次不等式考点四、一元一次不等式组统计初步与概率初步一(具体内容1、具体内容2)考点一、平均数考点二、统计学中的几个基本概念考点三、众数、中位数考点四、方差考点五、频率分布考点六、确定事件和随机事件考点七、随机事件发生的可能性考点八、概率的意义与表示方法考点九、确定事件和随机事件的概率之间的关系考点十、古典概型考点十一、列表法求概率考点十二、树状图法求概率考点十三、利用频率估计概率一次函数与反比例函数(具体内容1、具体内容2)考点一、平面直角坐标系考点二、不同位置的点的坐标的特征考点三、函数及其相关概念考点四、正比例函数和一次函数考点五、反比例函数二次函数(具体内容)考点一、二次函数的概念和图像考点二、二次函数的解析式考点三、二次函数的最值考点四、二次函数的性质更多内蒙古教师考试相关资讯请随时关注内蒙古教师考试网相关推荐:2015年内蒙古教师招考信息汇总。
山西教师资格数学备考高频考点十
最全信息 >>>XX教师XX网XX教资国考数学备考高频考点十通过XX教师招聘网可以了解到2021年XX教师XX考试最新动态,一般XX教师XX考试在每年下半年举行,9 月份网上报名, 11 月份笔试,幼儿园笔试内容为综合素质、保教知识与能力,小学笔试内容为综合素质、教育教学知识与能力,中学笔试内容为综合素质、教育知识与能力、学科知识。
面试以试讲、辩论等形式考察,XX教师考试网整理了 XX教师招聘真题供考生备考学习。
【三角形】1. 三角形根本概念定义:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
中线:顶点与对边中点的连线,平分三角形的面积。
高:从三角形的一个顶点( 三角形任意两条边的交点) 向其对边所作的垂线段(顶点至对边垂足间的线段 ) ,叫做三角形的高。
角平分线:平分三角形的其中一个角的线段叫做三角形的角平分线,它到两边距离相等。
( 注:一个角的平分线是射线,平分线的所在直线是这个角的对称轴。
)中位线:任意两边中点的连线。
2.等腰三角形定义:有两边相等的三角形是等腰三角形,相等的两个边称为这个三角形的腰。
性质:(1)等腰三角形的两个底角相等。
(2)等腰三角形的顶角的平分线、底边上的中线和底边上的高重合。
(3)等腰三角形的两底角的平分线相等。
(4)等腰三角形底边上的垂直平分线到两条腰的距离相等。
(5)等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
(6)等腰三角形底边上任意一点到两腰距离之和等于一腰上的高。
(7)等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。
3.等边三角形定义:等边三角形( 又称正三角形 ) ,为三边相等的三角形。
性质:(1)等边三角形的内角都相等,且均为60 °。
(2) 等边三角形每条边上的中线、高线和所对角的平分线互相重合。
( 三线合一 )(3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。
【必备】2019年山西省特岗教师初中数学学科专业知识试卷全解析版
2016-2019年全国特岗教师招聘初中数学真题卷温馨提示:本套试卷收录2016-2019特岗教师招聘考试中最具有代表性的初中数学真题,包含了四川省、辽宁省、河北省、河南省、海南省、江西省、黑龙江省、安徽省、云南省、甘肃省等主要招考省份,内容详实,覆盖面广,有利于考生把握当前命题趋势,了解考试题型,洞悉考点变化,达到及时有效复习的目的。
2020年度,全国特岗教师招聘计划分配名额表如下:以下为试题,参考解析附后一、单选题1.用三角板作 ABC 的边 BC 上的高,下列三角板的摆放位置正确的是A.B.C.D.2.如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°3.如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下列结论不一定成立的是()A.AD=BC′B.∠EBD=∠EDBC.△ABE∽△CBD D.sin∠ABE=AE ED4.若关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是()A.k>14且k≠0 B.k<14且k≠0 C.k≤14且k≠0 D.k<145.下列计算正确的是()A.B.C.D.6.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.3B.8 C.3D.67.下列事件属于必然事件的是()A.明天我市最高气温为56℃B.下雨后有彩虹C.在1个标准大气压下,水加热到100℃沸腾D.中秋节晚上能看到月亮8.有甲、乙两个不同的水箱,容量分别为a升和b升,且已各装了一些水.若将甲中的水全倒入乙箱之后,乙箱还可以继续装20升水才会满;若将乙箱中的水倒入甲箱,装满甲箱后,乙箱里还剩10升水,则a,b之间的数量关系是( )A.b=a+15 B.b=a+20 C.b=a+30 D.b=a+409.我们在探究二次函数的图象与性质时,首先从y=ax2(a≠0)的形式开始研究,最后到y=a(x-h)2+k(a≠0)的形式,这种探究问题的思路体现的数学思想是()A.转化 B.由特殊到一般 C.分类讨论 D.数形结合10.抛物线y=x2﹣mx﹣m2+1的图象过原点,则m为()A.0 B.1 C.﹣1 D.±111.方程222x xx-=的正根的个数为()A.0个B.1个C.2个D.3个12.如图,在平面直角坐标系中,⊙P的圆心是(2,a),半径为2,直线y=﹣x与⊙P相交于A、B两点,若弦AB的长为3a的值是()。
初中数学教师资格证考点
一、基本知识一、数与代数 A、数与式: 1、有理数有理数:①整数→正整数 /0/负整数②分数→正分数/负分数数轴:①画一条水平直线 ,在直线上取一点表示 0 (原点) ,选取某一长度作为单位长度 ,规定直线上向右的方向为正方向 ,就得到数轴. ②任何一个有理数都可以用数轴上的一个点来表示. ③如果两个数只有符号不同 ,那么我们称其中一个数为另外一个数的相反数 ,也称这两个数互为相反数 .在数轴上,表示互为相反数的两个点 ,位于原点的两侧 ,并且与原点距离相等.④数轴上两个点表示的数 ,右边的总比左边的大.正数大于 0,负数小于 0,正数大于负数 .绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.②正数的绝对值是他的本身、负数的绝对值是他的相反数、 0 的绝对值是 0.两个负数比较大小,绝对值大的反而小 .有理数的运算:加法:①同号相加 ,取相同的符号 ,把绝对值相加.②异号相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号 ,并用较大的绝对值减去较小的绝对值.③一个数与 0 相加不变 .减法:减去一个数,等于加上这个数的相反数 .乘法:①两数相乘,同号得正,异号得负,绝对值相乘.②任何数与 0 相乘得0.③乘积为 1 的两个有理数互为倒数.除法:①除以一个数等于乘以一个数的倒数.②0 不能作除数.乘方:求 N 个相同因数 A 的积的运算叫做乘方 ,乘方的结果叫幂,A 叫底数,N 叫次数.混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的 .2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数 X 的平方等于 A,那么这个正数 X 就叫做 A 的算术平方根.②如果一个数 X 的平方等于 A,那么这个数 X 就叫做 A 的平方根.③一个正数有 2 个平方根/0 的平方根为 0/负数没有平方根.④求一个数 A 的平方根运算,叫做开平方,其中 A 叫做被开方数 .立方根:①如果一个数 X 的立方等于 A,那么这个数 X 就叫做 A 的立方根.②正数的立方根是正数、0 的立方根是 0、负数的立方根是负数.③求一个数 A 的立方根的运算叫开立方 ,其中 A 叫做被开方数 .实数:①实数分有理数和无理数.②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样.③每一个实数都可以在数轴上的一个点来表示 .3、代数式代数式:单独一个数或者一个字母也是代数式 .合并同类项:①所含字母相同,并且相同字母的指数也相同的项 ,叫做同类项.②把同类项合并成一项就叫做合并同类项.③在合并同类项时,我们把同类项的系数相加 ,字母和字母的指数不变 .4、整式与分式整式:①数与字母的乘积的代数式叫单项式 ,几个单项式的和叫多项式 ,单项式和多项式统称整式.②一个单项式中 ,所有字母的指数和叫做这个单项式的次数.③一个多项式中 ,次数最高的项的次数叫做这个多项式的次数 .整式运算:加减运算时 ,如果遇到括号先去括号 ,再合并同类项 .幂的运算: AM+AN=A ( M+N )( AM ) N=AMN( A/B ) N=AN/BN 除法一样.整式的乘法:①单项式与单项式相乘 ,把他们的系数,相同字母的幂分别相乘 ,其余字母连同他的指数不变,作为积的因式.②单项式与多项式相乘 ,就是根据分配律用单项式去乘多项式的每一项 ,再把所得的积相加 . ③多项式与多项式相乘 ,先用一个多项式的每一项乘另外一个多项式的每一项 ,再把所得的积相加.公式两条:平方差公式/完全平方公式整式的除法:①单项式相除 ,把系数,同底数幂分别相除后 ,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式. ②多项式除以单项式 ,先把这个多项式的每一项分别除以单项式,再把所得的商相加 .分解因式:把一个多项式化成几个整式的积的形式 ,这种变化叫做把这个多项式分解因式 .方法:提公因式法、运用公式法、分组分解法、十字相乘法 .分式:①整式 A 除以整式 B,如果除式 B 中含有分母,那么这个就是分式 ,对于任何一个分式 ,分母不为 0.②分式的分子与分母同乘以或除以同一个不等于 0 的整式,分式的值不变 .分式的运算:乘法:把分子相乘的积作为积的分子 ,把分母相乘的积作为积的分母 .除法:除以一个分式等于乘以这个分式的倒数 .加减法:①同分母分式相加减 ,分母不变,把分子相加减.②异分母的分式先通分 ,化为同分母的分式, 再加减.分式方程:①分母中含有未知数的方程叫分式方程.②使方程的分母为 0 的解称为原方程的增根 .B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中 ,只含有一个未知数,并且未知数的指数是 1,这样的方程叫一元一次方程.②等式两边同时加上或减去或乘以或除以(不为 0 ) 一个代数式 ,所得结果仍是等式 .解一元一次方程的步骤:去分母 ,移项,合并同类项,未知数系数化为 1.二元一次方程:含有两个未知数 ,并且所含未知数的项的次数都是 1 的方程叫做二元一次方程 .二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组 .适合一个二元一次方程的一组未知数的值 ,叫做这个二元一次方程的一个解 .二元一次方程组中各个方程的公共解 ,叫做这个二元一次方程的解 .解二元一次方程组的方法:代入消元法 /加减消元法.一元二次方程:只有一个未知数 ,并且未知数的项的最高系数为 2 的方程1 )一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解 ,好像解法,在图象中表示等等 ,其实一元二次方程也可以用二次函数来表示 ,其实一元二次方程也是二次函数的一个特殊情况 ,就是当 Y 的 0 的时候就构成了一元二次方程了 .那如果在平面直角坐标系中表示出来 ,一元二次方程就是二次函数中 ,图象与 X 轴的交点 .也就是该方程的解了2 )一元二次方程的解法大家知道,二次函数有顶点式 ( -b/2a,4ac-b2/4a ) ,这大家要记住 ,很重要,因为在上面已经说过了 , 一元二次方程也是二次函数的一部分 ,所以他也有自己的一个解法 ,利用他可以求出所有的一元一次方程的解(1 )配方法利用配方,使方程变为完全平方公式 ,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法 .在解一元二次方程的时候也一样 ,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了 ,方程的根 X1={-b+ √ [b2-4ac)]}/2a,X2={-b- √[b2-4ac)]}/2a3 )解一元二次方程的步骤:( 1 ) 配方法的步骤:先把常数项移到方程的右边 ,再把二次项的系数化为 1,再同时加上 1 次项的系数的一半的平方 ,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为 0,然后看看是否能用提取公因式 ,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入 ,这里二次项的系数为 a,一次项的系数为 b,常数项的系数为 c4 )韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中 ,二根之和 =-b/a,二根之积=c/a也可以表示为 x1+x2=-b/a,x1x2=c/a. 利用韦达定理,可以求出一元二次方程中的各系数 ,在题目中很常用5 )一元一次方程根的情况利用根的判别式去了解 ,根的判别式可在书面上可以写为“△” ,读作“diao ta ”,而△=b2-4ac,这里可以分为 3 种情况:I 当△>0 时,一元二次方程有 2 个不相等的实数根;II 当△=0 时,一元二次方程有 2 个相同的实数根;III 当△<0 时,一元二次方程没有实数根(在这里 ,学到高中就会知道,这里有 2 个虚数根)2、不等式与不等式组不等式:①用符号〉 ,=, 〈号连接的式子叫不等式.②不等式的两边都加上或减去同一个整式 ,不等号的方向不变. ③不等式的两边都乘以或者除以一个正数 ,不等号方向不变. ④不等式的两边都乘以或除以同一个负数,不等号方向相反 .不等式的解集:①能使不等式成立的未知数的值 ,叫做不等式的解.②一个含有未知数的不等式的所有解,组成这个不等式的解集.③求不等式解集的过程叫做解不等式 .一元一次不等式:左右两边都是整式 ,只含有一个未知数,且未知数的最高次数是 1 的不等式叫一元一次不等式.一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起 ,就组成了一元一次不等式组. ②一元一次不等式组中各个不等式的解集的公共部分 ,叫做这个一元一次不等式组的解集.③求不等式组解集的过程,叫做解不等式组 .一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的 ,他是随着你加或乘的运算改变 .在不等式中,如果加上同一个数(或加上一个正数) ,不等式符号不改向;例如: A>B,A+C>B+C 在不等式中,如果减去同一个数(或加上一个负数) ,不等式符号不改向;例如: A>B,A-C>B-C 在不等式中,如果乘以同一个正数 ,不等号不改向;例如: A>B,A*C>B*C ( C>0 )在不等式中,如果乘以同一个负数 ,不等号改向;例如: A>B,A*C<b*c ( c<0 )如果不等式乘以 0,那么不等号改为等号所以在题目中 ,要求出乘以的数 ,那么就要看看题中是否出现一元一次不等式 ,如果出现了,那么不等式乘以的数就不等为 0,否则不等式不成立;3、函数变量:因变量, 自变量.在用图象表示变量之间的关系时 ,通常用水平方向的数轴上的点自变量 ,用竖直方向的数轴上的点表示因变量.一次函数:①若两个变量 X,Y 间的关系式可以表示成 Y=KX+B ( B 为常数,K 不等于 0)的形式,则称 Y 是 X 的一次函数.②当 B=0 时,称 Y 是 X 的正比例函数 .一次函数的图象:①把一个函数的自变量 X 与对应的因变量 Y 的值分别作为点的横坐标与纵坐标 ,②在直角坐标系内描出它的对应点 ,所有这些点组成的图形叫做该函数的图象 . 正比例函数 Y=KX 的图象是经过原点的一条直线.③在一次函数中,当 K〈0,B〈O, 则经 234 象限;当 K〈0,B〉0 时,则经 124 象限;当 K〉 0,B〈0 时,则经 134 象限;当 K〉 0,B〉 0 时,则经 123 象限.④当 K〉 0 时,Y 的值随 X 值的增大而增大,当 X〈0 时,Y 的值随 X 值的增大而减少 .二空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的.②面与面相交得线,线与线相交得点.③点动成线,线动成面,面动成体.展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱 ,侧棱是相邻两个侧面的交线 ,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同 ,侧面的形状都是长方体.②N 棱柱就是底面图形有 N 条边的棱柱.截一个几何体:用一个平面去截一个图形 ,截出的面叫做截面 .视图:主视图,左视图,俯视图.多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形 .弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形.②圆可以分割成若干个扇形.2、角线:①线段有两个端点.②将线段向一个方向无限延长就形成了射线 .射线只有一个端点.③将线段的两端无限延长就形成了直线 .直线没有端点.④经过两点有且只有一条直线 .比较长短:①两点之间的所有连线中 ,线段最短.②两点之间线段的长度 ,叫做这两点之间的距离 .角的度量与表示:①角由两条具有公共端点的射线组成 ,两条射线的公共端点是这个角的顶点.②一度的 1/60 是一分,一分的 1/60 是一秒.角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的.②一条射线绕着他的端点旋转 , 当终边和始边成一条直线时 ,所成的角叫做平角 .始边继续旋转,当他又和始边重合时,所成的角叫做周角 .③从一个角的顶点引出的一条射线 ,把这个角分成两个相等的角 ,这条射线叫做这个角的平分线 .平行:①同一平面内 ,不相交的两条直线叫做平行线.②经过直线外一点,有且只有一条直线与这条直线平行.③如果两条直线都与第 3 条直线平行,那么这两条直线互相平行 .垂直:①如果两条直线相交成直角 ,那么这两条直线互相垂直.②互相垂直的两条直线的交点叫做垂足.③平面内,过一点有且只有一条直线与已知直线垂直 .垂直平分线:垂直和平分一条线段的直线叫垂直平分线 .垂直平分线垂直平分的一定是线段 ,不能是射线或直线 ,这根据射线和直线可以无限延长有关 ,再看后面的,垂直平分线是一条直线 ,所以在画垂直平分线的时候 ,确定了 2 点后(关于画法,后面会讲)一定要把线段穿出 2 点.垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段 2 端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线 .定义中有几个要点要注意一下的 ,就是角的角平分线是一条射线 ,不是线段也不是直线 ,很多时,在题目中会出现直线 ,这是角平分线的对称轴才会用直线的 ,这也涉及到轨迹的问题 ,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质判定: 1、对角线相等的菱形 2、邻边相等的矩形二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中 ,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行 ,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论 1 直角三角形的两个锐角互余19、推论 2 三角形的一个外角等于和它不相邻的两个内角的和20、推论 3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理 1 在角的平分线上的点到这个角的两边的距离相等28、定理 2 到一个角的两边的距离相同的点 ,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论 3 等边三角形的各角都相等 ,并且每一个角都等于 60°34、等腰三角形的判定定理如果一个三角形有两个角相等 ,那么这两个角所对的边也相等 (等角对等边)35、推论 1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中 ,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点 ,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理 1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形于某直线对称 ,那么对称轴是对应点连线的垂直平分线44、定理 3 两个图形关于某直线对称 ,如果它们的对应线段或延长线相交 ,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分 ,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边 a、 b 的平方和、等于斜边 c 的平方,即 a2+b2=c247、勾股定理的逆定理如果三角形的三边长 a、 b、 c 有关系 a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n 边形的内角的和等于( n-2 ) ×180 °51、推论任意多边的外角和等于 360°52、平行四边形性质定理 1 平行四边形的对角相等53、平行四边形性质定理 2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理 3 平行四边形的对角线互相平分56、平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60、矩形性质定理 1 矩形的四个角都是直角61、矩形性质定理 2 矩形的对角线相等62、矩形判定定理 1 有三个角是直角的四边形是矩形63、矩形判定定理 2 对角线相等的平行四边形是矩形64、菱形性质定理 1 菱形的四条边都相等65、菱形性质定理 2 菱形的对角线互相垂直 ,并且每一条对角线平分一组对角66、菱形面积 =对角线乘积的一半,即 S= ( a×b ) ÷267、菱形判定定理 1 四边都相等的四边形是菱形68、菱形判定定理 2 对角线互相垂直的平行四边形是菱形69、正方形性质定理 1 正方形的四个角都是直角 ,四条边都相等70、正方形性质定理 2 正方形的两条对角线相等 ,并且互相垂直平分 ,每条对角线平分一组对角71、定理 1 关于中心对称的两个图形是全等的72、定理 2 关于中心对称的两个图形 ,对称点连线都经过对称中心 ,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点 ,并且被这一点平分 ,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等 ,那么在其他直线上截得的线段也相等79、推论 1 经过梯形一腰的中点与底平行的直线 ,必平分另一腰80、推论 2 经过三角形一边的中点与另一边平行的直线 ,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边 ,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底 ,并且等于两底和的一半 L = ( a+b ) ÷2 S=L×h83、 (1)比例的基本性质:如果 a:b=c:d,那么 ad=bc 如果 ad=bc ,那么 a:b=c:d84、 (2)合比性质:如果 a/ b=c /d,那么(a±b) /b=(c ±d)/d85、 (3)等比性质:如果 a/ b=c /d= … =m/n(b+d+ … +n ≠0),那么(a+c+ … +m)/(b+d+ … +n)=a/b86、平行线分线段成比例定理三条平行线截两条直线 ,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线) ,所得的对应线段成比例88、定理如果一条直线截三角形的两边 (或两边的延长线) 所得的对应线段成比例 ,那么这条直线平行于三角形的第三边89、平行于三角形的一边 ,并且和其他两边相交的直线 , 所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边 (或两边的延长线) 相交 ,所构成的三角形与原三角形相似91、相似三角形判定定理 1 两角对应相等,两三角形相似 ( ASA )92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理 2 两边对应成比例且夹角相等 ,两三角形相似 ( SAS )94、判定定理 3 三边对应成比例,两三角形相似( SSS )95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理 1 相似三角形对应高的比 ,对应中线的比与对应角平分线的比都等于相似比97、性质定理 2 相似三角形周长的比等于相似比98、性质定理 3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值 ,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值 ,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹 ,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹 ,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹 ,是这个角的平分线108、到两条平行线距离相等的点的轨迹 ,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆 .110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论 1①平分弦(不是直径)的直径垂直于弦 ,并且平分弦所对的两条弧②弦的垂直平分线经过圆心 ,并且平分弦所对的两条弧③平分弦所对的一条弧的直径 ,垂直平分弦,并且平分弦所对的另一条弧112、推论 2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等 ,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中 ,相等的圆周角所对的弧也相等118、推论 2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论 3 如果三角形一边上的中线等于这边的一半 ,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补 ,并且任何一个外角都等于它的内对角。